1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Compaq Hot Plug Controller Driver 4 * 5 * Copyright (C) 1995,2001 Compaq Computer Corporation 6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 7 * Copyright (C) 2001 IBM Corp. 8 * 9 * All rights reserved. 10 * 11 * Send feedback to <greg@kroah.com> 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 #include <linux/interrupt.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/pci.h> 24 #include <linux/pci_hotplug.h> 25 #include <linux/kthread.h> 26 #include "cpqphp.h" 27 28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 29 u8 behind_bridge, struct resource_lists *resources); 30 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 31 u8 behind_bridge, struct resource_lists *resources); 32 static void interrupt_event_handler(struct controller *ctrl); 33 34 35 static struct task_struct *cpqhp_event_thread; 36 static struct timer_list *pushbutton_pending; /* = NULL */ 37 38 /* delay is in jiffies to wait for */ 39 static void long_delay(int delay) 40 { 41 /* 42 * XXX(hch): if someone is bored please convert all callers 43 * to call msleep_interruptible directly. They really want 44 * to specify timeouts in natural units and spend a lot of 45 * effort converting them to jiffies.. 46 */ 47 msleep_interruptible(jiffies_to_msecs(delay)); 48 } 49 50 51 /* FIXME: The following line needs to be somewhere else... */ 52 #define WRONG_BUS_FREQUENCY 0x07 53 static u8 handle_switch_change(u8 change, struct controller *ctrl) 54 { 55 int hp_slot; 56 u8 rc = 0; 57 u16 temp_word; 58 struct pci_func *func; 59 struct event_info *taskInfo; 60 61 if (!change) 62 return 0; 63 64 /* Switch Change */ 65 dbg("cpqsbd: Switch interrupt received.\n"); 66 67 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 68 if (change & (0x1L << hp_slot)) { 69 /* 70 * this one changed. 71 */ 72 func = cpqhp_slot_find(ctrl->bus, 73 (hp_slot + ctrl->slot_device_offset), 0); 74 75 /* this is the structure that tells the worker thread 76 * what to do 77 */ 78 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 79 ctrl->next_event = (ctrl->next_event + 1) % 10; 80 taskInfo->hp_slot = hp_slot; 81 82 rc++; 83 84 temp_word = ctrl->ctrl_int_comp >> 16; 85 func->presence_save = (temp_word >> hp_slot) & 0x01; 86 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 87 88 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 89 /* 90 * Switch opened 91 */ 92 93 func->switch_save = 0; 94 95 taskInfo->event_type = INT_SWITCH_OPEN; 96 } else { 97 /* 98 * Switch closed 99 */ 100 101 func->switch_save = 0x10; 102 103 taskInfo->event_type = INT_SWITCH_CLOSE; 104 } 105 } 106 } 107 108 return rc; 109 } 110 111 /** 112 * cpqhp_find_slot - find the struct slot of given device 113 * @ctrl: scan lots of this controller 114 * @device: the device id to find 115 */ 116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 117 { 118 struct slot *slot = ctrl->slot; 119 120 while (slot && (slot->device != device)) 121 slot = slot->next; 122 123 return slot; 124 } 125 126 127 static u8 handle_presence_change(u16 change, struct controller *ctrl) 128 { 129 int hp_slot; 130 u8 rc = 0; 131 u8 temp_byte; 132 u16 temp_word; 133 struct pci_func *func; 134 struct event_info *taskInfo; 135 struct slot *p_slot; 136 137 if (!change) 138 return 0; 139 140 /* 141 * Presence Change 142 */ 143 dbg("cpqsbd: Presence/Notify input change.\n"); 144 dbg(" Changed bits are 0x%4.4x\n", change); 145 146 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 147 if (change & (0x0101 << hp_slot)) { 148 /* 149 * this one changed. 150 */ 151 func = cpqhp_slot_find(ctrl->bus, 152 (hp_slot + ctrl->slot_device_offset), 0); 153 154 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 155 ctrl->next_event = (ctrl->next_event + 1) % 10; 156 taskInfo->hp_slot = hp_slot; 157 158 rc++; 159 160 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 161 if (!p_slot) 162 return 0; 163 164 /* If the switch closed, must be a button 165 * If not in button mode, nevermind 166 */ 167 if (func->switch_save && (ctrl->push_button == 1)) { 168 temp_word = ctrl->ctrl_int_comp >> 16; 169 temp_byte = (temp_word >> hp_slot) & 0x01; 170 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 171 172 if (temp_byte != func->presence_save) { 173 /* 174 * button Pressed (doesn't do anything) 175 */ 176 dbg("hp_slot %d button pressed\n", hp_slot); 177 taskInfo->event_type = INT_BUTTON_PRESS; 178 } else { 179 /* 180 * button Released - TAKE ACTION!!!! 181 */ 182 dbg("hp_slot %d button released\n", hp_slot); 183 taskInfo->event_type = INT_BUTTON_RELEASE; 184 185 /* Cancel if we are still blinking */ 186 if ((p_slot->state == BLINKINGON_STATE) 187 || (p_slot->state == BLINKINGOFF_STATE)) { 188 taskInfo->event_type = INT_BUTTON_CANCEL; 189 dbg("hp_slot %d button cancel\n", hp_slot); 190 } else if ((p_slot->state == POWERON_STATE) 191 || (p_slot->state == POWEROFF_STATE)) { 192 /* info(msg_button_ignore, p_slot->number); */ 193 taskInfo->event_type = INT_BUTTON_IGNORE; 194 dbg("hp_slot %d button ignore\n", hp_slot); 195 } 196 } 197 } else { 198 /* Switch is open, assume a presence change 199 * Save the presence state 200 */ 201 temp_word = ctrl->ctrl_int_comp >> 16; 202 func->presence_save = (temp_word >> hp_slot) & 0x01; 203 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 204 205 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 206 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 207 /* Present */ 208 taskInfo->event_type = INT_PRESENCE_ON; 209 } else { 210 /* Not Present */ 211 taskInfo->event_type = INT_PRESENCE_OFF; 212 } 213 } 214 } 215 } 216 217 return rc; 218 } 219 220 221 static u8 handle_power_fault(u8 change, struct controller *ctrl) 222 { 223 int hp_slot; 224 u8 rc = 0; 225 struct pci_func *func; 226 struct event_info *taskInfo; 227 228 if (!change) 229 return 0; 230 231 /* 232 * power fault 233 */ 234 235 info("power fault interrupt\n"); 236 237 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 238 if (change & (0x01 << hp_slot)) { 239 /* 240 * this one changed. 241 */ 242 func = cpqhp_slot_find(ctrl->bus, 243 (hp_slot + ctrl->slot_device_offset), 0); 244 245 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 246 ctrl->next_event = (ctrl->next_event + 1) % 10; 247 taskInfo->hp_slot = hp_slot; 248 249 rc++; 250 251 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 252 /* 253 * power fault Cleared 254 */ 255 func->status = 0x00; 256 257 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 258 } else { 259 /* 260 * power fault 261 */ 262 taskInfo->event_type = INT_POWER_FAULT; 263 264 if (ctrl->rev < 4) { 265 amber_LED_on(ctrl, hp_slot); 266 green_LED_off(ctrl, hp_slot); 267 set_SOGO(ctrl); 268 269 /* this is a fatal condition, we want 270 * to crash the machine to protect from 271 * data corruption. simulated_NMI 272 * shouldn't ever return */ 273 /* FIXME 274 simulated_NMI(hp_slot, ctrl); */ 275 276 /* The following code causes a software 277 * crash just in case simulated_NMI did 278 * return */ 279 /*FIXME 280 panic(msg_power_fault); */ 281 } else { 282 /* set power fault status for this board */ 283 func->status = 0xFF; 284 info("power fault bit %x set\n", hp_slot); 285 } 286 } 287 } 288 } 289 290 return rc; 291 } 292 293 294 /** 295 * sort_by_size - sort nodes on the list by their length, smallest first. 296 * @head: list to sort 297 */ 298 static int sort_by_size(struct pci_resource **head) 299 { 300 struct pci_resource *current_res; 301 struct pci_resource *next_res; 302 int out_of_order = 1; 303 304 if (!(*head)) 305 return 1; 306 307 if (!((*head)->next)) 308 return 0; 309 310 while (out_of_order) { 311 out_of_order = 0; 312 313 /* Special case for swapping list head */ 314 if (((*head)->next) && 315 ((*head)->length > (*head)->next->length)) { 316 out_of_order++; 317 current_res = *head; 318 *head = (*head)->next; 319 current_res->next = (*head)->next; 320 (*head)->next = current_res; 321 } 322 323 current_res = *head; 324 325 while (current_res->next && current_res->next->next) { 326 if (current_res->next->length > current_res->next->next->length) { 327 out_of_order++; 328 next_res = current_res->next; 329 current_res->next = current_res->next->next; 330 current_res = current_res->next; 331 next_res->next = current_res->next; 332 current_res->next = next_res; 333 } else 334 current_res = current_res->next; 335 } 336 } /* End of out_of_order loop */ 337 338 return 0; 339 } 340 341 342 /** 343 * sort_by_max_size - sort nodes on the list by their length, largest first. 344 * @head: list to sort 345 */ 346 static int sort_by_max_size(struct pci_resource **head) 347 { 348 struct pci_resource *current_res; 349 struct pci_resource *next_res; 350 int out_of_order = 1; 351 352 if (!(*head)) 353 return 1; 354 355 if (!((*head)->next)) 356 return 0; 357 358 while (out_of_order) { 359 out_of_order = 0; 360 361 /* Special case for swapping list head */ 362 if (((*head)->next) && 363 ((*head)->length < (*head)->next->length)) { 364 out_of_order++; 365 current_res = *head; 366 *head = (*head)->next; 367 current_res->next = (*head)->next; 368 (*head)->next = current_res; 369 } 370 371 current_res = *head; 372 373 while (current_res->next && current_res->next->next) { 374 if (current_res->next->length < current_res->next->next->length) { 375 out_of_order++; 376 next_res = current_res->next; 377 current_res->next = current_res->next->next; 378 current_res = current_res->next; 379 next_res->next = current_res->next; 380 current_res->next = next_res; 381 } else 382 current_res = current_res->next; 383 } 384 } /* End of out_of_order loop */ 385 386 return 0; 387 } 388 389 390 /** 391 * do_pre_bridge_resource_split - find node of resources that are unused 392 * @head: new list head 393 * @orig_head: original list head 394 * @alignment: max node size (?) 395 */ 396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 397 struct pci_resource **orig_head, u32 alignment) 398 { 399 struct pci_resource *prevnode = NULL; 400 struct pci_resource *node; 401 struct pci_resource *split_node; 402 u32 rc; 403 u32 temp_dword; 404 dbg("do_pre_bridge_resource_split\n"); 405 406 if (!(*head) || !(*orig_head)) 407 return NULL; 408 409 rc = cpqhp_resource_sort_and_combine(head); 410 411 if (rc) 412 return NULL; 413 414 if ((*head)->base != (*orig_head)->base) 415 return NULL; 416 417 if ((*head)->length == (*orig_head)->length) 418 return NULL; 419 420 421 /* If we got here, there the bridge requires some of the resource, but 422 * we may be able to split some off of the front 423 */ 424 425 node = *head; 426 427 if (node->length & (alignment - 1)) { 428 /* this one isn't an aligned length, so we'll make a new entry 429 * and split it up. 430 */ 431 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 432 433 if (!split_node) 434 return NULL; 435 436 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 437 438 split_node->base = node->base; 439 split_node->length = temp_dword; 440 441 node->length -= temp_dword; 442 node->base += split_node->length; 443 444 /* Put it in the list */ 445 *head = split_node; 446 split_node->next = node; 447 } 448 449 if (node->length < alignment) 450 return NULL; 451 452 /* Now unlink it */ 453 if (*head == node) { 454 *head = node->next; 455 } else { 456 prevnode = *head; 457 while (prevnode->next != node) 458 prevnode = prevnode->next; 459 460 prevnode->next = node->next; 461 } 462 node->next = NULL; 463 464 return node; 465 } 466 467 468 /** 469 * do_bridge_resource_split - find one node of resources that aren't in use 470 * @head: list head 471 * @alignment: max node size (?) 472 */ 473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 474 { 475 struct pci_resource *prevnode = NULL; 476 struct pci_resource *node; 477 u32 rc; 478 u32 temp_dword; 479 480 rc = cpqhp_resource_sort_and_combine(head); 481 482 if (rc) 483 return NULL; 484 485 node = *head; 486 487 while (node->next) { 488 prevnode = node; 489 node = node->next; 490 kfree(prevnode); 491 } 492 493 if (node->length < alignment) 494 goto error; 495 496 if (node->base & (alignment - 1)) { 497 /* Short circuit if adjusted size is too small */ 498 temp_dword = (node->base | (alignment-1)) + 1; 499 if ((node->length - (temp_dword - node->base)) < alignment) 500 goto error; 501 502 node->length -= (temp_dword - node->base); 503 node->base = temp_dword; 504 } 505 506 if (node->length & (alignment - 1)) 507 /* There's stuff in use after this node */ 508 goto error; 509 510 return node; 511 error: 512 kfree(node); 513 return NULL; 514 } 515 516 517 /** 518 * get_io_resource - find first node of given size not in ISA aliasing window. 519 * @head: list to search 520 * @size: size of node to find, must be a power of two. 521 * 522 * Description: This function sorts the resource list by size and then returns 523 * returns the first node of "size" length that is not in the ISA aliasing 524 * window. If it finds a node larger than "size" it will split it up. 525 */ 526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 527 { 528 struct pci_resource *prevnode; 529 struct pci_resource *node; 530 struct pci_resource *split_node; 531 u32 temp_dword; 532 533 if (!(*head)) 534 return NULL; 535 536 if (cpqhp_resource_sort_and_combine(head)) 537 return NULL; 538 539 if (sort_by_size(head)) 540 return NULL; 541 542 for (node = *head; node; node = node->next) { 543 if (node->length < size) 544 continue; 545 546 if (node->base & (size - 1)) { 547 /* this one isn't base aligned properly 548 * so we'll make a new entry and split it up 549 */ 550 temp_dword = (node->base | (size-1)) + 1; 551 552 /* Short circuit if adjusted size is too small */ 553 if ((node->length - (temp_dword - node->base)) < size) 554 continue; 555 556 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 557 558 if (!split_node) 559 return NULL; 560 561 split_node->base = node->base; 562 split_node->length = temp_dword - node->base; 563 node->base = temp_dword; 564 node->length -= split_node->length; 565 566 /* Put it in the list */ 567 split_node->next = node->next; 568 node->next = split_node; 569 } /* End of non-aligned base */ 570 571 /* Don't need to check if too small since we already did */ 572 if (node->length > size) { 573 /* this one is longer than we need 574 * so we'll make a new entry and split it up 575 */ 576 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 577 578 if (!split_node) 579 return NULL; 580 581 split_node->base = node->base + size; 582 split_node->length = node->length - size; 583 node->length = size; 584 585 /* Put it in the list */ 586 split_node->next = node->next; 587 node->next = split_node; 588 } /* End of too big on top end */ 589 590 /* For IO make sure it's not in the ISA aliasing space */ 591 if (node->base & 0x300L) 592 continue; 593 594 /* If we got here, then it is the right size 595 * Now take it out of the list and break 596 */ 597 if (*head == node) { 598 *head = node->next; 599 } else { 600 prevnode = *head; 601 while (prevnode->next != node) 602 prevnode = prevnode->next; 603 604 prevnode->next = node->next; 605 } 606 node->next = NULL; 607 break; 608 } 609 610 return node; 611 } 612 613 614 /** 615 * get_max_resource - get largest node which has at least the given size. 616 * @head: the list to search the node in 617 * @size: the minimum size of the node to find 618 * 619 * Description: Gets the largest node that is at least "size" big from the 620 * list pointed to by head. It aligns the node on top and bottom 621 * to "size" alignment before returning it. 622 */ 623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 624 { 625 struct pci_resource *max; 626 struct pci_resource *temp; 627 struct pci_resource *split_node; 628 u32 temp_dword; 629 630 if (cpqhp_resource_sort_and_combine(head)) 631 return NULL; 632 633 if (sort_by_max_size(head)) 634 return NULL; 635 636 for (max = *head; max; max = max->next) { 637 /* If not big enough we could probably just bail, 638 * instead we'll continue to the next. 639 */ 640 if (max->length < size) 641 continue; 642 643 if (max->base & (size - 1)) { 644 /* this one isn't base aligned properly 645 * so we'll make a new entry and split it up 646 */ 647 temp_dword = (max->base | (size-1)) + 1; 648 649 /* Short circuit if adjusted size is too small */ 650 if ((max->length - (temp_dword - max->base)) < size) 651 continue; 652 653 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 654 655 if (!split_node) 656 return NULL; 657 658 split_node->base = max->base; 659 split_node->length = temp_dword - max->base; 660 max->base = temp_dword; 661 max->length -= split_node->length; 662 663 split_node->next = max->next; 664 max->next = split_node; 665 } 666 667 if ((max->base + max->length) & (size - 1)) { 668 /* this one isn't end aligned properly at the top 669 * so we'll make a new entry and split it up 670 */ 671 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 672 673 if (!split_node) 674 return NULL; 675 temp_dword = ((max->base + max->length) & ~(size - 1)); 676 split_node->base = temp_dword; 677 split_node->length = max->length + max->base 678 - split_node->base; 679 max->length -= split_node->length; 680 681 split_node->next = max->next; 682 max->next = split_node; 683 } 684 685 /* Make sure it didn't shrink too much when we aligned it */ 686 if (max->length < size) 687 continue; 688 689 /* Now take it out of the list */ 690 temp = *head; 691 if (temp == max) { 692 *head = max->next; 693 } else { 694 while (temp && temp->next != max) 695 temp = temp->next; 696 697 if (temp) 698 temp->next = max->next; 699 } 700 701 max->next = NULL; 702 break; 703 } 704 705 return max; 706 } 707 708 709 /** 710 * get_resource - find resource of given size and split up larger ones. 711 * @head: the list to search for resources 712 * @size: the size limit to use 713 * 714 * Description: This function sorts the resource list by size and then 715 * returns the first node of "size" length. If it finds a node 716 * larger than "size" it will split it up. 717 * 718 * size must be a power of two. 719 */ 720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 721 { 722 struct pci_resource *prevnode; 723 struct pci_resource *node; 724 struct pci_resource *split_node; 725 u32 temp_dword; 726 727 if (cpqhp_resource_sort_and_combine(head)) 728 return NULL; 729 730 if (sort_by_size(head)) 731 return NULL; 732 733 for (node = *head; node; node = node->next) { 734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 735 __func__, size, node, node->base, node->length); 736 if (node->length < size) 737 continue; 738 739 if (node->base & (size - 1)) { 740 dbg("%s: not aligned\n", __func__); 741 /* this one isn't base aligned properly 742 * so we'll make a new entry and split it up 743 */ 744 temp_dword = (node->base | (size-1)) + 1; 745 746 /* Short circuit if adjusted size is too small */ 747 if ((node->length - (temp_dword - node->base)) < size) 748 continue; 749 750 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 751 752 if (!split_node) 753 return NULL; 754 755 split_node->base = node->base; 756 split_node->length = temp_dword - node->base; 757 node->base = temp_dword; 758 node->length -= split_node->length; 759 760 split_node->next = node->next; 761 node->next = split_node; 762 } /* End of non-aligned base */ 763 764 /* Don't need to check if too small since we already did */ 765 if (node->length > size) { 766 dbg("%s: too big\n", __func__); 767 /* this one is longer than we need 768 * so we'll make a new entry and split it up 769 */ 770 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 771 772 if (!split_node) 773 return NULL; 774 775 split_node->base = node->base + size; 776 split_node->length = node->length - size; 777 node->length = size; 778 779 /* Put it in the list */ 780 split_node->next = node->next; 781 node->next = split_node; 782 } /* End of too big on top end */ 783 784 dbg("%s: got one!!!\n", __func__); 785 /* If we got here, then it is the right size 786 * Now take it out of the list */ 787 if (*head == node) { 788 *head = node->next; 789 } else { 790 prevnode = *head; 791 while (prevnode->next != node) 792 prevnode = prevnode->next; 793 794 prevnode->next = node->next; 795 } 796 node->next = NULL; 797 break; 798 } 799 return node; 800 } 801 802 803 /** 804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 805 * @head: the list to sort and clean up 806 * 807 * Description: Sorts all of the nodes in the list in ascending order by 808 * their base addresses. Also does garbage collection by 809 * combining adjacent nodes. 810 * 811 * Returns %0 if success. 812 */ 813 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 814 { 815 struct pci_resource *node1; 816 struct pci_resource *node2; 817 int out_of_order = 1; 818 819 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 820 821 if (!(*head)) 822 return 1; 823 824 dbg("*head->next = %p\n", (*head)->next); 825 826 if (!(*head)->next) 827 return 0; /* only one item on the list, already sorted! */ 828 829 dbg("*head->base = 0x%x\n", (*head)->base); 830 dbg("*head->next->base = 0x%x\n", (*head)->next->base); 831 while (out_of_order) { 832 out_of_order = 0; 833 834 /* Special case for swapping list head */ 835 if (((*head)->next) && 836 ((*head)->base > (*head)->next->base)) { 837 node1 = *head; 838 (*head) = (*head)->next; 839 node1->next = (*head)->next; 840 (*head)->next = node1; 841 out_of_order++; 842 } 843 844 node1 = (*head); 845 846 while (node1->next && node1->next->next) { 847 if (node1->next->base > node1->next->next->base) { 848 out_of_order++; 849 node2 = node1->next; 850 node1->next = node1->next->next; 851 node1 = node1->next; 852 node2->next = node1->next; 853 node1->next = node2; 854 } else 855 node1 = node1->next; 856 } 857 } /* End of out_of_order loop */ 858 859 node1 = *head; 860 861 while (node1 && node1->next) { 862 if ((node1->base + node1->length) == node1->next->base) { 863 /* Combine */ 864 dbg("8..\n"); 865 node1->length += node1->next->length; 866 node2 = node1->next; 867 node1->next = node1->next->next; 868 kfree(node2); 869 } else 870 node1 = node1->next; 871 } 872 873 return 0; 874 } 875 876 877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 878 { 879 struct controller *ctrl = data; 880 u8 schedule_flag = 0; 881 u8 reset; 882 u16 misc; 883 u32 Diff; 884 u32 temp_dword; 885 886 887 misc = readw(ctrl->hpc_reg + MISC); 888 /* 889 * Check to see if it was our interrupt 890 */ 891 if (!(misc & 0x000C)) 892 return IRQ_NONE; 893 894 if (misc & 0x0004) { 895 /* 896 * Serial Output interrupt Pending 897 */ 898 899 /* Clear the interrupt */ 900 misc |= 0x0004; 901 writew(misc, ctrl->hpc_reg + MISC); 902 903 /* Read to clear posted writes */ 904 misc = readw(ctrl->hpc_reg + MISC); 905 906 dbg("%s - waking up\n", __func__); 907 wake_up_interruptible(&ctrl->queue); 908 } 909 910 if (misc & 0x0008) { 911 /* General-interrupt-input interrupt Pending */ 912 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 913 914 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 915 916 /* Clear the interrupt */ 917 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 918 919 /* Read it back to clear any posted writes */ 920 temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 921 922 if (!Diff) 923 /* Clear all interrupts */ 924 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 925 926 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 927 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 928 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 929 } 930 931 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 932 if (reset & 0x40) { 933 /* Bus reset has completed */ 934 reset &= 0xCF; 935 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 936 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 937 wake_up_interruptible(&ctrl->queue); 938 } 939 940 if (schedule_flag) { 941 wake_up_process(cpqhp_event_thread); 942 dbg("Waking even thread"); 943 } 944 return IRQ_HANDLED; 945 } 946 947 948 /** 949 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 950 * @busnumber: bus where new node is to be located 951 * 952 * Returns pointer to the new node or %NULL if unsuccessful. 953 */ 954 struct pci_func *cpqhp_slot_create(u8 busnumber) 955 { 956 struct pci_func *new_slot; 957 struct pci_func *next; 958 959 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 960 if (new_slot == NULL) 961 return new_slot; 962 963 new_slot->next = NULL; 964 new_slot->configured = 1; 965 966 if (cpqhp_slot_list[busnumber] == NULL) { 967 cpqhp_slot_list[busnumber] = new_slot; 968 } else { 969 next = cpqhp_slot_list[busnumber]; 970 while (next->next != NULL) 971 next = next->next; 972 next->next = new_slot; 973 } 974 return new_slot; 975 } 976 977 978 /** 979 * slot_remove - Removes a node from the linked list of slots. 980 * @old_slot: slot to remove 981 * 982 * Returns %0 if successful, !0 otherwise. 983 */ 984 static int slot_remove(struct pci_func *old_slot) 985 { 986 struct pci_func *next; 987 988 if (old_slot == NULL) 989 return 1; 990 991 next = cpqhp_slot_list[old_slot->bus]; 992 if (next == NULL) 993 return 1; 994 995 if (next == old_slot) { 996 cpqhp_slot_list[old_slot->bus] = old_slot->next; 997 cpqhp_destroy_board_resources(old_slot); 998 kfree(old_slot); 999 return 0; 1000 } 1001 1002 while ((next->next != old_slot) && (next->next != NULL)) 1003 next = next->next; 1004 1005 if (next->next == old_slot) { 1006 next->next = old_slot->next; 1007 cpqhp_destroy_board_resources(old_slot); 1008 kfree(old_slot); 1009 return 0; 1010 } else 1011 return 2; 1012 } 1013 1014 1015 /** 1016 * bridge_slot_remove - Removes a node from the linked list of slots. 1017 * @bridge: bridge to remove 1018 * 1019 * Returns %0 if successful, !0 otherwise. 1020 */ 1021 static int bridge_slot_remove(struct pci_func *bridge) 1022 { 1023 u8 subordinateBus, secondaryBus; 1024 u8 tempBus; 1025 struct pci_func *next; 1026 1027 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1028 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1029 1030 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1031 next = cpqhp_slot_list[tempBus]; 1032 1033 while (!slot_remove(next)) 1034 next = cpqhp_slot_list[tempBus]; 1035 } 1036 1037 next = cpqhp_slot_list[bridge->bus]; 1038 1039 if (next == NULL) 1040 return 1; 1041 1042 if (next == bridge) { 1043 cpqhp_slot_list[bridge->bus] = bridge->next; 1044 goto out; 1045 } 1046 1047 while ((next->next != bridge) && (next->next != NULL)) 1048 next = next->next; 1049 1050 if (next->next != bridge) 1051 return 2; 1052 next->next = bridge->next; 1053 out: 1054 kfree(bridge); 1055 return 0; 1056 } 1057 1058 1059 /** 1060 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1061 * @bus: bus to find 1062 * @device: device to find 1063 * @index: is %0 for first function found, %1 for the second... 1064 * 1065 * Returns pointer to the node if successful, %NULL otherwise. 1066 */ 1067 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1068 { 1069 int found = -1; 1070 struct pci_func *func; 1071 1072 func = cpqhp_slot_list[bus]; 1073 1074 if ((func == NULL) || ((func->device == device) && (index == 0))) 1075 return func; 1076 1077 if (func->device == device) 1078 found++; 1079 1080 while (func->next != NULL) { 1081 func = func->next; 1082 1083 if (func->device == device) 1084 found++; 1085 1086 if (found == index) 1087 return func; 1088 } 1089 1090 return NULL; 1091 } 1092 1093 1094 /* DJZ: I don't think is_bridge will work as is. 1095 * FIXME */ 1096 static int is_bridge(struct pci_func *func) 1097 { 1098 /* Check the header type */ 1099 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1100 return 1; 1101 else 1102 return 0; 1103 } 1104 1105 1106 /** 1107 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1108 * @ctrl: controller to change frequency/mode for. 1109 * @adapter_speed: the speed of the adapter we want to match. 1110 * @hp_slot: the slot number where the adapter is installed. 1111 * 1112 * Returns %0 if we successfully change frequency and/or mode to match the 1113 * adapter speed. 1114 */ 1115 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1116 { 1117 struct slot *slot; 1118 struct pci_bus *bus = ctrl->pci_bus; 1119 u8 reg; 1120 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1121 u16 reg16; 1122 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1123 1124 if (bus->cur_bus_speed == adapter_speed) 1125 return 0; 1126 1127 /* We don't allow freq/mode changes if we find another adapter running 1128 * in another slot on this controller 1129 */ 1130 for (slot = ctrl->slot; slot; slot = slot->next) { 1131 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1132 continue; 1133 if (get_presence_status(ctrl, slot) == 0) 1134 continue; 1135 /* If another adapter is running on the same segment but at a 1136 * lower speed/mode, we allow the new adapter to function at 1137 * this rate if supported 1138 */ 1139 if (bus->cur_bus_speed < adapter_speed) 1140 return 0; 1141 1142 return 1; 1143 } 1144 1145 /* If the controller doesn't support freq/mode changes and the 1146 * controller is running at a higher mode, we bail 1147 */ 1148 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1149 return 1; 1150 1151 /* But we allow the adapter to run at a lower rate if possible */ 1152 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1153 return 0; 1154 1155 /* We try to set the max speed supported by both the adapter and 1156 * controller 1157 */ 1158 if (bus->max_bus_speed < adapter_speed) { 1159 if (bus->cur_bus_speed == bus->max_bus_speed) 1160 return 0; 1161 adapter_speed = bus->max_bus_speed; 1162 } 1163 1164 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1165 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1166 1167 set_SOGO(ctrl); 1168 wait_for_ctrl_irq(ctrl); 1169 1170 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1171 reg = 0xF5; 1172 else 1173 reg = 0xF4; 1174 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1175 1176 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1177 reg16 &= ~0x000F; 1178 switch (adapter_speed) { 1179 case(PCI_SPEED_133MHz_PCIX): 1180 reg = 0x75; 1181 reg16 |= 0xB; 1182 break; 1183 case(PCI_SPEED_100MHz_PCIX): 1184 reg = 0x74; 1185 reg16 |= 0xA; 1186 break; 1187 case(PCI_SPEED_66MHz_PCIX): 1188 reg = 0x73; 1189 reg16 |= 0x9; 1190 break; 1191 case(PCI_SPEED_66MHz): 1192 reg = 0x73; 1193 reg16 |= 0x1; 1194 break; 1195 default: /* 33MHz PCI 2.2 */ 1196 reg = 0x71; 1197 break; 1198 1199 } 1200 reg16 |= 0xB << 12; 1201 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1202 1203 mdelay(5); 1204 1205 /* Reenable interrupts */ 1206 writel(0, ctrl->hpc_reg + INT_MASK); 1207 1208 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1209 1210 /* Restart state machine */ 1211 reg = ~0xF; 1212 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1213 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1214 1215 /* Only if mode change...*/ 1216 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1217 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1218 set_SOGO(ctrl); 1219 1220 wait_for_ctrl_irq(ctrl); 1221 mdelay(1100); 1222 1223 /* Restore LED/Slot state */ 1224 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1225 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1226 1227 set_SOGO(ctrl); 1228 wait_for_ctrl_irq(ctrl); 1229 1230 bus->cur_bus_speed = adapter_speed; 1231 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1232 1233 info("Successfully changed frequency/mode for adapter in slot %d\n", 1234 slot->number); 1235 return 0; 1236 } 1237 1238 /* the following routines constitute the bulk of the 1239 * hotplug controller logic 1240 */ 1241 1242 1243 /** 1244 * board_replaced - Called after a board has been replaced in the system. 1245 * @func: PCI device/function information 1246 * @ctrl: hotplug controller 1247 * 1248 * This is only used if we don't have resources for hot add. 1249 * Turns power on for the board. 1250 * Checks to see if board is the same. 1251 * If board is same, reconfigures it. 1252 * If board isn't same, turns it back off. 1253 */ 1254 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1255 { 1256 struct pci_bus *bus = ctrl->pci_bus; 1257 u8 hp_slot; 1258 u8 temp_byte; 1259 u8 adapter_speed; 1260 u32 rc = 0; 1261 1262 hp_slot = func->device - ctrl->slot_device_offset; 1263 1264 /* 1265 * The switch is open. 1266 */ 1267 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1268 rc = INTERLOCK_OPEN; 1269 /* 1270 * The board is already on 1271 */ 1272 else if (is_slot_enabled(ctrl, hp_slot)) 1273 rc = CARD_FUNCTIONING; 1274 else { 1275 mutex_lock(&ctrl->crit_sect); 1276 1277 /* turn on board without attaching to the bus */ 1278 enable_slot_power(ctrl, hp_slot); 1279 1280 set_SOGO(ctrl); 1281 1282 /* Wait for SOBS to be unset */ 1283 wait_for_ctrl_irq(ctrl); 1284 1285 /* Change bits in slot power register to force another shift out 1286 * NOTE: this is to work around the timer bug */ 1287 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1288 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1289 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1290 1291 set_SOGO(ctrl); 1292 1293 /* Wait for SOBS to be unset */ 1294 wait_for_ctrl_irq(ctrl); 1295 1296 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1297 if (bus->cur_bus_speed != adapter_speed) 1298 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1299 rc = WRONG_BUS_FREQUENCY; 1300 1301 /* turn off board without attaching to the bus */ 1302 disable_slot_power(ctrl, hp_slot); 1303 1304 set_SOGO(ctrl); 1305 1306 /* Wait for SOBS to be unset */ 1307 wait_for_ctrl_irq(ctrl); 1308 1309 mutex_unlock(&ctrl->crit_sect); 1310 1311 if (rc) 1312 return rc; 1313 1314 mutex_lock(&ctrl->crit_sect); 1315 1316 slot_enable(ctrl, hp_slot); 1317 green_LED_blink(ctrl, hp_slot); 1318 1319 amber_LED_off(ctrl, hp_slot); 1320 1321 set_SOGO(ctrl); 1322 1323 /* Wait for SOBS to be unset */ 1324 wait_for_ctrl_irq(ctrl); 1325 1326 mutex_unlock(&ctrl->crit_sect); 1327 1328 /* Wait for ~1 second because of hot plug spec */ 1329 long_delay(1*HZ); 1330 1331 /* Check for a power fault */ 1332 if (func->status == 0xFF) { 1333 /* power fault occurred, but it was benign */ 1334 rc = POWER_FAILURE; 1335 func->status = 0; 1336 } else 1337 rc = cpqhp_valid_replace(ctrl, func); 1338 1339 if (!rc) { 1340 /* It must be the same board */ 1341 1342 rc = cpqhp_configure_board(ctrl, func); 1343 1344 /* If configuration fails, turn it off 1345 * Get slot won't work for devices behind 1346 * bridges, but in this case it will always be 1347 * called for the "base" bus/dev/func of an 1348 * adapter. 1349 */ 1350 1351 mutex_lock(&ctrl->crit_sect); 1352 1353 amber_LED_on(ctrl, hp_slot); 1354 green_LED_off(ctrl, hp_slot); 1355 slot_disable(ctrl, hp_slot); 1356 1357 set_SOGO(ctrl); 1358 1359 /* Wait for SOBS to be unset */ 1360 wait_for_ctrl_irq(ctrl); 1361 1362 mutex_unlock(&ctrl->crit_sect); 1363 1364 if (rc) 1365 return rc; 1366 else 1367 return 1; 1368 1369 } else { 1370 /* Something is wrong 1371 1372 * Get slot won't work for devices behind bridges, but 1373 * in this case it will always be called for the "base" 1374 * bus/dev/func of an adapter. 1375 */ 1376 1377 mutex_lock(&ctrl->crit_sect); 1378 1379 amber_LED_on(ctrl, hp_slot); 1380 green_LED_off(ctrl, hp_slot); 1381 slot_disable(ctrl, hp_slot); 1382 1383 set_SOGO(ctrl); 1384 1385 /* Wait for SOBS to be unset */ 1386 wait_for_ctrl_irq(ctrl); 1387 1388 mutex_unlock(&ctrl->crit_sect); 1389 } 1390 1391 } 1392 return rc; 1393 1394 } 1395 1396 1397 /** 1398 * board_added - Called after a board has been added to the system. 1399 * @func: PCI device/function info 1400 * @ctrl: hotplug controller 1401 * 1402 * Turns power on for the board. 1403 * Configures board. 1404 */ 1405 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1406 { 1407 u8 hp_slot; 1408 u8 temp_byte; 1409 u8 adapter_speed; 1410 int index; 1411 u32 temp_register = 0xFFFFFFFF; 1412 u32 rc = 0; 1413 struct pci_func *new_slot = NULL; 1414 struct pci_bus *bus = ctrl->pci_bus; 1415 struct slot *p_slot; 1416 struct resource_lists res_lists; 1417 1418 hp_slot = func->device - ctrl->slot_device_offset; 1419 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1420 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1421 1422 mutex_lock(&ctrl->crit_sect); 1423 1424 /* turn on board without attaching to the bus */ 1425 enable_slot_power(ctrl, hp_slot); 1426 1427 set_SOGO(ctrl); 1428 1429 /* Wait for SOBS to be unset */ 1430 wait_for_ctrl_irq(ctrl); 1431 1432 /* Change bits in slot power register to force another shift out 1433 * NOTE: this is to work around the timer bug 1434 */ 1435 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1436 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1437 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1438 1439 set_SOGO(ctrl); 1440 1441 /* Wait for SOBS to be unset */ 1442 wait_for_ctrl_irq(ctrl); 1443 1444 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1445 if (bus->cur_bus_speed != adapter_speed) 1446 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1447 rc = WRONG_BUS_FREQUENCY; 1448 1449 /* turn off board without attaching to the bus */ 1450 disable_slot_power(ctrl, hp_slot); 1451 1452 set_SOGO(ctrl); 1453 1454 /* Wait for SOBS to be unset */ 1455 wait_for_ctrl_irq(ctrl); 1456 1457 mutex_unlock(&ctrl->crit_sect); 1458 1459 if (rc) 1460 return rc; 1461 1462 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1463 1464 /* turn on board and blink green LED */ 1465 1466 dbg("%s: before down\n", __func__); 1467 mutex_lock(&ctrl->crit_sect); 1468 dbg("%s: after down\n", __func__); 1469 1470 dbg("%s: before slot_enable\n", __func__); 1471 slot_enable(ctrl, hp_slot); 1472 1473 dbg("%s: before green_LED_blink\n", __func__); 1474 green_LED_blink(ctrl, hp_slot); 1475 1476 dbg("%s: before amber_LED_blink\n", __func__); 1477 amber_LED_off(ctrl, hp_slot); 1478 1479 dbg("%s: before set_SOGO\n", __func__); 1480 set_SOGO(ctrl); 1481 1482 /* Wait for SOBS to be unset */ 1483 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1484 wait_for_ctrl_irq(ctrl); 1485 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1486 1487 dbg("%s: before up\n", __func__); 1488 mutex_unlock(&ctrl->crit_sect); 1489 dbg("%s: after up\n", __func__); 1490 1491 /* Wait for ~1 second because of hot plug spec */ 1492 dbg("%s: before long_delay\n", __func__); 1493 long_delay(1*HZ); 1494 dbg("%s: after long_delay\n", __func__); 1495 1496 dbg("%s: func status = %x\n", __func__, func->status); 1497 /* Check for a power fault */ 1498 if (func->status == 0xFF) { 1499 /* power fault occurred, but it was benign */ 1500 temp_register = 0xFFFFFFFF; 1501 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1502 rc = POWER_FAILURE; 1503 func->status = 0; 1504 } else { 1505 /* Get vendor/device ID u32 */ 1506 ctrl->pci_bus->number = func->bus; 1507 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1508 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1509 dbg("%s: temp_register is %x\n", __func__, temp_register); 1510 1511 if (rc != 0) { 1512 /* Something's wrong here */ 1513 temp_register = 0xFFFFFFFF; 1514 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1515 } 1516 /* Preset return code. It will be changed later if things go okay. */ 1517 rc = NO_ADAPTER_PRESENT; 1518 } 1519 1520 /* All F's is an empty slot or an invalid board */ 1521 if (temp_register != 0xFFFFFFFF) { 1522 res_lists.io_head = ctrl->io_head; 1523 res_lists.mem_head = ctrl->mem_head; 1524 res_lists.p_mem_head = ctrl->p_mem_head; 1525 res_lists.bus_head = ctrl->bus_head; 1526 res_lists.irqs = NULL; 1527 1528 rc = configure_new_device(ctrl, func, 0, &res_lists); 1529 1530 dbg("%s: back from configure_new_device\n", __func__); 1531 ctrl->io_head = res_lists.io_head; 1532 ctrl->mem_head = res_lists.mem_head; 1533 ctrl->p_mem_head = res_lists.p_mem_head; 1534 ctrl->bus_head = res_lists.bus_head; 1535 1536 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1537 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1538 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1539 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1540 1541 if (rc) { 1542 mutex_lock(&ctrl->crit_sect); 1543 1544 amber_LED_on(ctrl, hp_slot); 1545 green_LED_off(ctrl, hp_slot); 1546 slot_disable(ctrl, hp_slot); 1547 1548 set_SOGO(ctrl); 1549 1550 /* Wait for SOBS to be unset */ 1551 wait_for_ctrl_irq(ctrl); 1552 1553 mutex_unlock(&ctrl->crit_sect); 1554 return rc; 1555 } else { 1556 cpqhp_save_slot_config(ctrl, func); 1557 } 1558 1559 1560 func->status = 0; 1561 func->switch_save = 0x10; 1562 func->is_a_board = 0x01; 1563 1564 /* next, we will instantiate the linux pci_dev structures (with 1565 * appropriate driver notification, if already present) */ 1566 dbg("%s: configure linux pci_dev structure\n", __func__); 1567 index = 0; 1568 do { 1569 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1570 if (new_slot && !new_slot->pci_dev) 1571 cpqhp_configure_device(ctrl, new_slot); 1572 } while (new_slot); 1573 1574 mutex_lock(&ctrl->crit_sect); 1575 1576 green_LED_on(ctrl, hp_slot); 1577 1578 set_SOGO(ctrl); 1579 1580 /* Wait for SOBS to be unset */ 1581 wait_for_ctrl_irq(ctrl); 1582 1583 mutex_unlock(&ctrl->crit_sect); 1584 } else { 1585 mutex_lock(&ctrl->crit_sect); 1586 1587 amber_LED_on(ctrl, hp_slot); 1588 green_LED_off(ctrl, hp_slot); 1589 slot_disable(ctrl, hp_slot); 1590 1591 set_SOGO(ctrl); 1592 1593 /* Wait for SOBS to be unset */ 1594 wait_for_ctrl_irq(ctrl); 1595 1596 mutex_unlock(&ctrl->crit_sect); 1597 1598 return rc; 1599 } 1600 return 0; 1601 } 1602 1603 1604 /** 1605 * remove_board - Turns off slot and LEDs 1606 * @func: PCI device/function info 1607 * @replace_flag: whether replacing or adding a new device 1608 * @ctrl: target controller 1609 */ 1610 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl) 1611 { 1612 int index; 1613 u8 skip = 0; 1614 u8 device; 1615 u8 hp_slot; 1616 u8 temp_byte; 1617 u32 rc; 1618 struct resource_lists res_lists; 1619 struct pci_func *temp_func; 1620 1621 if (cpqhp_unconfigure_device(func)) 1622 return 1; 1623 1624 device = func->device; 1625 1626 hp_slot = func->device - ctrl->slot_device_offset; 1627 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1628 1629 /* When we get here, it is safe to change base address registers. 1630 * We will attempt to save the base address register lengths */ 1631 if (replace_flag || !ctrl->add_support) 1632 rc = cpqhp_save_base_addr_length(ctrl, func); 1633 else if (!func->bus_head && !func->mem_head && 1634 !func->p_mem_head && !func->io_head) { 1635 /* Here we check to see if we've saved any of the board's 1636 * resources already. If so, we'll skip the attempt to 1637 * determine what's being used. */ 1638 index = 0; 1639 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1640 while (temp_func) { 1641 if (temp_func->bus_head || temp_func->mem_head 1642 || temp_func->p_mem_head || temp_func->io_head) { 1643 skip = 1; 1644 break; 1645 } 1646 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1647 } 1648 1649 if (!skip) 1650 rc = cpqhp_save_used_resources(ctrl, func); 1651 } 1652 /* Change status to shutdown */ 1653 if (func->is_a_board) 1654 func->status = 0x01; 1655 func->configured = 0; 1656 1657 mutex_lock(&ctrl->crit_sect); 1658 1659 green_LED_off(ctrl, hp_slot); 1660 slot_disable(ctrl, hp_slot); 1661 1662 set_SOGO(ctrl); 1663 1664 /* turn off SERR for slot */ 1665 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1666 temp_byte &= ~(0x01 << hp_slot); 1667 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1668 1669 /* Wait for SOBS to be unset */ 1670 wait_for_ctrl_irq(ctrl); 1671 1672 mutex_unlock(&ctrl->crit_sect); 1673 1674 if (!replace_flag && ctrl->add_support) { 1675 while (func) { 1676 res_lists.io_head = ctrl->io_head; 1677 res_lists.mem_head = ctrl->mem_head; 1678 res_lists.p_mem_head = ctrl->p_mem_head; 1679 res_lists.bus_head = ctrl->bus_head; 1680 1681 cpqhp_return_board_resources(func, &res_lists); 1682 1683 ctrl->io_head = res_lists.io_head; 1684 ctrl->mem_head = res_lists.mem_head; 1685 ctrl->p_mem_head = res_lists.p_mem_head; 1686 ctrl->bus_head = res_lists.bus_head; 1687 1688 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1689 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1690 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1691 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1692 1693 if (is_bridge(func)) { 1694 bridge_slot_remove(func); 1695 } else 1696 slot_remove(func); 1697 1698 func = cpqhp_slot_find(ctrl->bus, device, 0); 1699 } 1700 1701 /* Setup slot structure with entry for empty slot */ 1702 func = cpqhp_slot_create(ctrl->bus); 1703 1704 if (func == NULL) 1705 return 1; 1706 1707 func->bus = ctrl->bus; 1708 func->device = device; 1709 func->function = 0; 1710 func->configured = 0; 1711 func->switch_save = 0x10; 1712 func->is_a_board = 0; 1713 func->p_task_event = NULL; 1714 } 1715 1716 return 0; 1717 } 1718 1719 static void pushbutton_helper_thread(struct timer_list *t) 1720 { 1721 pushbutton_pending = t; 1722 1723 wake_up_process(cpqhp_event_thread); 1724 } 1725 1726 1727 /* this is the main worker thread */ 1728 static int event_thread(void *data) 1729 { 1730 struct controller *ctrl; 1731 1732 while (1) { 1733 dbg("!!!!event_thread sleeping\n"); 1734 set_current_state(TASK_INTERRUPTIBLE); 1735 schedule(); 1736 1737 if (kthread_should_stop()) 1738 break; 1739 /* Do stuff here */ 1740 if (pushbutton_pending) 1741 cpqhp_pushbutton_thread(pushbutton_pending); 1742 else 1743 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next) 1744 interrupt_event_handler(ctrl); 1745 } 1746 dbg("event_thread signals exit\n"); 1747 return 0; 1748 } 1749 1750 int cpqhp_event_start_thread(void) 1751 { 1752 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1753 if (IS_ERR(cpqhp_event_thread)) { 1754 err("Can't start up our event thread\n"); 1755 return PTR_ERR(cpqhp_event_thread); 1756 } 1757 1758 return 0; 1759 } 1760 1761 1762 void cpqhp_event_stop_thread(void) 1763 { 1764 kthread_stop(cpqhp_event_thread); 1765 } 1766 1767 1768 static void interrupt_event_handler(struct controller *ctrl) 1769 { 1770 int loop = 0; 1771 int change = 1; 1772 struct pci_func *func; 1773 u8 hp_slot; 1774 struct slot *p_slot; 1775 1776 while (change) { 1777 change = 0; 1778 1779 for (loop = 0; loop < 10; loop++) { 1780 /* dbg("loop %d\n", loop); */ 1781 if (ctrl->event_queue[loop].event_type != 0) { 1782 hp_slot = ctrl->event_queue[loop].hp_slot; 1783 1784 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1785 if (!func) 1786 return; 1787 1788 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1789 if (!p_slot) 1790 return; 1791 1792 dbg("hp_slot %d, func %p, p_slot %p\n", 1793 hp_slot, func, p_slot); 1794 1795 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1796 dbg("button pressed\n"); 1797 } else if (ctrl->event_queue[loop].event_type == 1798 INT_BUTTON_CANCEL) { 1799 dbg("button cancel\n"); 1800 del_timer(&p_slot->task_event); 1801 1802 mutex_lock(&ctrl->crit_sect); 1803 1804 if (p_slot->state == BLINKINGOFF_STATE) { 1805 /* slot is on */ 1806 dbg("turn on green LED\n"); 1807 green_LED_on(ctrl, hp_slot); 1808 } else if (p_slot->state == BLINKINGON_STATE) { 1809 /* slot is off */ 1810 dbg("turn off green LED\n"); 1811 green_LED_off(ctrl, hp_slot); 1812 } 1813 1814 info(msg_button_cancel, p_slot->number); 1815 1816 p_slot->state = STATIC_STATE; 1817 1818 amber_LED_off(ctrl, hp_slot); 1819 1820 set_SOGO(ctrl); 1821 1822 /* Wait for SOBS to be unset */ 1823 wait_for_ctrl_irq(ctrl); 1824 1825 mutex_unlock(&ctrl->crit_sect); 1826 } 1827 /*** button Released (No action on press...) */ 1828 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1829 dbg("button release\n"); 1830 1831 if (is_slot_enabled(ctrl, hp_slot)) { 1832 dbg("slot is on\n"); 1833 p_slot->state = BLINKINGOFF_STATE; 1834 info(msg_button_off, p_slot->number); 1835 } else { 1836 dbg("slot is off\n"); 1837 p_slot->state = BLINKINGON_STATE; 1838 info(msg_button_on, p_slot->number); 1839 } 1840 mutex_lock(&ctrl->crit_sect); 1841 1842 dbg("blink green LED and turn off amber\n"); 1843 1844 amber_LED_off(ctrl, hp_slot); 1845 green_LED_blink(ctrl, hp_slot); 1846 1847 set_SOGO(ctrl); 1848 1849 /* Wait for SOBS to be unset */ 1850 wait_for_ctrl_irq(ctrl); 1851 1852 mutex_unlock(&ctrl->crit_sect); 1853 timer_setup(&p_slot->task_event, 1854 pushbutton_helper_thread, 1855 0); 1856 p_slot->hp_slot = hp_slot; 1857 p_slot->ctrl = ctrl; 1858 /* p_slot->physical_slot = physical_slot; */ 1859 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1860 1861 dbg("add_timer p_slot = %p\n", p_slot); 1862 add_timer(&p_slot->task_event); 1863 } 1864 /***********POWER FAULT */ 1865 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1866 dbg("power fault\n"); 1867 } 1868 1869 ctrl->event_queue[loop].event_type = 0; 1870 1871 change = 1; 1872 } 1873 } /* End of FOR loop */ 1874 } 1875 } 1876 1877 1878 /** 1879 * cpqhp_pushbutton_thread - handle pushbutton events 1880 * @slot: target slot (struct) 1881 * 1882 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1883 * Handles all pending events and exits. 1884 */ 1885 void cpqhp_pushbutton_thread(struct timer_list *t) 1886 { 1887 u8 hp_slot; 1888 u8 device; 1889 struct pci_func *func; 1890 struct slot *p_slot = from_timer(p_slot, t, task_event); 1891 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1892 1893 pushbutton_pending = NULL; 1894 hp_slot = p_slot->hp_slot; 1895 1896 device = p_slot->device; 1897 1898 if (is_slot_enabled(ctrl, hp_slot)) { 1899 p_slot->state = POWEROFF_STATE; 1900 /* power Down board */ 1901 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1902 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1903 if (!func) { 1904 dbg("Error! func NULL in %s\n", __func__); 1905 return; 1906 } 1907 1908 if (cpqhp_process_SS(ctrl, func) != 0) { 1909 amber_LED_on(ctrl, hp_slot); 1910 green_LED_on(ctrl, hp_slot); 1911 1912 set_SOGO(ctrl); 1913 1914 /* Wait for SOBS to be unset */ 1915 wait_for_ctrl_irq(ctrl); 1916 } 1917 1918 p_slot->state = STATIC_STATE; 1919 } else { 1920 p_slot->state = POWERON_STATE; 1921 /* slot is off */ 1922 1923 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1924 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1925 if (!func) { 1926 dbg("Error! func NULL in %s\n", __func__); 1927 return; 1928 } 1929 1930 if (ctrl != NULL) { 1931 if (cpqhp_process_SI(ctrl, func) != 0) { 1932 amber_LED_on(ctrl, hp_slot); 1933 green_LED_off(ctrl, hp_slot); 1934 1935 set_SOGO(ctrl); 1936 1937 /* Wait for SOBS to be unset */ 1938 wait_for_ctrl_irq(ctrl); 1939 } 1940 } 1941 1942 p_slot->state = STATIC_STATE; 1943 } 1944 } 1945 1946 1947 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1948 { 1949 u8 device, hp_slot; 1950 u16 temp_word; 1951 u32 tempdword; 1952 int rc; 1953 struct slot *p_slot; 1954 int physical_slot = 0; 1955 1956 tempdword = 0; 1957 1958 device = func->device; 1959 hp_slot = device - ctrl->slot_device_offset; 1960 p_slot = cpqhp_find_slot(ctrl, device); 1961 if (p_slot) 1962 physical_slot = p_slot->number; 1963 1964 /* Check to see if the interlock is closed */ 1965 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 1966 1967 if (tempdword & (0x01 << hp_slot)) 1968 return 1; 1969 1970 if (func->is_a_board) { 1971 rc = board_replaced(func, ctrl); 1972 } else { 1973 /* add board */ 1974 slot_remove(func); 1975 1976 func = cpqhp_slot_create(ctrl->bus); 1977 if (func == NULL) 1978 return 1; 1979 1980 func->bus = ctrl->bus; 1981 func->device = device; 1982 func->function = 0; 1983 func->configured = 0; 1984 func->is_a_board = 1; 1985 1986 /* We have to save the presence info for these slots */ 1987 temp_word = ctrl->ctrl_int_comp >> 16; 1988 func->presence_save = (temp_word >> hp_slot) & 0x01; 1989 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 1990 1991 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 1992 func->switch_save = 0; 1993 } else { 1994 func->switch_save = 0x10; 1995 } 1996 1997 rc = board_added(func, ctrl); 1998 if (rc) { 1999 if (is_bridge(func)) { 2000 bridge_slot_remove(func); 2001 } else 2002 slot_remove(func); 2003 2004 /* Setup slot structure with entry for empty slot */ 2005 func = cpqhp_slot_create(ctrl->bus); 2006 2007 if (func == NULL) 2008 return 1; 2009 2010 func->bus = ctrl->bus; 2011 func->device = device; 2012 func->function = 0; 2013 func->configured = 0; 2014 func->is_a_board = 0; 2015 2016 /* We have to save the presence info for these slots */ 2017 temp_word = ctrl->ctrl_int_comp >> 16; 2018 func->presence_save = (temp_word >> hp_slot) & 0x01; 2019 func->presence_save |= 2020 (temp_word >> (hp_slot + 7)) & 0x02; 2021 2022 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2023 func->switch_save = 0; 2024 } else { 2025 func->switch_save = 0x10; 2026 } 2027 } 2028 } 2029 2030 if (rc) 2031 dbg("%s: rc = %d\n", __func__, rc); 2032 2033 return rc; 2034 } 2035 2036 2037 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2038 { 2039 u8 device, class_code, header_type, BCR; 2040 u8 index = 0; 2041 u8 replace_flag; 2042 u32 rc = 0; 2043 unsigned int devfn; 2044 struct slot *p_slot; 2045 struct pci_bus *pci_bus = ctrl->pci_bus; 2046 int physical_slot = 0; 2047 2048 device = func->device; 2049 func = cpqhp_slot_find(ctrl->bus, device, index++); 2050 p_slot = cpqhp_find_slot(ctrl, device); 2051 if (p_slot) 2052 physical_slot = p_slot->number; 2053 2054 /* Make sure there are no video controllers here */ 2055 while (func && !rc) { 2056 pci_bus->number = func->bus; 2057 devfn = PCI_DEVFN(func->device, func->function); 2058 2059 /* Check the Class Code */ 2060 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2061 if (rc) 2062 return rc; 2063 2064 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2065 /* Display/Video adapter (not supported) */ 2066 rc = REMOVE_NOT_SUPPORTED; 2067 } else { 2068 /* See if it's a bridge */ 2069 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2070 if (rc) 2071 return rc; 2072 2073 /* If it's a bridge, check the VGA Enable bit */ 2074 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2075 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2076 if (rc) 2077 return rc; 2078 2079 /* If the VGA Enable bit is set, remove isn't 2080 * supported */ 2081 if (BCR & PCI_BRIDGE_CTL_VGA) 2082 rc = REMOVE_NOT_SUPPORTED; 2083 } 2084 } 2085 2086 func = cpqhp_slot_find(ctrl->bus, device, index++); 2087 } 2088 2089 func = cpqhp_slot_find(ctrl->bus, device, 0); 2090 if ((func != NULL) && !rc) { 2091 /* FIXME: Replace flag should be passed into process_SS */ 2092 replace_flag = !(ctrl->add_support); 2093 rc = remove_board(func, replace_flag, ctrl); 2094 } else if (!rc) { 2095 rc = 1; 2096 } 2097 2098 return rc; 2099 } 2100 2101 /** 2102 * switch_leds - switch the leds, go from one site to the other. 2103 * @ctrl: controller to use 2104 * @num_of_slots: number of slots to use 2105 * @work_LED: LED control value 2106 * @direction: 1 to start from the left side, 0 to start right. 2107 */ 2108 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2109 u32 *work_LED, const int direction) 2110 { 2111 int loop; 2112 2113 for (loop = 0; loop < num_of_slots; loop++) { 2114 if (direction) 2115 *work_LED = *work_LED >> 1; 2116 else 2117 *work_LED = *work_LED << 1; 2118 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2119 2120 set_SOGO(ctrl); 2121 2122 /* Wait for SOGO interrupt */ 2123 wait_for_ctrl_irq(ctrl); 2124 2125 /* Get ready for next iteration */ 2126 long_delay((2*HZ)/10); 2127 } 2128 } 2129 2130 /** 2131 * cpqhp_hardware_test - runs hardware tests 2132 * @ctrl: target controller 2133 * @test_num: the number written to the "test" file in sysfs. 2134 * 2135 * For hot plug ctrl folks to play with. 2136 */ 2137 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2138 { 2139 u32 save_LED; 2140 u32 work_LED; 2141 int loop; 2142 int num_of_slots; 2143 2144 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2145 2146 switch (test_num) { 2147 case 1: 2148 /* Do stuff here! */ 2149 2150 /* Do that funky LED thing */ 2151 /* so we can restore them later */ 2152 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2153 work_LED = 0x01010101; 2154 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2155 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2156 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2157 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2158 2159 work_LED = 0x01010000; 2160 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2161 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2162 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2163 work_LED = 0x00000101; 2164 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2165 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2166 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2167 2168 work_LED = 0x01010000; 2169 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2170 for (loop = 0; loop < num_of_slots; loop++) { 2171 set_SOGO(ctrl); 2172 2173 /* Wait for SOGO interrupt */ 2174 wait_for_ctrl_irq(ctrl); 2175 2176 /* Get ready for next iteration */ 2177 long_delay((3*HZ)/10); 2178 work_LED = work_LED >> 16; 2179 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2180 2181 set_SOGO(ctrl); 2182 2183 /* Wait for SOGO interrupt */ 2184 wait_for_ctrl_irq(ctrl); 2185 2186 /* Get ready for next iteration */ 2187 long_delay((3*HZ)/10); 2188 work_LED = work_LED << 16; 2189 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2190 work_LED = work_LED << 1; 2191 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2192 } 2193 2194 /* put it back the way it was */ 2195 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2196 2197 set_SOGO(ctrl); 2198 2199 /* Wait for SOBS to be unset */ 2200 wait_for_ctrl_irq(ctrl); 2201 break; 2202 case 2: 2203 /* Do other stuff here! */ 2204 break; 2205 case 3: 2206 /* and more... */ 2207 break; 2208 } 2209 return 0; 2210 } 2211 2212 2213 /** 2214 * configure_new_device - Configures the PCI header information of one board. 2215 * @ctrl: pointer to controller structure 2216 * @func: pointer to function structure 2217 * @behind_bridge: 1 if this is a recursive call, 0 if not 2218 * @resources: pointer to set of resource lists 2219 * 2220 * Returns 0 if success. 2221 */ 2222 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 2223 u8 behind_bridge, struct resource_lists *resources) 2224 { 2225 u8 temp_byte, function, max_functions, stop_it; 2226 int rc; 2227 u32 ID; 2228 struct pci_func *new_slot; 2229 int index; 2230 2231 new_slot = func; 2232 2233 dbg("%s\n", __func__); 2234 /* Check for Multi-function device */ 2235 ctrl->pci_bus->number = func->bus; 2236 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2237 if (rc) { 2238 dbg("%s: rc = %d\n", __func__, rc); 2239 return rc; 2240 } 2241 2242 if (temp_byte & 0x80) /* Multi-function device */ 2243 max_functions = 8; 2244 else 2245 max_functions = 1; 2246 2247 function = 0; 2248 2249 do { 2250 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2251 2252 if (rc) { 2253 dbg("configure_new_function failed %d\n", rc); 2254 index = 0; 2255 2256 while (new_slot) { 2257 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2258 2259 if (new_slot) 2260 cpqhp_return_board_resources(new_slot, resources); 2261 } 2262 2263 return rc; 2264 } 2265 2266 function++; 2267 2268 stop_it = 0; 2269 2270 /* The following loop skips to the next present function 2271 * and creates a board structure */ 2272 2273 while ((function < max_functions) && (!stop_it)) { 2274 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2275 2276 if (ID == 0xFFFFFFFF) { 2277 function++; 2278 } else { 2279 /* Setup slot structure. */ 2280 new_slot = cpqhp_slot_create(func->bus); 2281 2282 if (new_slot == NULL) 2283 return 1; 2284 2285 new_slot->bus = func->bus; 2286 new_slot->device = func->device; 2287 new_slot->function = function; 2288 new_slot->is_a_board = 1; 2289 new_slot->status = 0; 2290 2291 stop_it++; 2292 } 2293 } 2294 2295 } while (function < max_functions); 2296 dbg("returning from configure_new_device\n"); 2297 2298 return 0; 2299 } 2300 2301 2302 /* 2303 * Configuration logic that involves the hotplug data structures and 2304 * their bookkeeping 2305 */ 2306 2307 2308 /** 2309 * configure_new_function - Configures the PCI header information of one device 2310 * @ctrl: pointer to controller structure 2311 * @func: pointer to function structure 2312 * @behind_bridge: 1 if this is a recursive call, 0 if not 2313 * @resources: pointer to set of resource lists 2314 * 2315 * Calls itself recursively for bridged devices. 2316 * Returns 0 if success. 2317 */ 2318 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2319 u8 behind_bridge, 2320 struct resource_lists *resources) 2321 { 2322 int cloop; 2323 u8 IRQ = 0; 2324 u8 temp_byte; 2325 u8 device; 2326 u8 class_code; 2327 u16 command; 2328 u16 temp_word; 2329 u32 temp_dword; 2330 u32 rc; 2331 u32 temp_register; 2332 u32 base; 2333 u32 ID; 2334 unsigned int devfn; 2335 struct pci_resource *mem_node; 2336 struct pci_resource *p_mem_node; 2337 struct pci_resource *io_node; 2338 struct pci_resource *bus_node; 2339 struct pci_resource *hold_mem_node; 2340 struct pci_resource *hold_p_mem_node; 2341 struct pci_resource *hold_IO_node; 2342 struct pci_resource *hold_bus_node; 2343 struct irq_mapping irqs; 2344 struct pci_func *new_slot; 2345 struct pci_bus *pci_bus; 2346 struct resource_lists temp_resources; 2347 2348 pci_bus = ctrl->pci_bus; 2349 pci_bus->number = func->bus; 2350 devfn = PCI_DEVFN(func->device, func->function); 2351 2352 /* Check for Bridge */ 2353 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2354 if (rc) 2355 return rc; 2356 2357 if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { 2358 /* set Primary bus */ 2359 dbg("set Primary bus = %d\n", func->bus); 2360 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2361 if (rc) 2362 return rc; 2363 2364 /* find range of buses to use */ 2365 dbg("find ranges of buses to use\n"); 2366 bus_node = get_max_resource(&(resources->bus_head), 1); 2367 2368 /* If we don't have any buses to allocate, we can't continue */ 2369 if (!bus_node) 2370 return -ENOMEM; 2371 2372 /* set Secondary bus */ 2373 temp_byte = bus_node->base; 2374 dbg("set Secondary bus = %d\n", bus_node->base); 2375 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2376 if (rc) 2377 return rc; 2378 2379 /* set subordinate bus */ 2380 temp_byte = bus_node->base + bus_node->length - 1; 2381 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2382 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2383 if (rc) 2384 return rc; 2385 2386 /* set subordinate Latency Timer and base Latency Timer */ 2387 temp_byte = 0x40; 2388 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2389 if (rc) 2390 return rc; 2391 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2392 if (rc) 2393 return rc; 2394 2395 /* set Cache Line size */ 2396 temp_byte = 0x08; 2397 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2398 if (rc) 2399 return rc; 2400 2401 /* Setup the IO, memory, and prefetchable windows */ 2402 io_node = get_max_resource(&(resources->io_head), 0x1000); 2403 if (!io_node) 2404 return -ENOMEM; 2405 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2406 if (!mem_node) 2407 return -ENOMEM; 2408 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2409 if (!p_mem_node) 2410 return -ENOMEM; 2411 dbg("Setup the IO, memory, and prefetchable windows\n"); 2412 dbg("io_node\n"); 2413 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2414 io_node->length, io_node->next); 2415 dbg("mem_node\n"); 2416 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2417 mem_node->length, mem_node->next); 2418 dbg("p_mem_node\n"); 2419 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2420 p_mem_node->length, p_mem_node->next); 2421 2422 /* set up the IRQ info */ 2423 if (!resources->irqs) { 2424 irqs.barber_pole = 0; 2425 irqs.interrupt[0] = 0; 2426 irqs.interrupt[1] = 0; 2427 irqs.interrupt[2] = 0; 2428 irqs.interrupt[3] = 0; 2429 irqs.valid_INT = 0; 2430 } else { 2431 irqs.barber_pole = resources->irqs->barber_pole; 2432 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2433 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2434 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2435 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2436 irqs.valid_INT = resources->irqs->valid_INT; 2437 } 2438 2439 /* set up resource lists that are now aligned on top and bottom 2440 * for anything behind the bridge. */ 2441 temp_resources.bus_head = bus_node; 2442 temp_resources.io_head = io_node; 2443 temp_resources.mem_head = mem_node; 2444 temp_resources.p_mem_head = p_mem_node; 2445 temp_resources.irqs = &irqs; 2446 2447 /* Make copies of the nodes we are going to pass down so that 2448 * if there is a problem,we can just use these to free resources 2449 */ 2450 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2451 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2452 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2453 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2454 2455 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2456 kfree(hold_bus_node); 2457 kfree(hold_IO_node); 2458 kfree(hold_mem_node); 2459 kfree(hold_p_mem_node); 2460 2461 return 1; 2462 } 2463 2464 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2465 2466 bus_node->base += 1; 2467 bus_node->length -= 1; 2468 bus_node->next = NULL; 2469 2470 /* If we have IO resources copy them and fill in the bridge's 2471 * IO range registers */ 2472 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2473 io_node->next = NULL; 2474 2475 /* set IO base and Limit registers */ 2476 temp_byte = io_node->base >> 8; 2477 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2478 2479 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2480 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2481 2482 /* Copy the memory resources and fill in the bridge's memory 2483 * range registers. 2484 */ 2485 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2486 mem_node->next = NULL; 2487 2488 /* set Mem base and Limit registers */ 2489 temp_word = mem_node->base >> 16; 2490 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2491 2492 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2493 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2494 2495 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2496 p_mem_node->next = NULL; 2497 2498 /* set Pre Mem base and Limit registers */ 2499 temp_word = p_mem_node->base >> 16; 2500 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2501 2502 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2503 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2504 2505 /* Adjust this to compensate for extra adjustment in first loop 2506 */ 2507 irqs.barber_pole--; 2508 2509 rc = 0; 2510 2511 /* Here we actually find the devices and configure them */ 2512 for (device = 0; (device <= 0x1F) && !rc; device++) { 2513 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2514 2515 ID = 0xFFFFFFFF; 2516 pci_bus->number = hold_bus_node->base; 2517 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2518 pci_bus->number = func->bus; 2519 2520 if (ID != 0xFFFFFFFF) { /* device present */ 2521 /* Setup slot structure. */ 2522 new_slot = cpqhp_slot_create(hold_bus_node->base); 2523 2524 if (new_slot == NULL) { 2525 rc = -ENOMEM; 2526 continue; 2527 } 2528 2529 new_slot->bus = hold_bus_node->base; 2530 new_slot->device = device; 2531 new_slot->function = 0; 2532 new_slot->is_a_board = 1; 2533 new_slot->status = 0; 2534 2535 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2536 dbg("configure_new_device rc=0x%x\n", rc); 2537 } /* End of IF (device in slot?) */ 2538 } /* End of FOR loop */ 2539 2540 if (rc) 2541 goto free_and_out; 2542 /* save the interrupt routing information */ 2543 if (resources->irqs) { 2544 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2545 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2546 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2547 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2548 resources->irqs->valid_INT = irqs.valid_INT; 2549 } else if (!behind_bridge) { 2550 /* We need to hook up the interrupts here */ 2551 for (cloop = 0; cloop < 4; cloop++) { 2552 if (irqs.valid_INT & (0x01 << cloop)) { 2553 rc = cpqhp_set_irq(func->bus, func->device, 2554 cloop + 1, irqs.interrupt[cloop]); 2555 if (rc) 2556 goto free_and_out; 2557 } 2558 } /* end of for loop */ 2559 } 2560 /* Return unused bus resources 2561 * First use the temporary node to store information for 2562 * the board */ 2563 if (bus_node && temp_resources.bus_head) { 2564 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2565 2566 hold_bus_node->next = func->bus_head; 2567 func->bus_head = hold_bus_node; 2568 2569 temp_byte = temp_resources.bus_head->base - 1; 2570 2571 /* set subordinate bus */ 2572 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2573 2574 if (temp_resources.bus_head->length == 0) { 2575 kfree(temp_resources.bus_head); 2576 temp_resources.bus_head = NULL; 2577 } else { 2578 return_resource(&(resources->bus_head), temp_resources.bus_head); 2579 } 2580 } 2581 2582 /* If we have IO space available and there is some left, 2583 * return the unused portion */ 2584 if (hold_IO_node && temp_resources.io_head) { 2585 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2586 &hold_IO_node, 0x1000); 2587 2588 /* Check if we were able to split something off */ 2589 if (io_node) { 2590 hold_IO_node->base = io_node->base + io_node->length; 2591 2592 temp_byte = (hold_IO_node->base) >> 8; 2593 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2594 2595 return_resource(&(resources->io_head), io_node); 2596 } 2597 2598 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2599 2600 /* Check if we were able to split something off */ 2601 if (io_node) { 2602 /* First use the temporary node to store 2603 * information for the board */ 2604 hold_IO_node->length = io_node->base - hold_IO_node->base; 2605 2606 /* If we used any, add it to the board's list */ 2607 if (hold_IO_node->length) { 2608 hold_IO_node->next = func->io_head; 2609 func->io_head = hold_IO_node; 2610 2611 temp_byte = (io_node->base - 1) >> 8; 2612 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2613 2614 return_resource(&(resources->io_head), io_node); 2615 } else { 2616 /* it doesn't need any IO */ 2617 temp_word = 0x0000; 2618 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2619 2620 return_resource(&(resources->io_head), io_node); 2621 kfree(hold_IO_node); 2622 } 2623 } else { 2624 /* it used most of the range */ 2625 hold_IO_node->next = func->io_head; 2626 func->io_head = hold_IO_node; 2627 } 2628 } else if (hold_IO_node) { 2629 /* it used the whole range */ 2630 hold_IO_node->next = func->io_head; 2631 func->io_head = hold_IO_node; 2632 } 2633 /* If we have memory space available and there is some left, 2634 * return the unused portion */ 2635 if (hold_mem_node && temp_resources.mem_head) { 2636 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2637 &hold_mem_node, 0x100000); 2638 2639 /* Check if we were able to split something off */ 2640 if (mem_node) { 2641 hold_mem_node->base = mem_node->base + mem_node->length; 2642 2643 temp_word = (hold_mem_node->base) >> 16; 2644 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2645 2646 return_resource(&(resources->mem_head), mem_node); 2647 } 2648 2649 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2650 2651 /* Check if we were able to split something off */ 2652 if (mem_node) { 2653 /* First use the temporary node to store 2654 * information for the board */ 2655 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2656 2657 if (hold_mem_node->length) { 2658 hold_mem_node->next = func->mem_head; 2659 func->mem_head = hold_mem_node; 2660 2661 /* configure end address */ 2662 temp_word = (mem_node->base - 1) >> 16; 2663 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2664 2665 /* Return unused resources to the pool */ 2666 return_resource(&(resources->mem_head), mem_node); 2667 } else { 2668 /* it doesn't need any Mem */ 2669 temp_word = 0x0000; 2670 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2671 2672 return_resource(&(resources->mem_head), mem_node); 2673 kfree(hold_mem_node); 2674 } 2675 } else { 2676 /* it used most of the range */ 2677 hold_mem_node->next = func->mem_head; 2678 func->mem_head = hold_mem_node; 2679 } 2680 } else if (hold_mem_node) { 2681 /* it used the whole range */ 2682 hold_mem_node->next = func->mem_head; 2683 func->mem_head = hold_mem_node; 2684 } 2685 /* If we have prefetchable memory space available and there 2686 * is some left at the end, return the unused portion */ 2687 if (temp_resources.p_mem_head) { 2688 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2689 &hold_p_mem_node, 0x100000); 2690 2691 /* Check if we were able to split something off */ 2692 if (p_mem_node) { 2693 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2694 2695 temp_word = (hold_p_mem_node->base) >> 16; 2696 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2697 2698 return_resource(&(resources->p_mem_head), p_mem_node); 2699 } 2700 2701 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2702 2703 /* Check if we were able to split something off */ 2704 if (p_mem_node) { 2705 /* First use the temporary node to store 2706 * information for the board */ 2707 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2708 2709 /* If we used any, add it to the board's list */ 2710 if (hold_p_mem_node->length) { 2711 hold_p_mem_node->next = func->p_mem_head; 2712 func->p_mem_head = hold_p_mem_node; 2713 2714 temp_word = (p_mem_node->base - 1) >> 16; 2715 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2716 2717 return_resource(&(resources->p_mem_head), p_mem_node); 2718 } else { 2719 /* it doesn't need any PMem */ 2720 temp_word = 0x0000; 2721 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2722 2723 return_resource(&(resources->p_mem_head), p_mem_node); 2724 kfree(hold_p_mem_node); 2725 } 2726 } else { 2727 /* it used the most of the range */ 2728 hold_p_mem_node->next = func->p_mem_head; 2729 func->p_mem_head = hold_p_mem_node; 2730 } 2731 } else if (hold_p_mem_node) { 2732 /* it used the whole range */ 2733 hold_p_mem_node->next = func->p_mem_head; 2734 func->p_mem_head = hold_p_mem_node; 2735 } 2736 /* We should be configuring an IRQ and the bridge's base address 2737 * registers if it needs them. Although we have never seen such 2738 * a device */ 2739 2740 /* enable card */ 2741 command = 0x0157; /* = PCI_COMMAND_IO | 2742 * PCI_COMMAND_MEMORY | 2743 * PCI_COMMAND_MASTER | 2744 * PCI_COMMAND_INVALIDATE | 2745 * PCI_COMMAND_PARITY | 2746 * PCI_COMMAND_SERR */ 2747 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); 2748 2749 /* set Bridge Control Register */ 2750 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2751 * PCI_BRIDGE_CTL_SERR | 2752 * PCI_BRIDGE_CTL_NO_ISA */ 2753 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2754 } else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) { 2755 /* Standard device */ 2756 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2757 2758 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2759 /* Display (video) adapter (not supported) */ 2760 return DEVICE_TYPE_NOT_SUPPORTED; 2761 } 2762 /* Figure out IO and memory needs */ 2763 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2764 temp_register = 0xFFFFFFFF; 2765 2766 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2767 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 2768 2769 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); 2770 dbg("CND: base = 0x%x\n", temp_register); 2771 2772 if (temp_register) { /* If this register is implemented */ 2773 if ((temp_register & 0x03L) == 0x01) { 2774 /* Map IO */ 2775 2776 /* set base = amount of IO space */ 2777 base = temp_register & 0xFFFFFFFC; 2778 base = ~base + 1; 2779 2780 dbg("CND: length = 0x%x\n", base); 2781 io_node = get_io_resource(&(resources->io_head), base); 2782 if (!io_node) 2783 return -ENOMEM; 2784 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2785 io_node->base, io_node->length, io_node->next); 2786 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2787 2788 /* allocate the resource to the board */ 2789 base = io_node->base; 2790 io_node->next = func->io_head; 2791 func->io_head = io_node; 2792 } else if ((temp_register & 0x0BL) == 0x08) { 2793 /* Map prefetchable memory */ 2794 base = temp_register & 0xFFFFFFF0; 2795 base = ~base + 1; 2796 2797 dbg("CND: length = 0x%x\n", base); 2798 p_mem_node = get_resource(&(resources->p_mem_head), base); 2799 2800 /* allocate the resource to the board */ 2801 if (p_mem_node) { 2802 base = p_mem_node->base; 2803 2804 p_mem_node->next = func->p_mem_head; 2805 func->p_mem_head = p_mem_node; 2806 } else 2807 return -ENOMEM; 2808 } else if ((temp_register & 0x0BL) == 0x00) { 2809 /* Map memory */ 2810 base = temp_register & 0xFFFFFFF0; 2811 base = ~base + 1; 2812 2813 dbg("CND: length = 0x%x\n", base); 2814 mem_node = get_resource(&(resources->mem_head), base); 2815 2816 /* allocate the resource to the board */ 2817 if (mem_node) { 2818 base = mem_node->base; 2819 2820 mem_node->next = func->mem_head; 2821 func->mem_head = mem_node; 2822 } else 2823 return -ENOMEM; 2824 } else { 2825 /* Reserved bits or requesting space below 1M */ 2826 return NOT_ENOUGH_RESOURCES; 2827 } 2828 2829 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2830 2831 /* Check for 64-bit base */ 2832 if ((temp_register & 0x07L) == 0x04) { 2833 cloop += 4; 2834 2835 /* Upper 32 bits of address always zero 2836 * on today's systems */ 2837 /* FIXME this is probably not true on 2838 * Alpha and ia64??? */ 2839 base = 0; 2840 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2841 } 2842 } 2843 } /* End of base register loop */ 2844 if (cpqhp_legacy_mode) { 2845 /* Figure out which interrupt pin this function uses */ 2846 rc = pci_bus_read_config_byte(pci_bus, devfn, 2847 PCI_INTERRUPT_PIN, &temp_byte); 2848 2849 /* If this function needs an interrupt and we are behind 2850 * a bridge and the pin is tied to something that's 2851 * already mapped, set this one the same */ 2852 if (temp_byte && resources->irqs && 2853 (resources->irqs->valid_INT & 2854 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2855 /* We have to share with something already set up */ 2856 IRQ = resources->irqs->interrupt[(temp_byte + 2857 resources->irqs->barber_pole - 1) & 0x03]; 2858 } else { 2859 /* Program IRQ based on card type */ 2860 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2861 2862 if (class_code == PCI_BASE_CLASS_STORAGE) 2863 IRQ = cpqhp_disk_irq; 2864 else 2865 IRQ = cpqhp_nic_irq; 2866 } 2867 2868 /* IRQ Line */ 2869 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2870 } 2871 2872 if (!behind_bridge) { 2873 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2874 if (rc) 2875 return 1; 2876 } else { 2877 /* TBD - this code may also belong in the other clause 2878 * of this If statement */ 2879 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2880 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2881 } 2882 2883 /* Latency Timer */ 2884 temp_byte = 0x40; 2885 rc = pci_bus_write_config_byte(pci_bus, devfn, 2886 PCI_LATENCY_TIMER, temp_byte); 2887 2888 /* Cache Line size */ 2889 temp_byte = 0x08; 2890 rc = pci_bus_write_config_byte(pci_bus, devfn, 2891 PCI_CACHE_LINE_SIZE, temp_byte); 2892 2893 /* disable ROM base Address */ 2894 temp_dword = 0x00L; 2895 rc = pci_bus_write_config_word(pci_bus, devfn, 2896 PCI_ROM_ADDRESS, temp_dword); 2897 2898 /* enable card */ 2899 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2900 * PCI_COMMAND_MEMORY | 2901 * PCI_COMMAND_MASTER | 2902 * PCI_COMMAND_INVALIDATE | 2903 * PCI_COMMAND_PARITY | 2904 * PCI_COMMAND_SERR */ 2905 rc = pci_bus_write_config_word(pci_bus, devfn, 2906 PCI_COMMAND, temp_word); 2907 } else { /* End of Not-A-Bridge else */ 2908 /* It's some strange type of PCI adapter (Cardbus?) */ 2909 return DEVICE_TYPE_NOT_SUPPORTED; 2910 } 2911 2912 func->configured = 1; 2913 2914 return 0; 2915 free_and_out: 2916 cpqhp_destroy_resource_list(&temp_resources); 2917 2918 return_resource(&(resources->bus_head), hold_bus_node); 2919 return_resource(&(resources->io_head), hold_IO_node); 2920 return_resource(&(resources->mem_head), hold_mem_node); 2921 return_resource(&(resources->p_mem_head), hold_p_mem_node); 2922 return rc; 2923 } 2924