xref: /linux/drivers/pci/hotplug/cpqphp_ctrl.c (revision de2fe5e07d58424bc286fff3fd3c1b0bf933cd58)
1 /*
2  * Compaq Hot Plug Controller Driver
3  *
4  * Copyright (C) 1995,2001 Compaq Computer Corporation
5  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
6  * Copyright (C) 2001 IBM Corp.
7  *
8  * All rights reserved.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; either version 2 of the License, or (at
13  * your option) any later version.
14  *
15  * This program is distributed in the hope that it will be useful, but
16  * WITHOUT ANY WARRANTY; without even the implied warranty of
17  * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
18  * NON INFRINGEMENT.  See the GNU General Public License for more
19  * details.
20  *
21  * You should have received a copy of the GNU General Public License
22  * along with this program; if not, write to the Free Software
23  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
24  *
25  * Send feedback to <greg@kroah.com>
26  *
27  */
28 
29 #include <linux/config.h>
30 #include <linux/module.h>
31 #include <linux/kernel.h>
32 #include <linux/types.h>
33 #include <linux/slab.h>
34 #include <linux/workqueue.h>
35 #include <linux/interrupt.h>
36 #include <linux/delay.h>
37 #include <linux/wait.h>
38 #include <linux/smp_lock.h>
39 #include <linux/pci.h>
40 #include "cpqphp.h"
41 
42 static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
43 			u8 behind_bridge, struct resource_lists *resources);
44 static int configure_new_function(struct controller* ctrl, struct pci_func *func,
45 			u8 behind_bridge, struct resource_lists *resources);
46 static void interrupt_event_handler(struct controller *ctrl);
47 
48 static struct semaphore event_semaphore;	/* mutex for process loop (up if something to process) */
49 static struct semaphore event_exit;		/* guard ensure thread has exited before calling it quits */
50 static int event_finished;
51 static unsigned long pushbutton_pending;	/* = 0 */
52 
53 /* things needed for the long_delay function */
54 static struct semaphore		delay_sem;
55 static wait_queue_head_t	delay_wait;
56 
57 /* delay is in jiffies to wait for */
58 static void long_delay(int delay)
59 {
60 	DECLARE_WAITQUEUE(wait, current);
61 
62 	/* only allow 1 customer into the delay queue at once
63 	 * yes this makes some people wait even longer, but who really cares?
64 	 * this is for _huge_ delays to make the hardware happy as the
65 	 * signals bounce around
66 	 */
67 	down (&delay_sem);
68 
69 	init_waitqueue_head(&delay_wait);
70 
71 	add_wait_queue(&delay_wait, &wait);
72 	msleep_interruptible(jiffies_to_msecs(delay));
73 	remove_wait_queue(&delay_wait, &wait);
74 
75 	up(&delay_sem);
76 }
77 
78 
79 /* FIXME: The following line needs to be somewhere else... */
80 #define WRONG_BUS_FREQUENCY 0x07
81 static u8 handle_switch_change(u8 change, struct controller * ctrl)
82 {
83 	int hp_slot;
84 	u8 rc = 0;
85 	u16 temp_word;
86 	struct pci_func *func;
87 	struct event_info *taskInfo;
88 
89 	if (!change)
90 		return 0;
91 
92 	/* Switch Change */
93 	dbg("cpqsbd:  Switch interrupt received.\n");
94 
95 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
96 		if (change & (0x1L << hp_slot)) {
97 			/**********************************
98 			 * this one changed.
99 			 **********************************/
100 			func = cpqhp_slot_find(ctrl->bus,
101 				(hp_slot + ctrl->slot_device_offset), 0);
102 
103 			/* this is the structure that tells the worker thread
104 			 *what to do */
105 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
106 			ctrl->next_event = (ctrl->next_event + 1) % 10;
107 			taskInfo->hp_slot = hp_slot;
108 
109 			rc++;
110 
111 			temp_word = ctrl->ctrl_int_comp >> 16;
112 			func->presence_save = (temp_word >> hp_slot) & 0x01;
113 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
114 
115 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
116 				/**********************************
117 				 * Switch opened
118 				 **********************************/
119 
120 				func->switch_save = 0;
121 
122 				taskInfo->event_type = INT_SWITCH_OPEN;
123 			} else {
124 				/**********************************
125 				 * Switch closed
126 				 **********************************/
127 
128 				func->switch_save = 0x10;
129 
130 				taskInfo->event_type = INT_SWITCH_CLOSE;
131 			}
132 		}
133 	}
134 
135 	return rc;
136 }
137 
138 /**
139  * cpqhp_find_slot: find the struct slot of given device
140  * @ctrl: scan lots of this controller
141  * @device: the device id to find
142  */
143 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
144 {
145 	struct slot *slot = ctrl->slot;
146 
147 	while (slot && (slot->device != device)) {
148 		slot = slot->next;
149 	}
150 
151 	return slot;
152 }
153 
154 
155 static u8 handle_presence_change(u16 change, struct controller * ctrl)
156 {
157 	int hp_slot;
158 	u8 rc = 0;
159 	u8 temp_byte;
160 	u16 temp_word;
161 	struct pci_func *func;
162 	struct event_info *taskInfo;
163 	struct slot *p_slot;
164 
165 	if (!change)
166 		return 0;
167 
168 	/**********************************
169 	 * Presence Change
170 	 **********************************/
171 	dbg("cpqsbd:  Presence/Notify input change.\n");
172 	dbg("         Changed bits are 0x%4.4x\n", change );
173 
174 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
175 		if (change & (0x0101 << hp_slot)) {
176 			/**********************************
177 			 * this one changed.
178 			 **********************************/
179 			func = cpqhp_slot_find(ctrl->bus,
180 				(hp_slot + ctrl->slot_device_offset), 0);
181 
182 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
183 			ctrl->next_event = (ctrl->next_event + 1) % 10;
184 			taskInfo->hp_slot = hp_slot;
185 
186 			rc++;
187 
188 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
189 			if (!p_slot)
190 				return 0;
191 
192 			/* If the switch closed, must be a button
193 			 * If not in button mode, nevermind */
194 			if (func->switch_save && (ctrl->push_button == 1)) {
195 				temp_word = ctrl->ctrl_int_comp >> 16;
196 				temp_byte = (temp_word >> hp_slot) & 0x01;
197 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
198 
199 				if (temp_byte != func->presence_save) {
200 					/**************************************
201 					 * button Pressed (doesn't do anything)
202 					 **************************************/
203 					dbg("hp_slot %d button pressed\n", hp_slot);
204 					taskInfo->event_type = INT_BUTTON_PRESS;
205 				} else {
206 					/**********************************
207 					 * button Released - TAKE ACTION!!!!
208 					 **********************************/
209 					dbg("hp_slot %d button released\n", hp_slot);
210 					taskInfo->event_type = INT_BUTTON_RELEASE;
211 
212 					/* Cancel if we are still blinking */
213 					if ((p_slot->state == BLINKINGON_STATE)
214 					    || (p_slot->state == BLINKINGOFF_STATE)) {
215 						taskInfo->event_type = INT_BUTTON_CANCEL;
216 						dbg("hp_slot %d button cancel\n", hp_slot);
217 					} else if ((p_slot->state == POWERON_STATE)
218 						   || (p_slot->state == POWEROFF_STATE)) {
219 						/* info(msg_button_ignore, p_slot->number); */
220 						taskInfo->event_type = INT_BUTTON_IGNORE;
221 						dbg("hp_slot %d button ignore\n", hp_slot);
222 					}
223 				}
224 			} else {
225 				/* Switch is open, assume a presence change
226 				 * Save the presence state */
227 				temp_word = ctrl->ctrl_int_comp >> 16;
228 				func->presence_save = (temp_word >> hp_slot) & 0x01;
229 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
230 
231 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
232 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
233 					/* Present */
234 					taskInfo->event_type = INT_PRESENCE_ON;
235 				} else {
236 					/* Not Present */
237 					taskInfo->event_type = INT_PRESENCE_OFF;
238 				}
239 			}
240 		}
241 	}
242 
243 	return rc;
244 }
245 
246 
247 static u8 handle_power_fault(u8 change, struct controller * ctrl)
248 {
249 	int hp_slot;
250 	u8 rc = 0;
251 	struct pci_func *func;
252 	struct event_info *taskInfo;
253 
254 	if (!change)
255 		return 0;
256 
257 	/**********************************
258 	 * power fault
259 	 **********************************/
260 
261 	info("power fault interrupt\n");
262 
263 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
264 		if (change & (0x01 << hp_slot)) {
265 			/**********************************
266 			 * this one changed.
267 			 **********************************/
268 			func = cpqhp_slot_find(ctrl->bus,
269 				(hp_slot + ctrl->slot_device_offset), 0);
270 
271 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
272 			ctrl->next_event = (ctrl->next_event + 1) % 10;
273 			taskInfo->hp_slot = hp_slot;
274 
275 			rc++;
276 
277 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
278 				/**********************************
279 				 * power fault Cleared
280 				 **********************************/
281 				func->status = 0x00;
282 
283 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
284 			} else {
285 				/**********************************
286 				 * power fault
287 				 **********************************/
288 				taskInfo->event_type = INT_POWER_FAULT;
289 
290 				if (ctrl->rev < 4) {
291 					amber_LED_on (ctrl, hp_slot);
292 					green_LED_off (ctrl, hp_slot);
293 					set_SOGO (ctrl);
294 
295 					/* this is a fatal condition, we want
296 					 * to crash the machine to protect from
297 					 * data corruption. simulated_NMI
298 					 * shouldn't ever return */
299 					/* FIXME
300 					simulated_NMI(hp_slot, ctrl); */
301 
302 					/* The following code causes a software
303 					 * crash just in case simulated_NMI did
304 					 * return */
305 					/*FIXME
306 					panic(msg_power_fault); */
307 				} else {
308 					/* set power fault status for this board */
309 					func->status = 0xFF;
310 					info("power fault bit %x set\n", hp_slot);
311 				}
312 			}
313 		}
314 	}
315 
316 	return rc;
317 }
318 
319 
320 /**
321  * sort_by_size: sort nodes on the list by their length, smallest first.
322  * @head: list to sort
323  *
324  */
325 static int sort_by_size(struct pci_resource **head)
326 {
327 	struct pci_resource *current_res;
328 	struct pci_resource *next_res;
329 	int out_of_order = 1;
330 
331 	if (!(*head))
332 		return 1;
333 
334 	if (!((*head)->next))
335 		return 0;
336 
337 	while (out_of_order) {
338 		out_of_order = 0;
339 
340 		/* Special case for swapping list head */
341 		if (((*head)->next) &&
342 		    ((*head)->length > (*head)->next->length)) {
343 			out_of_order++;
344 			current_res = *head;
345 			*head = (*head)->next;
346 			current_res->next = (*head)->next;
347 			(*head)->next = current_res;
348 		}
349 
350 		current_res = *head;
351 
352 		while (current_res->next && current_res->next->next) {
353 			if (current_res->next->length > current_res->next->next->length) {
354 				out_of_order++;
355 				next_res = current_res->next;
356 				current_res->next = current_res->next->next;
357 				current_res = current_res->next;
358 				next_res->next = current_res->next;
359 				current_res->next = next_res;
360 			} else
361 				current_res = current_res->next;
362 		}
363 	}  /* End of out_of_order loop */
364 
365 	return 0;
366 }
367 
368 
369 /**
370  * sort_by_max_size: sort nodes on the list by their length, largest first.
371  * @head: list to sort
372  *
373  */
374 static int sort_by_max_size(struct pci_resource **head)
375 {
376 	struct pci_resource *current_res;
377 	struct pci_resource *next_res;
378 	int out_of_order = 1;
379 
380 	if (!(*head))
381 		return 1;
382 
383 	if (!((*head)->next))
384 		return 0;
385 
386 	while (out_of_order) {
387 		out_of_order = 0;
388 
389 		/* Special case for swapping list head */
390 		if (((*head)->next) &&
391 		    ((*head)->length < (*head)->next->length)) {
392 			out_of_order++;
393 			current_res = *head;
394 			*head = (*head)->next;
395 			current_res->next = (*head)->next;
396 			(*head)->next = current_res;
397 		}
398 
399 		current_res = *head;
400 
401 		while (current_res->next && current_res->next->next) {
402 			if (current_res->next->length < current_res->next->next->length) {
403 				out_of_order++;
404 				next_res = current_res->next;
405 				current_res->next = current_res->next->next;
406 				current_res = current_res->next;
407 				next_res->next = current_res->next;
408 				current_res->next = next_res;
409 			} else
410 				current_res = current_res->next;
411 		}
412 	}  /* End of out_of_order loop */
413 
414 	return 0;
415 }
416 
417 
418 /**
419  * do_pre_bridge_resource_split: find node of resources that are unused
420  *
421  */
422 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
423 				struct pci_resource **orig_head, u32 alignment)
424 {
425 	struct pci_resource *prevnode = NULL;
426 	struct pci_resource *node;
427 	struct pci_resource *split_node;
428 	u32 rc;
429 	u32 temp_dword;
430 	dbg("do_pre_bridge_resource_split\n");
431 
432 	if (!(*head) || !(*orig_head))
433 		return NULL;
434 
435 	rc = cpqhp_resource_sort_and_combine(head);
436 
437 	if (rc)
438 		return NULL;
439 
440 	if ((*head)->base != (*orig_head)->base)
441 		return NULL;
442 
443 	if ((*head)->length == (*orig_head)->length)
444 		return NULL;
445 
446 
447 	/* If we got here, there the bridge requires some of the resource, but
448 	 * we may be able to split some off of the front */
449 
450 	node = *head;
451 
452 	if (node->length & (alignment -1)) {
453 		/* this one isn't an aligned length, so we'll make a new entry
454 		 * and split it up. */
455 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
456 
457 		if (!split_node)
458 			return NULL;
459 
460 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
461 
462 		split_node->base = node->base;
463 		split_node->length = temp_dword;
464 
465 		node->length -= temp_dword;
466 		node->base += split_node->length;
467 
468 		/* Put it in the list */
469 		*head = split_node;
470 		split_node->next = node;
471 	}
472 
473 	if (node->length < alignment)
474 		return NULL;
475 
476 	/* Now unlink it */
477 	if (*head == node) {
478 		*head = node->next;
479 	} else {
480 		prevnode = *head;
481 		while (prevnode->next != node)
482 			prevnode = prevnode->next;
483 
484 		prevnode->next = node->next;
485 	}
486 	node->next = NULL;
487 
488 	return node;
489 }
490 
491 
492 /**
493  * do_bridge_resource_split: find one node of resources that aren't in use
494  *
495  */
496 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
497 {
498 	struct pci_resource *prevnode = NULL;
499 	struct pci_resource *node;
500 	u32 rc;
501 	u32 temp_dword;
502 
503 	rc = cpqhp_resource_sort_and_combine(head);
504 
505 	if (rc)
506 		return NULL;
507 
508 	node = *head;
509 
510 	while (node->next) {
511 		prevnode = node;
512 		node = node->next;
513 		kfree(prevnode);
514 	}
515 
516 	if (node->length < alignment)
517 		goto error;
518 
519 	if (node->base & (alignment - 1)) {
520 		/* Short circuit if adjusted size is too small */
521 		temp_dword = (node->base | (alignment-1)) + 1;
522 		if ((node->length - (temp_dword - node->base)) < alignment)
523 			goto error;
524 
525 		node->length -= (temp_dword - node->base);
526 		node->base = temp_dword;
527 	}
528 
529 	if (node->length & (alignment - 1))
530 		/* There's stuff in use after this node */
531 		goto error;
532 
533 	return node;
534 error:
535 	kfree(node);
536 	return NULL;
537 }
538 
539 
540 /**
541  * get_io_resource: find first node of given size not in ISA aliasing window.
542  * @head: list to search
543  * @size: size of node to find, must be a power of two.
544  *
545  * Description: this function sorts the resource list by size and then returns
546  * returns the first node of "size" length that is not in the ISA aliasing
547  * window.  If it finds a node larger than "size" it will split it up.
548  *
549  */
550 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
551 {
552 	struct pci_resource *prevnode;
553 	struct pci_resource *node;
554 	struct pci_resource *split_node;
555 	u32 temp_dword;
556 
557 	if (!(*head))
558 		return NULL;
559 
560 	if ( cpqhp_resource_sort_and_combine(head) )
561 		return NULL;
562 
563 	if ( sort_by_size(head) )
564 		return NULL;
565 
566 	for (node = *head; node; node = node->next) {
567 		if (node->length < size)
568 			continue;
569 
570 		if (node->base & (size - 1)) {
571 			/* this one isn't base aligned properly
572 			 * so we'll make a new entry and split it up */
573 			temp_dword = (node->base | (size-1)) + 1;
574 
575 			/* Short circuit if adjusted size is too small */
576 			if ((node->length - (temp_dword - node->base)) < size)
577 				continue;
578 
579 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
580 
581 			if (!split_node)
582 				return NULL;
583 
584 			split_node->base = node->base;
585 			split_node->length = temp_dword - node->base;
586 			node->base = temp_dword;
587 			node->length -= split_node->length;
588 
589 			/* Put it in the list */
590 			split_node->next = node->next;
591 			node->next = split_node;
592 		} /* End of non-aligned base */
593 
594 		/* Don't need to check if too small since we already did */
595 		if (node->length > size) {
596 			/* this one is longer than we need
597 			 * so we'll make a new entry and split it up */
598 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
599 
600 			if (!split_node)
601 				return NULL;
602 
603 			split_node->base = node->base + size;
604 			split_node->length = node->length - size;
605 			node->length = size;
606 
607 			/* Put it in the list */
608 			split_node->next = node->next;
609 			node->next = split_node;
610 		}  /* End of too big on top end */
611 
612 		/* For IO make sure it's not in the ISA aliasing space */
613 		if (node->base & 0x300L)
614 			continue;
615 
616 		/* If we got here, then it is the right size
617 		 * Now take it out of the list and break */
618 		if (*head == node) {
619 			*head = node->next;
620 		} else {
621 			prevnode = *head;
622 			while (prevnode->next != node)
623 				prevnode = prevnode->next;
624 
625 			prevnode->next = node->next;
626 		}
627 		node->next = NULL;
628 		break;
629 	}
630 
631 	return node;
632 }
633 
634 
635 /**
636  * get_max_resource: get largest node which has at least the given size.
637  * @head: the list to search the node in
638  * @size: the minimum size of the node to find
639  *
640  * Description: Gets the largest node that is at least "size" big from the
641  * list pointed to by head.  It aligns the node on top and bottom
642  * to "size" alignment before returning it.
643  */
644 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
645 {
646 	struct pci_resource *max;
647 	struct pci_resource *temp;
648 	struct pci_resource *split_node;
649 	u32 temp_dword;
650 
651 	if (cpqhp_resource_sort_and_combine(head))
652 		return NULL;
653 
654 	if (sort_by_max_size(head))
655 		return NULL;
656 
657 	for (max = *head; max; max = max->next) {
658 		/* If not big enough we could probably just bail,
659 		 * instead we'll continue to the next. */
660 		if (max->length < size)
661 			continue;
662 
663 		if (max->base & (size - 1)) {
664 			/* this one isn't base aligned properly
665 			 * so we'll make a new entry and split it up */
666 			temp_dword = (max->base | (size-1)) + 1;
667 
668 			/* Short circuit if adjusted size is too small */
669 			if ((max->length - (temp_dword - max->base)) < size)
670 				continue;
671 
672 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
673 
674 			if (!split_node)
675 				return NULL;
676 
677 			split_node->base = max->base;
678 			split_node->length = temp_dword - max->base;
679 			max->base = temp_dword;
680 			max->length -= split_node->length;
681 
682 			split_node->next = max->next;
683 			max->next = split_node;
684 		}
685 
686 		if ((max->base + max->length) & (size - 1)) {
687 			/* this one isn't end aligned properly at the top
688 			 * so we'll make a new entry and split it up */
689 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
690 
691 			if (!split_node)
692 				return NULL;
693 			temp_dword = ((max->base + max->length) & ~(size - 1));
694 			split_node->base = temp_dword;
695 			split_node->length = max->length + max->base
696 					     - split_node->base;
697 			max->length -= split_node->length;
698 
699 			split_node->next = max->next;
700 			max->next = split_node;
701 		}
702 
703 		/* Make sure it didn't shrink too much when we aligned it */
704 		if (max->length < size)
705 			continue;
706 
707 		/* Now take it out of the list */
708 		temp = *head;
709 		if (temp == max) {
710 			*head = max->next;
711 		} else {
712 			while (temp && temp->next != max) {
713 				temp = temp->next;
714 			}
715 
716 			temp->next = max->next;
717 		}
718 
719 		max->next = NULL;
720 		break;
721 	}
722 
723 	return max;
724 }
725 
726 
727 /**
728  * get_resource: find resource of given size and split up larger ones.
729  * @head: the list to search for resources
730  * @size: the size limit to use
731  *
732  * Description: This function sorts the resource list by size and then
733  * returns the first node of "size" length.  If it finds a node
734  * larger than "size" it will split it up.
735  *
736  * size must be a power of two.
737  */
738 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
739 {
740 	struct pci_resource *prevnode;
741 	struct pci_resource *node;
742 	struct pci_resource *split_node;
743 	u32 temp_dword;
744 
745 	if (cpqhp_resource_sort_and_combine(head))
746 		return NULL;
747 
748 	if (sort_by_size(head))
749 		return NULL;
750 
751 	for (node = *head; node; node = node->next) {
752 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
753 		    __FUNCTION__, size, node, node->base, node->length);
754 		if (node->length < size)
755 			continue;
756 
757 		if (node->base & (size - 1)) {
758 			dbg("%s: not aligned\n", __FUNCTION__);
759 			/* this one isn't base aligned properly
760 			 * so we'll make a new entry and split it up */
761 			temp_dword = (node->base | (size-1)) + 1;
762 
763 			/* Short circuit if adjusted size is too small */
764 			if ((node->length - (temp_dword - node->base)) < size)
765 				continue;
766 
767 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
768 
769 			if (!split_node)
770 				return NULL;
771 
772 			split_node->base = node->base;
773 			split_node->length = temp_dword - node->base;
774 			node->base = temp_dword;
775 			node->length -= split_node->length;
776 
777 			split_node->next = node->next;
778 			node->next = split_node;
779 		} /* End of non-aligned base */
780 
781 		/* Don't need to check if too small since we already did */
782 		if (node->length > size) {
783 			dbg("%s: too big\n", __FUNCTION__);
784 			/* this one is longer than we need
785 			 * so we'll make a new entry and split it up */
786 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
787 
788 			if (!split_node)
789 				return NULL;
790 
791 			split_node->base = node->base + size;
792 			split_node->length = node->length - size;
793 			node->length = size;
794 
795 			/* Put it in the list */
796 			split_node->next = node->next;
797 			node->next = split_node;
798 		}  /* End of too big on top end */
799 
800 		dbg("%s: got one!!!\n", __FUNCTION__);
801 		/* If we got here, then it is the right size
802 		 * Now take it out of the list */
803 		if (*head == node) {
804 			*head = node->next;
805 		} else {
806 			prevnode = *head;
807 			while (prevnode->next != node)
808 				prevnode = prevnode->next;
809 
810 			prevnode->next = node->next;
811 		}
812 		node->next = NULL;
813 		break;
814 	}
815 	return node;
816 }
817 
818 
819 /**
820  * cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
821  * @head: the list to sort and clean up
822  *
823  * Description: Sorts all of the nodes in the list in ascending order by
824  * their base addresses.  Also does garbage collection by
825  * combining adjacent nodes.
826  *
827  * returns 0 if success
828  */
829 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
830 {
831 	struct pci_resource *node1;
832 	struct pci_resource *node2;
833 	int out_of_order = 1;
834 
835 	dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
836 
837 	if (!(*head))
838 		return 1;
839 
840 	dbg("*head->next = %p\n",(*head)->next);
841 
842 	if (!(*head)->next)
843 		return 0;	/* only one item on the list, already sorted! */
844 
845 	dbg("*head->base = 0x%x\n",(*head)->base);
846 	dbg("*head->next->base = 0x%x\n",(*head)->next->base);
847 	while (out_of_order) {
848 		out_of_order = 0;
849 
850 		/* Special case for swapping list head */
851 		if (((*head)->next) &&
852 		    ((*head)->base > (*head)->next->base)) {
853 			node1 = *head;
854 			(*head) = (*head)->next;
855 			node1->next = (*head)->next;
856 			(*head)->next = node1;
857 			out_of_order++;
858 		}
859 
860 		node1 = (*head);
861 
862 		while (node1->next && node1->next->next) {
863 			if (node1->next->base > node1->next->next->base) {
864 				out_of_order++;
865 				node2 = node1->next;
866 				node1->next = node1->next->next;
867 				node1 = node1->next;
868 				node2->next = node1->next;
869 				node1->next = node2;
870 			} else
871 				node1 = node1->next;
872 		}
873 	}  /* End of out_of_order loop */
874 
875 	node1 = *head;
876 
877 	while (node1 && node1->next) {
878 		if ((node1->base + node1->length) == node1->next->base) {
879 			/* Combine */
880 			dbg("8..\n");
881 			node1->length += node1->next->length;
882 			node2 = node1->next;
883 			node1->next = node1->next->next;
884 			kfree(node2);
885 		} else
886 			node1 = node1->next;
887 	}
888 
889 	return 0;
890 }
891 
892 
893 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data, struct pt_regs *regs)
894 {
895 	struct controller *ctrl = data;
896 	u8 schedule_flag = 0;
897 	u8 reset;
898 	u16 misc;
899 	u32 Diff;
900 	u32 temp_dword;
901 
902 
903 	misc = readw(ctrl->hpc_reg + MISC);
904 	/***************************************
905 	 * Check to see if it was our interrupt
906 	 ***************************************/
907 	if (!(misc & 0x000C)) {
908 		return IRQ_NONE;
909 	}
910 
911 	if (misc & 0x0004) {
912 		/**********************************
913 		 * Serial Output interrupt Pending
914 		 **********************************/
915 
916 		/* Clear the interrupt */
917 		misc |= 0x0004;
918 		writew(misc, ctrl->hpc_reg + MISC);
919 
920 		/* Read to clear posted writes */
921 		misc = readw(ctrl->hpc_reg + MISC);
922 
923 		dbg ("%s - waking up\n", __FUNCTION__);
924 		wake_up_interruptible(&ctrl->queue);
925 	}
926 
927 	if (misc & 0x0008) {
928 		/* General-interrupt-input interrupt Pending */
929 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
930 
931 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
932 
933 		/* Clear the interrupt */
934 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
935 
936 		/* Read it back to clear any posted writes */
937 		temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
938 
939 		if (!Diff)
940 			/* Clear all interrupts */
941 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
942 
943 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
944 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
945 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
946 	}
947 
948 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
949 	if (reset & 0x40) {
950 		/* Bus reset has completed */
951 		reset &= 0xCF;
952 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
953 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
954 		wake_up_interruptible(&ctrl->queue);
955 	}
956 
957 	if (schedule_flag) {
958 		up(&event_semaphore);
959 		dbg("Signal event_semaphore\n");
960 	}
961 	return IRQ_HANDLED;
962 }
963 
964 
965 /**
966  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
967  * @busnumber - bus where new node is to be located
968  *
969  * Returns pointer to the new node or NULL if unsuccessful
970  */
971 struct pci_func *cpqhp_slot_create(u8 busnumber)
972 {
973 	struct pci_func *new_slot;
974 	struct pci_func *next;
975 
976 	new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
977 
978 	if (new_slot == NULL) {
979 		/* I'm not dead yet!
980 		 * You will be. */
981 		return new_slot;
982 	}
983 
984 	memset(new_slot, 0, sizeof(struct pci_func));
985 
986 	new_slot->next = NULL;
987 	new_slot->configured = 1;
988 
989 	if (cpqhp_slot_list[busnumber] == NULL) {
990 		cpqhp_slot_list[busnumber] = new_slot;
991 	} else {
992 		next = cpqhp_slot_list[busnumber];
993 		while (next->next != NULL)
994 			next = next->next;
995 		next->next = new_slot;
996 	}
997 	return new_slot;
998 }
999 
1000 
1001 /**
1002  * slot_remove - Removes a node from the linked list of slots.
1003  * @old_slot: slot to remove
1004  *
1005  * Returns 0 if successful, !0 otherwise.
1006  */
1007 static int slot_remove(struct pci_func * old_slot)
1008 {
1009 	struct pci_func *next;
1010 
1011 	if (old_slot == NULL)
1012 		return 1;
1013 
1014 	next = cpqhp_slot_list[old_slot->bus];
1015 
1016 	if (next == NULL) {
1017 		return 1;
1018 	}
1019 
1020 	if (next == old_slot) {
1021 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
1022 		cpqhp_destroy_board_resources(old_slot);
1023 		kfree(old_slot);
1024 		return 0;
1025 	}
1026 
1027 	while ((next->next != old_slot) && (next->next != NULL)) {
1028 		next = next->next;
1029 	}
1030 
1031 	if (next->next == old_slot) {
1032 		next->next = old_slot->next;
1033 		cpqhp_destroy_board_resources(old_slot);
1034 		kfree(old_slot);
1035 		return 0;
1036 	} else
1037 		return 2;
1038 }
1039 
1040 
1041 /**
1042  * bridge_slot_remove - Removes a node from the linked list of slots.
1043  * @bridge: bridge to remove
1044  *
1045  * Returns 0 if successful, !0 otherwise.
1046  */
1047 static int bridge_slot_remove(struct pci_func *bridge)
1048 {
1049 	u8 subordinateBus, secondaryBus;
1050 	u8 tempBus;
1051 	struct pci_func *next;
1052 
1053 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1054 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1055 
1056 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1057 		next = cpqhp_slot_list[tempBus];
1058 
1059 		while (!slot_remove(next)) {
1060 			next = cpqhp_slot_list[tempBus];
1061 		}
1062 	}
1063 
1064 	next = cpqhp_slot_list[bridge->bus];
1065 
1066 	if (next == NULL)
1067 		return 1;
1068 
1069 	if (next == bridge) {
1070 		cpqhp_slot_list[bridge->bus] = bridge->next;
1071 		goto out;
1072 	}
1073 
1074 	while ((next->next != bridge) && (next->next != NULL))
1075 		next = next->next;
1076 
1077 	if (next->next != bridge)
1078 		return 2;
1079 	next->next = bridge->next;
1080 out:
1081 	kfree(bridge);
1082 	return 0;
1083 }
1084 
1085 
1086 /**
1087  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1088  * @bus: bus to find
1089  * @device: device to find
1090  * @index: is 0 for first function found, 1 for the second...
1091  *
1092  * Returns pointer to the node if successful, %NULL otherwise.
1093  */
1094 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1095 {
1096 	int found = -1;
1097 	struct pci_func *func;
1098 
1099 	func = cpqhp_slot_list[bus];
1100 
1101 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1102 		return func;
1103 
1104 	if (func->device == device)
1105 		found++;
1106 
1107 	while (func->next != NULL) {
1108 		func = func->next;
1109 
1110 		if (func->device == device)
1111 			found++;
1112 
1113 		if (found == index)
1114 			return func;
1115 	}
1116 
1117 	return NULL;
1118 }
1119 
1120 
1121 /* DJZ: I don't think is_bridge will work as is.
1122  * FIXME */
1123 static int is_bridge(struct pci_func * func)
1124 {
1125 	/* Check the header type */
1126 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1127 		return 1;
1128 	else
1129 		return 0;
1130 }
1131 
1132 
1133 /**
1134  * set_controller_speed - set the frequency and/or mode of a specific
1135  * controller segment.
1136  *
1137  * @ctrl: controller to change frequency/mode for.
1138  * @adapter_speed: the speed of the adapter we want to match.
1139  * @hp_slot: the slot number where the adapter is installed.
1140  *
1141  * Returns 0 if we successfully change frequency and/or mode to match the
1142  * adapter speed.
1143  *
1144  */
1145 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1146 {
1147 	struct slot *slot;
1148 	u8 reg;
1149 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1150 	u16 reg16;
1151 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1152 
1153 	if (ctrl->speed == adapter_speed)
1154 		return 0;
1155 
1156 	/* We don't allow freq/mode changes if we find another adapter running
1157 	 * in another slot on this controller */
1158 	for(slot = ctrl->slot; slot; slot = slot->next) {
1159 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1160 			continue;
1161 		if (!slot->hotplug_slot && !slot->hotplug_slot->info)
1162 			continue;
1163 		if (slot->hotplug_slot->info->adapter_status == 0)
1164 			continue;
1165 		/* If another adapter is running on the same segment but at a
1166 		 * lower speed/mode, we allow the new adapter to function at
1167 		 * this rate if supported */
1168 		if (ctrl->speed < adapter_speed)
1169 			return 0;
1170 
1171 		return 1;
1172 	}
1173 
1174 	/* If the controller doesn't support freq/mode changes and the
1175 	 * controller is running at a higher mode, we bail */
1176 	if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1177 		return 1;
1178 
1179 	/* But we allow the adapter to run at a lower rate if possible */
1180 	if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1181 		return 0;
1182 
1183 	/* We try to set the max speed supported by both the adapter and
1184 	 * controller */
1185 	if (ctrl->speed_capability < adapter_speed) {
1186 		if (ctrl->speed == ctrl->speed_capability)
1187 			return 0;
1188 		adapter_speed = ctrl->speed_capability;
1189 	}
1190 
1191 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1192 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1193 
1194 	set_SOGO(ctrl);
1195 	wait_for_ctrl_irq(ctrl);
1196 
1197 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1198 		reg = 0xF5;
1199 	else
1200 		reg = 0xF4;
1201 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1202 
1203 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1204 	reg16 &= ~0x000F;
1205 	switch(adapter_speed) {
1206 		case(PCI_SPEED_133MHz_PCIX):
1207 			reg = 0x75;
1208 			reg16 |= 0xB;
1209 			break;
1210 		case(PCI_SPEED_100MHz_PCIX):
1211 			reg = 0x74;
1212 			reg16 |= 0xA;
1213 			break;
1214 		case(PCI_SPEED_66MHz_PCIX):
1215 			reg = 0x73;
1216 			reg16 |= 0x9;
1217 			break;
1218 		case(PCI_SPEED_66MHz):
1219 			reg = 0x73;
1220 			reg16 |= 0x1;
1221 			break;
1222 		default: /* 33MHz PCI 2.2 */
1223 			reg = 0x71;
1224 			break;
1225 
1226 	}
1227 	reg16 |= 0xB << 12;
1228 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1229 
1230 	mdelay(5);
1231 
1232 	/* Reenable interrupts */
1233 	writel(0, ctrl->hpc_reg + INT_MASK);
1234 
1235 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1236 
1237 	/* Restart state machine */
1238 	reg = ~0xF;
1239 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1240 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1241 
1242 	/* Only if mode change...*/
1243 	if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1244 		((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1245 			set_SOGO(ctrl);
1246 
1247 	wait_for_ctrl_irq(ctrl);
1248 	mdelay(1100);
1249 
1250 	/* Restore LED/Slot state */
1251 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1252 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1253 
1254 	set_SOGO(ctrl);
1255 	wait_for_ctrl_irq(ctrl);
1256 
1257 	ctrl->speed = adapter_speed;
1258 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1259 
1260 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1261 			slot->number);
1262 	return 0;
1263 }
1264 
1265 /* the following routines constitute the bulk of the
1266    hotplug controller logic
1267  */
1268 
1269 
1270 /**
1271  * board_replaced - Called after a board has been replaced in the system.
1272  *
1273  * This is only used if we don't have resources for hot add
1274  * Turns power on for the board
1275  * Checks to see if board is the same
1276  * If board is same, reconfigures it
1277  * If board isn't same, turns it back off.
1278  *
1279  */
1280 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1281 {
1282 	u8 hp_slot;
1283 	u8 temp_byte;
1284 	u8 adapter_speed;
1285 	u32 rc = 0;
1286 
1287 	hp_slot = func->device - ctrl->slot_device_offset;
1288 
1289 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
1290 		/**********************************
1291 		 * The switch is open.
1292 		 **********************************/
1293 		rc = INTERLOCK_OPEN;
1294 	} else if (is_slot_enabled (ctrl, hp_slot)) {
1295 		/**********************************
1296 		 * The board is already on
1297 		 **********************************/
1298 		rc = CARD_FUNCTIONING;
1299 	} else {
1300 		mutex_lock(&ctrl->crit_sect);
1301 
1302 		/* turn on board without attaching to the bus */
1303 		enable_slot_power (ctrl, hp_slot);
1304 
1305 		set_SOGO(ctrl);
1306 
1307 		/* Wait for SOBS to be unset */
1308 		wait_for_ctrl_irq (ctrl);
1309 
1310 		/* Change bits in slot power register to force another shift out
1311 		 * NOTE: this is to work around the timer bug */
1312 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1313 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1314 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1315 
1316 		set_SOGO(ctrl);
1317 
1318 		/* Wait for SOBS to be unset */
1319 		wait_for_ctrl_irq (ctrl);
1320 
1321 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1322 		if (ctrl->speed != adapter_speed)
1323 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1324 				rc = WRONG_BUS_FREQUENCY;
1325 
1326 		/* turn off board without attaching to the bus */
1327 		disable_slot_power (ctrl, hp_slot);
1328 
1329 		set_SOGO(ctrl);
1330 
1331 		/* Wait for SOBS to be unset */
1332 		wait_for_ctrl_irq (ctrl);
1333 
1334 		mutex_unlock(&ctrl->crit_sect);
1335 
1336 		if (rc)
1337 			return rc;
1338 
1339 		mutex_lock(&ctrl->crit_sect);
1340 
1341 		slot_enable (ctrl, hp_slot);
1342 		green_LED_blink (ctrl, hp_slot);
1343 
1344 		amber_LED_off (ctrl, hp_slot);
1345 
1346 		set_SOGO(ctrl);
1347 
1348 		/* Wait for SOBS to be unset */
1349 		wait_for_ctrl_irq (ctrl);
1350 
1351 		mutex_unlock(&ctrl->crit_sect);
1352 
1353 		/* Wait for ~1 second because of hot plug spec */
1354 		long_delay(1*HZ);
1355 
1356 		/* Check for a power fault */
1357 		if (func->status == 0xFF) {
1358 			/* power fault occurred, but it was benign */
1359 			rc = POWER_FAILURE;
1360 			func->status = 0;
1361 		} else
1362 			rc = cpqhp_valid_replace(ctrl, func);
1363 
1364 		if (!rc) {
1365 			/* It must be the same board */
1366 
1367 			rc = cpqhp_configure_board(ctrl, func);
1368 
1369 			/* If configuration fails, turn it off
1370 			 * Get slot won't work for devices behind
1371 			 * bridges, but in this case it will always be
1372 			 * called for the "base" bus/dev/func of an
1373 			 * adapter. */
1374 
1375 			mutex_lock(&ctrl->crit_sect);
1376 
1377 			amber_LED_on (ctrl, hp_slot);
1378 			green_LED_off (ctrl, hp_slot);
1379 			slot_disable (ctrl, hp_slot);
1380 
1381 			set_SOGO(ctrl);
1382 
1383 			/* Wait for SOBS to be unset */
1384 			wait_for_ctrl_irq (ctrl);
1385 
1386 			mutex_unlock(&ctrl->crit_sect);
1387 
1388 			if (rc)
1389 				return rc;
1390 			else
1391 				return 1;
1392 
1393 		} else {
1394 			/* Something is wrong
1395 
1396 			 * Get slot won't work for devices behind bridges, but
1397 			 * in this case it will always be called for the "base"
1398 			 * bus/dev/func of an adapter. */
1399 
1400 			mutex_lock(&ctrl->crit_sect);
1401 
1402 			amber_LED_on (ctrl, hp_slot);
1403 			green_LED_off (ctrl, hp_slot);
1404 			slot_disable (ctrl, hp_slot);
1405 
1406 			set_SOGO(ctrl);
1407 
1408 			/* Wait for SOBS to be unset */
1409 			wait_for_ctrl_irq (ctrl);
1410 
1411 			mutex_unlock(&ctrl->crit_sect);
1412 		}
1413 
1414 	}
1415 	return rc;
1416 
1417 }
1418 
1419 
1420 /**
1421  * board_added - Called after a board has been added to the system.
1422  *
1423  * Turns power on for the board
1424  * Configures board
1425  *
1426  */
1427 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1428 {
1429 	u8 hp_slot;
1430 	u8 temp_byte;
1431 	u8 adapter_speed;
1432 	int index;
1433 	u32 temp_register = 0xFFFFFFFF;
1434 	u32 rc = 0;
1435 	struct pci_func *new_slot = NULL;
1436 	struct slot *p_slot;
1437 	struct resource_lists res_lists;
1438 
1439 	hp_slot = func->device - ctrl->slot_device_offset;
1440 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1441 	    __FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
1442 
1443 	mutex_lock(&ctrl->crit_sect);
1444 
1445 	/* turn on board without attaching to the bus */
1446 	enable_slot_power(ctrl, hp_slot);
1447 
1448 	set_SOGO(ctrl);
1449 
1450 	/* Wait for SOBS to be unset */
1451 	wait_for_ctrl_irq (ctrl);
1452 
1453 	/* Change bits in slot power register to force another shift out
1454 	 * NOTE: this is to work around the timer bug */
1455 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1456 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1457 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1458 
1459 	set_SOGO(ctrl);
1460 
1461 	/* Wait for SOBS to be unset */
1462 	wait_for_ctrl_irq (ctrl);
1463 
1464 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1465 	if (ctrl->speed != adapter_speed)
1466 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1467 			rc = WRONG_BUS_FREQUENCY;
1468 
1469 	/* turn off board without attaching to the bus */
1470 	disable_slot_power (ctrl, hp_slot);
1471 
1472 	set_SOGO(ctrl);
1473 
1474 	/* Wait for SOBS to be unset */
1475 	wait_for_ctrl_irq(ctrl);
1476 
1477 	mutex_unlock(&ctrl->crit_sect);
1478 
1479 	if (rc)
1480 		return rc;
1481 
1482 	p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1483 
1484 	/* turn on board and blink green LED */
1485 
1486 	dbg("%s: before down\n", __FUNCTION__);
1487 	mutex_lock(&ctrl->crit_sect);
1488 	dbg("%s: after down\n", __FUNCTION__);
1489 
1490 	dbg("%s: before slot_enable\n", __FUNCTION__);
1491 	slot_enable (ctrl, hp_slot);
1492 
1493 	dbg("%s: before green_LED_blink\n", __FUNCTION__);
1494 	green_LED_blink (ctrl, hp_slot);
1495 
1496 	dbg("%s: before amber_LED_blink\n", __FUNCTION__);
1497 	amber_LED_off (ctrl, hp_slot);
1498 
1499 	dbg("%s: before set_SOGO\n", __FUNCTION__);
1500 	set_SOGO(ctrl);
1501 
1502 	/* Wait for SOBS to be unset */
1503 	dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
1504 	wait_for_ctrl_irq (ctrl);
1505 	dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
1506 
1507 	dbg("%s: before up\n", __FUNCTION__);
1508 	mutex_unlock(&ctrl->crit_sect);
1509 	dbg("%s: after up\n", __FUNCTION__);
1510 
1511 	/* Wait for ~1 second because of hot plug spec */
1512 	dbg("%s: before long_delay\n", __FUNCTION__);
1513 	long_delay(1*HZ);
1514 	dbg("%s: after long_delay\n", __FUNCTION__);
1515 
1516 	dbg("%s: func status = %x\n", __FUNCTION__, func->status);
1517 	/* Check for a power fault */
1518 	if (func->status == 0xFF) {
1519 		/* power fault occurred, but it was benign */
1520 		temp_register = 0xFFFFFFFF;
1521 		dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
1522 		rc = POWER_FAILURE;
1523 		func->status = 0;
1524 	} else {
1525 		/* Get vendor/device ID u32 */
1526 		ctrl->pci_bus->number = func->bus;
1527 		rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1528 		dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
1529 		dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
1530 
1531 		if (rc != 0) {
1532 			/* Something's wrong here */
1533 			temp_register = 0xFFFFFFFF;
1534 			dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
1535 		}
1536 		/* Preset return code.  It will be changed later if things go okay. */
1537 		rc = NO_ADAPTER_PRESENT;
1538 	}
1539 
1540 	/* All F's is an empty slot or an invalid board */
1541 	if (temp_register != 0xFFFFFFFF) {	  /* Check for a board in the slot */
1542 		res_lists.io_head = ctrl->io_head;
1543 		res_lists.mem_head = ctrl->mem_head;
1544 		res_lists.p_mem_head = ctrl->p_mem_head;
1545 		res_lists.bus_head = ctrl->bus_head;
1546 		res_lists.irqs = NULL;
1547 
1548 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1549 
1550 		dbg("%s: back from configure_new_device\n", __FUNCTION__);
1551 		ctrl->io_head = res_lists.io_head;
1552 		ctrl->mem_head = res_lists.mem_head;
1553 		ctrl->p_mem_head = res_lists.p_mem_head;
1554 		ctrl->bus_head = res_lists.bus_head;
1555 
1556 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1557 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1558 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1559 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1560 
1561 		if (rc) {
1562 			mutex_lock(&ctrl->crit_sect);
1563 
1564 			amber_LED_on (ctrl, hp_slot);
1565 			green_LED_off (ctrl, hp_slot);
1566 			slot_disable (ctrl, hp_slot);
1567 
1568 			set_SOGO(ctrl);
1569 
1570 			/* Wait for SOBS to be unset */
1571 			wait_for_ctrl_irq (ctrl);
1572 
1573 			mutex_unlock(&ctrl->crit_sect);
1574 			return rc;
1575 		} else {
1576 			cpqhp_save_slot_config(ctrl, func);
1577 		}
1578 
1579 
1580 		func->status = 0;
1581 		func->switch_save = 0x10;
1582 		func->is_a_board = 0x01;
1583 
1584 		/* next, we will instantiate the linux pci_dev structures (with
1585 		 * appropriate driver notification, if already present) */
1586 		dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
1587 		index = 0;
1588 		do {
1589 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1590 			if (new_slot && !new_slot->pci_dev) {
1591 				cpqhp_configure_device(ctrl, new_slot);
1592 			}
1593 		} while (new_slot);
1594 
1595 		mutex_lock(&ctrl->crit_sect);
1596 
1597 		green_LED_on (ctrl, hp_slot);
1598 
1599 		set_SOGO(ctrl);
1600 
1601 		/* Wait for SOBS to be unset */
1602 		wait_for_ctrl_irq (ctrl);
1603 
1604 		mutex_unlock(&ctrl->crit_sect);
1605 	} else {
1606 		mutex_lock(&ctrl->crit_sect);
1607 
1608 		amber_LED_on (ctrl, hp_slot);
1609 		green_LED_off (ctrl, hp_slot);
1610 		slot_disable (ctrl, hp_slot);
1611 
1612 		set_SOGO(ctrl);
1613 
1614 		/* Wait for SOBS to be unset */
1615 		wait_for_ctrl_irq (ctrl);
1616 
1617 		mutex_unlock(&ctrl->crit_sect);
1618 
1619 		return rc;
1620 	}
1621 	return 0;
1622 }
1623 
1624 
1625 /**
1626  * remove_board - Turns off slot and LED's
1627  *
1628  */
1629 static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
1630 {
1631 	int index;
1632 	u8 skip = 0;
1633 	u8 device;
1634 	u8 hp_slot;
1635 	u8 temp_byte;
1636 	u32 rc;
1637 	struct resource_lists res_lists;
1638 	struct pci_func *temp_func;
1639 
1640 	if (cpqhp_unconfigure_device(func))
1641 		return 1;
1642 
1643 	device = func->device;
1644 
1645 	hp_slot = func->device - ctrl->slot_device_offset;
1646 	dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
1647 
1648 	/* When we get here, it is safe to change base address registers.
1649 	 * We will attempt to save the base address register lengths */
1650 	if (replace_flag || !ctrl->add_support)
1651 		rc = cpqhp_save_base_addr_length(ctrl, func);
1652 	else if (!func->bus_head && !func->mem_head &&
1653 		 !func->p_mem_head && !func->io_head) {
1654 		/* Here we check to see if we've saved any of the board's
1655 		 * resources already.  If so, we'll skip the attempt to
1656 		 * determine what's being used. */
1657 		index = 0;
1658 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1659 		while (temp_func) {
1660 			if (temp_func->bus_head || temp_func->mem_head
1661 			    || temp_func->p_mem_head || temp_func->io_head) {
1662 				skip = 1;
1663 				break;
1664 			}
1665 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1666 		}
1667 
1668 		if (!skip)
1669 			rc = cpqhp_save_used_resources(ctrl, func);
1670 	}
1671 	/* Change status to shutdown */
1672 	if (func->is_a_board)
1673 		func->status = 0x01;
1674 	func->configured = 0;
1675 
1676 	mutex_lock(&ctrl->crit_sect);
1677 
1678 	green_LED_off (ctrl, hp_slot);
1679 	slot_disable (ctrl, hp_slot);
1680 
1681 	set_SOGO(ctrl);
1682 
1683 	/* turn off SERR for slot */
1684 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1685 	temp_byte &= ~(0x01 << hp_slot);
1686 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1687 
1688 	/* Wait for SOBS to be unset */
1689 	wait_for_ctrl_irq (ctrl);
1690 
1691 	mutex_unlock(&ctrl->crit_sect);
1692 
1693 	if (!replace_flag && ctrl->add_support) {
1694 		while (func) {
1695 			res_lists.io_head = ctrl->io_head;
1696 			res_lists.mem_head = ctrl->mem_head;
1697 			res_lists.p_mem_head = ctrl->p_mem_head;
1698 			res_lists.bus_head = ctrl->bus_head;
1699 
1700 			cpqhp_return_board_resources(func, &res_lists);
1701 
1702 			ctrl->io_head = res_lists.io_head;
1703 			ctrl->mem_head = res_lists.mem_head;
1704 			ctrl->p_mem_head = res_lists.p_mem_head;
1705 			ctrl->bus_head = res_lists.bus_head;
1706 
1707 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1708 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1709 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1710 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1711 
1712 			if (is_bridge(func)) {
1713 				bridge_slot_remove(func);
1714 			} else
1715 				slot_remove(func);
1716 
1717 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1718 		}
1719 
1720 		/* Setup slot structure with entry for empty slot */
1721 		func = cpqhp_slot_create(ctrl->bus);
1722 
1723 		if (func == NULL)
1724 			return 1;
1725 
1726 		func->bus = ctrl->bus;
1727 		func->device = device;
1728 		func->function = 0;
1729 		func->configured = 0;
1730 		func->switch_save = 0x10;
1731 		func->is_a_board = 0;
1732 		func->p_task_event = NULL;
1733 	}
1734 
1735 	return 0;
1736 }
1737 
1738 static void pushbutton_helper_thread(unsigned long data)
1739 {
1740 	pushbutton_pending = data;
1741 	up(&event_semaphore);
1742 }
1743 
1744 
1745 /* this is the main worker thread */
1746 static int event_thread(void* data)
1747 {
1748 	struct controller *ctrl;
1749 	lock_kernel();
1750 	daemonize("phpd_event");
1751 
1752 	unlock_kernel();
1753 
1754 	while (1) {
1755 		dbg("!!!!event_thread sleeping\n");
1756 		down_interruptible (&event_semaphore);
1757 		dbg("event_thread woken finished = %d\n", event_finished);
1758 		if (event_finished) break;
1759 		/* Do stuff here */
1760 		if (pushbutton_pending)
1761 			cpqhp_pushbutton_thread(pushbutton_pending);
1762 		else
1763 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
1764 				interrupt_event_handler(ctrl);
1765 	}
1766 	dbg("event_thread signals exit\n");
1767 	up(&event_exit);
1768 	return 0;
1769 }
1770 
1771 
1772 int cpqhp_event_start_thread(void)
1773 {
1774 	int pid;
1775 
1776 	/* initialize our semaphores */
1777 	init_MUTEX(&delay_sem);
1778 	init_MUTEX_LOCKED(&event_semaphore);
1779 	init_MUTEX_LOCKED(&event_exit);
1780 	event_finished=0;
1781 
1782 	pid = kernel_thread(event_thread, NULL, 0);
1783 	if (pid < 0) {
1784 		err ("Can't start up our event thread\n");
1785 		return -1;
1786 	}
1787 	dbg("Our event thread pid = %d\n", pid);
1788 	return 0;
1789 }
1790 
1791 
1792 void cpqhp_event_stop_thread(void)
1793 {
1794 	event_finished = 1;
1795 	dbg("event_thread finish command given\n");
1796 	up(&event_semaphore);
1797 	dbg("wait for event_thread to exit\n");
1798 	down(&event_exit);
1799 }
1800 
1801 
1802 static int update_slot_info(struct controller *ctrl, struct slot *slot)
1803 {
1804 	struct hotplug_slot_info *info;
1805 	int result;
1806 
1807 	info = kmalloc(sizeof(*info), GFP_KERNEL);
1808 	if (!info)
1809 		return -ENOMEM;
1810 
1811 	info->power_status = get_slot_enabled(ctrl, slot);
1812 	info->attention_status = cpq_get_attention_status(ctrl, slot);
1813 	info->latch_status = cpq_get_latch_status(ctrl, slot);
1814 	info->adapter_status = get_presence_status(ctrl, slot);
1815 	result = pci_hp_change_slot_info(slot->hotplug_slot, info);
1816 	kfree (info);
1817 	return result;
1818 }
1819 
1820 static void interrupt_event_handler(struct controller *ctrl)
1821 {
1822 	int loop = 0;
1823 	int change = 1;
1824 	struct pci_func *func;
1825 	u8 hp_slot;
1826 	struct slot *p_slot;
1827 
1828 	while (change) {
1829 		change = 0;
1830 
1831 		for (loop = 0; loop < 10; loop++) {
1832 			/* dbg("loop %d\n", loop); */
1833 			if (ctrl->event_queue[loop].event_type != 0) {
1834 				hp_slot = ctrl->event_queue[loop].hp_slot;
1835 
1836 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1837 				if (!func)
1838 					return;
1839 
1840 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1841 				if (!p_slot)
1842 					return;
1843 
1844 				dbg("hp_slot %d, func %p, p_slot %p\n",
1845 				    hp_slot, func, p_slot);
1846 
1847 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1848 					dbg("button pressed\n");
1849 				} else if (ctrl->event_queue[loop].event_type ==
1850 					   INT_BUTTON_CANCEL) {
1851 					dbg("button cancel\n");
1852 					del_timer(&p_slot->task_event);
1853 
1854 					mutex_lock(&ctrl->crit_sect);
1855 
1856 					if (p_slot->state == BLINKINGOFF_STATE) {
1857 						/* slot is on */
1858 						dbg("turn on green LED\n");
1859 						green_LED_on (ctrl, hp_slot);
1860 					} else if (p_slot->state == BLINKINGON_STATE) {
1861 						/* slot is off */
1862 						dbg("turn off green LED\n");
1863 						green_LED_off (ctrl, hp_slot);
1864 					}
1865 
1866 					info(msg_button_cancel, p_slot->number);
1867 
1868 					p_slot->state = STATIC_STATE;
1869 
1870 					amber_LED_off (ctrl, hp_slot);
1871 
1872 					set_SOGO(ctrl);
1873 
1874 					/* Wait for SOBS to be unset */
1875 					wait_for_ctrl_irq (ctrl);
1876 
1877 					mutex_unlock(&ctrl->crit_sect);
1878 				}
1879 				/*** button Released (No action on press...) */
1880 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1881 					dbg("button release\n");
1882 
1883 					if (is_slot_enabled (ctrl, hp_slot)) {
1884 						dbg("slot is on\n");
1885 						p_slot->state = BLINKINGOFF_STATE;
1886 						info(msg_button_off, p_slot->number);
1887 					} else {
1888 						dbg("slot is off\n");
1889 						p_slot->state = BLINKINGON_STATE;
1890 						info(msg_button_on, p_slot->number);
1891 					}
1892 					mutex_lock(&ctrl->crit_sect);
1893 
1894 					dbg("blink green LED and turn off amber\n");
1895 
1896 					amber_LED_off (ctrl, hp_slot);
1897 					green_LED_blink (ctrl, hp_slot);
1898 
1899 					set_SOGO(ctrl);
1900 
1901 					/* Wait for SOBS to be unset */
1902 					wait_for_ctrl_irq (ctrl);
1903 
1904 					mutex_unlock(&ctrl->crit_sect);
1905 					init_timer(&p_slot->task_event);
1906 					p_slot->hp_slot = hp_slot;
1907 					p_slot->ctrl = ctrl;
1908 /*					p_slot->physical_slot = physical_slot; */
1909 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1910 					p_slot->task_event.function = pushbutton_helper_thread;
1911 					p_slot->task_event.data = (u32) p_slot;
1912 
1913 					dbg("add_timer p_slot = %p\n", p_slot);
1914 					add_timer(&p_slot->task_event);
1915 				}
1916 				/***********POWER FAULT */
1917 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1918 					dbg("power fault\n");
1919 				} else {
1920 					/* refresh notification */
1921 					if (p_slot)
1922 						update_slot_info(ctrl, p_slot);
1923 				}
1924 
1925 				ctrl->event_queue[loop].event_type = 0;
1926 
1927 				change = 1;
1928 			}
1929 		}		/* End of FOR loop */
1930 	}
1931 
1932 	return;
1933 }
1934 
1935 
1936 /**
1937  * cpqhp_pushbutton_thread
1938  *
1939  * Scheduled procedure to handle blocking stuff for the pushbuttons
1940  * Handles all pending events and exits.
1941  *
1942  */
1943 void cpqhp_pushbutton_thread(unsigned long slot)
1944 {
1945 	u8 hp_slot;
1946 	u8 device;
1947 	struct pci_func *func;
1948 	struct slot *p_slot = (struct slot *) slot;
1949 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1950 
1951 	pushbutton_pending = 0;
1952 	hp_slot = p_slot->hp_slot;
1953 
1954 	device = p_slot->device;
1955 
1956 	if (is_slot_enabled(ctrl, hp_slot)) {
1957 		p_slot->state = POWEROFF_STATE;
1958 		/* power Down board */
1959 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1960 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1961 		if (!func) {
1962 			dbg("Error! func NULL in %s\n", __FUNCTION__);
1963 			return ;
1964 		}
1965 
1966 		if (func != NULL && ctrl != NULL) {
1967 			if (cpqhp_process_SS(ctrl, func) != 0) {
1968 				amber_LED_on (ctrl, hp_slot);
1969 				green_LED_on (ctrl, hp_slot);
1970 
1971 				set_SOGO(ctrl);
1972 
1973 				/* Wait for SOBS to be unset */
1974 				wait_for_ctrl_irq (ctrl);
1975 			}
1976 		}
1977 
1978 		p_slot->state = STATIC_STATE;
1979 	} else {
1980 		p_slot->state = POWERON_STATE;
1981 		/* slot is off */
1982 
1983 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1984 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1985 		if (!func) {
1986 			dbg("Error! func NULL in %s\n", __FUNCTION__);
1987 			return ;
1988 		}
1989 
1990 		if (func != NULL && ctrl != NULL) {
1991 			if (cpqhp_process_SI(ctrl, func) != 0) {
1992 				amber_LED_on(ctrl, hp_slot);
1993 				green_LED_off(ctrl, hp_slot);
1994 
1995 				set_SOGO(ctrl);
1996 
1997 				/* Wait for SOBS to be unset */
1998 				wait_for_ctrl_irq (ctrl);
1999 			}
2000 		}
2001 
2002 		p_slot->state = STATIC_STATE;
2003 	}
2004 
2005 	return;
2006 }
2007 
2008 
2009 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
2010 {
2011 	u8 device, hp_slot;
2012 	u16 temp_word;
2013 	u32 tempdword;
2014 	int rc;
2015 	struct slot* p_slot;
2016 	int physical_slot = 0;
2017 
2018 	tempdword = 0;
2019 
2020 	device = func->device;
2021 	hp_slot = device - ctrl->slot_device_offset;
2022 	p_slot = cpqhp_find_slot(ctrl, device);
2023 	if (p_slot)
2024 		physical_slot = p_slot->number;
2025 
2026 	/* Check to see if the interlock is closed */
2027 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
2028 
2029 	if (tempdword & (0x01 << hp_slot)) {
2030 		return 1;
2031 	}
2032 
2033 	if (func->is_a_board) {
2034 		rc = board_replaced(func, ctrl);
2035 	} else {
2036 		/* add board */
2037 		slot_remove(func);
2038 
2039 		func = cpqhp_slot_create(ctrl->bus);
2040 		if (func == NULL)
2041 			return 1;
2042 
2043 		func->bus = ctrl->bus;
2044 		func->device = device;
2045 		func->function = 0;
2046 		func->configured = 0;
2047 		func->is_a_board = 1;
2048 
2049 		/* We have to save the presence info for these slots */
2050 		temp_word = ctrl->ctrl_int_comp >> 16;
2051 		func->presence_save = (temp_word >> hp_slot) & 0x01;
2052 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
2053 
2054 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2055 			func->switch_save = 0;
2056 		} else {
2057 			func->switch_save = 0x10;
2058 		}
2059 
2060 		rc = board_added(func, ctrl);
2061 		if (rc) {
2062 			if (is_bridge(func)) {
2063 				bridge_slot_remove(func);
2064 			} else
2065 				slot_remove(func);
2066 
2067 			/* Setup slot structure with entry for empty slot */
2068 			func = cpqhp_slot_create(ctrl->bus);
2069 
2070 			if (func == NULL)
2071 				return 1;
2072 
2073 			func->bus = ctrl->bus;
2074 			func->device = device;
2075 			func->function = 0;
2076 			func->configured = 0;
2077 			func->is_a_board = 0;
2078 
2079 			/* We have to save the presence info for these slots */
2080 			temp_word = ctrl->ctrl_int_comp >> 16;
2081 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2082 			func->presence_save |=
2083 			(temp_word >> (hp_slot + 7)) & 0x02;
2084 
2085 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2086 				func->switch_save = 0;
2087 			} else {
2088 				func->switch_save = 0x10;
2089 			}
2090 		}
2091 	}
2092 
2093 	if (rc) {
2094 		dbg("%s: rc = %d\n", __FUNCTION__, rc);
2095 	}
2096 
2097 	if (p_slot)
2098 		update_slot_info(ctrl, p_slot);
2099 
2100 	return rc;
2101 }
2102 
2103 
2104 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2105 {
2106 	u8 device, class_code, header_type, BCR;
2107 	u8 index = 0;
2108 	u8 replace_flag;
2109 	u32 rc = 0;
2110 	unsigned int devfn;
2111 	struct slot* p_slot;
2112 	struct pci_bus *pci_bus = ctrl->pci_bus;
2113 	int physical_slot=0;
2114 
2115 	device = func->device;
2116 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2117 	p_slot = cpqhp_find_slot(ctrl, device);
2118 	if (p_slot) {
2119 		physical_slot = p_slot->number;
2120 	}
2121 
2122 	/* Make sure there are no video controllers here */
2123 	while (func && !rc) {
2124 		pci_bus->number = func->bus;
2125 		devfn = PCI_DEVFN(func->device, func->function);
2126 
2127 		/* Check the Class Code */
2128 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2129 		if (rc)
2130 			return rc;
2131 
2132 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2133 			/* Display/Video adapter (not supported) */
2134 			rc = REMOVE_NOT_SUPPORTED;
2135 		} else {
2136 			/* See if it's a bridge */
2137 			rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2138 			if (rc)
2139 				return rc;
2140 
2141 			/* If it's a bridge, check the VGA Enable bit */
2142 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2143 				rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2144 				if (rc)
2145 					return rc;
2146 
2147 				/* If the VGA Enable bit is set, remove isn't
2148 				 * supported */
2149 				if (BCR & PCI_BRIDGE_CTL_VGA) {
2150 					rc = REMOVE_NOT_SUPPORTED;
2151 				}
2152 			}
2153 		}
2154 
2155 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2156 	}
2157 
2158 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2159 	if ((func != NULL) && !rc) {
2160 		/* FIXME: Replace flag should be passed into process_SS */
2161 		replace_flag = !(ctrl->add_support);
2162 		rc = remove_board(func, replace_flag, ctrl);
2163 	} else if (!rc) {
2164 		rc = 1;
2165 	}
2166 
2167 	if (p_slot)
2168 		update_slot_info(ctrl, p_slot);
2169 
2170 	return rc;
2171 }
2172 
2173 /**
2174  * switch_leds: switch the leds, go from one site to the other.
2175  * @ctrl: controller to use
2176  * @num_of_slots: number of slots to use
2177  * @direction: 1 to start from the left side, 0 to start right.
2178  */
2179 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2180 			u32 *work_LED, const int direction)
2181 {
2182 	int loop;
2183 
2184 	for (loop = 0; loop < num_of_slots; loop++) {
2185 		if (direction)
2186 			*work_LED = *work_LED >> 1;
2187 		else
2188 			*work_LED = *work_LED << 1;
2189 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2190 
2191 		set_SOGO(ctrl);
2192 
2193 		/* Wait for SOGO interrupt */
2194 		wait_for_ctrl_irq(ctrl);
2195 
2196 		/* Get ready for next iteration */
2197 		long_delay((2*HZ)/10);
2198 	}
2199 }
2200 
2201 /**
2202  * hardware_test - runs hardware tests
2203  *
2204  * For hot plug ctrl folks to play with.
2205  * test_num is the number written to the "test" file in sysfs
2206  *
2207  */
2208 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2209 {
2210 	u32 save_LED;
2211 	u32 work_LED;
2212 	int loop;
2213 	int num_of_slots;
2214 
2215 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2216 
2217 	switch (test_num) {
2218 		case 1:
2219 			/* Do stuff here! */
2220 
2221 			/* Do that funky LED thing */
2222 			/* so we can restore them later */
2223 			save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2224 			work_LED = 0x01010101;
2225 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2226 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2227 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2228 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2229 
2230 			work_LED = 0x01010000;
2231 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2232 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2233 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2234 			work_LED = 0x00000101;
2235 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2236 			switch_leds(ctrl, num_of_slots, &work_LED, 0);
2237 			switch_leds(ctrl, num_of_slots, &work_LED, 1);
2238 
2239 			work_LED = 0x01010000;
2240 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2241 			for (loop = 0; loop < num_of_slots; loop++) {
2242 				set_SOGO(ctrl);
2243 
2244 				/* Wait for SOGO interrupt */
2245 				wait_for_ctrl_irq (ctrl);
2246 
2247 				/* Get ready for next iteration */
2248 				long_delay((3*HZ)/10);
2249 				work_LED = work_LED >> 16;
2250 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2251 
2252 				set_SOGO(ctrl);
2253 
2254 				/* Wait for SOGO interrupt */
2255 				wait_for_ctrl_irq (ctrl);
2256 
2257 				/* Get ready for next iteration */
2258 				long_delay((3*HZ)/10);
2259 				work_LED = work_LED << 16;
2260 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2261 				work_LED = work_LED << 1;
2262 				writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2263 			}
2264 
2265 			/* put it back the way it was */
2266 			writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2267 
2268 			set_SOGO(ctrl);
2269 
2270 			/* Wait for SOBS to be unset */
2271 			wait_for_ctrl_irq (ctrl);
2272 			break;
2273 		case 2:
2274 			/* Do other stuff here! */
2275 			break;
2276 		case 3:
2277 			/* and more... */
2278 			break;
2279 	}
2280 	return 0;
2281 }
2282 
2283 
2284 /**
2285  * configure_new_device - Configures the PCI header information of one board.
2286  *
2287  * @ctrl: pointer to controller structure
2288  * @func: pointer to function structure
2289  * @behind_bridge: 1 if this is a recursive call, 0 if not
2290  * @resources: pointer to set of resource lists
2291  *
2292  * Returns 0 if success
2293  *
2294  */
2295 static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
2296 				 u8 behind_bridge, struct resource_lists * resources)
2297 {
2298 	u8 temp_byte, function, max_functions, stop_it;
2299 	int rc;
2300 	u32 ID;
2301 	struct pci_func *new_slot;
2302 	int index;
2303 
2304 	new_slot = func;
2305 
2306 	dbg("%s\n", __FUNCTION__);
2307 	/* Check for Multi-function device */
2308 	ctrl->pci_bus->number = func->bus;
2309 	rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2310 	if (rc) {
2311 		dbg("%s: rc = %d\n", __FUNCTION__, rc);
2312 		return rc;
2313 	}
2314 
2315 	if (temp_byte & 0x80)	/* Multi-function device */
2316 		max_functions = 8;
2317 	else
2318 		max_functions = 1;
2319 
2320 	function = 0;
2321 
2322 	do {
2323 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2324 
2325 		if (rc) {
2326 			dbg("configure_new_function failed %d\n",rc);
2327 			index = 0;
2328 
2329 			while (new_slot) {
2330 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2331 
2332 				if (new_slot)
2333 					cpqhp_return_board_resources(new_slot, resources);
2334 			}
2335 
2336 			return rc;
2337 		}
2338 
2339 		function++;
2340 
2341 		stop_it = 0;
2342 
2343 		/* The following loop skips to the next present function
2344 		 * and creates a board structure */
2345 
2346 		while ((function < max_functions) && (!stop_it)) {
2347 			pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2348 
2349 			if (ID == 0xFFFFFFFF) {	  /* There's nothing there. */
2350 				function++;
2351 			} else {  /* There's something there */
2352 				/* Setup slot structure. */
2353 				new_slot = cpqhp_slot_create(func->bus);
2354 
2355 				if (new_slot == NULL)
2356 					return 1;
2357 
2358 				new_slot->bus = func->bus;
2359 				new_slot->device = func->device;
2360 				new_slot->function = function;
2361 				new_slot->is_a_board = 1;
2362 				new_slot->status = 0;
2363 
2364 				stop_it++;
2365 			}
2366 		}
2367 
2368 	} while (function < max_functions);
2369 	dbg("returning from configure_new_device\n");
2370 
2371 	return 0;
2372 }
2373 
2374 
2375 /*
2376   Configuration logic that involves the hotplug data structures and
2377   their bookkeeping
2378  */
2379 
2380 
2381 /**
2382  * configure_new_function - Configures the PCI header information of one device
2383  *
2384  * @ctrl: pointer to controller structure
2385  * @func: pointer to function structure
2386  * @behind_bridge: 1 if this is a recursive call, 0 if not
2387  * @resources: pointer to set of resource lists
2388  *
2389  * Calls itself recursively for bridged devices.
2390  * Returns 0 if success
2391  *
2392  */
2393 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2394 				   u8 behind_bridge,
2395 				   struct resource_lists *resources)
2396 {
2397 	int cloop;
2398 	u8 IRQ = 0;
2399 	u8 temp_byte;
2400 	u8 device;
2401 	u8 class_code;
2402 	u16 command;
2403 	u16 temp_word;
2404 	u32 temp_dword;
2405 	u32 rc;
2406 	u32 temp_register;
2407 	u32 base;
2408 	u32 ID;
2409 	unsigned int devfn;
2410 	struct pci_resource *mem_node;
2411 	struct pci_resource *p_mem_node;
2412 	struct pci_resource *io_node;
2413 	struct pci_resource *bus_node;
2414 	struct pci_resource *hold_mem_node;
2415 	struct pci_resource *hold_p_mem_node;
2416 	struct pci_resource *hold_IO_node;
2417 	struct pci_resource *hold_bus_node;
2418 	struct irq_mapping irqs;
2419 	struct pci_func *new_slot;
2420 	struct pci_bus *pci_bus;
2421 	struct resource_lists temp_resources;
2422 
2423 	pci_bus = ctrl->pci_bus;
2424 	pci_bus->number = func->bus;
2425 	devfn = PCI_DEVFN(func->device, func->function);
2426 
2427 	/* Check for Bridge */
2428 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2429 	if (rc)
2430 		return rc;
2431 
2432 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
2433 		/* set Primary bus */
2434 		dbg("set Primary bus = %d\n", func->bus);
2435 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2436 		if (rc)
2437 			return rc;
2438 
2439 		/* find range of busses to use */
2440 		dbg("find ranges of buses to use\n");
2441 		bus_node = get_max_resource(&(resources->bus_head), 1);
2442 
2443 		/* If we don't have any busses to allocate, we can't continue */
2444 		if (!bus_node)
2445 			return -ENOMEM;
2446 
2447 		/* set Secondary bus */
2448 		temp_byte = bus_node->base;
2449 		dbg("set Secondary bus = %d\n", bus_node->base);
2450 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2451 		if (rc)
2452 			return rc;
2453 
2454 		/* set subordinate bus */
2455 		temp_byte = bus_node->base + bus_node->length - 1;
2456 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2457 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2458 		if (rc)
2459 			return rc;
2460 
2461 		/* set subordinate Latency Timer and base Latency Timer */
2462 		temp_byte = 0x40;
2463 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2464 		if (rc)
2465 			return rc;
2466 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2467 		if (rc)
2468 			return rc;
2469 
2470 		/* set Cache Line size */
2471 		temp_byte = 0x08;
2472 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2473 		if (rc)
2474 			return rc;
2475 
2476 		/* Setup the IO, memory, and prefetchable windows */
2477 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2478 		if (!io_node)
2479 			return -ENOMEM;
2480 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2481 		if (!mem_node)
2482 			return -ENOMEM;
2483 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2484 		if (!p_mem_node)
2485 			return -ENOMEM;
2486 		dbg("Setup the IO, memory, and prefetchable windows\n");
2487 		dbg("io_node\n");
2488 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2489 					io_node->length, io_node->next);
2490 		dbg("mem_node\n");
2491 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2492 					mem_node->length, mem_node->next);
2493 		dbg("p_mem_node\n");
2494 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2495 					p_mem_node->length, p_mem_node->next);
2496 
2497 		/* set up the IRQ info */
2498 		if (!resources->irqs) {
2499 			irqs.barber_pole = 0;
2500 			irqs.interrupt[0] = 0;
2501 			irqs.interrupt[1] = 0;
2502 			irqs.interrupt[2] = 0;
2503 			irqs.interrupt[3] = 0;
2504 			irqs.valid_INT = 0;
2505 		} else {
2506 			irqs.barber_pole = resources->irqs->barber_pole;
2507 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2508 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2509 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2510 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2511 			irqs.valid_INT = resources->irqs->valid_INT;
2512 		}
2513 
2514 		/* set up resource lists that are now aligned on top and bottom
2515 		 * for anything behind the bridge. */
2516 		temp_resources.bus_head = bus_node;
2517 		temp_resources.io_head = io_node;
2518 		temp_resources.mem_head = mem_node;
2519 		temp_resources.p_mem_head = p_mem_node;
2520 		temp_resources.irqs = &irqs;
2521 
2522 		/* Make copies of the nodes we are going to pass down so that
2523 		 * if there is a problem,we can just use these to free resources */
2524 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2525 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2526 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2527 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2528 
2529 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2530 			kfree(hold_bus_node);
2531 			kfree(hold_IO_node);
2532 			kfree(hold_mem_node);
2533 			kfree(hold_p_mem_node);
2534 
2535 			return 1;
2536 		}
2537 
2538 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2539 
2540 		bus_node->base += 1;
2541 		bus_node->length -= 1;
2542 		bus_node->next = NULL;
2543 
2544 		/* If we have IO resources copy them and fill in the bridge's
2545 		 * IO range registers */
2546 		if (io_node) {
2547 			memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2548 			io_node->next = NULL;
2549 
2550 			/* set IO base and Limit registers */
2551 			temp_byte = io_node->base >> 8;
2552 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2553 
2554 			temp_byte = (io_node->base + io_node->length - 1) >> 8;
2555 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2556 		} else {
2557 			kfree(hold_IO_node);
2558 			hold_IO_node = NULL;
2559 		}
2560 
2561 		/* If we have memory resources copy them and fill in the
2562 		 * bridge's memory range registers.  Otherwise, fill in the
2563 		 * range registers with values that disable them. */
2564 		if (mem_node) {
2565 			memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2566 			mem_node->next = NULL;
2567 
2568 			/* set Mem base and Limit registers */
2569 			temp_word = mem_node->base >> 16;
2570 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2571 
2572 			temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2573 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2574 		} else {
2575 			temp_word = 0xFFFF;
2576 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2577 
2578 			temp_word = 0x0000;
2579 			rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2580 
2581 			kfree(hold_mem_node);
2582 			hold_mem_node = NULL;
2583 		}
2584 
2585 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2586 		p_mem_node->next = NULL;
2587 
2588 		/* set Pre Mem base and Limit registers */
2589 		temp_word = p_mem_node->base >> 16;
2590 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2591 
2592 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2593 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2594 
2595 		/* Adjust this to compensate for extra adjustment in first loop */
2596 		irqs.barber_pole--;
2597 
2598 		rc = 0;
2599 
2600 		/* Here we actually find the devices and configure them */
2601 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2602 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2603 
2604 			ID = 0xFFFFFFFF;
2605 			pci_bus->number = hold_bus_node->base;
2606 			pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2607 			pci_bus->number = func->bus;
2608 
2609 			if (ID != 0xFFFFFFFF) {	  /*  device present */
2610 				/* Setup slot structure. */
2611 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2612 
2613 				if (new_slot == NULL) {
2614 					rc = -ENOMEM;
2615 					continue;
2616 				}
2617 
2618 				new_slot->bus = hold_bus_node->base;
2619 				new_slot->device = device;
2620 				new_slot->function = 0;
2621 				new_slot->is_a_board = 1;
2622 				new_slot->status = 0;
2623 
2624 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2625 				dbg("configure_new_device rc=0x%x\n",rc);
2626 			}	/* End of IF (device in slot?) */
2627 		}		/* End of FOR loop */
2628 
2629 		if (rc)
2630 			goto free_and_out;
2631 		/* save the interrupt routing information */
2632 		if (resources->irqs) {
2633 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2634 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2635 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2636 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2637 			resources->irqs->valid_INT = irqs.valid_INT;
2638 		} else if (!behind_bridge) {
2639 			/* We need to hook up the interrupts here */
2640 			for (cloop = 0; cloop < 4; cloop++) {
2641 				if (irqs.valid_INT & (0x01 << cloop)) {
2642 					rc = cpqhp_set_irq(func->bus, func->device,
2643 							   0x0A + cloop, irqs.interrupt[cloop]);
2644 					if (rc)
2645 						goto free_and_out;
2646 				}
2647 			}	/* end of for loop */
2648 		}
2649 		/* Return unused bus resources
2650 		 * First use the temporary node to store information for
2651 		 * the board */
2652 		if (hold_bus_node && bus_node && temp_resources.bus_head) {
2653 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2654 
2655 			hold_bus_node->next = func->bus_head;
2656 			func->bus_head = hold_bus_node;
2657 
2658 			temp_byte = temp_resources.bus_head->base - 1;
2659 
2660 			/* set subordinate bus */
2661 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2662 
2663 			if (temp_resources.bus_head->length == 0) {
2664 				kfree(temp_resources.bus_head);
2665 				temp_resources.bus_head = NULL;
2666 			} else {
2667 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2668 			}
2669 		}
2670 
2671 		/* If we have IO space available and there is some left,
2672 		 * return the unused portion */
2673 		if (hold_IO_node && temp_resources.io_head) {
2674 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2675 							       &hold_IO_node, 0x1000);
2676 
2677 			/* Check if we were able to split something off */
2678 			if (io_node) {
2679 				hold_IO_node->base = io_node->base + io_node->length;
2680 
2681 				temp_byte = (hold_IO_node->base) >> 8;
2682 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
2683 
2684 				return_resource(&(resources->io_head), io_node);
2685 			}
2686 
2687 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2688 
2689 			/* Check if we were able to split something off */
2690 			if (io_node) {
2691 				/* First use the temporary node to store
2692 				 * information for the board */
2693 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2694 
2695 				/* If we used any, add it to the board's list */
2696 				if (hold_IO_node->length) {
2697 					hold_IO_node->next = func->io_head;
2698 					func->io_head = hold_IO_node;
2699 
2700 					temp_byte = (io_node->base - 1) >> 8;
2701 					rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2702 
2703 					return_resource(&(resources->io_head), io_node);
2704 				} else {
2705 					/* it doesn't need any IO */
2706 					temp_word = 0x0000;
2707 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2708 
2709 					return_resource(&(resources->io_head), io_node);
2710 					kfree(hold_IO_node);
2711 				}
2712 			} else {
2713 				/* it used most of the range */
2714 				hold_IO_node->next = func->io_head;
2715 				func->io_head = hold_IO_node;
2716 			}
2717 		} else if (hold_IO_node) {
2718 			/* it used the whole range */
2719 			hold_IO_node->next = func->io_head;
2720 			func->io_head = hold_IO_node;
2721 		}
2722 		/* If we have memory space available and there is some left,
2723 		 * return the unused portion */
2724 		if (hold_mem_node && temp_resources.mem_head) {
2725 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2726 								&hold_mem_node, 0x100000);
2727 
2728 			/* Check if we were able to split something off */
2729 			if (mem_node) {
2730 				hold_mem_node->base = mem_node->base + mem_node->length;
2731 
2732 				temp_word = (hold_mem_node->base) >> 16;
2733 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2734 
2735 				return_resource(&(resources->mem_head), mem_node);
2736 			}
2737 
2738 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2739 
2740 			/* Check if we were able to split something off */
2741 			if (mem_node) {
2742 				/* First use the temporary node to store
2743 				 * information for the board */
2744 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2745 
2746 				if (hold_mem_node->length) {
2747 					hold_mem_node->next = func->mem_head;
2748 					func->mem_head = hold_mem_node;
2749 
2750 					/* configure end address */
2751 					temp_word = (mem_node->base - 1) >> 16;
2752 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2753 
2754 					/* Return unused resources to the pool */
2755 					return_resource(&(resources->mem_head), mem_node);
2756 				} else {
2757 					/* it doesn't need any Mem */
2758 					temp_word = 0x0000;
2759 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2760 
2761 					return_resource(&(resources->mem_head), mem_node);
2762 					kfree(hold_mem_node);
2763 				}
2764 			} else {
2765 				/* it used most of the range */
2766 				hold_mem_node->next = func->mem_head;
2767 				func->mem_head = hold_mem_node;
2768 			}
2769 		} else if (hold_mem_node) {
2770 			/* it used the whole range */
2771 			hold_mem_node->next = func->mem_head;
2772 			func->mem_head = hold_mem_node;
2773 		}
2774 		/* If we have prefetchable memory space available and there
2775 		 * is some left at the end, return the unused portion */
2776 		if (hold_p_mem_node && temp_resources.p_mem_head) {
2777 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2778 								  &hold_p_mem_node, 0x100000);
2779 
2780 			/* Check if we were able to split something off */
2781 			if (p_mem_node) {
2782 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2783 
2784 				temp_word = (hold_p_mem_node->base) >> 16;
2785 				rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2786 
2787 				return_resource(&(resources->p_mem_head), p_mem_node);
2788 			}
2789 
2790 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2791 
2792 			/* Check if we were able to split something off */
2793 			if (p_mem_node) {
2794 				/* First use the temporary node to store
2795 				 * information for the board */
2796 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2797 
2798 				/* If we used any, add it to the board's list */
2799 				if (hold_p_mem_node->length) {
2800 					hold_p_mem_node->next = func->p_mem_head;
2801 					func->p_mem_head = hold_p_mem_node;
2802 
2803 					temp_word = (p_mem_node->base - 1) >> 16;
2804 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2805 
2806 					return_resource(&(resources->p_mem_head), p_mem_node);
2807 				} else {
2808 					/* it doesn't need any PMem */
2809 					temp_word = 0x0000;
2810 					rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2811 
2812 					return_resource(&(resources->p_mem_head), p_mem_node);
2813 					kfree(hold_p_mem_node);
2814 				}
2815 			} else {
2816 				/* it used the most of the range */
2817 				hold_p_mem_node->next = func->p_mem_head;
2818 				func->p_mem_head = hold_p_mem_node;
2819 			}
2820 		} else if (hold_p_mem_node) {
2821 			/* it used the whole range */
2822 			hold_p_mem_node->next = func->p_mem_head;
2823 			func->p_mem_head = hold_p_mem_node;
2824 		}
2825 		/* We should be configuring an IRQ and the bridge's base address
2826 		 * registers if it needs them.  Although we have never seen such
2827 		 * a device */
2828 
2829 		/* enable card */
2830 		command = 0x0157;	/* = PCI_COMMAND_IO |
2831 					 *   PCI_COMMAND_MEMORY |
2832 					 *   PCI_COMMAND_MASTER |
2833 					 *   PCI_COMMAND_INVALIDATE |
2834 					 *   PCI_COMMAND_PARITY |
2835 					 *   PCI_COMMAND_SERR */
2836 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
2837 
2838 		/* set Bridge Control Register */
2839 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2840 					 *   PCI_BRIDGE_CTL_SERR |
2841 					 *   PCI_BRIDGE_CTL_NO_ISA */
2842 		rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2843 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2844 		/* Standard device */
2845 		rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2846 
2847 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2848 			/* Display (video) adapter (not supported) */
2849 			return DEVICE_TYPE_NOT_SUPPORTED;
2850 		}
2851 		/* Figure out IO and memory needs */
2852 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2853 			temp_register = 0xFFFFFFFF;
2854 
2855 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2856 			rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
2857 
2858 			rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
2859 			dbg("CND: base = 0x%x\n", temp_register);
2860 
2861 			if (temp_register) {	  /* If this register is implemented */
2862 				if ((temp_register & 0x03L) == 0x01) {
2863 					/* Map IO */
2864 
2865 					/* set base = amount of IO space */
2866 					base = temp_register & 0xFFFFFFFC;
2867 					base = ~base + 1;
2868 
2869 					dbg("CND:      length = 0x%x\n", base);
2870 					io_node = get_io_resource(&(resources->io_head), base);
2871 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2872 					    io_node->base, io_node->length, io_node->next);
2873 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2874 
2875 					/* allocate the resource to the board */
2876 					if (io_node) {
2877 						base = io_node->base;
2878 
2879 						io_node->next = func->io_head;
2880 						func->io_head = io_node;
2881 					} else
2882 						return -ENOMEM;
2883 				} else if ((temp_register & 0x0BL) == 0x08) {
2884 					/* Map prefetchable memory */
2885 					base = temp_register & 0xFFFFFFF0;
2886 					base = ~base + 1;
2887 
2888 					dbg("CND:      length = 0x%x\n", base);
2889 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2890 
2891 					/* allocate the resource to the board */
2892 					if (p_mem_node) {
2893 						base = p_mem_node->base;
2894 
2895 						p_mem_node->next = func->p_mem_head;
2896 						func->p_mem_head = p_mem_node;
2897 					} else
2898 						return -ENOMEM;
2899 				} else if ((temp_register & 0x0BL) == 0x00) {
2900 					/* Map memory */
2901 					base = temp_register & 0xFFFFFFF0;
2902 					base = ~base + 1;
2903 
2904 					dbg("CND:      length = 0x%x\n", base);
2905 					mem_node = get_resource(&(resources->mem_head), base);
2906 
2907 					/* allocate the resource to the board */
2908 					if (mem_node) {
2909 						base = mem_node->base;
2910 
2911 						mem_node->next = func->mem_head;
2912 						func->mem_head = mem_node;
2913 					} else
2914 						return -ENOMEM;
2915 				} else if ((temp_register & 0x0BL) == 0x04) {
2916 					/* Map memory */
2917 					base = temp_register & 0xFFFFFFF0;
2918 					base = ~base + 1;
2919 
2920 					dbg("CND:      length = 0x%x\n", base);
2921 					mem_node = get_resource(&(resources->mem_head), base);
2922 
2923 					/* allocate the resource to the board */
2924 					if (mem_node) {
2925 						base = mem_node->base;
2926 
2927 						mem_node->next = func->mem_head;
2928 						func->mem_head = mem_node;
2929 					} else
2930 						return -ENOMEM;
2931 				} else if ((temp_register & 0x0BL) == 0x06) {
2932 					/* Those bits are reserved, we can't handle this */
2933 					return 1;
2934 				} else {
2935 					/* Requesting space below 1M */
2936 					return NOT_ENOUGH_RESOURCES;
2937 				}
2938 
2939 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2940 
2941 				/* Check for 64-bit base */
2942 				if ((temp_register & 0x07L) == 0x04) {
2943 					cloop += 4;
2944 
2945 					/* Upper 32 bits of address always zero
2946 					 * on today's systems */
2947 					/* FIXME this is probably not true on
2948 					 * Alpha and ia64??? */
2949 					base = 0;
2950 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2951 				}
2952 			}
2953 		}		/* End of base register loop */
2954 		if (cpqhp_legacy_mode) {
2955 			/* Figure out which interrupt pin this function uses */
2956 			rc = pci_bus_read_config_byte (pci_bus, devfn,
2957 				PCI_INTERRUPT_PIN, &temp_byte);
2958 
2959 			/* If this function needs an interrupt and we are behind
2960 			 * a bridge and the pin is tied to something that's
2961 			 * alread mapped, set this one the same */
2962 			if (temp_byte && resources->irqs &&
2963 			    (resources->irqs->valid_INT &
2964 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2965 				/* We have to share with something already set up */
2966 				IRQ = resources->irqs->interrupt[(temp_byte +
2967 					resources->irqs->barber_pole - 1) & 0x03];
2968 			} else {
2969 				/* Program IRQ based on card type */
2970 				rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
2971 
2972 				if (class_code == PCI_BASE_CLASS_STORAGE) {
2973 					IRQ = cpqhp_disk_irq;
2974 				} else {
2975 					IRQ = cpqhp_nic_irq;
2976 				}
2977 			}
2978 
2979 			/* IRQ Line */
2980 			rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2981 		}
2982 
2983 		if (!behind_bridge) {
2984 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
2985 			if (rc)
2986 				return 1;
2987 		} else {
2988 			/* TBD - this code may also belong in the other clause
2989 			 * of this If statement */
2990 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2991 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2992 		}
2993 
2994 		/* Latency Timer */
2995 		temp_byte = 0x40;
2996 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2997 					PCI_LATENCY_TIMER, temp_byte);
2998 
2999 		/* Cache Line size */
3000 		temp_byte = 0x08;
3001 		rc = pci_bus_write_config_byte(pci_bus, devfn,
3002 					PCI_CACHE_LINE_SIZE, temp_byte);
3003 
3004 		/* disable ROM base Address */
3005 		temp_dword = 0x00L;
3006 		rc = pci_bus_write_config_word(pci_bus, devfn,
3007 					PCI_ROM_ADDRESS, temp_dword);
3008 
3009 		/* enable card */
3010 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
3011 					 *   PCI_COMMAND_MEMORY |
3012 					 *   PCI_COMMAND_MASTER |
3013 					 *   PCI_COMMAND_INVALIDATE |
3014 					 *   PCI_COMMAND_PARITY |
3015 					 *   PCI_COMMAND_SERR */
3016 		rc = pci_bus_write_config_word (pci_bus, devfn,
3017 					PCI_COMMAND, temp_word);
3018 	} else {		/* End of Not-A-Bridge else */
3019 		/* It's some strange type of PCI adapter (Cardbus?) */
3020 		return DEVICE_TYPE_NOT_SUPPORTED;
3021 	}
3022 
3023 	func->configured = 1;
3024 
3025 	return 0;
3026 free_and_out:
3027 	cpqhp_destroy_resource_list (&temp_resources);
3028 
3029 	return_resource(&(resources-> bus_head), hold_bus_node);
3030 	return_resource(&(resources-> io_head), hold_IO_node);
3031 	return_resource(&(resources-> mem_head), hold_mem_node);
3032 	return_resource(&(resources-> p_mem_head), hold_p_mem_node);
3033 	return rc;
3034 }
3035