1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Message Signaled Interrupt (MSI) 4 * 5 * Copyright (C) 2003-2004 Intel 6 * Copyright (C) Tom Long Nguyen (tom.l.nguyen@intel.com) 7 * Copyright (C) 2016 Christoph Hellwig. 8 */ 9 #include <linux/err.h> 10 #include <linux/export.h> 11 #include <linux/irq.h> 12 13 #include "../pci.h" 14 #include "msi.h" 15 16 int pci_msi_enable = 1; 17 int pci_msi_ignore_mask; 18 19 /** 20 * pci_msi_supported - check whether MSI may be enabled on a device 21 * @dev: pointer to the pci_dev data structure of MSI device function 22 * @nvec: how many MSIs have been requested? 23 * 24 * Look at global flags, the device itself, and its parent buses 25 * to determine if MSI/-X are supported for the device. If MSI/-X is 26 * supported return 1, else return 0. 27 **/ 28 static int pci_msi_supported(struct pci_dev *dev, int nvec) 29 { 30 struct pci_bus *bus; 31 32 /* MSI must be globally enabled and supported by the device */ 33 if (!pci_msi_enable) 34 return 0; 35 36 if (!dev || dev->no_msi) 37 return 0; 38 39 /* 40 * You can't ask to have 0 or less MSIs configured. 41 * a) it's stupid .. 42 * b) the list manipulation code assumes nvec >= 1. 43 */ 44 if (nvec < 1) 45 return 0; 46 47 /* 48 * Any bridge which does NOT route MSI transactions from its 49 * secondary bus to its primary bus must set NO_MSI flag on 50 * the secondary pci_bus. 51 * 52 * The NO_MSI flag can either be set directly by: 53 * - arch-specific PCI host bus controller drivers (deprecated) 54 * - quirks for specific PCI bridges 55 * 56 * or indirectly by platform-specific PCI host bridge drivers by 57 * advertising the 'msi_domain' property, which results in 58 * the NO_MSI flag when no MSI domain is found for this bridge 59 * at probe time. 60 */ 61 for (bus = dev->bus; bus; bus = bus->parent) 62 if (bus->bus_flags & PCI_BUS_FLAGS_NO_MSI) 63 return 0; 64 65 return 1; 66 } 67 68 static void pcim_msi_release(void *pcidev) 69 { 70 struct pci_dev *dev = pcidev; 71 72 dev->is_msi_managed = false; 73 pci_free_irq_vectors(dev); 74 } 75 76 /* 77 * Needs to be separate from pcim_release to prevent an ordering problem 78 * vs. msi_device_data_release() in the MSI core code. 79 */ 80 static int pcim_setup_msi_release(struct pci_dev *dev) 81 { 82 int ret; 83 84 if (!pci_is_managed(dev) || dev->is_msi_managed) 85 return 0; 86 87 ret = devm_add_action(&dev->dev, pcim_msi_release, dev); 88 if (!ret) 89 dev->is_msi_managed = true; 90 return ret; 91 } 92 93 /* 94 * Ordering vs. devres: msi device data has to be installed first so that 95 * pcim_msi_release() is invoked before it on device release. 96 */ 97 static int pci_setup_msi_context(struct pci_dev *dev) 98 { 99 int ret = msi_setup_device_data(&dev->dev); 100 101 if (!ret) 102 ret = pcim_setup_msi_release(dev); 103 return ret; 104 } 105 106 /* 107 * Helper functions for mask/unmask and MSI message handling 108 */ 109 110 void pci_msi_update_mask(struct msi_desc *desc, u32 clear, u32 set) 111 { 112 raw_spinlock_t *lock = &to_pci_dev(desc->dev)->msi_lock; 113 unsigned long flags; 114 115 if (!desc->pci.msi_attrib.can_mask) 116 return; 117 118 raw_spin_lock_irqsave(lock, flags); 119 desc->pci.msi_mask &= ~clear; 120 desc->pci.msi_mask |= set; 121 pci_write_config_dword(msi_desc_to_pci_dev(desc), desc->pci.mask_pos, 122 desc->pci.msi_mask); 123 raw_spin_unlock_irqrestore(lock, flags); 124 } 125 126 /** 127 * pci_msi_mask_irq - Generic IRQ chip callback to mask PCI/MSI interrupts 128 * @data: pointer to irqdata associated to that interrupt 129 */ 130 void pci_msi_mask_irq(struct irq_data *data) 131 { 132 struct msi_desc *desc = irq_data_get_msi_desc(data); 133 134 __pci_msi_mask_desc(desc, BIT(data->irq - desc->irq)); 135 } 136 EXPORT_SYMBOL_GPL(pci_msi_mask_irq); 137 138 /** 139 * pci_msi_unmask_irq - Generic IRQ chip callback to unmask PCI/MSI interrupts 140 * @data: pointer to irqdata associated to that interrupt 141 */ 142 void pci_msi_unmask_irq(struct irq_data *data) 143 { 144 struct msi_desc *desc = irq_data_get_msi_desc(data); 145 146 __pci_msi_unmask_desc(desc, BIT(data->irq - desc->irq)); 147 } 148 EXPORT_SYMBOL_GPL(pci_msi_unmask_irq); 149 150 void __pci_read_msi_msg(struct msi_desc *entry, struct msi_msg *msg) 151 { 152 struct pci_dev *dev = msi_desc_to_pci_dev(entry); 153 154 BUG_ON(dev->current_state != PCI_D0); 155 156 if (entry->pci.msi_attrib.is_msix) { 157 void __iomem *base = pci_msix_desc_addr(entry); 158 159 if (WARN_ON_ONCE(entry->pci.msi_attrib.is_virtual)) 160 return; 161 162 msg->address_lo = readl(base + PCI_MSIX_ENTRY_LOWER_ADDR); 163 msg->address_hi = readl(base + PCI_MSIX_ENTRY_UPPER_ADDR); 164 msg->data = readl(base + PCI_MSIX_ENTRY_DATA); 165 } else { 166 int pos = dev->msi_cap; 167 u16 data; 168 169 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, 170 &msg->address_lo); 171 if (entry->pci.msi_attrib.is_64) { 172 pci_read_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, 173 &msg->address_hi); 174 pci_read_config_word(dev, pos + PCI_MSI_DATA_64, &data); 175 } else { 176 msg->address_hi = 0; 177 pci_read_config_word(dev, pos + PCI_MSI_DATA_32, &data); 178 } 179 msg->data = data; 180 } 181 } 182 183 static inline void pci_write_msg_msi(struct pci_dev *dev, struct msi_desc *desc, 184 struct msi_msg *msg) 185 { 186 int pos = dev->msi_cap; 187 u16 msgctl; 188 189 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl); 190 msgctl &= ~PCI_MSI_FLAGS_QSIZE; 191 msgctl |= desc->pci.msi_attrib.multiple << 4; 192 pci_write_config_word(dev, pos + PCI_MSI_FLAGS, msgctl); 193 194 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_LO, msg->address_lo); 195 if (desc->pci.msi_attrib.is_64) { 196 pci_write_config_dword(dev, pos + PCI_MSI_ADDRESS_HI, msg->address_hi); 197 pci_write_config_word(dev, pos + PCI_MSI_DATA_64, msg->data); 198 } else { 199 pci_write_config_word(dev, pos + PCI_MSI_DATA_32, msg->data); 200 } 201 /* Ensure that the writes are visible in the device */ 202 pci_read_config_word(dev, pos + PCI_MSI_FLAGS, &msgctl); 203 } 204 205 static inline void pci_write_msg_msix(struct msi_desc *desc, struct msi_msg *msg) 206 { 207 void __iomem *base = pci_msix_desc_addr(desc); 208 u32 ctrl = desc->pci.msix_ctrl; 209 bool unmasked = !(ctrl & PCI_MSIX_ENTRY_CTRL_MASKBIT); 210 211 if (desc->pci.msi_attrib.is_virtual) 212 return; 213 /* 214 * The specification mandates that the entry is masked 215 * when the message is modified: 216 * 217 * "If software changes the Address or Data value of an 218 * entry while the entry is unmasked, the result is 219 * undefined." 220 */ 221 if (unmasked) 222 pci_msix_write_vector_ctrl(desc, ctrl | PCI_MSIX_ENTRY_CTRL_MASKBIT); 223 224 writel(msg->address_lo, base + PCI_MSIX_ENTRY_LOWER_ADDR); 225 writel(msg->address_hi, base + PCI_MSIX_ENTRY_UPPER_ADDR); 226 writel(msg->data, base + PCI_MSIX_ENTRY_DATA); 227 228 if (unmasked) 229 pci_msix_write_vector_ctrl(desc, ctrl); 230 231 /* Ensure that the writes are visible in the device */ 232 readl(base + PCI_MSIX_ENTRY_DATA); 233 } 234 235 void __pci_write_msi_msg(struct msi_desc *entry, struct msi_msg *msg) 236 { 237 struct pci_dev *dev = msi_desc_to_pci_dev(entry); 238 239 if (dev->current_state != PCI_D0 || pci_dev_is_disconnected(dev)) { 240 /* Don't touch the hardware now */ 241 } else if (entry->pci.msi_attrib.is_msix) { 242 pci_write_msg_msix(entry, msg); 243 } else { 244 pci_write_msg_msi(dev, entry, msg); 245 } 246 247 entry->msg = *msg; 248 249 if (entry->write_msi_msg) 250 entry->write_msi_msg(entry, entry->write_msi_msg_data); 251 } 252 253 void pci_write_msi_msg(unsigned int irq, struct msi_msg *msg) 254 { 255 struct msi_desc *entry = irq_get_msi_desc(irq); 256 257 __pci_write_msi_msg(entry, msg); 258 } 259 EXPORT_SYMBOL_GPL(pci_write_msi_msg); 260 261 262 /* PCI/MSI specific functionality */ 263 264 static void pci_intx_for_msi(struct pci_dev *dev, int enable) 265 { 266 if (!(dev->dev_flags & PCI_DEV_FLAGS_MSI_INTX_DISABLE_BUG)) 267 pci_intx(dev, enable); 268 } 269 270 static void pci_msi_set_enable(struct pci_dev *dev, int enable) 271 { 272 u16 control; 273 274 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); 275 control &= ~PCI_MSI_FLAGS_ENABLE; 276 if (enable) 277 control |= PCI_MSI_FLAGS_ENABLE; 278 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); 279 } 280 281 static int msi_setup_msi_desc(struct pci_dev *dev, int nvec, 282 struct irq_affinity_desc *masks) 283 { 284 struct msi_desc desc; 285 u16 control; 286 287 /* MSI Entry Initialization */ 288 memset(&desc, 0, sizeof(desc)); 289 290 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); 291 /* Lies, damned lies, and MSIs */ 292 if (dev->dev_flags & PCI_DEV_FLAGS_HAS_MSI_MASKING) 293 control |= PCI_MSI_FLAGS_MASKBIT; 294 /* Respect XEN's mask disabling */ 295 if (pci_msi_ignore_mask) 296 control &= ~PCI_MSI_FLAGS_MASKBIT; 297 298 desc.nvec_used = nvec; 299 desc.pci.msi_attrib.is_64 = !!(control & PCI_MSI_FLAGS_64BIT); 300 desc.pci.msi_attrib.can_mask = !!(control & PCI_MSI_FLAGS_MASKBIT); 301 desc.pci.msi_attrib.default_irq = dev->irq; 302 desc.pci.msi_attrib.multi_cap = (control & PCI_MSI_FLAGS_QMASK) >> 1; 303 desc.pci.msi_attrib.multiple = ilog2(__roundup_pow_of_two(nvec)); 304 desc.affinity = masks; 305 306 if (control & PCI_MSI_FLAGS_64BIT) 307 desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_64; 308 else 309 desc.pci.mask_pos = dev->msi_cap + PCI_MSI_MASK_32; 310 311 /* Save the initial mask status */ 312 if (desc.pci.msi_attrib.can_mask) 313 pci_read_config_dword(dev, desc.pci.mask_pos, &desc.pci.msi_mask); 314 315 return msi_insert_msi_desc(&dev->dev, &desc); 316 } 317 318 static int msi_verify_entries(struct pci_dev *dev) 319 { 320 struct msi_desc *entry; 321 322 if (!dev->no_64bit_msi) 323 return 0; 324 325 msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) { 326 if (entry->msg.address_hi) { 327 pci_err(dev, "arch assigned 64-bit MSI address %#x%08x but device only supports 32 bits\n", 328 entry->msg.address_hi, entry->msg.address_lo); 329 break; 330 } 331 } 332 return !entry ? 0 : -EIO; 333 } 334 335 /** 336 * msi_capability_init - configure device's MSI capability structure 337 * @dev: pointer to the pci_dev data structure of MSI device function 338 * @nvec: number of interrupts to allocate 339 * @affd: description of automatic IRQ affinity assignments (may be %NULL) 340 * 341 * Setup the MSI capability structure of the device with the requested 342 * number of interrupts. A return value of zero indicates the successful 343 * setup of an entry with the new MSI IRQ. A negative return value indicates 344 * an error, and a positive return value indicates the number of interrupts 345 * which could have been allocated. 346 */ 347 static int msi_capability_init(struct pci_dev *dev, int nvec, 348 struct irq_affinity *affd) 349 { 350 struct irq_affinity_desc *masks = NULL; 351 struct msi_desc *entry; 352 int ret; 353 354 /* Reject multi-MSI early on irq domain enabled architectures */ 355 if (nvec > 1 && !pci_msi_domain_supports(dev, MSI_FLAG_MULTI_PCI_MSI, ALLOW_LEGACY)) 356 return 1; 357 358 /* 359 * Disable MSI during setup in the hardware, but mark it enabled 360 * so that setup code can evaluate it. 361 */ 362 pci_msi_set_enable(dev, 0); 363 dev->msi_enabled = 1; 364 365 if (affd) 366 masks = irq_create_affinity_masks(nvec, affd); 367 368 msi_lock_descs(&dev->dev); 369 ret = msi_setup_msi_desc(dev, nvec, masks); 370 if (ret) 371 goto fail; 372 373 /* All MSIs are unmasked by default; mask them all */ 374 entry = msi_first_desc(&dev->dev, MSI_DESC_ALL); 375 pci_msi_mask(entry, msi_multi_mask(entry)); 376 377 /* Configure MSI capability structure */ 378 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSI); 379 if (ret) 380 goto err; 381 382 ret = msi_verify_entries(dev); 383 if (ret) 384 goto err; 385 386 /* Set MSI enabled bits */ 387 pci_intx_for_msi(dev, 0); 388 pci_msi_set_enable(dev, 1); 389 390 pcibios_free_irq(dev); 391 dev->irq = entry->irq; 392 goto unlock; 393 394 err: 395 pci_msi_unmask(entry, msi_multi_mask(entry)); 396 pci_free_msi_irqs(dev); 397 fail: 398 dev->msi_enabled = 0; 399 unlock: 400 msi_unlock_descs(&dev->dev); 401 kfree(masks); 402 return ret; 403 } 404 405 int __pci_enable_msi_range(struct pci_dev *dev, int minvec, int maxvec, 406 struct irq_affinity *affd) 407 { 408 int nvec; 409 int rc; 410 411 if (!pci_msi_supported(dev, minvec) || dev->current_state != PCI_D0) 412 return -EINVAL; 413 414 /* Check whether driver already requested MSI-X IRQs */ 415 if (dev->msix_enabled) { 416 pci_info(dev, "can't enable MSI (MSI-X already enabled)\n"); 417 return -EINVAL; 418 } 419 420 if (maxvec < minvec) 421 return -ERANGE; 422 423 if (WARN_ON_ONCE(dev->msi_enabled)) 424 return -EINVAL; 425 426 nvec = pci_msi_vec_count(dev); 427 if (nvec < 0) 428 return nvec; 429 if (nvec < minvec) 430 return -ENOSPC; 431 432 if (nvec > maxvec) 433 nvec = maxvec; 434 435 rc = pci_setup_msi_context(dev); 436 if (rc) 437 return rc; 438 439 if (!pci_setup_msi_device_domain(dev)) 440 return -ENODEV; 441 442 for (;;) { 443 if (affd) { 444 nvec = irq_calc_affinity_vectors(minvec, nvec, affd); 445 if (nvec < minvec) 446 return -ENOSPC; 447 } 448 449 rc = msi_capability_init(dev, nvec, affd); 450 if (rc == 0) 451 return nvec; 452 453 if (rc < 0) 454 return rc; 455 if (rc < minvec) 456 return -ENOSPC; 457 458 nvec = rc; 459 } 460 } 461 462 /** 463 * pci_msi_vec_count - Return the number of MSI vectors a device can send 464 * @dev: device to report about 465 * 466 * This function returns the number of MSI vectors a device requested via 467 * Multiple Message Capable register. It returns a negative errno if the 468 * device is not capable sending MSI interrupts. Otherwise, the call succeeds 469 * and returns a power of two, up to a maximum of 2^5 (32), according to the 470 * MSI specification. 471 **/ 472 int pci_msi_vec_count(struct pci_dev *dev) 473 { 474 int ret; 475 u16 msgctl; 476 477 if (!dev->msi_cap) 478 return -EINVAL; 479 480 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &msgctl); 481 ret = 1 << ((msgctl & PCI_MSI_FLAGS_QMASK) >> 1); 482 483 return ret; 484 } 485 EXPORT_SYMBOL(pci_msi_vec_count); 486 487 /* 488 * Architecture override returns true when the PCI MSI message should be 489 * written by the generic restore function. 490 */ 491 bool __weak arch_restore_msi_irqs(struct pci_dev *dev) 492 { 493 return true; 494 } 495 496 void __pci_restore_msi_state(struct pci_dev *dev) 497 { 498 struct msi_desc *entry; 499 u16 control; 500 501 if (!dev->msi_enabled) 502 return; 503 504 entry = irq_get_msi_desc(dev->irq); 505 506 pci_intx_for_msi(dev, 0); 507 pci_msi_set_enable(dev, 0); 508 if (arch_restore_msi_irqs(dev)) 509 __pci_write_msi_msg(entry, &entry->msg); 510 511 pci_read_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, &control); 512 pci_msi_update_mask(entry, 0, 0); 513 control &= ~PCI_MSI_FLAGS_QSIZE; 514 control |= (entry->pci.msi_attrib.multiple << 4) | PCI_MSI_FLAGS_ENABLE; 515 pci_write_config_word(dev, dev->msi_cap + PCI_MSI_FLAGS, control); 516 } 517 518 void pci_msi_shutdown(struct pci_dev *dev) 519 { 520 struct msi_desc *desc; 521 522 if (!pci_msi_enable || !dev || !dev->msi_enabled) 523 return; 524 525 pci_msi_set_enable(dev, 0); 526 pci_intx_for_msi(dev, 1); 527 dev->msi_enabled = 0; 528 529 /* Return the device with MSI unmasked as initial states */ 530 desc = msi_first_desc(&dev->dev, MSI_DESC_ALL); 531 if (!WARN_ON_ONCE(!desc)) 532 pci_msi_unmask(desc, msi_multi_mask(desc)); 533 534 /* Restore dev->irq to its default pin-assertion IRQ */ 535 dev->irq = desc->pci.msi_attrib.default_irq; 536 pcibios_alloc_irq(dev); 537 } 538 539 /* PCI/MSI-X specific functionality */ 540 541 static void pci_msix_clear_and_set_ctrl(struct pci_dev *dev, u16 clear, u16 set) 542 { 543 u16 ctrl; 544 545 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &ctrl); 546 ctrl &= ~clear; 547 ctrl |= set; 548 pci_write_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, ctrl); 549 } 550 551 static void __iomem *msix_map_region(struct pci_dev *dev, 552 unsigned int nr_entries) 553 { 554 resource_size_t phys_addr; 555 u32 table_offset; 556 unsigned long flags; 557 u8 bir; 558 559 pci_read_config_dword(dev, dev->msix_cap + PCI_MSIX_TABLE, 560 &table_offset); 561 bir = (u8)(table_offset & PCI_MSIX_TABLE_BIR); 562 flags = pci_resource_flags(dev, bir); 563 if (!flags || (flags & IORESOURCE_UNSET)) 564 return NULL; 565 566 table_offset &= PCI_MSIX_TABLE_OFFSET; 567 phys_addr = pci_resource_start(dev, bir) + table_offset; 568 569 return ioremap(phys_addr, nr_entries * PCI_MSIX_ENTRY_SIZE); 570 } 571 572 /** 573 * msix_prepare_msi_desc - Prepare a half initialized MSI descriptor for operation 574 * @dev: The PCI device for which the descriptor is prepared 575 * @desc: The MSI descriptor for preparation 576 * 577 * This is separate from msix_setup_msi_descs() below to handle dynamic 578 * allocations for MSI-X after initial enablement. 579 * 580 * Ideally the whole MSI-X setup would work that way, but there is no way to 581 * support this for the legacy arch_setup_msi_irqs() mechanism and for the 582 * fake irq domains like the x86 XEN one. Sigh... 583 * 584 * The descriptor is zeroed and only @desc::msi_index and @desc::affinity 585 * are set. When called from msix_setup_msi_descs() then the is_virtual 586 * attribute is initialized as well. 587 * 588 * Fill in the rest. 589 */ 590 void msix_prepare_msi_desc(struct pci_dev *dev, struct msi_desc *desc) 591 { 592 desc->nvec_used = 1; 593 desc->pci.msi_attrib.is_msix = 1; 594 desc->pci.msi_attrib.is_64 = 1; 595 desc->pci.msi_attrib.default_irq = dev->irq; 596 desc->pci.mask_base = dev->msix_base; 597 desc->pci.msi_attrib.can_mask = !pci_msi_ignore_mask && 598 !desc->pci.msi_attrib.is_virtual; 599 600 if (desc->pci.msi_attrib.can_mask) { 601 void __iomem *addr = pci_msix_desc_addr(desc); 602 603 desc->pci.msix_ctrl = readl(addr + PCI_MSIX_ENTRY_VECTOR_CTRL); 604 } 605 } 606 607 static int msix_setup_msi_descs(struct pci_dev *dev, struct msix_entry *entries, 608 int nvec, struct irq_affinity_desc *masks) 609 { 610 int ret = 0, i, vec_count = pci_msix_vec_count(dev); 611 struct irq_affinity_desc *curmsk; 612 struct msi_desc desc; 613 614 memset(&desc, 0, sizeof(desc)); 615 616 for (i = 0, curmsk = masks; i < nvec; i++, curmsk++) { 617 desc.msi_index = entries ? entries[i].entry : i; 618 desc.affinity = masks ? curmsk : NULL; 619 desc.pci.msi_attrib.is_virtual = desc.msi_index >= vec_count; 620 621 msix_prepare_msi_desc(dev, &desc); 622 623 ret = msi_insert_msi_desc(&dev->dev, &desc); 624 if (ret) 625 break; 626 } 627 return ret; 628 } 629 630 static void msix_update_entries(struct pci_dev *dev, struct msix_entry *entries) 631 { 632 struct msi_desc *desc; 633 634 if (entries) { 635 msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL) { 636 entries->vector = desc->irq; 637 entries++; 638 } 639 } 640 } 641 642 static void msix_mask_all(void __iomem *base, int tsize) 643 { 644 u32 ctrl = PCI_MSIX_ENTRY_CTRL_MASKBIT; 645 int i; 646 647 if (pci_msi_ignore_mask) 648 return; 649 650 for (i = 0; i < tsize; i++, base += PCI_MSIX_ENTRY_SIZE) 651 writel(ctrl, base + PCI_MSIX_ENTRY_VECTOR_CTRL); 652 } 653 654 static int msix_setup_interrupts(struct pci_dev *dev, struct msix_entry *entries, 655 int nvec, struct irq_affinity *affd) 656 { 657 struct irq_affinity_desc *masks = NULL; 658 int ret; 659 660 if (affd) 661 masks = irq_create_affinity_masks(nvec, affd); 662 663 msi_lock_descs(&dev->dev); 664 ret = msix_setup_msi_descs(dev, entries, nvec, masks); 665 if (ret) 666 goto out_free; 667 668 ret = pci_msi_setup_msi_irqs(dev, nvec, PCI_CAP_ID_MSIX); 669 if (ret) 670 goto out_free; 671 672 /* Check if all MSI entries honor device restrictions */ 673 ret = msi_verify_entries(dev); 674 if (ret) 675 goto out_free; 676 677 msix_update_entries(dev, entries); 678 goto out_unlock; 679 680 out_free: 681 pci_free_msi_irqs(dev); 682 out_unlock: 683 msi_unlock_descs(&dev->dev); 684 kfree(masks); 685 return ret; 686 } 687 688 /** 689 * msix_capability_init - configure device's MSI-X capability 690 * @dev: pointer to the pci_dev data structure of MSI-X device function 691 * @entries: pointer to an array of struct msix_entry entries 692 * @nvec: number of @entries 693 * @affd: Optional pointer to enable automatic affinity assignment 694 * 695 * Setup the MSI-X capability structure of device function with a 696 * single MSI-X IRQ. A return of zero indicates the successful setup of 697 * requested MSI-X entries with allocated IRQs or non-zero for otherwise. 698 **/ 699 static int msix_capability_init(struct pci_dev *dev, struct msix_entry *entries, 700 int nvec, struct irq_affinity *affd) 701 { 702 int ret, tsize; 703 u16 control; 704 705 /* 706 * Some devices require MSI-X to be enabled before the MSI-X 707 * registers can be accessed. Mask all the vectors to prevent 708 * interrupts coming in before they're fully set up. 709 */ 710 pci_msix_clear_and_set_ctrl(dev, 0, PCI_MSIX_FLAGS_MASKALL | 711 PCI_MSIX_FLAGS_ENABLE); 712 713 /* Mark it enabled so setup functions can query it */ 714 dev->msix_enabled = 1; 715 716 pci_read_config_word(dev, dev->msix_cap + PCI_MSIX_FLAGS, &control); 717 /* Request & Map MSI-X table region */ 718 tsize = msix_table_size(control); 719 dev->msix_base = msix_map_region(dev, tsize); 720 if (!dev->msix_base) { 721 ret = -ENOMEM; 722 goto out_disable; 723 } 724 725 ret = msix_setup_interrupts(dev, entries, nvec, affd); 726 if (ret) 727 goto out_disable; 728 729 /* Disable INTX */ 730 pci_intx_for_msi(dev, 0); 731 732 /* 733 * Ensure that all table entries are masked to prevent 734 * stale entries from firing in a crash kernel. 735 * 736 * Done late to deal with a broken Marvell NVME device 737 * which takes the MSI-X mask bits into account even 738 * when MSI-X is disabled, which prevents MSI delivery. 739 */ 740 msix_mask_all(dev->msix_base, tsize); 741 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0); 742 743 pcibios_free_irq(dev); 744 return 0; 745 746 out_disable: 747 dev->msix_enabled = 0; 748 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL | PCI_MSIX_FLAGS_ENABLE, 0); 749 750 return ret; 751 } 752 753 static bool pci_msix_validate_entries(struct pci_dev *dev, struct msix_entry *entries, int nvec) 754 { 755 bool nogap; 756 int i, j; 757 758 if (!entries) 759 return true; 760 761 nogap = pci_msi_domain_supports(dev, MSI_FLAG_MSIX_CONTIGUOUS, DENY_LEGACY); 762 763 for (i = 0; i < nvec; i++) { 764 /* Check for duplicate entries */ 765 for (j = i + 1; j < nvec; j++) { 766 if (entries[i].entry == entries[j].entry) 767 return false; 768 } 769 /* Check for unsupported gaps */ 770 if (nogap && entries[i].entry != i) 771 return false; 772 } 773 return true; 774 } 775 776 int __pci_enable_msix_range(struct pci_dev *dev, struct msix_entry *entries, int minvec, 777 int maxvec, struct irq_affinity *affd, int flags) 778 { 779 int hwsize, rc, nvec = maxvec; 780 781 if (maxvec < minvec) 782 return -ERANGE; 783 784 if (dev->msi_enabled) { 785 pci_info(dev, "can't enable MSI-X (MSI already enabled)\n"); 786 return -EINVAL; 787 } 788 789 if (WARN_ON_ONCE(dev->msix_enabled)) 790 return -EINVAL; 791 792 /* Check MSI-X early on irq domain enabled architectures */ 793 if (!pci_msi_domain_supports(dev, MSI_FLAG_PCI_MSIX, ALLOW_LEGACY)) 794 return -ENOTSUPP; 795 796 if (!pci_msi_supported(dev, nvec) || dev->current_state != PCI_D0) 797 return -EINVAL; 798 799 hwsize = pci_msix_vec_count(dev); 800 if (hwsize < 0) 801 return hwsize; 802 803 if (!pci_msix_validate_entries(dev, entries, nvec)) 804 return -EINVAL; 805 806 if (hwsize < nvec) { 807 /* Keep the IRQ virtual hackery working */ 808 if (flags & PCI_IRQ_VIRTUAL) 809 hwsize = nvec; 810 else 811 nvec = hwsize; 812 } 813 814 if (nvec < minvec) 815 return -ENOSPC; 816 817 rc = pci_setup_msi_context(dev); 818 if (rc) 819 return rc; 820 821 if (!pci_setup_msix_device_domain(dev, hwsize)) 822 return -ENODEV; 823 824 for (;;) { 825 if (affd) { 826 nvec = irq_calc_affinity_vectors(minvec, nvec, affd); 827 if (nvec < minvec) 828 return -ENOSPC; 829 } 830 831 rc = msix_capability_init(dev, entries, nvec, affd); 832 if (rc == 0) 833 return nvec; 834 835 if (rc < 0) 836 return rc; 837 if (rc < minvec) 838 return -ENOSPC; 839 840 nvec = rc; 841 } 842 } 843 844 void __pci_restore_msix_state(struct pci_dev *dev) 845 { 846 struct msi_desc *entry; 847 bool write_msg; 848 849 if (!dev->msix_enabled) 850 return; 851 852 /* route the table */ 853 pci_intx_for_msi(dev, 0); 854 pci_msix_clear_and_set_ctrl(dev, 0, 855 PCI_MSIX_FLAGS_ENABLE | PCI_MSIX_FLAGS_MASKALL); 856 857 write_msg = arch_restore_msi_irqs(dev); 858 859 msi_lock_descs(&dev->dev); 860 msi_for_each_desc(entry, &dev->dev, MSI_DESC_ALL) { 861 if (write_msg) 862 __pci_write_msi_msg(entry, &entry->msg); 863 pci_msix_write_vector_ctrl(entry, entry->pci.msix_ctrl); 864 } 865 msi_unlock_descs(&dev->dev); 866 867 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_MASKALL, 0); 868 } 869 870 void pci_msix_shutdown(struct pci_dev *dev) 871 { 872 struct msi_desc *desc; 873 874 if (!pci_msi_enable || !dev || !dev->msix_enabled) 875 return; 876 877 if (pci_dev_is_disconnected(dev)) { 878 dev->msix_enabled = 0; 879 return; 880 } 881 882 /* Return the device with MSI-X masked as initial states */ 883 msi_for_each_desc(desc, &dev->dev, MSI_DESC_ALL) 884 pci_msix_mask(desc); 885 886 pci_msix_clear_and_set_ctrl(dev, PCI_MSIX_FLAGS_ENABLE, 0); 887 pci_intx_for_msi(dev, 1); 888 dev->msix_enabled = 0; 889 pcibios_alloc_irq(dev); 890 } 891 892 /* Common interfaces */ 893 894 void pci_free_msi_irqs(struct pci_dev *dev) 895 { 896 pci_msi_teardown_msi_irqs(dev); 897 898 if (dev->msix_base) { 899 iounmap(dev->msix_base); 900 dev->msix_base = NULL; 901 } 902 } 903 904 /* Misc. infrastructure */ 905 906 struct pci_dev *msi_desc_to_pci_dev(struct msi_desc *desc) 907 { 908 return to_pci_dev(desc->dev); 909 } 910 EXPORT_SYMBOL(msi_desc_to_pci_dev); 911 912 void pci_no_msi(void) 913 { 914 pci_msi_enable = 0; 915 } 916