xref: /linux/drivers/pci/hotplug/cpqphp_pci.c (revision 0e862838f290147ea9c16db852d8d494b552d38d)
1  // SPDX-License-Identifier: GPL-2.0+
2  /*
3   * Compaq Hot Plug Controller Driver
4   *
5   * Copyright (C) 1995,2001 Compaq Computer Corporation
6   * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7   * Copyright (C) 2001 IBM Corp.
8   *
9   * All rights reserved.
10   *
11   * Send feedback to <greg@kroah.com>
12   *
13   */
14  
15  #include <linux/module.h>
16  #include <linux/kernel.h>
17  #include <linux/types.h>
18  #include <linux/slab.h>
19  #include <linux/workqueue.h>
20  #include <linux/proc_fs.h>
21  #include <linux/pci.h>
22  #include <linux/pci_hotplug.h>
23  #include "../pci.h"
24  #include "cpqphp.h"
25  #include "cpqphp_nvram.h"
26  
27  
28  u8 cpqhp_nic_irq;
29  u8 cpqhp_disk_irq;
30  
31  static u16 unused_IRQ;
32  
33  /*
34   * detect_HRT_floating_pointer
35   *
36   * find the Hot Plug Resource Table in the specified region of memory.
37   *
38   */
39  static void __iomem *detect_HRT_floating_pointer(void __iomem *begin, void __iomem *end)
40  {
41  	void __iomem *fp;
42  	void __iomem *endp;
43  	u8 temp1, temp2, temp3, temp4;
44  	int status = 0;
45  
46  	endp = (end - sizeof(struct hrt) + 1);
47  
48  	for (fp = begin; fp <= endp; fp += 16) {
49  		temp1 = readb(fp + SIG0);
50  		temp2 = readb(fp + SIG1);
51  		temp3 = readb(fp + SIG2);
52  		temp4 = readb(fp + SIG3);
53  		if (temp1 == '$' &&
54  		    temp2 == 'H' &&
55  		    temp3 == 'R' &&
56  		    temp4 == 'T') {
57  			status = 1;
58  			break;
59  		}
60  	}
61  
62  	if (!status)
63  		fp = NULL;
64  
65  	dbg("Discovered Hotplug Resource Table at %p\n", fp);
66  	return fp;
67  }
68  
69  
70  int cpqhp_configure_device(struct controller *ctrl, struct pci_func *func)
71  {
72  	struct pci_bus *child;
73  	int num;
74  
75  	pci_lock_rescan_remove();
76  
77  	if (func->pci_dev == NULL)
78  		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
79  							PCI_DEVFN(func->device,
80  							func->function));
81  
82  	/* No pci device, we need to create it then */
83  	if (func->pci_dev == NULL) {
84  		dbg("INFO: pci_dev still null\n");
85  
86  		num = pci_scan_slot(ctrl->pci_dev->bus, PCI_DEVFN(func->device, func->function));
87  		if (num)
88  			pci_bus_add_devices(ctrl->pci_dev->bus);
89  
90  		func->pci_dev = pci_get_domain_bus_and_slot(0, func->bus,
91  							PCI_DEVFN(func->device,
92  							func->function));
93  		if (func->pci_dev == NULL) {
94  			dbg("ERROR: pci_dev still null\n");
95  			goto out;
96  		}
97  	}
98  
99  	if (func->pci_dev->hdr_type == PCI_HEADER_TYPE_BRIDGE) {
100  		pci_hp_add_bridge(func->pci_dev);
101  		child = func->pci_dev->subordinate;
102  		if (child)
103  			pci_bus_add_devices(child);
104  	}
105  
106  	pci_dev_put(func->pci_dev);
107  
108   out:
109  	pci_unlock_rescan_remove();
110  	return 0;
111  }
112  
113  
114  int cpqhp_unconfigure_device(struct pci_func *func)
115  {
116  	int j;
117  
118  	dbg("%s: bus/dev/func = %x/%x/%x\n", __func__, func->bus, func->device, func->function);
119  
120  	pci_lock_rescan_remove();
121  	for (j = 0; j < 8 ; j++) {
122  		struct pci_dev *temp = pci_get_domain_bus_and_slot(0,
123  							func->bus,
124  							PCI_DEVFN(func->device,
125  							j));
126  		if (temp) {
127  			pci_dev_put(temp);
128  			pci_stop_and_remove_bus_device(temp);
129  		}
130  	}
131  	pci_unlock_rescan_remove();
132  	return 0;
133  }
134  
135  static int PCI_RefinedAccessConfig(struct pci_bus *bus, unsigned int devfn, u8 offset, u32 *value)
136  {
137  	u32 vendID = 0;
138  
139  	if (pci_bus_read_config_dword(bus, devfn, PCI_VENDOR_ID, &vendID) == -1)
140  		return -1;
141  	if (vendID == 0xffffffff)
142  		return -1;
143  	return pci_bus_read_config_dword(bus, devfn, offset, value);
144  }
145  
146  
147  /*
148   * cpqhp_set_irq
149   *
150   * @bus_num: bus number of PCI device
151   * @dev_num: device number of PCI device
152   * @slot: pointer to u8 where slot number will be returned
153   */
154  int cpqhp_set_irq(u8 bus_num, u8 dev_num, u8 int_pin, u8 irq_num)
155  {
156  	int rc = 0;
157  
158  	if (cpqhp_legacy_mode) {
159  		struct pci_dev *fakedev;
160  		struct pci_bus *fakebus;
161  		u16 temp_word;
162  
163  		fakedev = kmalloc(sizeof(*fakedev), GFP_KERNEL);
164  		fakebus = kmalloc(sizeof(*fakebus), GFP_KERNEL);
165  		if (!fakedev || !fakebus) {
166  			kfree(fakedev);
167  			kfree(fakebus);
168  			return -ENOMEM;
169  		}
170  
171  		fakedev->devfn = dev_num << 3;
172  		fakedev->bus = fakebus;
173  		fakebus->number = bus_num;
174  		dbg("%s: dev %d, bus %d, pin %d, num %d\n",
175  		    __func__, dev_num, bus_num, int_pin, irq_num);
176  		rc = pcibios_set_irq_routing(fakedev, int_pin - 1, irq_num);
177  		kfree(fakedev);
178  		kfree(fakebus);
179  		dbg("%s: rc %d\n", __func__, rc);
180  		if (!rc)
181  			return !rc;
182  
183  		/* set the Edge Level Control Register (ELCR) */
184  		temp_word = inb(0x4d0);
185  		temp_word |= inb(0x4d1) << 8;
186  
187  		temp_word |= 0x01 << irq_num;
188  
189  		/* This should only be for x86 as it sets the Edge Level
190  		 * Control Register
191  		 */
192  		outb((u8)(temp_word & 0xFF), 0x4d0);
193  		outb((u8)((temp_word & 0xFF00) >> 8), 0x4d1);
194  		rc = 0;
195  	}
196  
197  	return rc;
198  }
199  
200  
201  static int PCI_ScanBusForNonBridge(struct controller *ctrl, u8 bus_num, u8 *dev_num)
202  {
203  	u16 tdevice;
204  	u32 work;
205  	u8 tbus;
206  
207  	ctrl->pci_bus->number = bus_num;
208  
209  	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
210  		/* Scan for access first */
211  		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
212  			continue;
213  		dbg("Looking for nonbridge bus_num %d dev_num %d\n", bus_num, tdevice);
214  		/* Yep we got one. Not a bridge ? */
215  		if ((work >> 8) != PCI_TO_PCI_BRIDGE_CLASS) {
216  			*dev_num = tdevice;
217  			dbg("found it !\n");
218  			return 0;
219  		}
220  	}
221  	for (tdevice = 0; tdevice < 0xFF; tdevice++) {
222  		/* Scan for access first */
223  		if (PCI_RefinedAccessConfig(ctrl->pci_bus, tdevice, 0x08, &work) == -1)
224  			continue;
225  		dbg("Looking for bridge bus_num %d dev_num %d\n", bus_num, tdevice);
226  		/* Yep we got one. bridge ? */
227  		if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
228  			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(tdevice, 0), PCI_SECONDARY_BUS, &tbus);
229  			/* XXX: no recursion, wtf? */
230  			dbg("Recurse on bus_num %d tdevice %d\n", tbus, tdevice);
231  			return 0;
232  		}
233  	}
234  
235  	return -1;
236  }
237  
238  
239  static int PCI_GetBusDevHelper(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot, u8 nobridge)
240  {
241  	int loop, len;
242  	u32 work;
243  	u8 tbus, tdevice, tslot;
244  
245  	len = cpqhp_routing_table_length();
246  	for (loop = 0; loop < len; ++loop) {
247  		tbus = cpqhp_routing_table->slots[loop].bus;
248  		tdevice = cpqhp_routing_table->slots[loop].devfn;
249  		tslot = cpqhp_routing_table->slots[loop].slot;
250  
251  		if (tslot == slot) {
252  			*bus_num = tbus;
253  			*dev_num = tdevice;
254  			ctrl->pci_bus->number = tbus;
255  			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_VENDOR_ID, &work);
256  			if (!nobridge || (work == 0xffffffff))
257  				return 0;
258  
259  			dbg("bus_num %d devfn %d\n", *bus_num, *dev_num);
260  			pci_bus_read_config_dword(ctrl->pci_bus, *dev_num, PCI_CLASS_REVISION, &work);
261  			dbg("work >> 8 (%x) = BRIDGE (%x)\n", work >> 8, PCI_TO_PCI_BRIDGE_CLASS);
262  
263  			if ((work >> 8) == PCI_TO_PCI_BRIDGE_CLASS) {
264  				pci_bus_read_config_byte(ctrl->pci_bus, *dev_num, PCI_SECONDARY_BUS, &tbus);
265  				dbg("Scan bus for Non Bridge: bus %d\n", tbus);
266  				if (PCI_ScanBusForNonBridge(ctrl, tbus, dev_num) == 0) {
267  					*bus_num = tbus;
268  					return 0;
269  				}
270  			} else
271  				return 0;
272  		}
273  	}
274  	return -1;
275  }
276  
277  
278  int cpqhp_get_bus_dev(struct controller *ctrl, u8 *bus_num, u8 *dev_num, u8 slot)
279  {
280  	/* plain (bridges allowed) */
281  	return PCI_GetBusDevHelper(ctrl, bus_num, dev_num, slot, 0);
282  }
283  
284  
285  /* More PCI configuration routines; this time centered around hotplug
286   * controller
287   */
288  
289  
290  /*
291   * cpqhp_save_config
292   *
293   * Reads configuration for all slots in a PCI bus and saves info.
294   *
295   * Note:  For non-hot plug buses, the slot # saved is the device #
296   *
297   * returns 0 if success
298   */
299  int cpqhp_save_config(struct controller *ctrl, int busnumber, int is_hot_plug)
300  {
301  	long rc;
302  	u8 class_code;
303  	u8 header_type;
304  	u32 ID;
305  	u8 secondary_bus;
306  	struct pci_func *new_slot;
307  	int sub_bus;
308  	int FirstSupported;
309  	int LastSupported;
310  	int max_functions;
311  	int function;
312  	u8 DevError;
313  	int device = 0;
314  	int cloop = 0;
315  	int stop_it;
316  	int index;
317  	u16 devfn;
318  
319  	/* Decide which slots are supported */
320  
321  	if (is_hot_plug) {
322  		/*
323  		 * is_hot_plug is the slot mask
324  		 */
325  		FirstSupported = is_hot_plug >> 4;
326  		LastSupported = FirstSupported + (is_hot_plug & 0x0F) - 1;
327  	} else {
328  		FirstSupported = 0;
329  		LastSupported = 0x1F;
330  	}
331  
332  	/* Save PCI configuration space for all devices in supported slots */
333  	ctrl->pci_bus->number = busnumber;
334  	for (device = FirstSupported; device <= LastSupported; device++) {
335  		ID = 0xFFFFFFFF;
336  		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_VENDOR_ID, &ID);
337  
338  		if (ID == 0xFFFFFFFF) {
339  			if (is_hot_plug) {
340  				/* Setup slot structure with entry for empty
341  				 * slot
342  				 */
343  				new_slot = cpqhp_slot_create(busnumber);
344  				if (new_slot == NULL)
345  					return 1;
346  
347  				new_slot->bus = (u8) busnumber;
348  				new_slot->device = (u8) device;
349  				new_slot->function = 0;
350  				new_slot->is_a_board = 0;
351  				new_slot->presence_save = 0;
352  				new_slot->switch_save = 0;
353  			}
354  			continue;
355  		}
356  
357  		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), 0x0B, &class_code);
358  		if (rc)
359  			return rc;
360  
361  		rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, 0), PCI_HEADER_TYPE, &header_type);
362  		if (rc)
363  			return rc;
364  
365  		/* If multi-function device, set max_functions to 8 */
366  		if (header_type & 0x80)
367  			max_functions = 8;
368  		else
369  			max_functions = 1;
370  
371  		function = 0;
372  
373  		do {
374  			DevError = 0;
375  			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
376  				/* Recurse the subordinate bus
377  				 * get the subordinate bus number
378  				 */
379  				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_SECONDARY_BUS, &secondary_bus);
380  				if (rc) {
381  					return rc;
382  				} else {
383  					sub_bus = (int) secondary_bus;
384  
385  					/* Save secondary bus cfg spc
386  					 * with this recursive call.
387  					 */
388  					rc = cpqhp_save_config(ctrl, sub_bus, 0);
389  					if (rc)
390  						return rc;
391  					ctrl->pci_bus->number = busnumber;
392  				}
393  			}
394  
395  			index = 0;
396  			new_slot = cpqhp_slot_find(busnumber, device, index++);
397  			while (new_slot &&
398  			       (new_slot->function != (u8) function))
399  				new_slot = cpqhp_slot_find(busnumber, device, index++);
400  
401  			if (!new_slot) {
402  				/* Setup slot structure. */
403  				new_slot = cpqhp_slot_create(busnumber);
404  				if (new_slot == NULL)
405  					return 1;
406  			}
407  
408  			new_slot->bus = (u8) busnumber;
409  			new_slot->device = (u8) device;
410  			new_slot->function = (u8) function;
411  			new_slot->is_a_board = 1;
412  			new_slot->switch_save = 0x10;
413  			/* In case of unsupported board */
414  			new_slot->status = DevError;
415  			devfn = (new_slot->device << 3) | new_slot->function;
416  			new_slot->pci_dev = pci_get_domain_bus_and_slot(0,
417  							new_slot->bus, devfn);
418  
419  			for (cloop = 0; cloop < 0x20; cloop++) {
420  				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
421  				if (rc)
422  					return rc;
423  			}
424  
425  			pci_dev_put(new_slot->pci_dev);
426  
427  			function++;
428  
429  			stop_it = 0;
430  
431  			/* this loop skips to the next present function
432  			 * reading in Class Code and Header type.
433  			 */
434  			while ((function < max_functions) && (!stop_it)) {
435  				rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_VENDOR_ID, &ID);
436  				if (ID == 0xFFFFFFFF) {
437  					function++;
438  					continue;
439  				}
440  				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), 0x0B, &class_code);
441  				if (rc)
442  					return rc;
443  
444  				rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(device, function), PCI_HEADER_TYPE, &header_type);
445  				if (rc)
446  					return rc;
447  
448  				stop_it++;
449  			}
450  
451  		} while (function < max_functions);
452  	}			/* End of FOR loop */
453  
454  	return 0;
455  }
456  
457  
458  /*
459   * cpqhp_save_slot_config
460   *
461   * Saves configuration info for all PCI devices in a given slot
462   * including subordinate buses.
463   *
464   * returns 0 if success
465   */
466  int cpqhp_save_slot_config(struct controller *ctrl, struct pci_func *new_slot)
467  {
468  	long rc;
469  	u8 class_code;
470  	u8 header_type;
471  	u32 ID;
472  	u8 secondary_bus;
473  	int sub_bus;
474  	int max_functions;
475  	int function = 0;
476  	int cloop;
477  	int stop_it;
478  
479  	ID = 0xFFFFFFFF;
480  
481  	ctrl->pci_bus->number = new_slot->bus;
482  	pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_VENDOR_ID, &ID);
483  
484  	if (ID == 0xFFFFFFFF)
485  		return 2;
486  
487  	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), 0x0B, &class_code);
488  	pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, 0), PCI_HEADER_TYPE, &header_type);
489  
490  	if (header_type & 0x80)	/* Multi-function device */
491  		max_functions = 8;
492  	else
493  		max_functions = 1;
494  
495  	while (function < max_functions) {
496  		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
497  			/*  Recurse the subordinate bus */
498  			pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_SECONDARY_BUS, &secondary_bus);
499  
500  			sub_bus = (int) secondary_bus;
501  
502  			/* Save the config headers for the secondary
503  			 * bus.
504  			 */
505  			rc = cpqhp_save_config(ctrl, sub_bus, 0);
506  			if (rc)
507  				return(rc);
508  			ctrl->pci_bus->number = new_slot->bus;
509  
510  		}
511  
512  		new_slot->status = 0;
513  
514  		for (cloop = 0; cloop < 0x20; cloop++)
515  			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), cloop << 2, (u32 *) &(new_slot->config_space[cloop]));
516  
517  		function++;
518  
519  		stop_it = 0;
520  
521  		/* this loop skips to the next present function
522  		 * reading in the Class Code and the Header type.
523  		 */
524  		while ((function < max_functions) && (!stop_it)) {
525  			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_VENDOR_ID, &ID);
526  
527  			if (ID == 0xFFFFFFFF)
528  				function++;
529  			else {
530  				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), 0x0B, &class_code);
531  				pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(new_slot->device, function), PCI_HEADER_TYPE, &header_type);
532  				stop_it++;
533  			}
534  		}
535  
536  	}
537  
538  	return 0;
539  }
540  
541  
542  /*
543   * cpqhp_save_base_addr_length
544   *
545   * Saves the length of all base address registers for the
546   * specified slot.  this is for hot plug REPLACE
547   *
548   * returns 0 if success
549   */
550  int cpqhp_save_base_addr_length(struct controller *ctrl, struct pci_func *func)
551  {
552  	u8 cloop;
553  	u8 header_type;
554  	u8 secondary_bus;
555  	u8 type;
556  	int sub_bus;
557  	u32 temp_register;
558  	u32 base;
559  	u32 rc;
560  	struct pci_func *next;
561  	int index = 0;
562  	struct pci_bus *pci_bus = ctrl->pci_bus;
563  	unsigned int devfn;
564  
565  	func = cpqhp_slot_find(func->bus, func->device, index++);
566  
567  	while (func != NULL) {
568  		pci_bus->number = func->bus;
569  		devfn = PCI_DEVFN(func->device, func->function);
570  
571  		/* Check for Bridge */
572  		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
573  
574  		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
575  			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
576  
577  			sub_bus = (int) secondary_bus;
578  
579  			next = cpqhp_slot_list[sub_bus];
580  
581  			while (next != NULL) {
582  				rc = cpqhp_save_base_addr_length(ctrl, next);
583  				if (rc)
584  					return rc;
585  
586  				next = next->next;
587  			}
588  			pci_bus->number = func->bus;
589  
590  			/* FIXME: this loop is duplicated in the non-bridge
591  			 * case.  The two could be rolled together Figure out
592  			 * IO and memory base lengths
593  			 */
594  			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
595  				temp_register = 0xFFFFFFFF;
596  				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
597  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
598  				/* If this register is implemented */
599  				if (base) {
600  					if (base & 0x01L) {
601  						/* IO base
602  						 * set base = amount of IO space
603  						 * requested
604  						 */
605  						base = base & 0xFFFFFFFE;
606  						base = (~base) + 1;
607  
608  						type = 1;
609  					} else {
610  						/* memory base */
611  						base = base & 0xFFFFFFF0;
612  						base = (~base) + 1;
613  
614  						type = 0;
615  					}
616  				} else {
617  					base = 0x0L;
618  					type = 0;
619  				}
620  
621  				/* Save information in slot structure */
622  				func->base_length[(cloop - 0x10) >> 2] =
623  				base;
624  				func->base_type[(cloop - 0x10) >> 2] = type;
625  
626  			}	/* End of base register loop */
627  
628  		} else if ((header_type & 0x7F) == 0x00) {
629  			/* Figure out IO and memory base lengths */
630  			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
631  				temp_register = 0xFFFFFFFF;
632  				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
633  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
634  
635  				/* If this register is implemented */
636  				if (base) {
637  					if (base & 0x01L) {
638  						/* IO base
639  						 * base = amount of IO space
640  						 * requested
641  						 */
642  						base = base & 0xFFFFFFFE;
643  						base = (~base) + 1;
644  
645  						type = 1;
646  					} else {
647  						/* memory base
648  						 * base = amount of memory
649  						 * space requested
650  						 */
651  						base = base & 0xFFFFFFF0;
652  						base = (~base) + 1;
653  
654  						type = 0;
655  					}
656  				} else {
657  					base = 0x0L;
658  					type = 0;
659  				}
660  
661  				/* Save information in slot structure */
662  				func->base_length[(cloop - 0x10) >> 2] = base;
663  				func->base_type[(cloop - 0x10) >> 2] = type;
664  
665  			}	/* End of base register loop */
666  
667  		} else {	  /* Some other unknown header type */
668  		}
669  
670  		/* find the next device in this slot */
671  		func = cpqhp_slot_find(func->bus, func->device, index++);
672  	}
673  
674  	return(0);
675  }
676  
677  
678  /*
679   * cpqhp_save_used_resources
680   *
681   * Stores used resource information for existing boards.  this is
682   * for boards that were in the system when this driver was loaded.
683   * this function is for hot plug ADD
684   *
685   * returns 0 if success
686   */
687  int cpqhp_save_used_resources(struct controller *ctrl, struct pci_func *func)
688  {
689  	u8 cloop;
690  	u8 header_type;
691  	u8 secondary_bus;
692  	u8 temp_byte;
693  	u8 b_base;
694  	u8 b_length;
695  	u16 command;
696  	u16 save_command;
697  	u16 w_base;
698  	u16 w_length;
699  	u32 temp_register;
700  	u32 save_base;
701  	u32 base;
702  	int index = 0;
703  	struct pci_resource *mem_node;
704  	struct pci_resource *p_mem_node;
705  	struct pci_resource *io_node;
706  	struct pci_resource *bus_node;
707  	struct pci_bus *pci_bus = ctrl->pci_bus;
708  	unsigned int devfn;
709  
710  	func = cpqhp_slot_find(func->bus, func->device, index++);
711  
712  	while ((func != NULL) && func->is_a_board) {
713  		pci_bus->number = func->bus;
714  		devfn = PCI_DEVFN(func->device, func->function);
715  
716  		/* Save the command register */
717  		pci_bus_read_config_word(pci_bus, devfn, PCI_COMMAND, &save_command);
718  
719  		/* disable card */
720  		command = 0x00;
721  		pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
722  
723  		/* Check for Bridge */
724  		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
725  
726  		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
727  			/* Clear Bridge Control Register */
728  			command = 0x00;
729  			pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
730  			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
731  			pci_bus_read_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, &temp_byte);
732  
733  			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
734  			if (!bus_node)
735  				return -ENOMEM;
736  
737  			bus_node->base = secondary_bus;
738  			bus_node->length = temp_byte - secondary_bus + 1;
739  
740  			bus_node->next = func->bus_head;
741  			func->bus_head = bus_node;
742  
743  			/* Save IO base and Limit registers */
744  			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_BASE, &b_base);
745  			pci_bus_read_config_byte(pci_bus, devfn, PCI_IO_LIMIT, &b_length);
746  
747  			if ((b_base <= b_length) && (save_command & 0x01)) {
748  				io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
749  				if (!io_node)
750  					return -ENOMEM;
751  
752  				io_node->base = (b_base & 0xF0) << 8;
753  				io_node->length = (b_length - b_base + 0x10) << 8;
754  
755  				io_node->next = func->io_head;
756  				func->io_head = io_node;
757  			}
758  
759  			/* Save memory base and Limit registers */
760  			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_BASE, &w_base);
761  			pci_bus_read_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, &w_length);
762  
763  			if ((w_base <= w_length) && (save_command & 0x02)) {
764  				mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
765  				if (!mem_node)
766  					return -ENOMEM;
767  
768  				mem_node->base = w_base << 16;
769  				mem_node->length = (w_length - w_base + 0x10) << 16;
770  
771  				mem_node->next = func->mem_head;
772  				func->mem_head = mem_node;
773  			}
774  
775  			/* Save prefetchable memory base and Limit registers */
776  			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, &w_base);
777  			pci_bus_read_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, &w_length);
778  
779  			if ((w_base <= w_length) && (save_command & 0x02)) {
780  				p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
781  				if (!p_mem_node)
782  					return -ENOMEM;
783  
784  				p_mem_node->base = w_base << 16;
785  				p_mem_node->length = (w_length - w_base + 0x10) << 16;
786  
787  				p_mem_node->next = func->p_mem_head;
788  				func->p_mem_head = p_mem_node;
789  			}
790  			/* Figure out IO and memory base lengths */
791  			for (cloop = 0x10; cloop <= 0x14; cloop += 4) {
792  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
793  
794  				temp_register = 0xFFFFFFFF;
795  				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
796  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
797  
798  				temp_register = base;
799  
800  				/* If this register is implemented */
801  				if (base) {
802  					if (((base & 0x03L) == 0x01)
803  					    && (save_command & 0x01)) {
804  						/* IO base
805  						 * set temp_register = amount
806  						 * of IO space requested
807  						 */
808  						temp_register = base & 0xFFFFFFFE;
809  						temp_register = (~temp_register) + 1;
810  
811  						io_node = kmalloc(sizeof(*io_node),
812  								GFP_KERNEL);
813  						if (!io_node)
814  							return -ENOMEM;
815  
816  						io_node->base =
817  						save_base & (~0x03L);
818  						io_node->length = temp_register;
819  
820  						io_node->next = func->io_head;
821  						func->io_head = io_node;
822  					} else
823  						if (((base & 0x0BL) == 0x08)
824  						    && (save_command & 0x02)) {
825  						/* prefetchable memory base */
826  						temp_register = base & 0xFFFFFFF0;
827  						temp_register = (~temp_register) + 1;
828  
829  						p_mem_node = kmalloc(sizeof(*p_mem_node),
830  								GFP_KERNEL);
831  						if (!p_mem_node)
832  							return -ENOMEM;
833  
834  						p_mem_node->base = save_base & (~0x0FL);
835  						p_mem_node->length = temp_register;
836  
837  						p_mem_node->next = func->p_mem_head;
838  						func->p_mem_head = p_mem_node;
839  					} else
840  						if (((base & 0x0BL) == 0x00)
841  						    && (save_command & 0x02)) {
842  						/* prefetchable memory base */
843  						temp_register = base & 0xFFFFFFF0;
844  						temp_register = (~temp_register) + 1;
845  
846  						mem_node = kmalloc(sizeof(*mem_node),
847  								GFP_KERNEL);
848  						if (!mem_node)
849  							return -ENOMEM;
850  
851  						mem_node->base = save_base & (~0x0FL);
852  						mem_node->length = temp_register;
853  
854  						mem_node->next = func->mem_head;
855  						func->mem_head = mem_node;
856  					} else
857  						return(1);
858  				}
859  			}	/* End of base register loop */
860  		/* Standard header */
861  		} else if ((header_type & 0x7F) == 0x00) {
862  			/* Figure out IO and memory base lengths */
863  			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
864  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &save_base);
865  
866  				temp_register = 0xFFFFFFFF;
867  				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
868  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
869  
870  				temp_register = base;
871  
872  				/* If this register is implemented */
873  				if (base) {
874  					if (((base & 0x03L) == 0x01)
875  					    && (save_command & 0x01)) {
876  						/* IO base
877  						 * set temp_register = amount
878  						 * of IO space requested
879  						 */
880  						temp_register = base & 0xFFFFFFFE;
881  						temp_register = (~temp_register) + 1;
882  
883  						io_node = kmalloc(sizeof(*io_node),
884  								GFP_KERNEL);
885  						if (!io_node)
886  							return -ENOMEM;
887  
888  						io_node->base = save_base & (~0x01L);
889  						io_node->length = temp_register;
890  
891  						io_node->next = func->io_head;
892  						func->io_head = io_node;
893  					} else
894  						if (((base & 0x0BL) == 0x08)
895  						    && (save_command & 0x02)) {
896  						/* prefetchable memory base */
897  						temp_register = base & 0xFFFFFFF0;
898  						temp_register = (~temp_register) + 1;
899  
900  						p_mem_node = kmalloc(sizeof(*p_mem_node),
901  								GFP_KERNEL);
902  						if (!p_mem_node)
903  							return -ENOMEM;
904  
905  						p_mem_node->base = save_base & (~0x0FL);
906  						p_mem_node->length = temp_register;
907  
908  						p_mem_node->next = func->p_mem_head;
909  						func->p_mem_head = p_mem_node;
910  					} else
911  						if (((base & 0x0BL) == 0x00)
912  						    && (save_command & 0x02)) {
913  						/* prefetchable memory base */
914  						temp_register = base & 0xFFFFFFF0;
915  						temp_register = (~temp_register) + 1;
916  
917  						mem_node = kmalloc(sizeof(*mem_node),
918  								GFP_KERNEL);
919  						if (!mem_node)
920  							return -ENOMEM;
921  
922  						mem_node->base = save_base & (~0x0FL);
923  						mem_node->length = temp_register;
924  
925  						mem_node->next = func->mem_head;
926  						func->mem_head = mem_node;
927  					} else
928  						return(1);
929  				}
930  			}	/* End of base register loop */
931  		}
932  
933  		/* find the next device in this slot */
934  		func = cpqhp_slot_find(func->bus, func->device, index++);
935  	}
936  
937  	return 0;
938  }
939  
940  
941  /*
942   * cpqhp_configure_board
943   *
944   * Copies saved configuration information to one slot.
945   * this is called recursively for bridge devices.
946   * this is for hot plug REPLACE!
947   *
948   * returns 0 if success
949   */
950  int cpqhp_configure_board(struct controller *ctrl, struct pci_func *func)
951  {
952  	int cloop;
953  	u8 header_type;
954  	u8 secondary_bus;
955  	int sub_bus;
956  	struct pci_func *next;
957  	u32 temp;
958  	u32 rc;
959  	int index = 0;
960  	struct pci_bus *pci_bus = ctrl->pci_bus;
961  	unsigned int devfn;
962  
963  	func = cpqhp_slot_find(func->bus, func->device, index++);
964  
965  	while (func != NULL) {
966  		pci_bus->number = func->bus;
967  		devfn = PCI_DEVFN(func->device, func->function);
968  
969  		/* Start at the top of config space so that the control
970  		 * registers are programmed last
971  		 */
972  		for (cloop = 0x3C; cloop > 0; cloop -= 4)
973  			pci_bus_write_config_dword(pci_bus, devfn, cloop, func->config_space[cloop >> 2]);
974  
975  		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
976  
977  		/* If this is a bridge device, restore subordinate devices */
978  		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
979  			pci_bus_read_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, &secondary_bus);
980  
981  			sub_bus = (int) secondary_bus;
982  
983  			next = cpqhp_slot_list[sub_bus];
984  
985  			while (next != NULL) {
986  				rc = cpqhp_configure_board(ctrl, next);
987  				if (rc)
988  					return rc;
989  
990  				next = next->next;
991  			}
992  		} else {
993  
994  			/* Check all the base Address Registers to make sure
995  			 * they are the same.  If not, the board is different.
996  			 */
997  
998  			for (cloop = 16; cloop < 40; cloop += 4) {
999  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp);
1000  
1001  				if (temp != func->config_space[cloop >> 2]) {
1002  					dbg("Config space compare failure!!! offset = %x\n", cloop);
1003  					dbg("bus = %x, device = %x, function = %x\n", func->bus, func->device, func->function);
1004  					dbg("temp = %x, config space = %x\n\n", temp, func->config_space[cloop >> 2]);
1005  					return 1;
1006  				}
1007  			}
1008  		}
1009  
1010  		func->configured = 1;
1011  
1012  		func = cpqhp_slot_find(func->bus, func->device, index++);
1013  	}
1014  
1015  	return 0;
1016  }
1017  
1018  
1019  /*
1020   * cpqhp_valid_replace
1021   *
1022   * this function checks to see if a board is the same as the
1023   * one it is replacing.  this check will detect if the device's
1024   * vendor or device id's are the same
1025   *
1026   * returns 0 if the board is the same nonzero otherwise
1027   */
1028  int cpqhp_valid_replace(struct controller *ctrl, struct pci_func *func)
1029  {
1030  	u8 cloop;
1031  	u8 header_type;
1032  	u8 secondary_bus;
1033  	u8 type;
1034  	u32 temp_register = 0;
1035  	u32 base;
1036  	u32 rc;
1037  	struct pci_func *next;
1038  	int index = 0;
1039  	struct pci_bus *pci_bus = ctrl->pci_bus;
1040  	unsigned int devfn;
1041  
1042  	if (!func->is_a_board)
1043  		return(ADD_NOT_SUPPORTED);
1044  
1045  	func = cpqhp_slot_find(func->bus, func->device, index++);
1046  
1047  	while (func != NULL) {
1048  		pci_bus->number = func->bus;
1049  		devfn = PCI_DEVFN(func->device, func->function);
1050  
1051  		pci_bus_read_config_dword(pci_bus, devfn, PCI_VENDOR_ID, &temp_register);
1052  
1053  		/* No adapter present */
1054  		if (temp_register == 0xFFFFFFFF)
1055  			return(NO_ADAPTER_PRESENT);
1056  
1057  		if (temp_register != func->config_space[0])
1058  			return(ADAPTER_NOT_SAME);
1059  
1060  		/* Check for same revision number and class code */
1061  		pci_bus_read_config_dword(pci_bus, devfn, PCI_CLASS_REVISION, &temp_register);
1062  
1063  		/* Adapter not the same */
1064  		if (temp_register != func->config_space[0x08 >> 2])
1065  			return(ADAPTER_NOT_SAME);
1066  
1067  		/* Check for Bridge */
1068  		pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
1069  
1070  		if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
1071  			/* In order to continue checking, we must program the
1072  			 * bus registers in the bridge to respond to accesses
1073  			 * for its subordinate bus(es)
1074  			 */
1075  
1076  			temp_register = func->config_space[0x18 >> 2];
1077  			pci_bus_write_config_dword(pci_bus, devfn, PCI_PRIMARY_BUS, temp_register);
1078  
1079  			secondary_bus = (temp_register >> 8) & 0xFF;
1080  
1081  			next = cpqhp_slot_list[secondary_bus];
1082  
1083  			while (next != NULL) {
1084  				rc = cpqhp_valid_replace(ctrl, next);
1085  				if (rc)
1086  					return rc;
1087  
1088  				next = next->next;
1089  			}
1090  
1091  		}
1092  		/* Check to see if it is a standard config header */
1093  		else if ((header_type & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
1094  			/* Check subsystem vendor and ID */
1095  			pci_bus_read_config_dword(pci_bus, devfn, PCI_SUBSYSTEM_VENDOR_ID, &temp_register);
1096  
1097  			if (temp_register != func->config_space[0x2C >> 2]) {
1098  				/* If it's a SMART-2 and the register isn't
1099  				 * filled in, ignore the difference because
1100  				 * they just have an old rev of the firmware
1101  				 */
1102  				if (!((func->config_space[0] == 0xAE100E11)
1103  				      && (temp_register == 0x00L)))
1104  					return(ADAPTER_NOT_SAME);
1105  			}
1106  			/* Figure out IO and memory base lengths */
1107  			for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
1108  				temp_register = 0xFFFFFFFF;
1109  				pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
1110  				pci_bus_read_config_dword(pci_bus, devfn, cloop, &base);
1111  
1112  				/* If this register is implemented */
1113  				if (base) {
1114  					if (base & 0x01L) {
1115  						/* IO base
1116  						 * set base = amount of IO
1117  						 * space requested
1118  						 */
1119  						base = base & 0xFFFFFFFE;
1120  						base = (~base) + 1;
1121  
1122  						type = 1;
1123  					} else {
1124  						/* memory base */
1125  						base = base & 0xFFFFFFF0;
1126  						base = (~base) + 1;
1127  
1128  						type = 0;
1129  					}
1130  				} else {
1131  					base = 0x0L;
1132  					type = 0;
1133  				}
1134  
1135  				/* Check information in slot structure */
1136  				if (func->base_length[(cloop - 0x10) >> 2] != base)
1137  					return(ADAPTER_NOT_SAME);
1138  
1139  				if (func->base_type[(cloop - 0x10) >> 2] != type)
1140  					return(ADAPTER_NOT_SAME);
1141  
1142  			}	/* End of base register loop */
1143  
1144  		}		/* End of (type 0 config space) else */
1145  		else {
1146  			/* this is not a type 0 or 1 config space header so
1147  			 * we don't know how to do it
1148  			 */
1149  			return(DEVICE_TYPE_NOT_SUPPORTED);
1150  		}
1151  
1152  		/* Get the next function */
1153  		func = cpqhp_slot_find(func->bus, func->device, index++);
1154  	}
1155  
1156  
1157  	return 0;
1158  }
1159  
1160  
1161  /*
1162   * cpqhp_find_available_resources
1163   *
1164   * Finds available memory, IO, and IRQ resources for programming
1165   * devices which may be added to the system
1166   * this function is for hot plug ADD!
1167   *
1168   * returns 0 if success
1169   */
1170  int cpqhp_find_available_resources(struct controller *ctrl, void __iomem *rom_start)
1171  {
1172  	u8 temp;
1173  	u8 populated_slot;
1174  	u8 bridged_slot;
1175  	void __iomem *one_slot;
1176  	void __iomem *rom_resource_table;
1177  	struct pci_func *func = NULL;
1178  	int i = 10, index;
1179  	u32 temp_dword, rc;
1180  	struct pci_resource *mem_node;
1181  	struct pci_resource *p_mem_node;
1182  	struct pci_resource *io_node;
1183  	struct pci_resource *bus_node;
1184  
1185  	rom_resource_table = detect_HRT_floating_pointer(rom_start, rom_start+0xffff);
1186  	dbg("rom_resource_table = %p\n", rom_resource_table);
1187  
1188  	if (rom_resource_table == NULL)
1189  		return -ENODEV;
1190  
1191  	/* Sum all resources and setup resource maps */
1192  	unused_IRQ = readl(rom_resource_table + UNUSED_IRQ);
1193  	dbg("unused_IRQ = %x\n", unused_IRQ);
1194  
1195  	temp = 0;
1196  	while (unused_IRQ) {
1197  		if (unused_IRQ & 1) {
1198  			cpqhp_disk_irq = temp;
1199  			break;
1200  		}
1201  		unused_IRQ = unused_IRQ >> 1;
1202  		temp++;
1203  	}
1204  
1205  	dbg("cpqhp_disk_irq= %d\n", cpqhp_disk_irq);
1206  	unused_IRQ = unused_IRQ >> 1;
1207  	temp++;
1208  
1209  	while (unused_IRQ) {
1210  		if (unused_IRQ & 1) {
1211  			cpqhp_nic_irq = temp;
1212  			break;
1213  		}
1214  		unused_IRQ = unused_IRQ >> 1;
1215  		temp++;
1216  	}
1217  
1218  	dbg("cpqhp_nic_irq= %d\n", cpqhp_nic_irq);
1219  	unused_IRQ = readl(rom_resource_table + PCIIRQ);
1220  
1221  	temp = 0;
1222  
1223  	if (!cpqhp_nic_irq)
1224  		cpqhp_nic_irq = ctrl->cfgspc_irq;
1225  
1226  	if (!cpqhp_disk_irq)
1227  		cpqhp_disk_irq = ctrl->cfgspc_irq;
1228  
1229  	dbg("cpqhp_disk_irq, cpqhp_nic_irq= %d, %d\n", cpqhp_disk_irq, cpqhp_nic_irq);
1230  
1231  	rc = compaq_nvram_load(rom_start, ctrl);
1232  	if (rc)
1233  		return rc;
1234  
1235  	one_slot = rom_resource_table + sizeof(struct hrt);
1236  
1237  	i = readb(rom_resource_table + NUMBER_OF_ENTRIES);
1238  	dbg("number_of_entries = %d\n", i);
1239  
1240  	if (!readb(one_slot + SECONDARY_BUS))
1241  		return 1;
1242  
1243  	dbg("dev|IO base|length|Mem base|length|Pre base|length|PB SB MB\n");
1244  
1245  	while (i && readb(one_slot + SECONDARY_BUS)) {
1246  		u8 dev_func = readb(one_slot + DEV_FUNC);
1247  		u8 primary_bus = readb(one_slot + PRIMARY_BUS);
1248  		u8 secondary_bus = readb(one_slot + SECONDARY_BUS);
1249  		u8 max_bus = readb(one_slot + MAX_BUS);
1250  		u16 io_base = readw(one_slot + IO_BASE);
1251  		u16 io_length = readw(one_slot + IO_LENGTH);
1252  		u16 mem_base = readw(one_slot + MEM_BASE);
1253  		u16 mem_length = readw(one_slot + MEM_LENGTH);
1254  		u16 pre_mem_base = readw(one_slot + PRE_MEM_BASE);
1255  		u16 pre_mem_length = readw(one_slot + PRE_MEM_LENGTH);
1256  
1257  		dbg("%2.2x | %4.4x  | %4.4x | %4.4x   | %4.4x | %4.4x   | %4.4x |%2.2x %2.2x %2.2x\n",
1258  		    dev_func, io_base, io_length, mem_base, mem_length, pre_mem_base, pre_mem_length,
1259  		    primary_bus, secondary_bus, max_bus);
1260  
1261  		/* If this entry isn't for our controller's bus, ignore it */
1262  		if (primary_bus != ctrl->bus) {
1263  			i--;
1264  			one_slot += sizeof(struct slot_rt);
1265  			continue;
1266  		}
1267  		/* find out if this entry is for an occupied slot */
1268  		ctrl->pci_bus->number = primary_bus;
1269  		pci_bus_read_config_dword(ctrl->pci_bus, dev_func, PCI_VENDOR_ID, &temp_dword);
1270  		dbg("temp_D_word = %x\n", temp_dword);
1271  
1272  		if (temp_dword != 0xFFFFFFFF) {
1273  			index = 0;
1274  			func = cpqhp_slot_find(primary_bus, dev_func >> 3, 0);
1275  
1276  			while (func && (func->function != (dev_func & 0x07))) {
1277  				dbg("func = %p (bus, dev, fun) = (%d, %d, %d)\n", func, primary_bus, dev_func >> 3, index);
1278  				func = cpqhp_slot_find(primary_bus, dev_func >> 3, index++);
1279  			}
1280  
1281  			/* If we can't find a match, skip this table entry */
1282  			if (!func) {
1283  				i--;
1284  				one_slot += sizeof(struct slot_rt);
1285  				continue;
1286  			}
1287  			/* this may not work and shouldn't be used */
1288  			if (secondary_bus != primary_bus)
1289  				bridged_slot = 1;
1290  			else
1291  				bridged_slot = 0;
1292  
1293  			populated_slot = 1;
1294  		} else {
1295  			populated_slot = 0;
1296  			bridged_slot = 0;
1297  		}
1298  
1299  
1300  		/* If we've got a valid IO base, use it */
1301  
1302  		temp_dword = io_base + io_length;
1303  
1304  		if ((io_base) && (temp_dword < 0x10000)) {
1305  			io_node = kmalloc(sizeof(*io_node), GFP_KERNEL);
1306  			if (!io_node)
1307  				return -ENOMEM;
1308  
1309  			io_node->base = io_base;
1310  			io_node->length = io_length;
1311  
1312  			dbg("found io_node(base, length) = %x, %x\n",
1313  					io_node->base, io_node->length);
1314  			dbg("populated slot =%d \n", populated_slot);
1315  			if (!populated_slot) {
1316  				io_node->next = ctrl->io_head;
1317  				ctrl->io_head = io_node;
1318  			} else {
1319  				io_node->next = func->io_head;
1320  				func->io_head = io_node;
1321  			}
1322  		}
1323  
1324  		/* If we've got a valid memory base, use it */
1325  		temp_dword = mem_base + mem_length;
1326  		if ((mem_base) && (temp_dword < 0x10000)) {
1327  			mem_node = kmalloc(sizeof(*mem_node), GFP_KERNEL);
1328  			if (!mem_node)
1329  				return -ENOMEM;
1330  
1331  			mem_node->base = mem_base << 16;
1332  
1333  			mem_node->length = mem_length << 16;
1334  
1335  			dbg("found mem_node(base, length) = %x, %x\n",
1336  					mem_node->base, mem_node->length);
1337  			dbg("populated slot =%d \n", populated_slot);
1338  			if (!populated_slot) {
1339  				mem_node->next = ctrl->mem_head;
1340  				ctrl->mem_head = mem_node;
1341  			} else {
1342  				mem_node->next = func->mem_head;
1343  				func->mem_head = mem_node;
1344  			}
1345  		}
1346  
1347  		/* If we've got a valid prefetchable memory base, and
1348  		 * the base + length isn't greater than 0xFFFF
1349  		 */
1350  		temp_dword = pre_mem_base + pre_mem_length;
1351  		if ((pre_mem_base) && (temp_dword < 0x10000)) {
1352  			p_mem_node = kmalloc(sizeof(*p_mem_node), GFP_KERNEL);
1353  			if (!p_mem_node)
1354  				return -ENOMEM;
1355  
1356  			p_mem_node->base = pre_mem_base << 16;
1357  
1358  			p_mem_node->length = pre_mem_length << 16;
1359  			dbg("found p_mem_node(base, length) = %x, %x\n",
1360  					p_mem_node->base, p_mem_node->length);
1361  			dbg("populated slot =%d \n", populated_slot);
1362  
1363  			if (!populated_slot) {
1364  				p_mem_node->next = ctrl->p_mem_head;
1365  				ctrl->p_mem_head = p_mem_node;
1366  			} else {
1367  				p_mem_node->next = func->p_mem_head;
1368  				func->p_mem_head = p_mem_node;
1369  			}
1370  		}
1371  
1372  		/* If we've got a valid bus number, use it
1373  		 * The second condition is to ignore bus numbers on
1374  		 * populated slots that don't have PCI-PCI bridges
1375  		 */
1376  		if (secondary_bus && (secondary_bus != primary_bus)) {
1377  			bus_node = kmalloc(sizeof(*bus_node), GFP_KERNEL);
1378  			if (!bus_node)
1379  				return -ENOMEM;
1380  
1381  			bus_node->base = secondary_bus;
1382  			bus_node->length = max_bus - secondary_bus + 1;
1383  			dbg("found bus_node(base, length) = %x, %x\n",
1384  					bus_node->base, bus_node->length);
1385  			dbg("populated slot =%d \n", populated_slot);
1386  			if (!populated_slot) {
1387  				bus_node->next = ctrl->bus_head;
1388  				ctrl->bus_head = bus_node;
1389  			} else {
1390  				bus_node->next = func->bus_head;
1391  				func->bus_head = bus_node;
1392  			}
1393  		}
1394  
1395  		i--;
1396  		one_slot += sizeof(struct slot_rt);
1397  	}
1398  
1399  	/* If all of the following fail, we don't have any resources for
1400  	 * hot plug add
1401  	 */
1402  	rc = 1;
1403  	rc &= cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1404  	rc &= cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1405  	rc &= cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1406  	rc &= cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1407  
1408  	return rc;
1409  }
1410  
1411  
1412  /*
1413   * cpqhp_return_board_resources
1414   *
1415   * this routine returns all resources allocated to a board to
1416   * the available pool.
1417   *
1418   * returns 0 if success
1419   */
1420  int cpqhp_return_board_resources(struct pci_func *func, struct resource_lists *resources)
1421  {
1422  	int rc = 0;
1423  	struct pci_resource *node;
1424  	struct pci_resource *t_node;
1425  	dbg("%s\n", __func__);
1426  
1427  	if (!func)
1428  		return 1;
1429  
1430  	node = func->io_head;
1431  	func->io_head = NULL;
1432  	while (node) {
1433  		t_node = node->next;
1434  		return_resource(&(resources->io_head), node);
1435  		node = t_node;
1436  	}
1437  
1438  	node = func->mem_head;
1439  	func->mem_head = NULL;
1440  	while (node) {
1441  		t_node = node->next;
1442  		return_resource(&(resources->mem_head), node);
1443  		node = t_node;
1444  	}
1445  
1446  	node = func->p_mem_head;
1447  	func->p_mem_head = NULL;
1448  	while (node) {
1449  		t_node = node->next;
1450  		return_resource(&(resources->p_mem_head), node);
1451  		node = t_node;
1452  	}
1453  
1454  	node = func->bus_head;
1455  	func->bus_head = NULL;
1456  	while (node) {
1457  		t_node = node->next;
1458  		return_resource(&(resources->bus_head), node);
1459  		node = t_node;
1460  	}
1461  
1462  	rc |= cpqhp_resource_sort_and_combine(&(resources->mem_head));
1463  	rc |= cpqhp_resource_sort_and_combine(&(resources->p_mem_head));
1464  	rc |= cpqhp_resource_sort_and_combine(&(resources->io_head));
1465  	rc |= cpqhp_resource_sort_and_combine(&(resources->bus_head));
1466  
1467  	return rc;
1468  }
1469  
1470  
1471  /*
1472   * cpqhp_destroy_resource_list
1473   *
1474   * Puts node back in the resource list pointed to by head
1475   */
1476  void cpqhp_destroy_resource_list(struct resource_lists *resources)
1477  {
1478  	struct pci_resource *res, *tres;
1479  
1480  	res = resources->io_head;
1481  	resources->io_head = NULL;
1482  
1483  	while (res) {
1484  		tres = res;
1485  		res = res->next;
1486  		kfree(tres);
1487  	}
1488  
1489  	res = resources->mem_head;
1490  	resources->mem_head = NULL;
1491  
1492  	while (res) {
1493  		tres = res;
1494  		res = res->next;
1495  		kfree(tres);
1496  	}
1497  
1498  	res = resources->p_mem_head;
1499  	resources->p_mem_head = NULL;
1500  
1501  	while (res) {
1502  		tres = res;
1503  		res = res->next;
1504  		kfree(tres);
1505  	}
1506  
1507  	res = resources->bus_head;
1508  	resources->bus_head = NULL;
1509  
1510  	while (res) {
1511  		tres = res;
1512  		res = res->next;
1513  		kfree(tres);
1514  	}
1515  }
1516  
1517  
1518  /*
1519   * cpqhp_destroy_board_resources
1520   *
1521   * Puts node back in the resource list pointed to by head
1522   */
1523  void cpqhp_destroy_board_resources(struct pci_func *func)
1524  {
1525  	struct pci_resource *res, *tres;
1526  
1527  	res = func->io_head;
1528  	func->io_head = NULL;
1529  
1530  	while (res) {
1531  		tres = res;
1532  		res = res->next;
1533  		kfree(tres);
1534  	}
1535  
1536  	res = func->mem_head;
1537  	func->mem_head = NULL;
1538  
1539  	while (res) {
1540  		tres = res;
1541  		res = res->next;
1542  		kfree(tres);
1543  	}
1544  
1545  	res = func->p_mem_head;
1546  	func->p_mem_head = NULL;
1547  
1548  	while (res) {
1549  		tres = res;
1550  		res = res->next;
1551  		kfree(tres);
1552  	}
1553  
1554  	res = func->bus_head;
1555  	func->bus_head = NULL;
1556  
1557  	while (res) {
1558  		tres = res;
1559  		res = res->next;
1560  		kfree(tres);
1561  	}
1562  }
1563