1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Compaq Hot Plug Controller Driver 4 * 5 * Copyright (C) 1995,2001 Compaq Computer Corporation 6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 7 * Copyright (C) 2001 IBM Corp. 8 * 9 * All rights reserved. 10 * 11 * Send feedback to <greg@kroah.com> 12 * 13 */ 14 15 #define pr_fmt(fmt) "cpqphp: " fmt 16 17 #include <linux/module.h> 18 #include <linux/kernel.h> 19 #include <linux/printk.h> 20 #include <linux/types.h> 21 #include <linux/slab.h> 22 #include <linux/workqueue.h> 23 #include <linux/proc_fs.h> 24 #include <linux/pci.h> 25 #include <linux/pci_hotplug.h> 26 #include "../pci.h" 27 #include "cpqphp.h" 28 #include "cpqphp_nvram.h" 29 30 31 u8 cpqhp_nic_irq; 32 u8 cpqhp_disk_irq; 33 34 static u16 unused_IRQ; 35 36 /* 37 * detect_HRT_floating_pointer 38 * 39 * find the Hot Plug Resource Table in the specified region of memory. 40 * 41 */ 42 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end) 43 { 44 void __iomem *fp; 45 void __iomem *endp; 46 u8 temp1, temp2, temp3, temp4; 47 int status = 0; 48 49 endp = (end - sizeof(struct hrt) + 1); 50 51 for (fp = begin; fp <= endp; fp += 16) { 52 temp1 = readb(fp + SIG0); 53 temp2 = readb(fp + SIG1); 54 temp3 = readb(fp + SIG2); 55 temp4 = readb(fp + SIG3); 56 if (temp1 == '$' && 57 temp2 == 'H' && 58 temp3 == 'R' && 59 temp4 == 'T') { 60 status = 1; 61 break; 62 } 63 } 64 65 if (!status) 66 fp = NULL; 67 68 dbg("Discovered Hotplug Resource Table at %p\n", fp); 69 return fp; 70 } 71 72 73 int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func) 74 { 75 struct pci_bus *child; 76 int num; 77 78 pci_lock_rescan_remove(); 79 80 if (func->pci_dev == NULL) 81 func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus, 82 PCI_DEVFN(func->device, 83 func->function)); 84 85 /* No pci device, we need to create it then */ 86 if (func->pci_dev == NULL) { 87 dbg("INFO: pci_dev still null\n"); 88 89 num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function)); 90 if (num) 91 pci_bus_add_devices(ctrl->pci_dev->bus); 92 93 func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus, 94 PCI_DEVFN(func->device, 95 func->function)); 96 if (func->pci_dev == NULL) { 97 dbg("ERROR: pci_dev still null\n"); 98 goto out; 99 } 100 } 101 102 if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) { 103 pci_hp_add_bridge(func->pci_dev); 104 child = func->pci_dev->subordinate; 105 if (child) 106 pci_bus_add_devices(child); 107 } 108 109 pci_dev_put(func->pci_dev); 110 111 out: 112 pci_unlock_rescan_remove(); 113 return 0; 114 } 115 116 117 int cpqhp_unconfigure_device(struct pci_func *func) 118 { 119 int j; 120 121 dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function); 122 123 pci_lock_rescan_remove(); 124 for (j = 0; j < 8 ; j++) { 125 struct pci_dev *temp = pci_get_domain_bus_and_slot(0, 126 func->bus, 127 PCI_DEVFN(func->device, 128 j)); 129 if (temp) { 130 pci_dev_put(temp); 131 pci_stop_and_remove_bus_device(temp); 132 } 133 } 134 pci_unlock_rescan_remove(); 135 return 0; 136 } 137 138 /* 139 * cpqhp_set_irq 140 * 141 * @bus_num: bus number of PCI device 142 * @dev_num: device number of PCI device 143 * @slot: pointer to u8 where slot number will be returned 144 */ 145 int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num) 146 { 147 int rc = 0; 148 149 if (cpqhp_legacy_mode) { 150 struct pci_dev *fakedev; 151 struct pci_bus *fakebus; 152 u16 temp_word; 153 154 fakedev = kmalloc_obj(*fakedev, GFP_KERNEL); 155 fakebus = kmalloc_obj(*fakebus, GFP_KERNEL); 156 if (!fakedev || !fakebus) { 157 kfree(fakedev); 158 kfree(fakebus); 159 return -ENOMEM; 160 } 161 162 fakedev->devfn = dev_num << 3; 163 fakedev->bus = fakebus; 164 fakebus->number = bus_num; 165 dbg("%s: dev %d, bus %d, pin %d, num %d\n", 166 __func__, dev_num, bus_num, int_pin, irq_num); 167 rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num); 168 kfree(fakedev); 169 kfree(fakebus); 170 dbg("%s: rc %d\n", __func__, rc); 171 if (!rc) 172 return !rc; 173 174 /* set the Edge Level Control Register (ELCR) */ 175 temp_word = inb(0x4d0); 176 temp_word |= inb(0x4d1) << 8; 177 178 temp_word |= 0x01 << irq_num; 179 180 /* This should only be for x86 as it sets the Edge Level 181 * Control Register 182 */ 183 outb((u8)(temp_word & 0xFF), 0x4d0); 184 outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1); 185 rc = 0; 186 } 187 188 return rc; 189 } 190 191 192 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num) 193 { 194 u16 tdevice; 195 u32 work; 196 int ret = -1; 197 198 ctrl->pci_bus->number = bus_num; 199 200 for (tdevice = 0; tdevice < 0xFF; tdevice++) { 201 /* Scan for access first */ 202 if (!pci_bus_read_dev_vendor_id(ctrl->pci_bus, tdevice, &work, 0)) 203 continue; 204 ret = pci_bus_read_config_dword(ctrl->pci_bus, tdevice, PCI_CLASS_REVISION, &work); 205 if (ret) 206 continue; 207 dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice); 208 /* Yep we got one. Not a bridge ? */ 209 if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) { 210 *dev_num = tdevice; 211 dbg("found it !\n"); 212 return 0; 213 } else { 214 /* 215 * XXX: Code whose debug printout indicated 216 * recursion to buses underneath bridges might be 217 * necessary was removed because it never did 218 * any recursion. 219 */ 220 ret = 0; 221 pr_warn("missing feature: bridge scan recursion not implemented\n"); 222 } 223 } 224 225 226 return ret; 227 } 228 229 230 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge) 231 { 232 int loop, len; 233 u32 work; 234 u8 tbus, tdevice, tslot; 235 236 len = cpqhp_routing_table_length(); 237 for (loop = 0; loop < len; ++loop) { 238 tbus = cpqhp_routing_table->slots[loop].bus; 239 tdevice = cpqhp_routing_table->slots[loop].devfn; 240 tslot = cpqhp_routing_table->slots[loop].slot; 241 242 if (tslot == slot) { 243 *bus_num = tbus; 244 *dev_num = tdevice; 245 ctrl->pci_bus->number = tbus; 246 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work); 247 if (!nobridge || PCI_POSSIBLE_ERROR(work)) 248 return 0; 249 250 dbg("bus_num %d devfn %d\n", *bus_num, *dev_num); 251 pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work); 252 dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS); 253 254 if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) { 255 pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus); 256 dbg("Scan bus for Non Bridge: bus %d\n", tbus); 257 if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) { 258 *bus_num = tbus; 259 return 0; 260 } 261 } else 262 return 0; 263 } 264 } 265 return -1; 266 } 267 268 269 int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot) 270 { 271 /* plain (bridges allowed) */ 272 return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0); 273 } 274 275 276 /* More PCI configuration routines; this time centered around hotplug 277 * controller 278 */ 279 280 281 /* 282 * cpqhp_save_config 283 * 284 * Reads configuration for all slots in a PCI bus and saves info. 285 * 286 * Note: For non-hot plug buses, the slot # saved is the device # 287 * 288 * returns 0 if success 289 */ 290 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug) 291 { 292 long rc; 293 u8 class_code; 294 u8 header_type; 295 u32 ID; 296 u8 secondary_bus; 297 struct pci_func *new_slot; 298 int sub_bus; 299 int FirstSupported; 300 int LastSupported; 301 int max_functions; 302 int function; 303 u8 DevError; 304 int device = 0; 305 int cloop = 0; 306 int stop_it; 307 int index; 308 u16 devfn; 309 310 /* Decide which slots are supported */ 311 312 if (is_hot_plug) { 313 /* 314 * is_hot_plug is the slot mask 315 */ 316 FirstSupported = is_hot_plug >> 4; 317 LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1; 318 } else { 319 FirstSupported = 0; 320 LastSupported = 0x1F; 321 } 322 323 /* Save PCI configuration space for all devices in supported slots */ 324 ctrl->pci_bus->number = busnumber; 325 for (device = FirstSupported; device <= LastSupported; device++) { 326 ID = 0xFFFFFFFF; 327 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID); 328 329 if (ID == 0xFFFFFFFF) { 330 if (is_hot_plug) { 331 /* Setup slot structure with entry for empty 332 * slot 333 */ 334 new_slot = cpqhp_slot_create(busnumber); 335 if (new_slot == NULL) 336 return 1; 337 338 new_slot->bus = (u8) busnumber; 339 new_slot->device = (u8) device; 340 new_slot->function = 0; 341 new_slot->is_a_board = 0; 342 new_slot->presence_save = 0; 343 new_slot->switch_save = 0; 344 } 345 continue; 346 } 347 348 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code); 349 if (rc) 350 return rc; 351 352 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type); 353 if (rc) 354 return rc; 355 356 /* If multi-function device, set max_functions to 8 */ 357 if (header_type & PCI_HEADER_TYPE_MFD) 358 max_functions = 8; 359 else 360 max_functions = 1; 361 362 function = 0; 363 364 do { 365 DevError = 0; 366 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 367 /* Recurse the subordinate bus 368 * get the subordinate bus number 369 */ 370 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus); 371 if (rc) { 372 return rc; 373 } else { 374 sub_bus = (int) secondary_bus; 375 376 /* Save secondary bus cfg spc 377 * with this recursive call. 378 */ 379 rc = cpqhp_save_config(ctrl, sub_bus, 0); 380 if (rc) 381 return rc; 382 ctrl->pci_bus->number = busnumber; 383 } 384 } 385 386 index = 0; 387 new_slot = cpqhp_slot_find(busnumber, device, index++); 388 while (new_slot && 389 (new_slot->function != (u8) function)) 390 new_slot = cpqhp_slot_find(busnumber, device, index++); 391 392 if (!new_slot) { 393 /* Setup slot structure. */ 394 new_slot = cpqhp_slot_create(busnumber); 395 if (new_slot == NULL) 396 return 1; 397 } 398 399 new_slot->bus = (u8) busnumber; 400 new_slot->device = (u8) device; 401 new_slot->function = (u8) function; 402 new_slot->is_a_board = 1; 403 new_slot->switch_save = 0x10; 404 /* In case of unsupported board */ 405 new_slot->status = DevError; 406 devfn = (new_slot->device << 3) | new_slot->function; 407 new_slot->pci_dev = pci_get_domain_bus_and_slot(0, 408 new_slot->bus, devfn); 409 410 for (cloop = 0; cloop < 0x20; cloop++) { 411 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop])); 412 if (rc) 413 return rc; 414 } 415 416 pci_dev_put(new_slot->pci_dev); 417 418 function++; 419 420 stop_it = 0; 421 422 /* this loop skips to the next present function 423 * reading in Class Code and Header type. 424 */ 425 while ((function < max_functions) && (!stop_it)) { 426 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID); 427 if (ID == 0xFFFFFFFF) { 428 function++; 429 continue; 430 } 431 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code); 432 if (rc) 433 return rc; 434 435 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type); 436 if (rc) 437 return rc; 438 439 stop_it++; 440 } 441 442 } while (function < max_functions); 443 } /* End of FOR loop */ 444 445 return 0; 446 } 447 448 449 /* 450 * cpqhp_save_slot_config 451 * 452 * Saves configuration info for all PCI devices in a given slot 453 * including subordinate buses. 454 * 455 * returns 0 if success 456 */ 457 int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot) 458 { 459 long rc; 460 u8 class_code; 461 u8 header_type; 462 u32 ID; 463 u8 secondary_bus; 464 int sub_bus; 465 int max_functions; 466 int function = 0; 467 int cloop; 468 int stop_it; 469 470 ID = 0xFFFFFFFF; 471 472 ctrl->pci_bus->number = new_slot->bus; 473 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID); 474 475 if (ID == 0xFFFFFFFF) 476 return 2; 477 478 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code); 479 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type); 480 481 if (header_type & PCI_HEADER_TYPE_MFD) 482 max_functions = 8; 483 else 484 max_functions = 1; 485 486 while (function < max_functions) { 487 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 488 /* Recurse the subordinate bus */ 489 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus); 490 491 sub_bus = (int) secondary_bus; 492 493 /* Save the config headers for the secondary 494 * bus. 495 */ 496 rc = cpqhp_save_config(ctrl, sub_bus, 0); 497 if (rc) 498 return(rc); 499 ctrl->pci_bus->number = new_slot->bus; 500 501 } 502 503 new_slot->status = 0; 504 505 for (cloop = 0; cloop < 0x20; cloop++) 506 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop])); 507 508 function++; 509 510 stop_it = 0; 511 512 /* this loop skips to the next present function 513 * reading in the Class Code and the Header type. 514 */ 515 while ((function < max_functions) && (!stop_it)) { 516 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID); 517 518 if (ID == 0xFFFFFFFF) 519 function++; 520 else { 521 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code); 522 pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type); 523 stop_it++; 524 } 525 } 526 527 } 528 529 return 0; 530 } 531 532 533 /* 534 * cpqhp_save_base_addr_length 535 * 536 * Saves the length of all base address registers for the 537 * specified slot. this is for hot plug REPLACE 538 * 539 * returns 0 if success 540 */ 541 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func) 542 { 543 u8 cloop; 544 u8 header_type; 545 u8 secondary_bus; 546 u8 type; 547 int sub_bus; 548 u32 temp_register; 549 u32 base; 550 u32 rc; 551 struct pci_func *next; 552 int index = 0; 553 struct pci_bus *pci_bus = ctrl->pci_bus; 554 unsigned int devfn; 555 556 func = cpqhp_slot_find(func->bus, func->device, index++); 557 558 while (func != NULL) { 559 pci_bus->number = func->bus; 560 devfn = PCI_DEVFN(func->device, func->function); 561 562 /* Check for Bridge */ 563 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 564 565 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 566 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); 567 568 sub_bus = (int) secondary_bus; 569 570 next = cpqhp_slot_list[sub_bus]; 571 572 while (next != NULL) { 573 rc = cpqhp_save_base_addr_length(ctrl, next); 574 if (rc) 575 return rc; 576 577 next = next->next; 578 } 579 pci_bus->number = func->bus; 580 581 /* FIXME: this loop is duplicated in the non-bridge 582 * case. The two could be rolled together Figure out 583 * IO and memory base lengths 584 */ 585 for (cloop = 0x10; cloop <= 0x14; cloop += 4) { 586 temp_register = 0xFFFFFFFF; 587 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 588 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); 589 /* If this register is implemented */ 590 if (base) { 591 if (base & 0x01L) { 592 /* IO base 593 * set base = amount of IO space 594 * requested 595 */ 596 base = base & 0xFFFFFFFE; 597 base = (~base) + 1; 598 599 type = 1; 600 } else { 601 /* memory base */ 602 base = base & 0xFFFFFFF0; 603 base = (~base) + 1; 604 605 type = 0; 606 } 607 } else { 608 base = 0x0L; 609 type = 0; 610 } 611 612 /* Save information in slot structure */ 613 func->base_length[(cloop - 0x10) >> 2] = 614 base; 615 func->base_type[(cloop - 0x10) >> 2] = type; 616 617 } /* End of base register loop */ 618 619 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) { 620 /* Figure out IO and memory base lengths */ 621 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 622 temp_register = 0xFFFFFFFF; 623 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 624 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); 625 626 /* If this register is implemented */ 627 if (base) { 628 if (base & 0x01L) { 629 /* IO base 630 * base = amount of IO space 631 * requested 632 */ 633 base = base & 0xFFFFFFFE; 634 base = (~base) + 1; 635 636 type = 1; 637 } else { 638 /* memory base 639 * base = amount of memory 640 * space requested 641 */ 642 base = base & 0xFFFFFFF0; 643 base = (~base) + 1; 644 645 type = 0; 646 } 647 } else { 648 base = 0x0L; 649 type = 0; 650 } 651 652 /* Save information in slot structure */ 653 func->base_length[(cloop - 0x10) >> 2] = base; 654 func->base_type[(cloop - 0x10) >> 2] = type; 655 656 } /* End of base register loop */ 657 658 } else { /* Some other unknown header type */ 659 } 660 661 /* find the next device in this slot */ 662 func = cpqhp_slot_find(func->bus, func->device, index++); 663 } 664 665 return(0); 666 } 667 668 669 /* 670 * cpqhp_save_used_resources 671 * 672 * Stores used resource information for existing boards. this is 673 * for boards that were in the system when this driver was loaded. 674 * this function is for hot plug ADD 675 * 676 * returns 0 if success 677 */ 678 int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func) 679 { 680 u8 cloop; 681 u8 header_type; 682 u8 secondary_bus; 683 u8 temp_byte; 684 u8 b_base; 685 u8 b_length; 686 u16 command; 687 u16 save_command; 688 u16 w_base; 689 u16 w_length; 690 u32 temp_register; 691 u32 save_base; 692 u32 base; 693 int index = 0; 694 struct pci_resource *mem_node; 695 struct pci_resource *p_mem_node; 696 struct pci_resource *io_node; 697 struct pci_resource *bus_node; 698 struct pci_bus *pci_bus = ctrl->pci_bus; 699 unsigned int devfn; 700 701 func = cpqhp_slot_find(func->bus, func->device, index++); 702 703 while ((func != NULL) && func->is_a_board) { 704 pci_bus->number = func->bus; 705 devfn = PCI_DEVFN(func->device, func->function); 706 707 /* Save the command register */ 708 pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command); 709 710 /* disable card */ 711 command = 0x00; 712 pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); 713 714 /* Check for Bridge */ 715 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 716 717 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 718 /* Clear Bridge Control Register */ 719 command = 0x00; 720 pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 721 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); 722 pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte); 723 724 bus_node = kmalloc_obj(*bus_node, GFP_KERNEL); 725 if (!bus_node) 726 return -ENOMEM; 727 728 bus_node->base = secondary_bus; 729 bus_node->length = temp_byte - secondary_bus + 1; 730 731 bus_node->next = func->bus_head; 732 func->bus_head = bus_node; 733 734 /* Save IO base and Limit registers */ 735 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base); 736 pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length); 737 738 if ((b_base <= b_length) && (save_command & 0x01)) { 739 io_node = kmalloc_obj(*io_node, GFP_KERNEL); 740 if (!io_node) 741 return -ENOMEM; 742 743 io_node->base = (b_base & 0xF0) << 8; 744 io_node->length = (b_length - b_base + 0x10) << 8; 745 746 io_node->next = func->io_head; 747 func->io_head = io_node; 748 } 749 750 /* Save memory base and Limit registers */ 751 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base); 752 pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length); 753 754 if ((w_base <= w_length) && (save_command & 0x02)) { 755 mem_node = kmalloc_obj(*mem_node, GFP_KERNEL); 756 if (!mem_node) 757 return -ENOMEM; 758 759 mem_node->base = w_base << 16; 760 mem_node->length = (w_length - w_base + 0x10) << 16; 761 762 mem_node->next = func->mem_head; 763 func->mem_head = mem_node; 764 } 765 766 /* Save prefetchable memory base and Limit registers */ 767 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base); 768 pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length); 769 770 if ((w_base <= w_length) && (save_command & 0x02)) { 771 p_mem_node = kmalloc_obj(*p_mem_node, 772 GFP_KERNEL); 773 if (!p_mem_node) 774 return -ENOMEM; 775 776 p_mem_node->base = w_base << 16; 777 p_mem_node->length = (w_length - w_base + 0x10) << 16; 778 779 p_mem_node->next = func->p_mem_head; 780 func->p_mem_head = p_mem_node; 781 } 782 /* Figure out IO and memory base lengths */ 783 for (cloop = 0x10; cloop <= 0x14; cloop += 4) { 784 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base); 785 786 temp_register = 0xFFFFFFFF; 787 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 788 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); 789 790 temp_register = base; 791 792 /* If this register is implemented */ 793 if (base) { 794 if (((base & 0x03L) == 0x01) 795 && (save_command & 0x01)) { 796 /* IO base 797 * set temp_register = amount 798 * of IO space requested 799 */ 800 temp_register = base & 0xFFFFFFFE; 801 temp_register = (~temp_register) + 1; 802 803 io_node = kmalloc_obj(*io_node, 804 GFP_KERNEL); 805 if (!io_node) 806 return -ENOMEM; 807 808 io_node->base = 809 save_base & (~0x03L); 810 io_node->length = temp_register; 811 812 io_node->next = func->io_head; 813 func->io_head = io_node; 814 } else 815 if (((base & 0x0BL) == 0x08) 816 && (save_command & 0x02)) { 817 /* prefetchable memory base */ 818 temp_register = base & 0xFFFFFFF0; 819 temp_register = (~temp_register) + 1; 820 821 p_mem_node = kmalloc_obj(*p_mem_node, 822 GFP_KERNEL); 823 if (!p_mem_node) 824 return -ENOMEM; 825 826 p_mem_node->base = save_base & (~0x0FL); 827 p_mem_node->length = temp_register; 828 829 p_mem_node->next = func->p_mem_head; 830 func->p_mem_head = p_mem_node; 831 } else 832 if (((base & 0x0BL) == 0x00) 833 && (save_command & 0x02)) { 834 /* prefetchable memory base */ 835 temp_register = base & 0xFFFFFFF0; 836 temp_register = (~temp_register) + 1; 837 838 mem_node = kmalloc_obj(*mem_node, 839 GFP_KERNEL); 840 if (!mem_node) 841 return -ENOMEM; 842 843 mem_node->base = save_base & (~0x0FL); 844 mem_node->length = temp_register; 845 846 mem_node->next = func->mem_head; 847 func->mem_head = mem_node; 848 } else 849 return(1); 850 } 851 } /* End of base register loop */ 852 /* Standard header */ 853 } else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) { 854 /* Figure out IO and memory base lengths */ 855 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 856 pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base); 857 858 temp_register = 0xFFFFFFFF; 859 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 860 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); 861 862 temp_register = base; 863 864 /* If this register is implemented */ 865 if (base) { 866 if (((base & 0x03L) == 0x01) 867 && (save_command & 0x01)) { 868 /* IO base 869 * set temp_register = amount 870 * of IO space requested 871 */ 872 temp_register = base & 0xFFFFFFFE; 873 temp_register = (~temp_register) + 1; 874 875 io_node = kmalloc_obj(*io_node, 876 GFP_KERNEL); 877 if (!io_node) 878 return -ENOMEM; 879 880 io_node->base = save_base & (~0x01L); 881 io_node->length = temp_register; 882 883 io_node->next = func->io_head; 884 func->io_head = io_node; 885 } else 886 if (((base & 0x0BL) == 0x08) 887 && (save_command & 0x02)) { 888 /* prefetchable memory base */ 889 temp_register = base & 0xFFFFFFF0; 890 temp_register = (~temp_register) + 1; 891 892 p_mem_node = kmalloc_obj(*p_mem_node, 893 GFP_KERNEL); 894 if (!p_mem_node) 895 return -ENOMEM; 896 897 p_mem_node->base = save_base & (~0x0FL); 898 p_mem_node->length = temp_register; 899 900 p_mem_node->next = func->p_mem_head; 901 func->p_mem_head = p_mem_node; 902 } else 903 if (((base & 0x0BL) == 0x00) 904 && (save_command & 0x02)) { 905 /* prefetchable memory base */ 906 temp_register = base & 0xFFFFFFF0; 907 temp_register = (~temp_register) + 1; 908 909 mem_node = kmalloc_obj(*mem_node, 910 GFP_KERNEL); 911 if (!mem_node) 912 return -ENOMEM; 913 914 mem_node->base = save_base & (~0x0FL); 915 mem_node->length = temp_register; 916 917 mem_node->next = func->mem_head; 918 func->mem_head = mem_node; 919 } else 920 return(1); 921 } 922 } /* End of base register loop */ 923 } 924 925 /* find the next device in this slot */ 926 func = cpqhp_slot_find(func->bus, func->device, index++); 927 } 928 929 return 0; 930 } 931 932 933 /* 934 * cpqhp_configure_board 935 * 936 * Copies saved configuration information to one slot. 937 * this is called recursively for bridge devices. 938 * this is for hot plug REPLACE! 939 * 940 * returns 0 if success 941 */ 942 int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func) 943 { 944 int cloop; 945 u8 header_type; 946 u8 secondary_bus; 947 int sub_bus; 948 struct pci_func *next; 949 u32 temp; 950 u32 rc; 951 int index = 0; 952 struct pci_bus *pci_bus = ctrl->pci_bus; 953 unsigned int devfn; 954 955 func = cpqhp_slot_find(func->bus, func->device, index++); 956 957 while (func != NULL) { 958 pci_bus->number = func->bus; 959 devfn = PCI_DEVFN(func->device, func->function); 960 961 /* Start at the top of config space so that the control 962 * registers are programmed last 963 */ 964 for (cloop = 0x3C; cloop > 0; cloop -= 4) 965 pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]); 966 967 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 968 969 /* If this is a bridge device, restore subordinate devices */ 970 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 971 pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus); 972 973 sub_bus = (int) secondary_bus; 974 975 next = cpqhp_slot_list[sub_bus]; 976 977 while (next != NULL) { 978 rc = cpqhp_configure_board(ctrl, next); 979 if (rc) 980 return rc; 981 982 next = next->next; 983 } 984 } else { 985 986 /* Check all the base Address Registers to make sure 987 * they are the same. If not, the board is different. 988 */ 989 990 for (cloop = 16; cloop < 40; cloop += 4) { 991 pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp); 992 993 if (temp != func->config_space[cloop >> 2]) { 994 dbg("Config space compare failure!!! offset = %x\n", cloop); 995 dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function); 996 dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]); 997 return 1; 998 } 999 } 1000 } 1001 1002 func->configured = 1; 1003 1004 func = cpqhp_slot_find(func->bus, func->device, index++); 1005 } 1006 1007 return 0; 1008 } 1009 1010 1011 /* 1012 * cpqhp_valid_replace 1013 * 1014 * this function checks to see if a board is the same as the 1015 * one it is replacing. this check will detect if the device's 1016 * vendor or device id's are the same 1017 * 1018 * returns 0 if the board is the same nonzero otherwise 1019 */ 1020 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func) 1021 { 1022 u8 cloop; 1023 u8 header_type; 1024 u8 secondary_bus; 1025 u8 type; 1026 u32 temp_register = 0; 1027 u32 base; 1028 u32 rc; 1029 struct pci_func *next; 1030 int index = 0; 1031 struct pci_bus *pci_bus = ctrl->pci_bus; 1032 unsigned int devfn; 1033 1034 if (!func->is_a_board) 1035 return(ADD_NOT_SUPPORTED); 1036 1037 func = cpqhp_slot_find(func->bus, func->device, index++); 1038 1039 while (func != NULL) { 1040 pci_bus->number = func->bus; 1041 devfn = PCI_DEVFN(func->device, func->function); 1042 1043 pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register); 1044 1045 /* No adapter present */ 1046 if (temp_register == 0xFFFFFFFF) 1047 return(NO_ADAPTER_PRESENT); 1048 1049 if (temp_register != func->config_space[0]) 1050 return(ADAPTER_NOT_SAME); 1051 1052 /* Check for same revision number and class code */ 1053 pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register); 1054 1055 /* Adapter not the same */ 1056 if (temp_register != func->config_space[0x08 >> 2]) 1057 return(ADAPTER_NOT_SAME); 1058 1059 /* Check for Bridge */ 1060 pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 1061 1062 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 1063 /* In order to continue checking, we must program the 1064 * bus registers in the bridge to respond to accesses 1065 * for its subordinate bus(es) 1066 */ 1067 1068 temp_register = func->config_space[0x18 >> 2]; 1069 pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register); 1070 1071 secondary_bus = (temp_register >> 8) & 0xFF; 1072 1073 next = cpqhp_slot_list[secondary_bus]; 1074 1075 while (next != NULL) { 1076 rc = cpqhp_valid_replace(ctrl, next); 1077 if (rc) 1078 return rc; 1079 1080 next = next->next; 1081 } 1082 1083 } 1084 /* Check to see if it is a standard config header */ 1085 else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) { 1086 /* Check subsystem vendor and ID */ 1087 pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register); 1088 1089 if (temp_register != func->config_space[0x2C >> 2]) { 1090 /* If it's a SMART-2 and the register isn't 1091 * filled in, ignore the difference because 1092 * they just have an old rev of the firmware 1093 */ 1094 if (!((func->config_space[0] == 0xAE100E11) 1095 && (temp_register == 0x00L))) 1096 return(ADAPTER_NOT_SAME); 1097 } 1098 /* Figure out IO and memory base lengths */ 1099 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 1100 temp_register = 0xFFFFFFFF; 1101 pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 1102 pci_bus_read_config_dword(pci_bus, devfn, cloop, &base); 1103 1104 /* If this register is implemented */ 1105 if (base) { 1106 if (base & 0x01L) { 1107 /* IO base 1108 * set base = amount of IO 1109 * space requested 1110 */ 1111 base = base & 0xFFFFFFFE; 1112 base = (~base) + 1; 1113 1114 type = 1; 1115 } else { 1116 /* memory base */ 1117 base = base & 0xFFFFFFF0; 1118 base = (~base) + 1; 1119 1120 type = 0; 1121 } 1122 } else { 1123 base = 0x0L; 1124 type = 0; 1125 } 1126 1127 /* Check information in slot structure */ 1128 if (func->base_length[(cloop - 0x10) >> 2] != base) 1129 return(ADAPTER_NOT_SAME); 1130 1131 if (func->base_type[(cloop - 0x10) >> 2] != type) 1132 return(ADAPTER_NOT_SAME); 1133 1134 } /* End of base register loop */ 1135 1136 } /* End of (type 0 config space) else */ 1137 else { 1138 /* this is not a type 0 or 1 config space header so 1139 * we don't know how to do it 1140 */ 1141 return(DEVICE_TYPE_NOT_SUPPORTED); 1142 } 1143 1144 /* Get the next function */ 1145 func = cpqhp_slot_find(func->bus, func->device, index++); 1146 } 1147 1148 1149 return 0; 1150 } 1151 1152 1153 /* 1154 * cpqhp_find_available_resources 1155 * 1156 * Finds available memory, IO, and IRQ resources for programming 1157 * devices which may be added to the system 1158 * this function is for hot plug ADD! 1159 * 1160 * returns 0 if success 1161 */ 1162 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start) 1163 { 1164 u8 temp; 1165 u8 populated_slot; 1166 u8 bridged_slot; 1167 void __iomem *one_slot; 1168 void __iomem *rom_resource_table; 1169 struct pci_func *func = NULL; 1170 int i = 10, index; 1171 u32 temp_dword, rc; 1172 struct pci_resource *mem_node; 1173 struct pci_resource *p_mem_node; 1174 struct pci_resource *io_node; 1175 struct pci_resource *bus_node; 1176 1177 rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff); 1178 dbg("rom_resource_table = %p\n", rom_resource_table); 1179 1180 if (rom_resource_table == NULL) 1181 return -ENODEV; 1182 1183 /* Sum all resources and setup resource maps */ 1184 unused_IRQ = readl(rom_resource_table + UNUSED_IRQ); 1185 dbg("unused_IRQ = %x\n", unused_IRQ); 1186 1187 temp = 0; 1188 while (unused_IRQ) { 1189 if (unused_IRQ & 1) { 1190 cpqhp_disk_irq = temp; 1191 break; 1192 } 1193 unused_IRQ = unused_IRQ >> 1; 1194 temp++; 1195 } 1196 1197 dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq); 1198 unused_IRQ = unused_IRQ >> 1; 1199 temp++; 1200 1201 while (unused_IRQ) { 1202 if (unused_IRQ & 1) { 1203 cpqhp_nic_irq = temp; 1204 break; 1205 } 1206 unused_IRQ = unused_IRQ >> 1; 1207 temp++; 1208 } 1209 1210 dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq); 1211 unused_IRQ = readl(rom_resource_table + PCIIRQ); 1212 1213 temp = 0; 1214 1215 if (!cpqhp_nic_irq) 1216 cpqhp_nic_irq = ctrl->cfgspc_irq; 1217 1218 if (!cpqhp_disk_irq) 1219 cpqhp_disk_irq = ctrl->cfgspc_irq; 1220 1221 dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq); 1222 1223 rc = compaq_nvram_load(rom_start, ctrl); 1224 if (rc) 1225 return rc; 1226 1227 one_slot = rom_resource_table + sizeof(struct hrt); 1228 1229 i = readb(rom_resource_table + NUMBER_OF_ENTRIES); 1230 dbg("number_of_entries = %d\n", i); 1231 1232 if (!readb(one_slot + SECONDARY_BUS)) 1233 return 1; 1234 1235 dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n"); 1236 1237 while (i && readb(one_slot + SECONDARY_BUS)) { 1238 u8 dev_func = readb(one_slot + DEV_FUNC); 1239 u8 primary_bus = readb(one_slot + PRIMARY_BUS); 1240 u8 secondary_bus = readb(one_slot + SECONDARY_BUS); 1241 u8 max_bus = readb(one_slot + MAX_BUS); 1242 u16 io_base = readw(one_slot + IO_BASE); 1243 u16 io_length = readw(one_slot + IO_LENGTH); 1244 u16 mem_base = readw(one_slot + MEM_BASE); 1245 u16 mem_length = readw(one_slot + MEM_LENGTH); 1246 u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE); 1247 u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH); 1248 1249 dbg("%2.2x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x | %4.4x |%2.2x %2.2x %2.2x\n", 1250 dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length, 1251 primary_bus, secondary_bus, max_bus); 1252 1253 /* If this entry isn't for our controller's bus, ignore it */ 1254 if (primary_bus != ctrl->bus) { 1255 i--; 1256 one_slot += sizeof(struct slot_rt); 1257 continue; 1258 } 1259 /* find out if this entry is for an occupied slot */ 1260 ctrl->pci_bus->number = primary_bus; 1261 pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword); 1262 dbg("temp_D_word = %x\n", temp_dword); 1263 1264 if (temp_dword != 0xFFFFFFFF) { 1265 index = 0; 1266 func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0); 1267 1268 while (func && (func->function != (dev_func & 0x07))) { 1269 dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index); 1270 func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++); 1271 } 1272 1273 /* If we can't find a match, skip this table entry */ 1274 if (!func) { 1275 i--; 1276 one_slot += sizeof(struct slot_rt); 1277 continue; 1278 } 1279 /* this may not work and shouldn't be used */ 1280 if (secondary_bus != primary_bus) 1281 bridged_slot = 1; 1282 else 1283 bridged_slot = 0; 1284 1285 populated_slot = 1; 1286 } else { 1287 populated_slot = 0; 1288 bridged_slot = 0; 1289 } 1290 1291 1292 /* If we've got a valid IO base, use it */ 1293 1294 temp_dword = io_base + io_length; 1295 1296 if ((io_base) && (temp_dword < 0x10000)) { 1297 io_node = kmalloc_obj(*io_node, GFP_KERNEL); 1298 if (!io_node) 1299 return -ENOMEM; 1300 1301 io_node->base = io_base; 1302 io_node->length = io_length; 1303 1304 dbg("found io_node(base, length) = %x, %x\n", 1305 io_node->base, io_node->length); 1306 dbg("populated slot = %d\n", populated_slot); 1307 if (!populated_slot) { 1308 io_node->next = ctrl->io_head; 1309 ctrl->io_head = io_node; 1310 } else { 1311 io_node->next = func->io_head; 1312 func->io_head = io_node; 1313 } 1314 } 1315 1316 /* If we've got a valid memory base, use it */ 1317 temp_dword = mem_base + mem_length; 1318 if ((mem_base) && (temp_dword < 0x10000)) { 1319 mem_node = kmalloc_obj(*mem_node, GFP_KERNEL); 1320 if (!mem_node) 1321 return -ENOMEM; 1322 1323 mem_node->base = mem_base << 16; 1324 1325 mem_node->length = mem_length << 16; 1326 1327 dbg("found mem_node(base, length) = %x, %x\n", 1328 mem_node->base, mem_node->length); 1329 dbg("populated slot = %d\n", populated_slot); 1330 if (!populated_slot) { 1331 mem_node->next = ctrl->mem_head; 1332 ctrl->mem_head = mem_node; 1333 } else { 1334 mem_node->next = func->mem_head; 1335 func->mem_head = mem_node; 1336 } 1337 } 1338 1339 /* If we've got a valid prefetchable memory base, and 1340 * the base + length isn't greater than 0xFFFF 1341 */ 1342 temp_dword = pre_mem_base + pre_mem_length; 1343 if ((pre_mem_base) && (temp_dword < 0x10000)) { 1344 p_mem_node = kmalloc_obj(*p_mem_node, GFP_KERNEL); 1345 if (!p_mem_node) 1346 return -ENOMEM; 1347 1348 p_mem_node->base = pre_mem_base << 16; 1349 1350 p_mem_node->length = pre_mem_length << 16; 1351 dbg("found p_mem_node(base, length) = %x, %x\n", 1352 p_mem_node->base, p_mem_node->length); 1353 dbg("populated slot = %d\n", populated_slot); 1354 1355 if (!populated_slot) { 1356 p_mem_node->next = ctrl->p_mem_head; 1357 ctrl->p_mem_head = p_mem_node; 1358 } else { 1359 p_mem_node->next = func->p_mem_head; 1360 func->p_mem_head = p_mem_node; 1361 } 1362 } 1363 1364 /* If we've got a valid bus number, use it 1365 * The second condition is to ignore bus numbers on 1366 * populated slots that don't have PCI-PCI bridges 1367 */ 1368 if (secondary_bus && (secondary_bus != primary_bus)) { 1369 bus_node = kmalloc_obj(*bus_node, GFP_KERNEL); 1370 if (!bus_node) 1371 return -ENOMEM; 1372 1373 bus_node->base = secondary_bus; 1374 bus_node->length = max_bus - secondary_bus + 1; 1375 dbg("found bus_node(base, length) = %x, %x\n", 1376 bus_node->base, bus_node->length); 1377 dbg("populated slot = %d\n", populated_slot); 1378 if (!populated_slot) { 1379 bus_node->next = ctrl->bus_head; 1380 ctrl->bus_head = bus_node; 1381 } else { 1382 bus_node->next = func->bus_head; 1383 func->bus_head = bus_node; 1384 } 1385 } 1386 1387 i--; 1388 one_slot += sizeof(struct slot_rt); 1389 } 1390 1391 /* If all of the following fail, we don't have any resources for 1392 * hot plug add 1393 */ 1394 rc = 1; 1395 rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1396 rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1397 rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1398 rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1399 1400 return rc; 1401 } 1402 1403 1404 /* 1405 * cpqhp_return_board_resources 1406 * 1407 * this routine returns all resources allocated to a board to 1408 * the available pool. 1409 * 1410 * returns 0 if success 1411 */ 1412 int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources) 1413 { 1414 int rc = 0; 1415 struct pci_resource *node; 1416 struct pci_resource *t_node; 1417 dbg("%s\n", __func__); 1418 1419 if (!func) 1420 return 1; 1421 1422 node = func->io_head; 1423 func->io_head = NULL; 1424 while (node) { 1425 t_node = node->next; 1426 return_resource(&(resources->io_head), node); 1427 node = t_node; 1428 } 1429 1430 node = func->mem_head; 1431 func->mem_head = NULL; 1432 while (node) { 1433 t_node = node->next; 1434 return_resource(&(resources->mem_head), node); 1435 node = t_node; 1436 } 1437 1438 node = func->p_mem_head; 1439 func->p_mem_head = NULL; 1440 while (node) { 1441 t_node = node->next; 1442 return_resource(&(resources->p_mem_head), node); 1443 node = t_node; 1444 } 1445 1446 node = func->bus_head; 1447 func->bus_head = NULL; 1448 while (node) { 1449 t_node = node->next; 1450 return_resource(&(resources->bus_head), node); 1451 node = t_node; 1452 } 1453 1454 rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head)); 1455 rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head)); 1456 rc |= cpqhp_resource_sort_and_combine(&(resources->io_head)); 1457 rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head)); 1458 1459 return rc; 1460 } 1461 1462 1463 /* 1464 * cpqhp_destroy_resource_list 1465 * 1466 * Puts node back in the resource list pointed to by head 1467 */ 1468 void cpqhp_destroy_resource_list(struct resource_lists *resources) 1469 { 1470 struct pci_resource *res, *tres; 1471 1472 res = resources->io_head; 1473 resources->io_head = NULL; 1474 1475 while (res) { 1476 tres = res; 1477 res = res->next; 1478 kfree(tres); 1479 } 1480 1481 res = resources->mem_head; 1482 resources->mem_head = NULL; 1483 1484 while (res) { 1485 tres = res; 1486 res = res->next; 1487 kfree(tres); 1488 } 1489 1490 res = resources->p_mem_head; 1491 resources->p_mem_head = NULL; 1492 1493 while (res) { 1494 tres = res; 1495 res = res->next; 1496 kfree(tres); 1497 } 1498 1499 res = resources->bus_head; 1500 resources->bus_head = NULL; 1501 1502 while (res) { 1503 tres = res; 1504 res = res->next; 1505 kfree(tres); 1506 } 1507 } 1508 1509 1510 /* 1511 * cpqhp_destroy_board_resources 1512 * 1513 * Puts node back in the resource list pointed to by head 1514 */ 1515 void cpqhp_destroy_board_resources(struct pci_func *func) 1516 { 1517 struct pci_resource *res, *tres; 1518 1519 res = func->io_head; 1520 func->io_head = NULL; 1521 1522 while (res) { 1523 tres = res; 1524 res = res->next; 1525 kfree(tres); 1526 } 1527 1528 res = func->mem_head; 1529 func->mem_head = NULL; 1530 1531 while (res) { 1532 tres = res; 1533 res = res->next; 1534 kfree(tres); 1535 } 1536 1537 res = func->p_mem_head; 1538 func->p_mem_head = NULL; 1539 1540 while (res) { 1541 tres = res; 1542 res = res->next; 1543 kfree(tres); 1544 } 1545 1546 res = func->bus_head; 1547 func->bus_head = NULL; 1548 1549 while (res) { 1550 tres = res; 1551 res = res->next; 1552 kfree(tres); 1553 } 1554 } 1555