1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * PCI <-> OF mapping helpers 4 * 5 * Copyright 2011 IBM Corp. 6 */ 7 #define pr_fmt(fmt) "PCI: OF: " fmt 8 9 #include <linux/cleanup.h> 10 #include <linux/irqdomain.h> 11 #include <linux/kernel.h> 12 #include <linux/pci.h> 13 #include <linux/of.h> 14 #include <linux/of_irq.h> 15 #include <linux/of_address.h> 16 #include <linux/of_pci.h> 17 #include <linux/platform_device.h> 18 #include "pci.h" 19 20 #ifdef CONFIG_PCI 21 /** 22 * pci_set_of_node - Find and set device's DT device_node 23 * @dev: the PCI device structure to fill 24 * 25 * Returns 0 on success with of_node set or when no device is described in the 26 * DT. Returns -ENODEV if the device is present, but disabled in the DT. 27 */ 28 int pci_set_of_node(struct pci_dev *dev) 29 { 30 if (!dev->bus->dev.of_node) 31 return 0; 32 33 struct device_node *node __free(device_node) = 34 of_pci_find_child_device(dev->bus->dev.of_node, dev->devfn); 35 if (!node) 36 return 0; 37 38 struct device *pdev __free(put_device) = 39 bus_find_device_by_of_node(&platform_bus_type, node); 40 if (pdev) 41 dev->bus->dev.of_node_reused = true; 42 43 device_set_node(&dev->dev, of_fwnode_handle(no_free_ptr(node))); 44 return 0; 45 } 46 47 void pci_release_of_node(struct pci_dev *dev) 48 { 49 of_node_put(dev->dev.of_node); 50 device_set_node(&dev->dev, NULL); 51 } 52 53 void pci_set_bus_of_node(struct pci_bus *bus) 54 { 55 struct device_node *node; 56 57 if (bus->self == NULL) { 58 node = pcibios_get_phb_of_node(bus); 59 } else { 60 node = of_node_get(bus->self->dev.of_node); 61 if (node && of_property_read_bool(node, "external-facing")) 62 bus->self->external_facing = true; 63 } 64 65 device_set_node(&bus->dev, of_fwnode_handle(node)); 66 } 67 68 void pci_release_bus_of_node(struct pci_bus *bus) 69 { 70 of_node_put(bus->dev.of_node); 71 device_set_node(&bus->dev, NULL); 72 } 73 74 struct device_node * __weak pcibios_get_phb_of_node(struct pci_bus *bus) 75 { 76 /* This should only be called for PHBs */ 77 if (WARN_ON(bus->self || bus->parent)) 78 return NULL; 79 80 /* 81 * Look for a node pointer in either the intermediary device we 82 * create above the root bus or its own parent. Normally only 83 * the later is populated. 84 */ 85 if (bus->bridge->of_node) 86 return of_node_get(bus->bridge->of_node); 87 if (bus->bridge->parent && bus->bridge->parent->of_node) 88 return of_node_get(bus->bridge->parent->of_node); 89 return NULL; 90 } 91 92 struct irq_domain *pci_host_bridge_of_msi_domain(struct pci_bus *bus) 93 { 94 #ifdef CONFIG_IRQ_DOMAIN 95 struct irq_domain *d; 96 97 if (!bus->dev.of_node) 98 return NULL; 99 100 /* Start looking for a phandle to an MSI controller. */ 101 d = of_msi_get_domain(&bus->dev, bus->dev.of_node, DOMAIN_BUS_PCI_MSI); 102 if (d) 103 return d; 104 105 /* 106 * If we don't have an msi-parent property, look for a domain 107 * directly attached to the host bridge. 108 */ 109 d = irq_find_matching_host(bus->dev.of_node, DOMAIN_BUS_PCI_MSI); 110 if (d) 111 return d; 112 113 return irq_find_host(bus->dev.of_node); 114 #else 115 return NULL; 116 #endif 117 } 118 119 bool pci_host_of_has_msi_map(struct device *dev) 120 { 121 if (dev && dev->of_node) 122 return of_get_property(dev->of_node, "msi-map", NULL); 123 return false; 124 } 125 126 static inline int __of_pci_pci_compare(struct device_node *node, 127 unsigned int data) 128 { 129 int devfn; 130 131 devfn = of_pci_get_devfn(node); 132 if (devfn < 0) 133 return 0; 134 135 return devfn == data; 136 } 137 138 struct device_node *of_pci_find_child_device(struct device_node *parent, 139 unsigned int devfn) 140 { 141 struct device_node *node, *node2; 142 143 for_each_child_of_node(parent, node) { 144 if (__of_pci_pci_compare(node, devfn)) 145 return node; 146 /* 147 * Some OFs create a parent node "multifunc-device" as 148 * a fake root for all functions of a multi-function 149 * device we go down them as well. 150 */ 151 if (of_node_name_eq(node, "multifunc-device")) { 152 for_each_child_of_node(node, node2) { 153 if (__of_pci_pci_compare(node2, devfn)) { 154 of_node_put(node); 155 return node2; 156 } 157 } 158 } 159 } 160 return NULL; 161 } 162 EXPORT_SYMBOL_GPL(of_pci_find_child_device); 163 164 /** 165 * of_pci_get_devfn() - Get device and function numbers for a device node 166 * @np: device node 167 * 168 * Parses a standard 5-cell PCI resource and returns an 8-bit value that can 169 * be passed to the PCI_SLOT() and PCI_FUNC() macros to extract the device 170 * and function numbers respectively. On error a negative error code is 171 * returned. 172 */ 173 int of_pci_get_devfn(struct device_node *np) 174 { 175 u32 reg[5]; 176 int error; 177 178 error = of_property_read_u32_array(np, "reg", reg, ARRAY_SIZE(reg)); 179 if (error) 180 return error; 181 182 return (reg[0] >> 8) & 0xff; 183 } 184 EXPORT_SYMBOL_GPL(of_pci_get_devfn); 185 186 /** 187 * of_pci_parse_bus_range() - parse the bus-range property of a PCI device 188 * @node: device node 189 * @res: address to a struct resource to return the bus-range 190 * 191 * Returns 0 on success or a negative error-code on failure. 192 */ 193 int of_pci_parse_bus_range(struct device_node *node, struct resource *res) 194 { 195 u32 bus_range[2]; 196 int error; 197 198 error = of_property_read_u32_array(node, "bus-range", bus_range, 199 ARRAY_SIZE(bus_range)); 200 if (error) 201 return error; 202 203 res->name = node->name; 204 res->start = bus_range[0]; 205 res->end = bus_range[1]; 206 res->flags = IORESOURCE_BUS; 207 208 return 0; 209 } 210 EXPORT_SYMBOL_GPL(of_pci_parse_bus_range); 211 212 /** 213 * of_get_pci_domain_nr - Find the host bridge domain number 214 * of the given device node. 215 * @node: Device tree node with the domain information. 216 * 217 * This function will try to obtain the host bridge domain number by finding 218 * a property called "linux,pci-domain" of the given device node. 219 * 220 * Return: 221 * * > 0 - On success, an associated domain number. 222 * * -EINVAL - The property "linux,pci-domain" does not exist. 223 * * -ENODATA - The linux,pci-domain" property does not have value. 224 * * -EOVERFLOW - Invalid "linux,pci-domain" property value. 225 * 226 * Returns the associated domain number from DT in the range [0-0xffff], or 227 * a negative value if the required property is not found. 228 */ 229 int of_get_pci_domain_nr(struct device_node *node) 230 { 231 u32 domain; 232 int error; 233 234 error = of_property_read_u32(node, "linux,pci-domain", &domain); 235 if (error) 236 return error; 237 238 return (u16)domain; 239 } 240 EXPORT_SYMBOL_GPL(of_get_pci_domain_nr); 241 242 /** 243 * of_pci_preserve_config - Return true if the boot configuration needs to 244 * be preserved 245 * @node: Device tree node. 246 * 247 * Look for "linux,pci-probe-only" property for a given PCI controller's 248 * node and return true if found. Also look in the chosen node if the 249 * property is not found in the given controller's node. Having this 250 * property ensures that the kernel doesn't reconfigure the BARs and bridge 251 * windows that are already done by the platform firmware. 252 * 253 * Return: true if the property exists; false otherwise. 254 */ 255 bool of_pci_preserve_config(struct device_node *node) 256 { 257 u32 val = 0; 258 int ret; 259 260 if (!node) { 261 pr_warn("device node is NULL, trying with of_chosen\n"); 262 node = of_chosen; 263 } 264 265 retry: 266 ret = of_property_read_u32(node, "linux,pci-probe-only", &val); 267 if (ret) { 268 if (ret == -ENODATA || ret == -EOVERFLOW) { 269 pr_warn("Incorrect value for linux,pci-probe-only in %pOF, ignoring\n", 270 node); 271 return false; 272 } 273 if (ret == -EINVAL) { 274 if (node == of_chosen) 275 return false; 276 277 node = of_chosen; 278 goto retry; 279 } 280 } 281 282 if (val) 283 return true; 284 else 285 return false; 286 } 287 288 /** 289 * of_pci_check_probe_only - Setup probe only mode if linux,pci-probe-only 290 * is present and valid 291 */ 292 void of_pci_check_probe_only(void) 293 { 294 if (of_pci_preserve_config(of_chosen)) 295 pci_add_flags(PCI_PROBE_ONLY); 296 else 297 pci_clear_flags(PCI_PROBE_ONLY); 298 } 299 EXPORT_SYMBOL_GPL(of_pci_check_probe_only); 300 301 /** 302 * devm_of_pci_get_host_bridge_resources() - Resource-managed parsing of PCI 303 * host bridge resources from DT 304 * @dev: host bridge device 305 * @busno: bus number associated with the bridge root bus 306 * @bus_max: maximum number of buses for this bridge 307 * @resources: list where the range of resources will be added after DT parsing 308 * @ib_resources: list where the range of inbound resources (with addresses 309 * from 'dma-ranges') will be added after DT parsing 310 * @io_base: pointer to a variable that will contain on return the physical 311 * address for the start of the I/O range. Can be NULL if the caller doesn't 312 * expect I/O ranges to be present in the device tree. 313 * 314 * This function will parse the "ranges" property of a PCI host bridge device 315 * node and setup the resource mapping based on its content. It is expected 316 * that the property conforms with the Power ePAPR document. 317 * 318 * It returns zero if the range parsing has been successful or a standard error 319 * value if it failed. 320 */ 321 static int devm_of_pci_get_host_bridge_resources(struct device *dev, 322 unsigned char busno, unsigned char bus_max, 323 struct list_head *resources, 324 struct list_head *ib_resources, 325 resource_size_t *io_base) 326 { 327 struct device_node *dev_node = dev->of_node; 328 struct resource *res, tmp_res; 329 struct resource *bus_range; 330 struct of_pci_range range; 331 struct of_pci_range_parser parser; 332 const char *range_type; 333 int err; 334 335 if (io_base) 336 *io_base = (resource_size_t)OF_BAD_ADDR; 337 338 bus_range = devm_kzalloc(dev, sizeof(*bus_range), GFP_KERNEL); 339 if (!bus_range) 340 return -ENOMEM; 341 342 dev_info(dev, "host bridge %pOF ranges:\n", dev_node); 343 344 err = of_pci_parse_bus_range(dev_node, bus_range); 345 if (err) { 346 bus_range->start = busno; 347 bus_range->end = bus_max; 348 bus_range->flags = IORESOURCE_BUS; 349 dev_info(dev, " No bus range found for %pOF, using %pR\n", 350 dev_node, bus_range); 351 } else { 352 if (bus_range->end > bus_range->start + bus_max) 353 bus_range->end = bus_range->start + bus_max; 354 } 355 pci_add_resource(resources, bus_range); 356 357 /* Check for ranges property */ 358 err = of_pci_range_parser_init(&parser, dev_node); 359 if (err) 360 return 0; 361 362 dev_dbg(dev, "Parsing ranges property...\n"); 363 for_each_of_pci_range(&parser, &range) { 364 /* Read next ranges element */ 365 if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_IO) 366 range_type = "IO"; 367 else if ((range.flags & IORESOURCE_TYPE_BITS) == IORESOURCE_MEM) 368 range_type = "MEM"; 369 else 370 range_type = "err"; 371 dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n", 372 range_type, range.cpu_addr, 373 range.cpu_addr + range.size - 1, range.pci_addr); 374 375 /* 376 * If we failed translation or got a zero-sized region 377 * then skip this range 378 */ 379 if (range.cpu_addr == OF_BAD_ADDR || range.size == 0) 380 continue; 381 382 err = of_pci_range_to_resource(&range, dev_node, &tmp_res); 383 if (err) 384 continue; 385 386 res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL); 387 if (!res) { 388 err = -ENOMEM; 389 goto failed; 390 } 391 392 if (resource_type(res) == IORESOURCE_IO) { 393 if (!io_base) { 394 dev_err(dev, "I/O range found for %pOF. Please provide an io_base pointer to save CPU base address\n", 395 dev_node); 396 err = -EINVAL; 397 goto failed; 398 } 399 if (*io_base != (resource_size_t)OF_BAD_ADDR) 400 dev_warn(dev, "More than one I/O resource converted for %pOF. CPU base address for old range lost!\n", 401 dev_node); 402 *io_base = range.cpu_addr; 403 } else if (resource_type(res) == IORESOURCE_MEM) { 404 res->flags &= ~IORESOURCE_MEM_64; 405 } 406 407 pci_add_resource_offset(resources, res, res->start - range.pci_addr); 408 } 409 410 /* Check for dma-ranges property */ 411 if (!ib_resources) 412 return 0; 413 err = of_pci_dma_range_parser_init(&parser, dev_node); 414 if (err) 415 return 0; 416 417 dev_dbg(dev, "Parsing dma-ranges property...\n"); 418 for_each_of_pci_range(&parser, &range) { 419 /* 420 * If we failed translation or got a zero-sized region 421 * then skip this range 422 */ 423 if (((range.flags & IORESOURCE_TYPE_BITS) != IORESOURCE_MEM) || 424 range.cpu_addr == OF_BAD_ADDR || range.size == 0) 425 continue; 426 427 dev_info(dev, " %6s %#012llx..%#012llx -> %#012llx\n", 428 "IB MEM", range.cpu_addr, 429 range.cpu_addr + range.size - 1, range.pci_addr); 430 431 432 err = of_pci_range_to_resource(&range, dev_node, &tmp_res); 433 if (err) 434 continue; 435 436 res = devm_kmemdup(dev, &tmp_res, sizeof(tmp_res), GFP_KERNEL); 437 if (!res) { 438 err = -ENOMEM; 439 goto failed; 440 } 441 442 pci_add_resource_offset(ib_resources, res, 443 res->start - range.pci_addr); 444 } 445 446 return 0; 447 448 failed: 449 pci_free_resource_list(resources); 450 return err; 451 } 452 453 #if IS_ENABLED(CONFIG_OF_IRQ) 454 /** 455 * of_irq_parse_pci - Resolve the interrupt for a PCI device 456 * @pdev: the device whose interrupt is to be resolved 457 * @out_irq: structure of_phandle_args filled by this function 458 * 459 * This function resolves the PCI interrupt for a given PCI device. If a 460 * device-node exists for a given pci_dev, it will use normal OF tree 461 * walking. If not, it will implement standard swizzling and walk up the 462 * PCI tree until an device-node is found, at which point it will finish 463 * resolving using the OF tree walking. 464 */ 465 static int of_irq_parse_pci(const struct pci_dev *pdev, struct of_phandle_args *out_irq) 466 { 467 struct device_node *dn, *ppnode = NULL; 468 struct pci_dev *ppdev; 469 __be32 laddr[3]; 470 u8 pin; 471 int rc; 472 473 /* 474 * Check if we have a device node, if yes, fallback to standard 475 * device tree parsing 476 */ 477 dn = pci_device_to_OF_node(pdev); 478 if (dn) { 479 rc = of_irq_parse_one(dn, 0, out_irq); 480 if (!rc) 481 return rc; 482 } 483 484 /* 485 * Ok, we don't, time to have fun. Let's start by building up an 486 * interrupt spec. we assume #interrupt-cells is 1, which is standard 487 * for PCI. If you do different, then don't use that routine. 488 */ 489 rc = pci_read_config_byte(pdev, PCI_INTERRUPT_PIN, &pin); 490 if (rc != 0) 491 goto err; 492 /* No pin, exit with no error message. */ 493 if (pin == 0) 494 return -ENODEV; 495 496 /* Local interrupt-map in the device node? Use it! */ 497 if (of_property_present(dn, "interrupt-map")) { 498 pin = pci_swizzle_interrupt_pin(pdev, pin); 499 ppnode = dn; 500 } 501 502 /* Now we walk up the PCI tree */ 503 while (!ppnode) { 504 /* Get the pci_dev of our parent */ 505 ppdev = pdev->bus->self; 506 507 /* Ouch, it's a host bridge... */ 508 if (ppdev == NULL) { 509 ppnode = pci_bus_to_OF_node(pdev->bus); 510 511 /* No node for host bridge ? give up */ 512 if (ppnode == NULL) { 513 rc = -EINVAL; 514 goto err; 515 } 516 } else { 517 /* We found a P2P bridge, check if it has a node */ 518 ppnode = pci_device_to_OF_node(ppdev); 519 } 520 521 /* 522 * Ok, we have found a parent with a device-node, hand over to 523 * the OF parsing code. 524 * We build a unit address from the linux device to be used for 525 * resolution. Note that we use the linux bus number which may 526 * not match your firmware bus numbering. 527 * Fortunately, in most cases, interrupt-map-mask doesn't 528 * include the bus number as part of the matching. 529 * You should still be careful about that though if you intend 530 * to rely on this function (you ship a firmware that doesn't 531 * create device nodes for all PCI devices). 532 */ 533 if (ppnode) 534 break; 535 536 /* 537 * We can only get here if we hit a P2P bridge with no node; 538 * let's do standard swizzling and try again 539 */ 540 pin = pci_swizzle_interrupt_pin(pdev, pin); 541 pdev = ppdev; 542 } 543 544 out_irq->np = ppnode; 545 out_irq->args_count = 1; 546 out_irq->args[0] = pin; 547 laddr[0] = cpu_to_be32((pdev->bus->number << 16) | (pdev->devfn << 8)); 548 laddr[1] = laddr[2] = cpu_to_be32(0); 549 rc = of_irq_parse_raw(laddr, out_irq); 550 if (rc) 551 goto err; 552 return 0; 553 err: 554 if (rc == -ENOENT) { 555 dev_warn(&pdev->dev, 556 "%s: no interrupt-map found, INTx interrupts not available\n", 557 __func__); 558 pr_warn_once("%s: possibly some PCI slots don't have level triggered interrupts capability\n", 559 __func__); 560 } else { 561 dev_err(&pdev->dev, "%s: failed with rc=%d\n", __func__, rc); 562 } 563 return rc; 564 } 565 566 /** 567 * of_irq_parse_and_map_pci() - Decode a PCI IRQ from the device tree and map to a VIRQ 568 * @dev: The PCI device needing an IRQ 569 * @slot: PCI slot number; passed when used as map_irq callback. Unused 570 * @pin: PCI IRQ pin number; passed when used as map_irq callback. Unused 571 * 572 * @slot and @pin are unused, but included in the function so that this 573 * function can be used directly as the map_irq callback to 574 * pci_assign_irq() and struct pci_host_bridge.map_irq pointer 575 */ 576 int of_irq_parse_and_map_pci(const struct pci_dev *dev, u8 slot, u8 pin) 577 { 578 struct of_phandle_args oirq; 579 int ret; 580 581 ret = of_irq_parse_pci(dev, &oirq); 582 if (ret) 583 return 0; /* Proper return code 0 == NO_IRQ */ 584 585 return irq_create_of_mapping(&oirq); 586 } 587 EXPORT_SYMBOL_GPL(of_irq_parse_and_map_pci); 588 #endif /* CONFIG_OF_IRQ */ 589 590 static int pci_parse_request_of_pci_ranges(struct device *dev, 591 struct pci_host_bridge *bridge) 592 { 593 int err, res_valid = 0; 594 resource_size_t iobase; 595 struct resource_entry *win, *tmp; 596 597 INIT_LIST_HEAD(&bridge->windows); 598 INIT_LIST_HEAD(&bridge->dma_ranges); 599 600 err = devm_of_pci_get_host_bridge_resources(dev, 0, 0xff, &bridge->windows, 601 &bridge->dma_ranges, &iobase); 602 if (err) 603 return err; 604 605 err = devm_request_pci_bus_resources(dev, &bridge->windows); 606 if (err) 607 return err; 608 609 resource_list_for_each_entry_safe(win, tmp, &bridge->windows) { 610 struct resource *res = win->res; 611 612 switch (resource_type(res)) { 613 case IORESOURCE_IO: 614 err = devm_pci_remap_iospace(dev, res, iobase); 615 if (err) { 616 dev_warn(dev, "error %d: failed to map resource %pR\n", 617 err, res); 618 resource_list_destroy_entry(win); 619 } 620 break; 621 case IORESOURCE_MEM: 622 res_valid |= !(res->flags & IORESOURCE_PREFETCH); 623 624 if (!(res->flags & IORESOURCE_PREFETCH)) 625 if (upper_32_bits(resource_size(res))) 626 dev_warn(dev, "Memory resource size exceeds max for 32 bits\n"); 627 628 break; 629 } 630 } 631 632 if (!res_valid) 633 dev_warn(dev, "non-prefetchable memory resource required\n"); 634 635 return 0; 636 } 637 638 int devm_of_pci_bridge_init(struct device *dev, struct pci_host_bridge *bridge) 639 { 640 if (!dev->of_node) 641 return 0; 642 643 bridge->swizzle_irq = pci_common_swizzle; 644 bridge->map_irq = of_irq_parse_and_map_pci; 645 646 return pci_parse_request_of_pci_ranges(dev, bridge); 647 } 648 649 #ifdef CONFIG_PCI_DYNAMIC_OF_NODES 650 651 void of_pci_remove_node(struct pci_dev *pdev) 652 { 653 struct device_node *np; 654 655 np = pci_device_to_OF_node(pdev); 656 if (!np || !of_node_check_flag(np, OF_DYNAMIC)) 657 return; 658 pdev->dev.of_node = NULL; 659 660 of_changeset_revert(np->data); 661 of_changeset_destroy(np->data); 662 of_node_put(np); 663 } 664 665 void of_pci_make_dev_node(struct pci_dev *pdev) 666 { 667 struct device_node *ppnode, *np = NULL; 668 const char *pci_type; 669 struct of_changeset *cset; 670 const char *name; 671 int ret; 672 673 /* 674 * If there is already a device tree node linked to this device, 675 * return immediately. 676 */ 677 if (pci_device_to_OF_node(pdev)) 678 return; 679 680 /* Check if there is device tree node for parent device */ 681 if (!pdev->bus->self) 682 ppnode = pdev->bus->dev.of_node; 683 else 684 ppnode = pdev->bus->self->dev.of_node; 685 if (!ppnode) 686 return; 687 688 if (pci_is_bridge(pdev)) 689 pci_type = "pci"; 690 else 691 pci_type = "dev"; 692 693 name = kasprintf(GFP_KERNEL, "%s@%x,%x", pci_type, 694 PCI_SLOT(pdev->devfn), PCI_FUNC(pdev->devfn)); 695 if (!name) 696 return; 697 698 cset = kmalloc(sizeof(*cset), GFP_KERNEL); 699 if (!cset) 700 goto out_free_name; 701 of_changeset_init(cset); 702 703 np = of_changeset_create_node(cset, ppnode, name); 704 if (!np) 705 goto out_destroy_cset; 706 707 ret = of_pci_add_properties(pdev, cset, np); 708 if (ret) 709 goto out_free_node; 710 711 ret = of_changeset_apply(cset); 712 if (ret) 713 goto out_free_node; 714 715 np->data = cset; 716 pdev->dev.of_node = np; 717 kfree(name); 718 719 return; 720 721 out_free_node: 722 of_node_put(np); 723 out_destroy_cset: 724 of_changeset_destroy(cset); 725 kfree(cset); 726 out_free_name: 727 kfree(name); 728 } 729 #endif 730 731 /** 732 * of_pci_supply_present() - Check if the power supply is present for the PCI 733 * device 734 * @np: Device tree node 735 * 736 * Check if the power supply for the PCI device is present in the device tree 737 * node or not. 738 * 739 * Return: true if at least one power supply exists; false otherwise. 740 */ 741 bool of_pci_supply_present(struct device_node *np) 742 { 743 struct property *prop; 744 char *supply; 745 746 if (!np) 747 return false; 748 749 for_each_property_of_node(np, prop) { 750 supply = strrchr(prop->name, '-'); 751 if (supply && !strcmp(supply, "-supply")) 752 return true; 753 } 754 755 return false; 756 } 757 758 #endif /* CONFIG_PCI */ 759 760 /** 761 * of_pci_get_max_link_speed - Find the maximum link speed of the given device node. 762 * @node: Device tree node with the maximum link speed information. 763 * 764 * This function will try to find the limitation of link speed by finding 765 * a property called "max-link-speed" of the given device node. 766 * 767 * Return: 768 * * > 0 - On success, a maximum link speed. 769 * * -EINVAL - Invalid "max-link-speed" property value, or failure to access 770 * the property of the device tree node. 771 * 772 * Returns the associated max link speed from DT, or a negative value if the 773 * required property is not found or is invalid. 774 */ 775 int of_pci_get_max_link_speed(struct device_node *node) 776 { 777 u32 max_link_speed; 778 779 if (of_property_read_u32(node, "max-link-speed", &max_link_speed) || 780 max_link_speed == 0 || max_link_speed > 4) 781 return -EINVAL; 782 783 return max_link_speed; 784 } 785 EXPORT_SYMBOL_GPL(of_pci_get_max_link_speed); 786 787 /** 788 * of_pci_get_slot_power_limit - Parses the "slot-power-limit-milliwatt" 789 * property. 790 * 791 * @node: device tree node with the slot power limit information 792 * @slot_power_limit_value: pointer where the value should be stored in PCIe 793 * Slot Capabilities Register format 794 * @slot_power_limit_scale: pointer where the scale should be stored in PCIe 795 * Slot Capabilities Register format 796 * 797 * Returns the slot power limit in milliwatts and if @slot_power_limit_value 798 * and @slot_power_limit_scale pointers are non-NULL, fills in the value and 799 * scale in format used by PCIe Slot Capabilities Register. 800 * 801 * If the property is not found or is invalid, returns 0. 802 */ 803 u32 of_pci_get_slot_power_limit(struct device_node *node, 804 u8 *slot_power_limit_value, 805 u8 *slot_power_limit_scale) 806 { 807 u32 slot_power_limit_mw; 808 u8 value, scale; 809 810 if (of_property_read_u32(node, "slot-power-limit-milliwatt", 811 &slot_power_limit_mw)) 812 slot_power_limit_mw = 0; 813 814 /* Calculate Slot Power Limit Value and Slot Power Limit Scale */ 815 if (slot_power_limit_mw == 0) { 816 value = 0x00; 817 scale = 0; 818 } else if (slot_power_limit_mw <= 255) { 819 value = slot_power_limit_mw; 820 scale = 3; 821 } else if (slot_power_limit_mw <= 255*10) { 822 value = slot_power_limit_mw / 10; 823 scale = 2; 824 slot_power_limit_mw = slot_power_limit_mw / 10 * 10; 825 } else if (slot_power_limit_mw <= 255*100) { 826 value = slot_power_limit_mw / 100; 827 scale = 1; 828 slot_power_limit_mw = slot_power_limit_mw / 100 * 100; 829 } else if (slot_power_limit_mw <= 239*1000) { 830 value = slot_power_limit_mw / 1000; 831 scale = 0; 832 slot_power_limit_mw = slot_power_limit_mw / 1000 * 1000; 833 } else if (slot_power_limit_mw < 250*1000) { 834 value = 0xEF; 835 scale = 0; 836 slot_power_limit_mw = 239*1000; 837 } else if (slot_power_limit_mw <= 600*1000) { 838 value = 0xF0 + (slot_power_limit_mw / 1000 - 250) / 25; 839 scale = 0; 840 slot_power_limit_mw = slot_power_limit_mw / (1000*25) * (1000*25); 841 } else { 842 value = 0xFE; 843 scale = 0; 844 slot_power_limit_mw = 600*1000; 845 } 846 847 if (slot_power_limit_value) 848 *slot_power_limit_value = value; 849 850 if (slot_power_limit_scale) 851 *slot_power_limit_scale = scale; 852 853 return slot_power_limit_mw; 854 } 855 EXPORT_SYMBOL_GPL(of_pci_get_slot_power_limit); 856