xref: /linux/drivers/pci/hotplug/cpqphp_pci.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pci.h>
22 #include <linux/pci_hotplug.h>
23 #include "../pci.h"
24 #include "cpqphp.h"
25 #include "cpqphp_nvram.h"
26 
27 
28 u8 cpqhp_nic_irq;
29 u8 cpqhp_disk_irq;
30 
31 static u16 unused_IRQ;
32 
33 /*
34  * detect_HRT_floating_pointer
35  *
36  * find the Hot Plug Resource Table in the specified region of memory.
37  *
38  */
39 static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
40 {
41 	void __iomem *fp;
42 	void __iomem *endp;
43 	u8 temp1, temp2, temp3, temp4;
44 	int status = 0;
45 
46 	endp = (end - sizeof(struct hrt) + 1);
47 
48 	for (fp = begin; fp <= endp; fp += 16) {
49 		temp1 = readb(fp + SIG0);
50 		temp2 = readb(fp + SIG1);
51 		temp3 = readb(fp + SIG2);
52 		temp4 = readb(fp + SIG3);
53 		if (temp1 == '$' &&
54 		    temp2 == 'H' &&
55 		    temp3 == 'R' &&
56 		    temp4 == 'T') {
57 			status = 1;
58 			break;
59 		}
60 	}
61 
62 	if (!status)
63 		fp = NULL;
64 
65 	dbg("Discovered Hotplug Resource Table at %p\n", fp);
66 	return fp;
67 }
68 
69 
70 int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
71 {
72 	struct pci_bus *child;
73 	int num;
74 
75 	pci_lock_rescan_remove();
76 
77 	if (func->pci_dev == NULL)
78 		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
79 							PCI_DEVFN(func->device,
80 							func->function));
81 
82 	/* No pci device, we need to create it then */
83 	if (func->pci_dev == NULL) {
84 		dbg("INFO: pci_dev still null\n");
85 
86 		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
87 		if (num)
88 			pci_bus_add_devices(ctrl->pci_dev->bus);
89 
90 		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
91 							PCI_DEVFN(func->device,
92 							func->function));
93 		if (func->pci_dev == NULL) {
94 			dbg("ERROR: pci_dev still null\n");
95 			goto out;
96 		}
97 	}
98 
99 	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
100 		pci_hp_add_bridge(func->pci_dev);
101 		child = func->pci_dev->subordinate;
102 		if (child)
103 			pci_bus_add_devices(child);
104 	}
105 
106 	pci_dev_put(func->pci_dev);
107 
108  out:
109 	pci_unlock_rescan_remove();
110 	return 0;
111 }
112 
113 
114 int cpqhp_unconfigure_device(struct pci_func *func)
115 {
116 	int j;
117 
118 	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
119 
120 	pci_lock_rescan_remove();
121 	for (j = 0; j < 8 ; j++) {
122 		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
123 							func->bus,
124 							PCI_DEVFN(func->device,
125 							j));
126 		if (temp) {
127 			pci_dev_put(temp);
128 			pci_stop_and_remove_bus_device(temp);
129 		}
130 	}
131 	pci_unlock_rescan_remove();
132 	return 0;
133 }
134 
135 static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
136 {
137 	u32 vendID = 0;
138 
139 	if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
140 		return -1;
141 	if (PCI_POSSIBLE_ERROR(vendID))
142 		return -1;
143 	return pci_bus_read_config_dword(bus, devfn, offset, value);
144 }
145 
146 
147 /*
148  * cpqhp_set_irq
149  *
150  * @bus_num: bus number of PCI device
151  * @dev_num: device number of PCI device
152  * @slot: pointer to u8 where slot number will be returned
153  */
154 int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
155 {
156 	int rc = 0;
157 
158 	if (cpqhp_legacy_mode) {
159 		struct pci_dev *fakedev;
160 		struct pci_bus *fakebus;
161 		u16 temp_word;
162 
163 		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
164 		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
165 		if (!fakedev || !fakebus) {
166 			kfree(fakedev);
167 			kfree(fakebus);
168 			return -ENOMEM;
169 		}
170 
171 		fakedev->devfn = dev_num << 3;
172 		fakedev->bus = fakebus;
173 		fakebus->number = bus_num;
174 		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
175 		    __func__, dev_num, bus_num, int_pin, irq_num);
176 		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
177 		kfree(fakedev);
178 		kfree(fakebus);
179 		dbg("%s: rc %d\n", __func__, rc);
180 		if (!rc)
181 			return !rc;
182 
183 		/* set the Edge Level Control Register (ELCR) */
184 		temp_word = inb(0x4d0);
185 		temp_word |= inb(0x4d1) << 8;
186 
187 		temp_word |= 0x01 << irq_num;
188 
189 		/* This should only be for x86 as it sets the Edge Level
190 		 * Control Register
191 		 */
192 		outb((u8)(temp_word & 0xFF), 0x4d0);
193 		outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
194 		rc = 0;
195 	}
196 
197 	return rc;
198 }
199 
200 
201 static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
202 {
203 	u16 tdevice;
204 	u32 work;
205 	u8 tbus;
206 
207 	ctrl->pci_bus->number = bus_num;
208 
209 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
210 		/* Scan for access first */
211 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
212 			continue;
213 		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
214 		/* Yep we got one. Not a bridge ? */
215 		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
216 			*dev_num = tdevice;
217 			dbg("found it !\n");
218 			return 0;
219 		}
220 	}
221 	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
222 		/* Scan for access first */
223 		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
224 			continue;
225 		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
226 		/* Yep we got one. bridge ? */
227 		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
228 			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
229 			/* XXX: no recursion, wtf? */
230 			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
231 			return 0;
232 		}
233 	}
234 
235 	return -1;
236 }
237 
238 
239 static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
240 {
241 	int loop, len;
242 	u32 work;
243 	u8 tbus, tdevice, tslot;
244 
245 	len = cpqhp_routing_table_length();
246 	for (loop = 0; loop < len; ++loop) {
247 		tbus = cpqhp_routing_table->slots[loop].bus;
248 		tdevice = cpqhp_routing_table->slots[loop].devfn;
249 		tslot = cpqhp_routing_table->slots[loop].slot;
250 
251 		if (tslot == slot) {
252 			*bus_num = tbus;
253 			*dev_num = tdevice;
254 			ctrl->pci_bus->number = tbus;
255 			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
256 			if (!nobridge || PCI_POSSIBLE_ERROR(work))
257 				return 0;
258 
259 			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
260 			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
261 			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
262 
263 			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
264 				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
265 				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
266 				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
267 					*bus_num = tbus;
268 					return 0;
269 				}
270 			} else
271 				return 0;
272 		}
273 	}
274 	return -1;
275 }
276 
277 
278 int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
279 {
280 	/* plain (bridges allowed) */
281 	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
282 }
283 
284 
285 /* More PCI configuration routines; this time centered around hotplug
286  * controller
287  */
288 
289 
290 /*
291  * cpqhp_save_config
292  *
293  * Reads configuration for all slots in a PCI bus and saves info.
294  *
295  * Note:  For non-hot plug buses, the slot # saved is the device #
296  *
297  * returns 0 if success
298  */
299 int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
300 {
301 	long rc;
302 	u8 class_code;
303 	u8 header_type;
304 	u32 ID;
305 	u8 secondary_bus;
306 	struct pci_func *new_slot;
307 	int sub_bus;
308 	int FirstSupported;
309 	int LastSupported;
310 	int max_functions;
311 	int function;
312 	u8 DevError;
313 	int device = 0;
314 	int cloop = 0;
315 	int stop_it;
316 	int index;
317 	u16 devfn;
318 
319 	/* Decide which slots are supported */
320 
321 	if (is_hot_plug) {
322 		/*
323 		 * is_hot_plug is the slot mask
324 		 */
325 		FirstSupported = is_hot_plug >> 4;
326 		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
327 	} else {
328 		FirstSupported = 0;
329 		LastSupported = 0x1F;
330 	}
331 
332 	/* Save PCI configuration space for all devices in supported slots */
333 	ctrl->pci_bus->number = busnumber;
334 	for (device = FirstSupported; device <= LastSupported; device++) {
335 		ID = 0xFFFFFFFF;
336 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
337 
338 		if (ID == 0xFFFFFFFF) {
339 			if (is_hot_plug) {
340 				/* Setup slot structure with entry for empty
341 				 * slot
342 				 */
343 				new_slot = cpqhp_slot_create(busnumber);
344 				if (new_slot == NULL)
345 					return 1;
346 
347 				new_slot->bus = (u8) busnumber;
348 				new_slot->device = (u8) device;
349 				new_slot->function = 0;
350 				new_slot->is_a_board = 0;
351 				new_slot->presence_save = 0;
352 				new_slot->switch_save = 0;
353 			}
354 			continue;
355 		}
356 
357 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
358 		if (rc)
359 			return rc;
360 
361 		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
362 		if (rc)
363 			return rc;
364 
365 		/* If multi-function device, set max_functions to 8 */
366 		if (header_type & PCI_HEADER_TYPE_MFD)
367 			max_functions = 8;
368 		else
369 			max_functions = 1;
370 
371 		function = 0;
372 
373 		do {
374 			DevError = 0;
375 			if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
376 				/* Recurse the subordinate bus
377 				 * get the subordinate bus number
378 				 */
379 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
380 				if (rc) {
381 					return rc;
382 				} else {
383 					sub_bus = (int) secondary_bus;
384 
385 					/* Save secondary bus cfg spc
386 					 * with this recursive call.
387 					 */
388 					rc = cpqhp_save_config(ctrl, sub_bus, 0);
389 					if (rc)
390 						return rc;
391 					ctrl->pci_bus->number = busnumber;
392 				}
393 			}
394 
395 			index = 0;
396 			new_slot = cpqhp_slot_find(busnumber, device, index++);
397 			while (new_slot &&
398 			       (new_slot->function != (u8) function))
399 				new_slot = cpqhp_slot_find(busnumber, device, index++);
400 
401 			if (!new_slot) {
402 				/* Setup slot structure. */
403 				new_slot = cpqhp_slot_create(busnumber);
404 				if (new_slot == NULL)
405 					return 1;
406 			}
407 
408 			new_slot->bus = (u8) busnumber;
409 			new_slot->device = (u8) device;
410 			new_slot->function = (u8) function;
411 			new_slot->is_a_board = 1;
412 			new_slot->switch_save = 0x10;
413 			/* In case of unsupported board */
414 			new_slot->status = DevError;
415 			devfn = (new_slot->device << 3) | new_slot->function;
416 			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
417 							new_slot->bus, devfn);
418 
419 			for (cloop = 0; cloop < 0x20; cloop++) {
420 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
421 				if (rc)
422 					return rc;
423 			}
424 
425 			pci_dev_put(new_slot->pci_dev);
426 
427 			function++;
428 
429 			stop_it = 0;
430 
431 			/* this loop skips to the next present function
432 			 * reading in Class Code and Header type.
433 			 */
434 			while ((function < max_functions) && (!stop_it)) {
435 				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
436 				if (ID == 0xFFFFFFFF) {
437 					function++;
438 					continue;
439 				}
440 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
441 				if (rc)
442 					return rc;
443 
444 				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
445 				if (rc)
446 					return rc;
447 
448 				stop_it++;
449 			}
450 
451 		} while (function < max_functions);
452 	}			/* End of FOR loop */
453 
454 	return 0;
455 }
456 
457 
458 /*
459  * cpqhp_save_slot_config
460  *
461  * Saves configuration info for all PCI devices in a given slot
462  * including subordinate buses.
463  *
464  * returns 0 if success
465  */
466 int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
467 {
468 	long rc;
469 	u8 class_code;
470 	u8 header_type;
471 	u32 ID;
472 	u8 secondary_bus;
473 	int sub_bus;
474 	int max_functions;
475 	int function = 0;
476 	int cloop;
477 	int stop_it;
478 
479 	ID = 0xFFFFFFFF;
480 
481 	ctrl->pci_bus->number = new_slot->bus;
482 	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
483 
484 	if (ID == 0xFFFFFFFF)
485 		return 2;
486 
487 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
488 	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
489 
490 	if (header_type & PCI_HEADER_TYPE_MFD)
491 		max_functions = 8;
492 	else
493 		max_functions = 1;
494 
495 	while (function < max_functions) {
496 		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
497 			/*  Recurse the subordinate bus */
498 			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
499 
500 			sub_bus = (int) secondary_bus;
501 
502 			/* Save the config headers for the secondary
503 			 * bus.
504 			 */
505 			rc = cpqhp_save_config(ctrl, sub_bus, 0);
506 			if (rc)
507 				return(rc);
508 			ctrl->pci_bus->number = new_slot->bus;
509 
510 		}
511 
512 		new_slot->status = 0;
513 
514 		for (cloop = 0; cloop < 0x20; cloop++)
515 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
516 
517 		function++;
518 
519 		stop_it = 0;
520 
521 		/* this loop skips to the next present function
522 		 * reading in the Class Code and the Header type.
523 		 */
524 		while ((function < max_functions) && (!stop_it)) {
525 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
526 
527 			if (ID == 0xFFFFFFFF)
528 				function++;
529 			else {
530 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
531 				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
532 				stop_it++;
533 			}
534 		}
535 
536 	}
537 
538 	return 0;
539 }
540 
541 
542 /*
543  * cpqhp_save_base_addr_length
544  *
545  * Saves the length of all base address registers for the
546  * specified slot.  this is for hot plug REPLACE
547  *
548  * returns 0 if success
549  */
550 int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
551 {
552 	u8 cloop;
553 	u8 header_type;
554 	u8 secondary_bus;
555 	u8 type;
556 	int sub_bus;
557 	u32 temp_register;
558 	u32 base;
559 	u32 rc;
560 	struct pci_func *next;
561 	int index = 0;
562 	struct pci_bus *pci_bus = ctrl->pci_bus;
563 	unsigned int devfn;
564 
565 	func = cpqhp_slot_find(func->bus, func->device, index++);
566 
567 	while (func != NULL) {
568 		pci_bus->number = func->bus;
569 		devfn = PCI_DEVFN(func->device, func->function);
570 
571 		/* Check for Bridge */
572 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
573 
574 		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
575 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
576 
577 			sub_bus = (int) secondary_bus;
578 
579 			next = cpqhp_slot_list[sub_bus];
580 
581 			while (next != NULL) {
582 				rc = cpqhp_save_base_addr_length(ctrl, next);
583 				if (rc)
584 					return rc;
585 
586 				next = next->next;
587 			}
588 			pci_bus->number = func->bus;
589 
590 			/* FIXME: this loop is duplicated in the non-bridge
591 			 * case.  The two could be rolled together Figure out
592 			 * IO and memory base lengths
593 			 */
594 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
595 				temp_register = 0xFFFFFFFF;
596 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
597 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
598 				/* If this register is implemented */
599 				if (base) {
600 					if (base & 0x01L) {
601 						/* IO base
602 						 * set base = amount of IO space
603 						 * requested
604 						 */
605 						base = base & 0xFFFFFFFE;
606 						base = (~base) + 1;
607 
608 						type = 1;
609 					} else {
610 						/* memory base */
611 						base = base & 0xFFFFFFF0;
612 						base = (~base) + 1;
613 
614 						type = 0;
615 					}
616 				} else {
617 					base = 0x0L;
618 					type = 0;
619 				}
620 
621 				/* Save information in slot structure */
622 				func->base_length[(cloop - 0x10) >> 2] =
623 				base;
624 				func->base_type[(cloop - 0x10) >> 2] = type;
625 
626 			}	/* End of base register loop */
627 
628 		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
629 			/* Figure out IO and memory base lengths */
630 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
631 				temp_register = 0xFFFFFFFF;
632 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
633 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
634 
635 				/* If this register is implemented */
636 				if (base) {
637 					if (base & 0x01L) {
638 						/* IO base
639 						 * base = amount of IO space
640 						 * requested
641 						 */
642 						base = base & 0xFFFFFFFE;
643 						base = (~base) + 1;
644 
645 						type = 1;
646 					} else {
647 						/* memory base
648 						 * base = amount of memory
649 						 * space requested
650 						 */
651 						base = base & 0xFFFFFFF0;
652 						base = (~base) + 1;
653 
654 						type = 0;
655 					}
656 				} else {
657 					base = 0x0L;
658 					type = 0;
659 				}
660 
661 				/* Save information in slot structure */
662 				func->base_length[(cloop - 0x10) >> 2] = base;
663 				func->base_type[(cloop - 0x10) >> 2] = type;
664 
665 			}	/* End of base register loop */
666 
667 		} else {	  /* Some other unknown header type */
668 		}
669 
670 		/* find the next device in this slot */
671 		func = cpqhp_slot_find(func->bus, func->device, index++);
672 	}
673 
674 	return(0);
675 }
676 
677 
678 /*
679  * cpqhp_save_used_resources
680  *
681  * Stores used resource information for existing boards.  this is
682  * for boards that were in the system when this driver was loaded.
683  * this function is for hot plug ADD
684  *
685  * returns 0 if success
686  */
687 int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
688 {
689 	u8 cloop;
690 	u8 header_type;
691 	u8 secondary_bus;
692 	u8 temp_byte;
693 	u8 b_base;
694 	u8 b_length;
695 	u16 command;
696 	u16 save_command;
697 	u16 w_base;
698 	u16 w_length;
699 	u32 temp_register;
700 	u32 save_base;
701 	u32 base;
702 	int index = 0;
703 	struct pci_resource *mem_node;
704 	struct pci_resource *p_mem_node;
705 	struct pci_resource *io_node;
706 	struct pci_resource *bus_node;
707 	struct pci_bus *pci_bus = ctrl->pci_bus;
708 	unsigned int devfn;
709 
710 	func = cpqhp_slot_find(func->bus, func->device, index++);
711 
712 	while ((func != NULL) && func->is_a_board) {
713 		pci_bus->number = func->bus;
714 		devfn = PCI_DEVFN(func->device, func->function);
715 
716 		/* Save the command register */
717 		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
718 
719 		/* disable card */
720 		command = 0x00;
721 		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
722 
723 		/* Check for Bridge */
724 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
725 
726 		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
727 			/* Clear Bridge Control Register */
728 			command = 0x00;
729 			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
730 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
731 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
732 
733 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
734 			if (!bus_node)
735 				return -ENOMEM;
736 
737 			bus_node->base = secondary_bus;
738 			bus_node->length = temp_byte - secondary_bus + 1;
739 
740 			bus_node->next = func->bus_head;
741 			func->bus_head = bus_node;
742 
743 			/* Save IO base and Limit registers */
744 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
745 			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
746 
747 			if ((b_base <= b_length) && (save_command & 0x01)) {
748 				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
749 				if (!io_node)
750 					return -ENOMEM;
751 
752 				io_node->base = (b_base & 0xF0) << 8;
753 				io_node->length = (b_length - b_base + 0x10) << 8;
754 
755 				io_node->next = func->io_head;
756 				func->io_head = io_node;
757 			}
758 
759 			/* Save memory base and Limit registers */
760 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
761 			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
762 
763 			if ((w_base <= w_length) && (save_command & 0x02)) {
764 				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
765 				if (!mem_node)
766 					return -ENOMEM;
767 
768 				mem_node->base = w_base << 16;
769 				mem_node->length = (w_length - w_base + 0x10) << 16;
770 
771 				mem_node->next = func->mem_head;
772 				func->mem_head = mem_node;
773 			}
774 
775 			/* Save prefetchable memory base and Limit registers */
776 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
777 			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
778 
779 			if ((w_base <= w_length) && (save_command & 0x02)) {
780 				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
781 				if (!p_mem_node)
782 					return -ENOMEM;
783 
784 				p_mem_node->base = w_base << 16;
785 				p_mem_node->length = (w_length - w_base + 0x10) << 16;
786 
787 				p_mem_node->next = func->p_mem_head;
788 				func->p_mem_head = p_mem_node;
789 			}
790 			/* Figure out IO and memory base lengths */
791 			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
792 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
793 
794 				temp_register = 0xFFFFFFFF;
795 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
796 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
797 
798 				temp_register = base;
799 
800 				/* If this register is implemented */
801 				if (base) {
802 					if (((base & 0x03L) == 0x01)
803 					    && (save_command & 0x01)) {
804 						/* IO base
805 						 * set temp_register = amount
806 						 * of IO space requested
807 						 */
808 						temp_register = base & 0xFFFFFFFE;
809 						temp_register = (~temp_register) + 1;
810 
811 						io_node = kmalloc(sizeof(*io_node),
812 								GFP_KERNEL);
813 						if (!io_node)
814 							return -ENOMEM;
815 
816 						io_node->base =
817 						save_base & (~0x03L);
818 						io_node->length = temp_register;
819 
820 						io_node->next = func->io_head;
821 						func->io_head = io_node;
822 					} else
823 						if (((base & 0x0BL) == 0x08)
824 						    && (save_command & 0x02)) {
825 						/* prefetchable memory base */
826 						temp_register = base & 0xFFFFFFF0;
827 						temp_register = (~temp_register) + 1;
828 
829 						p_mem_node = kmalloc(sizeof(*p_mem_node),
830 								GFP_KERNEL);
831 						if (!p_mem_node)
832 							return -ENOMEM;
833 
834 						p_mem_node->base = save_base & (~0x0FL);
835 						p_mem_node->length = temp_register;
836 
837 						p_mem_node->next = func->p_mem_head;
838 						func->p_mem_head = p_mem_node;
839 					} else
840 						if (((base & 0x0BL) == 0x00)
841 						    && (save_command & 0x02)) {
842 						/* prefetchable memory base */
843 						temp_register = base & 0xFFFFFFF0;
844 						temp_register = (~temp_register) + 1;
845 
846 						mem_node = kmalloc(sizeof(*mem_node),
847 								GFP_KERNEL);
848 						if (!mem_node)
849 							return -ENOMEM;
850 
851 						mem_node->base = save_base & (~0x0FL);
852 						mem_node->length = temp_register;
853 
854 						mem_node->next = func->mem_head;
855 						func->mem_head = mem_node;
856 					} else
857 						return(1);
858 				}
859 			}	/* End of base register loop */
860 		/* Standard header */
861 		} else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
862 			/* Figure out IO and memory base lengths */
863 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
864 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
865 
866 				temp_register = 0xFFFFFFFF;
867 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
868 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
869 
870 				temp_register = base;
871 
872 				/* If this register is implemented */
873 				if (base) {
874 					if (((base & 0x03L) == 0x01)
875 					    && (save_command & 0x01)) {
876 						/* IO base
877 						 * set temp_register = amount
878 						 * of IO space requested
879 						 */
880 						temp_register = base & 0xFFFFFFFE;
881 						temp_register = (~temp_register) + 1;
882 
883 						io_node = kmalloc(sizeof(*io_node),
884 								GFP_KERNEL);
885 						if (!io_node)
886 							return -ENOMEM;
887 
888 						io_node->base = save_base & (~0x01L);
889 						io_node->length = temp_register;
890 
891 						io_node->next = func->io_head;
892 						func->io_head = io_node;
893 					} else
894 						if (((base & 0x0BL) == 0x08)
895 						    && (save_command & 0x02)) {
896 						/* prefetchable memory base */
897 						temp_register = base & 0xFFFFFFF0;
898 						temp_register = (~temp_register) + 1;
899 
900 						p_mem_node = kmalloc(sizeof(*p_mem_node),
901 								GFP_KERNEL);
902 						if (!p_mem_node)
903 							return -ENOMEM;
904 
905 						p_mem_node->base = save_base & (~0x0FL);
906 						p_mem_node->length = temp_register;
907 
908 						p_mem_node->next = func->p_mem_head;
909 						func->p_mem_head = p_mem_node;
910 					} else
911 						if (((base & 0x0BL) == 0x00)
912 						    && (save_command & 0x02)) {
913 						/* prefetchable memory base */
914 						temp_register = base & 0xFFFFFFF0;
915 						temp_register = (~temp_register) + 1;
916 
917 						mem_node = kmalloc(sizeof(*mem_node),
918 								GFP_KERNEL);
919 						if (!mem_node)
920 							return -ENOMEM;
921 
922 						mem_node->base = save_base & (~0x0FL);
923 						mem_node->length = temp_register;
924 
925 						mem_node->next = func->mem_head;
926 						func->mem_head = mem_node;
927 					} else
928 						return(1);
929 				}
930 			}	/* End of base register loop */
931 		}
932 
933 		/* find the next device in this slot */
934 		func = cpqhp_slot_find(func->bus, func->device, index++);
935 	}
936 
937 	return 0;
938 }
939 
940 
941 /*
942  * cpqhp_configure_board
943  *
944  * Copies saved configuration information to one slot.
945  * this is called recursively for bridge devices.
946  * this is for hot plug REPLACE!
947  *
948  * returns 0 if success
949  */
950 int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
951 {
952 	int cloop;
953 	u8 header_type;
954 	u8 secondary_bus;
955 	int sub_bus;
956 	struct pci_func *next;
957 	u32 temp;
958 	u32 rc;
959 	int index = 0;
960 	struct pci_bus *pci_bus = ctrl->pci_bus;
961 	unsigned int devfn;
962 
963 	func = cpqhp_slot_find(func->bus, func->device, index++);
964 
965 	while (func != NULL) {
966 		pci_bus->number = func->bus;
967 		devfn = PCI_DEVFN(func->device, func->function);
968 
969 		/* Start at the top of config space so that the control
970 		 * registers are programmed last
971 		 */
972 		for (cloop = 0x3C; cloop > 0; cloop -= 4)
973 			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
974 
975 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
976 
977 		/* If this is a bridge device, restore subordinate devices */
978 		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
979 			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
980 
981 			sub_bus = (int) secondary_bus;
982 
983 			next = cpqhp_slot_list[sub_bus];
984 
985 			while (next != NULL) {
986 				rc = cpqhp_configure_board(ctrl, next);
987 				if (rc)
988 					return rc;
989 
990 				next = next->next;
991 			}
992 		} else {
993 
994 			/* Check all the base Address Registers to make sure
995 			 * they are the same.  If not, the board is different.
996 			 */
997 
998 			for (cloop = 16; cloop < 40; cloop += 4) {
999 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1000 
1001 				if (temp != func->config_space[cloop >> 2]) {
1002 					dbg("Config space compare failure!!! offset = %x\n", cloop);
1003 					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1004 					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1005 					return 1;
1006 				}
1007 			}
1008 		}
1009 
1010 		func->configured = 1;
1011 
1012 		func = cpqhp_slot_find(func->bus, func->device, index++);
1013 	}
1014 
1015 	return 0;
1016 }
1017 
1018 
1019 /*
1020  * cpqhp_valid_replace
1021  *
1022  * this function checks to see if a board is the same as the
1023  * one it is replacing.  this check will detect if the device's
1024  * vendor or device id's are the same
1025  *
1026  * returns 0 if the board is the same nonzero otherwise
1027  */
1028 int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1029 {
1030 	u8 cloop;
1031 	u8 header_type;
1032 	u8 secondary_bus;
1033 	u8 type;
1034 	u32 temp_register = 0;
1035 	u32 base;
1036 	u32 rc;
1037 	struct pci_func *next;
1038 	int index = 0;
1039 	struct pci_bus *pci_bus = ctrl->pci_bus;
1040 	unsigned int devfn;
1041 
1042 	if (!func->is_a_board)
1043 		return(ADD_NOT_SUPPORTED);
1044 
1045 	func = cpqhp_slot_find(func->bus, func->device, index++);
1046 
1047 	while (func != NULL) {
1048 		pci_bus->number = func->bus;
1049 		devfn = PCI_DEVFN(func->device, func->function);
1050 
1051 		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1052 
1053 		/* No adapter present */
1054 		if (temp_register == 0xFFFFFFFF)
1055 			return(NO_ADAPTER_PRESENT);
1056 
1057 		if (temp_register != func->config_space[0])
1058 			return(ADAPTER_NOT_SAME);
1059 
1060 		/* Check for same revision number and class code */
1061 		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1062 
1063 		/* Adapter not the same */
1064 		if (temp_register != func->config_space[0x08 >> 2])
1065 			return(ADAPTER_NOT_SAME);
1066 
1067 		/* Check for Bridge */
1068 		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1069 
1070 		if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) {
1071 			/* In order to continue checking, we must program the
1072 			 * bus registers in the bridge to respond to accesses
1073 			 * for its subordinate bus(es)
1074 			 */
1075 
1076 			temp_register = func->config_space[0x18 >> 2];
1077 			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1078 
1079 			secondary_bus = (temp_register >> 8) & 0xFF;
1080 
1081 			next = cpqhp_slot_list[secondary_bus];
1082 
1083 			while (next != NULL) {
1084 				rc = cpqhp_valid_replace(ctrl, next);
1085 				if (rc)
1086 					return rc;
1087 
1088 				next = next->next;
1089 			}
1090 
1091 		}
1092 		/* Check to see if it is a standard config header */
1093 		else if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) {
1094 			/* Check subsystem vendor and ID */
1095 			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1096 
1097 			if (temp_register != func->config_space[0x2C >> 2]) {
1098 				/* If it's a SMART-2 and the register isn't
1099 				 * filled in, ignore the difference because
1100 				 * they just have an old rev of the firmware
1101 				 */
1102 				if (!((func->config_space[0] == 0xAE100E11)
1103 				      && (temp_register == 0x00L)))
1104 					return(ADAPTER_NOT_SAME);
1105 			}
1106 			/* Figure out IO and memory base lengths */
1107 			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1108 				temp_register = 0xFFFFFFFF;
1109 				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1110 				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1111 
1112 				/* If this register is implemented */
1113 				if (base) {
1114 					if (base & 0x01L) {
1115 						/* IO base
1116 						 * set base = amount of IO
1117 						 * space requested
1118 						 */
1119 						base = base & 0xFFFFFFFE;
1120 						base = (~base) + 1;
1121 
1122 						type = 1;
1123 					} else {
1124 						/* memory base */
1125 						base = base & 0xFFFFFFF0;
1126 						base = (~base) + 1;
1127 
1128 						type = 0;
1129 					}
1130 				} else {
1131 					base = 0x0L;
1132 					type = 0;
1133 				}
1134 
1135 				/* Check information in slot structure */
1136 				if (func->base_length[(cloop - 0x10) >> 2] != base)
1137 					return(ADAPTER_NOT_SAME);
1138 
1139 				if (func->base_type[(cloop - 0x10) >> 2] != type)
1140 					return(ADAPTER_NOT_SAME);
1141 
1142 			}	/* End of base register loop */
1143 
1144 		}		/* End of (type 0 config space) else */
1145 		else {
1146 			/* this is not a type 0 or 1 config space header so
1147 			 * we don't know how to do it
1148 			 */
1149 			return(DEVICE_TYPE_NOT_SUPPORTED);
1150 		}
1151 
1152 		/* Get the next function */
1153 		func = cpqhp_slot_find(func->bus, func->device, index++);
1154 	}
1155 
1156 
1157 	return 0;
1158 }
1159 
1160 
1161 /*
1162  * cpqhp_find_available_resources
1163  *
1164  * Finds available memory, IO, and IRQ resources for programming
1165  * devices which may be added to the system
1166  * this function is for hot plug ADD!
1167  *
1168  * returns 0 if success
1169  */
1170 int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1171 {
1172 	u8 temp;
1173 	u8 populated_slot;
1174 	u8 bridged_slot;
1175 	void __iomem *one_slot;
1176 	void __iomem *rom_resource_table;
1177 	struct pci_func *func = NULL;
1178 	int i = 10, index;
1179 	u32 temp_dword, rc;
1180 	struct pci_resource *mem_node;
1181 	struct pci_resource *p_mem_node;
1182 	struct pci_resource *io_node;
1183 	struct pci_resource *bus_node;
1184 
1185 	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1186 	dbg("rom_resource_table = %p\n", rom_resource_table);
1187 
1188 	if (rom_resource_table == NULL)
1189 		return -ENODEV;
1190 
1191 	/* Sum all resources and setup resource maps */
1192 	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1193 	dbg("unused_IRQ = %x\n", unused_IRQ);
1194 
1195 	temp = 0;
1196 	while (unused_IRQ) {
1197 		if (unused_IRQ & 1) {
1198 			cpqhp_disk_irq = temp;
1199 			break;
1200 		}
1201 		unused_IRQ = unused_IRQ >> 1;
1202 		temp++;
1203 	}
1204 
1205 	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1206 	unused_IRQ = unused_IRQ >> 1;
1207 	temp++;
1208 
1209 	while (unused_IRQ) {
1210 		if (unused_IRQ & 1) {
1211 			cpqhp_nic_irq = temp;
1212 			break;
1213 		}
1214 		unused_IRQ = unused_IRQ >> 1;
1215 		temp++;
1216 	}
1217 
1218 	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1219 	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1220 
1221 	temp = 0;
1222 
1223 	if (!cpqhp_nic_irq)
1224 		cpqhp_nic_irq = ctrl->cfgspc_irq;
1225 
1226 	if (!cpqhp_disk_irq)
1227 		cpqhp_disk_irq = ctrl->cfgspc_irq;
1228 
1229 	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1230 
1231 	rc = compaq_nvram_load(rom_start, ctrl);
1232 	if (rc)
1233 		return rc;
1234 
1235 	one_slot = rom_resource_table + sizeof(struct hrt);
1236 
1237 	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1238 	dbg("number_of_entries = %d\n", i);
1239 
1240 	if (!readb(one_slot + SECONDARY_BUS))
1241 		return 1;
1242 
1243 	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1244 
1245 	while (i && readb(one_slot + SECONDARY_BUS)) {
1246 		u8 dev_func = readb(one_slot + DEV_FUNC);
1247 		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1248 		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1249 		u8 max_bus = readb(one_slot + MAX_BUS);
1250 		u16 io_base = readw(one_slot + IO_BASE);
1251 		u16 io_length = readw(one_slot + IO_LENGTH);
1252 		u16 mem_base = readw(one_slot + MEM_BASE);
1253 		u16 mem_length = readw(one_slot + MEM_LENGTH);
1254 		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1255 		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1256 
1257 		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1258 		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1259 		    primary_bus, secondary_bus, max_bus);
1260 
1261 		/* If this entry isn't for our controller's bus, ignore it */
1262 		if (primary_bus != ctrl->bus) {
1263 			i--;
1264 			one_slot += sizeof(struct slot_rt);
1265 			continue;
1266 		}
1267 		/* find out if this entry is for an occupied slot */
1268 		ctrl->pci_bus->number = primary_bus;
1269 		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1270 		dbg("temp_D_word = %x\n", temp_dword);
1271 
1272 		if (temp_dword != 0xFFFFFFFF) {
1273 			index = 0;
1274 			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1275 
1276 			while (func && (func->function != (dev_func & 0x07))) {
1277 				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1278 				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1279 			}
1280 
1281 			/* If we can't find a match, skip this table entry */
1282 			if (!func) {
1283 				i--;
1284 				one_slot += sizeof(struct slot_rt);
1285 				continue;
1286 			}
1287 			/* this may not work and shouldn't be used */
1288 			if (secondary_bus != primary_bus)
1289 				bridged_slot = 1;
1290 			else
1291 				bridged_slot = 0;
1292 
1293 			populated_slot = 1;
1294 		} else {
1295 			populated_slot = 0;
1296 			bridged_slot = 0;
1297 		}
1298 
1299 
1300 		/* If we've got a valid IO base, use it */
1301 
1302 		temp_dword = io_base + io_length;
1303 
1304 		if ((io_base) && (temp_dword < 0x10000)) {
1305 			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1306 			if (!io_node)
1307 				return -ENOMEM;
1308 
1309 			io_node->base = io_base;
1310 			io_node->length = io_length;
1311 
1312 			dbg("found io_node(base, length) = %x, %x\n",
1313 					io_node->base, io_node->length);
1314 			dbg("populated slot =%d \n", populated_slot);
1315 			if (!populated_slot) {
1316 				io_node->next = ctrl->io_head;
1317 				ctrl->io_head = io_node;
1318 			} else {
1319 				io_node->next = func->io_head;
1320 				func->io_head = io_node;
1321 			}
1322 		}
1323 
1324 		/* If we've got a valid memory base, use it */
1325 		temp_dword = mem_base + mem_length;
1326 		if ((mem_base) && (temp_dword < 0x10000)) {
1327 			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1328 			if (!mem_node)
1329 				return -ENOMEM;
1330 
1331 			mem_node->base = mem_base << 16;
1332 
1333 			mem_node->length = mem_length << 16;
1334 
1335 			dbg("found mem_node(base, length) = %x, %x\n",
1336 					mem_node->base, mem_node->length);
1337 			dbg("populated slot =%d \n", populated_slot);
1338 			if (!populated_slot) {
1339 				mem_node->next = ctrl->mem_head;
1340 				ctrl->mem_head = mem_node;
1341 			} else {
1342 				mem_node->next = func->mem_head;
1343 				func->mem_head = mem_node;
1344 			}
1345 		}
1346 
1347 		/* If we've got a valid prefetchable memory base, and
1348 		 * the base + length isn't greater than 0xFFFF
1349 		 */
1350 		temp_dword = pre_mem_base + pre_mem_length;
1351 		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1352 			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1353 			if (!p_mem_node)
1354 				return -ENOMEM;
1355 
1356 			p_mem_node->base = pre_mem_base << 16;
1357 
1358 			p_mem_node->length = pre_mem_length << 16;
1359 			dbg("found p_mem_node(base, length) = %x, %x\n",
1360 					p_mem_node->base, p_mem_node->length);
1361 			dbg("populated slot =%d \n", populated_slot);
1362 
1363 			if (!populated_slot) {
1364 				p_mem_node->next = ctrl->p_mem_head;
1365 				ctrl->p_mem_head = p_mem_node;
1366 			} else {
1367 				p_mem_node->next = func->p_mem_head;
1368 				func->p_mem_head = p_mem_node;
1369 			}
1370 		}
1371 
1372 		/* If we've got a valid bus number, use it
1373 		 * The second condition is to ignore bus numbers on
1374 		 * populated slots that don't have PCI-PCI bridges
1375 		 */
1376 		if (secondary_bus && (secondary_bus != primary_bus)) {
1377 			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1378 			if (!bus_node)
1379 				return -ENOMEM;
1380 
1381 			bus_node->base = secondary_bus;
1382 			bus_node->length = max_bus - secondary_bus + 1;
1383 			dbg("found bus_node(base, length) = %x, %x\n",
1384 					bus_node->base, bus_node->length);
1385 			dbg("populated slot =%d \n", populated_slot);
1386 			if (!populated_slot) {
1387 				bus_node->next = ctrl->bus_head;
1388 				ctrl->bus_head = bus_node;
1389 			} else {
1390 				bus_node->next = func->bus_head;
1391 				func->bus_head = bus_node;
1392 			}
1393 		}
1394 
1395 		i--;
1396 		one_slot += sizeof(struct slot_rt);
1397 	}
1398 
1399 	/* If all of the following fail, we don't have any resources for
1400 	 * hot plug add
1401 	 */
1402 	rc = 1;
1403 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1404 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1405 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1406 	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1407 
1408 	return rc;
1409 }
1410 
1411 
1412 /*
1413  * cpqhp_return_board_resources
1414  *
1415  * this routine returns all resources allocated to a board to
1416  * the available pool.
1417  *
1418  * returns 0 if success
1419  */
1420 int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1421 {
1422 	int rc = 0;
1423 	struct pci_resource *node;
1424 	struct pci_resource *t_node;
1425 	dbg("%s\n", __func__);
1426 
1427 	if (!func)
1428 		return 1;
1429 
1430 	node = func->io_head;
1431 	func->io_head = NULL;
1432 	while (node) {
1433 		t_node = node->next;
1434 		return_resource(&(resources->io_head), node);
1435 		node = t_node;
1436 	}
1437 
1438 	node = func->mem_head;
1439 	func->mem_head = NULL;
1440 	while (node) {
1441 		t_node = node->next;
1442 		return_resource(&(resources->mem_head), node);
1443 		node = t_node;
1444 	}
1445 
1446 	node = func->p_mem_head;
1447 	func->p_mem_head = NULL;
1448 	while (node) {
1449 		t_node = node->next;
1450 		return_resource(&(resources->p_mem_head), node);
1451 		node = t_node;
1452 	}
1453 
1454 	node = func->bus_head;
1455 	func->bus_head = NULL;
1456 	while (node) {
1457 		t_node = node->next;
1458 		return_resource(&(resources->bus_head), node);
1459 		node = t_node;
1460 	}
1461 
1462 	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1463 	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1464 	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1465 	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1466 
1467 	return rc;
1468 }
1469 
1470 
1471 /*
1472  * cpqhp_destroy_resource_list
1473  *
1474  * Puts node back in the resource list pointed to by head
1475  */
1476 void cpqhp_destroy_resource_list(struct resource_lists *resources)
1477 {
1478 	struct pci_resource *res, *tres;
1479 
1480 	res = resources->io_head;
1481 	resources->io_head = NULL;
1482 
1483 	while (res) {
1484 		tres = res;
1485 		res = res->next;
1486 		kfree(tres);
1487 	}
1488 
1489 	res = resources->mem_head;
1490 	resources->mem_head = NULL;
1491 
1492 	while (res) {
1493 		tres = res;
1494 		res = res->next;
1495 		kfree(tres);
1496 	}
1497 
1498 	res = resources->p_mem_head;
1499 	resources->p_mem_head = NULL;
1500 
1501 	while (res) {
1502 		tres = res;
1503 		res = res->next;
1504 		kfree(tres);
1505 	}
1506 
1507 	res = resources->bus_head;
1508 	resources->bus_head = NULL;
1509 
1510 	while (res) {
1511 		tres = res;
1512 		res = res->next;
1513 		kfree(tres);
1514 	}
1515 }
1516 
1517 
1518 /*
1519  * cpqhp_destroy_board_resources
1520  *
1521  * Puts node back in the resource list pointed to by head
1522  */
1523 void cpqhp_destroy_board_resources(struct pci_func *func)
1524 {
1525 	struct pci_resource *res, *tres;
1526 
1527 	res = func->io_head;
1528 	func->io_head = NULL;
1529 
1530 	while (res) {
1531 		tres = res;
1532 		res = res->next;
1533 		kfree(tres);
1534 	}
1535 
1536 	res = func->mem_head;
1537 	func->mem_head = NULL;
1538 
1539 	while (res) {
1540 		tres = res;
1541 		res = res->next;
1542 		kfree(tres);
1543 	}
1544 
1545 	res = func->p_mem_head;
1546 	func->p_mem_head = NULL;
1547 
1548 	while (res) {
1549 		tres = res;
1550 		res = res->next;
1551 		kfree(tres);
1552 	}
1553 
1554 	res = func->bus_head;
1555 	func->bus_head = NULL;
1556 
1557 	while (res) {
1558 		tres = res;
1559 		res = res->next;
1560 		kfree(tres);
1561 	}
1562 }
1563