xref: /linux/drivers/pci/hotplug/cpqphp_ctrl.c (revision 722ecdbce68a87de2d9296f91308f44ea900a039)
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3  * Compaq Hot Plug Controller Driver
4  *
5  * Copyright (C) 1995,2001 Compaq Computer Corporation
6  * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
7  * Copyright (C) 2001 IBM Corp.
8  *
9  * All rights reserved.
10  *
11  * Send feedback to <greg@kroah.com>
12  *
13  */
14 
15 #include <linux/module.h>
16 #include <linux/kernel.h>
17 #include <linux/types.h>
18 #include <linux/slab.h>
19 #include <linux/workqueue.h>
20 #include <linux/interrupt.h>
21 #include <linux/delay.h>
22 #include <linux/wait.h>
23 #include <linux/pci.h>
24 #include <linux/pci_hotplug.h>
25 #include <linux/kthread.h>
26 #include "cpqphp.h"
27 
28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func,
29 			u8 behind_bridge, struct resource_lists *resources);
30 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
31 			u8 behind_bridge, struct resource_lists *resources);
32 static void interrupt_event_handler(struct controller *ctrl);
33 
34 
35 static struct task_struct *cpqhp_event_thread;
36 static struct timer_list *pushbutton_pending;	/* = NULL */
37 
38 /* delay is in jiffies to wait for */
39 static void long_delay(int delay)
40 {
41 	/*
42 	 * XXX(hch): if someone is bored please convert all callers
43 	 * to call msleep_interruptible directly.  They really want
44 	 * to specify timeouts in natural units and spend a lot of
45 	 * effort converting them to jiffies..
46 	 */
47 	msleep_interruptible(jiffies_to_msecs(delay));
48 }
49 
50 
51 /* FIXME: The following line needs to be somewhere else... */
52 #define WRONG_BUS_FREQUENCY 0x07
53 static u8 handle_switch_change(u8 change, struct controller *ctrl)
54 {
55 	int hp_slot;
56 	u8 rc = 0;
57 	u16 temp_word;
58 	struct pci_func *func;
59 	struct event_info *taskInfo;
60 
61 	if (!change)
62 		return 0;
63 
64 	/* Switch Change */
65 	dbg("cpqsbd:  Switch interrupt received.\n");
66 
67 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
68 		if (change & (0x1L << hp_slot)) {
69 			/*
70 			 * this one changed.
71 			 */
72 			func = cpqhp_slot_find(ctrl->bus,
73 				(hp_slot + ctrl->slot_device_offset), 0);
74 
75 			/* this is the structure that tells the worker thread
76 			 * what to do
77 			 */
78 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
79 			ctrl->next_event = (ctrl->next_event + 1) % 10;
80 			taskInfo->hp_slot = hp_slot;
81 
82 			rc++;
83 
84 			temp_word = ctrl->ctrl_int_comp >> 16;
85 			func->presence_save = (temp_word >> hp_slot) & 0x01;
86 			func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
87 
88 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
89 				/*
90 				 * Switch opened
91 				 */
92 
93 				func->switch_save = 0;
94 
95 				taskInfo->event_type = INT_SWITCH_OPEN;
96 			} else {
97 				/*
98 				 * Switch closed
99 				 */
100 
101 				func->switch_save = 0x10;
102 
103 				taskInfo->event_type = INT_SWITCH_CLOSE;
104 			}
105 		}
106 	}
107 
108 	return rc;
109 }
110 
111 /**
112  * cpqhp_find_slot - find the struct slot of given device
113  * @ctrl: scan lots of this controller
114  * @device: the device id to find
115  */
116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
117 {
118 	struct slot *slot = ctrl->slot;
119 
120 	while (slot && (slot->device != device))
121 		slot = slot->next;
122 
123 	return slot;
124 }
125 
126 
127 static u8 handle_presence_change(u16 change, struct controller *ctrl)
128 {
129 	int hp_slot;
130 	u8 rc = 0;
131 	u8 temp_byte;
132 	u16 temp_word;
133 	struct pci_func *func;
134 	struct event_info *taskInfo;
135 	struct slot *p_slot;
136 
137 	if (!change)
138 		return 0;
139 
140 	/*
141 	 * Presence Change
142 	 */
143 	dbg("cpqsbd:  Presence/Notify input change.\n");
144 	dbg("         Changed bits are 0x%4.4x\n", change);
145 
146 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
147 		if (change & (0x0101 << hp_slot)) {
148 			/*
149 			 * this one changed.
150 			 */
151 			func = cpqhp_slot_find(ctrl->bus,
152 				(hp_slot + ctrl->slot_device_offset), 0);
153 
154 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
155 			ctrl->next_event = (ctrl->next_event + 1) % 10;
156 			taskInfo->hp_slot = hp_slot;
157 
158 			rc++;
159 
160 			p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
161 			if (!p_slot)
162 				return 0;
163 
164 			/* If the switch closed, must be a button
165 			 * If not in button mode, nevermind
166 			 */
167 			if (func->switch_save && (ctrl->push_button == 1)) {
168 				temp_word = ctrl->ctrl_int_comp >> 16;
169 				temp_byte = (temp_word >> hp_slot) & 0x01;
170 				temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
171 
172 				if (temp_byte != func->presence_save) {
173 					/*
174 					 * button Pressed (doesn't do anything)
175 					 */
176 					dbg("hp_slot %d button pressed\n", hp_slot);
177 					taskInfo->event_type = INT_BUTTON_PRESS;
178 				} else {
179 					/*
180 					 * button Released - TAKE ACTION!!!!
181 					 */
182 					dbg("hp_slot %d button released\n", hp_slot);
183 					taskInfo->event_type = INT_BUTTON_RELEASE;
184 
185 					/* Cancel if we are still blinking */
186 					if ((p_slot->state == BLINKINGON_STATE)
187 					    || (p_slot->state == BLINKINGOFF_STATE)) {
188 						taskInfo->event_type = INT_BUTTON_CANCEL;
189 						dbg("hp_slot %d button cancel\n", hp_slot);
190 					} else if ((p_slot->state == POWERON_STATE)
191 						   || (p_slot->state == POWEROFF_STATE)) {
192 						/* info(msg_button_ignore, p_slot->number); */
193 						taskInfo->event_type = INT_BUTTON_IGNORE;
194 						dbg("hp_slot %d button ignore\n", hp_slot);
195 					}
196 				}
197 			} else {
198 				/* Switch is open, assume a presence change
199 				 * Save the presence state
200 				 */
201 				temp_word = ctrl->ctrl_int_comp >> 16;
202 				func->presence_save = (temp_word >> hp_slot) & 0x01;
203 				func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
204 
205 				if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
206 				    (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
207 					/* Present */
208 					taskInfo->event_type = INT_PRESENCE_ON;
209 				} else {
210 					/* Not Present */
211 					taskInfo->event_type = INT_PRESENCE_OFF;
212 				}
213 			}
214 		}
215 	}
216 
217 	return rc;
218 }
219 
220 
221 static u8 handle_power_fault(u8 change, struct controller *ctrl)
222 {
223 	int hp_slot;
224 	u8 rc = 0;
225 	struct pci_func *func;
226 	struct event_info *taskInfo;
227 
228 	if (!change)
229 		return 0;
230 
231 	/*
232 	 * power fault
233 	 */
234 
235 	info("power fault interrupt\n");
236 
237 	for (hp_slot = 0; hp_slot < 6; hp_slot++) {
238 		if (change & (0x01 << hp_slot)) {
239 			/*
240 			 * this one changed.
241 			 */
242 			func = cpqhp_slot_find(ctrl->bus,
243 				(hp_slot + ctrl->slot_device_offset), 0);
244 
245 			taskInfo = &(ctrl->event_queue[ctrl->next_event]);
246 			ctrl->next_event = (ctrl->next_event + 1) % 10;
247 			taskInfo->hp_slot = hp_slot;
248 
249 			rc++;
250 
251 			if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
252 				/*
253 				 * power fault Cleared
254 				 */
255 				func->status = 0x00;
256 
257 				taskInfo->event_type = INT_POWER_FAULT_CLEAR;
258 			} else {
259 				/*
260 				 * power fault
261 				 */
262 				taskInfo->event_type = INT_POWER_FAULT;
263 
264 				if (ctrl->rev < 4) {
265 					amber_LED_on(ctrl, hp_slot);
266 					green_LED_off(ctrl, hp_slot);
267 					set_SOGO(ctrl);
268 
269 					/* this is a fatal condition, we want
270 					 * to crash the machine to protect from
271 					 * data corruption. simulated_NMI
272 					 * shouldn't ever return */
273 					/* FIXME
274 					simulated_NMI(hp_slot, ctrl); */
275 
276 					/* The following code causes a software
277 					 * crash just in case simulated_NMI did
278 					 * return */
279 					/*FIXME
280 					panic(msg_power_fault); */
281 				} else {
282 					/* set power fault status for this board */
283 					func->status = 0xFF;
284 					info("power fault bit %x set\n", hp_slot);
285 				}
286 			}
287 		}
288 	}
289 
290 	return rc;
291 }
292 
293 
294 /**
295  * sort_by_size - sort nodes on the list by their length, smallest first.
296  * @head: list to sort
297  */
298 static int sort_by_size(struct pci_resource **head)
299 {
300 	struct pci_resource *current_res;
301 	struct pci_resource *next_res;
302 	int out_of_order = 1;
303 
304 	if (!(*head))
305 		return 1;
306 
307 	if (!((*head)->next))
308 		return 0;
309 
310 	while (out_of_order) {
311 		out_of_order = 0;
312 
313 		/* Special case for swapping list head */
314 		if (((*head)->next) &&
315 		    ((*head)->length > (*head)->next->length)) {
316 			out_of_order++;
317 			current_res = *head;
318 			*head = (*head)->next;
319 			current_res->next = (*head)->next;
320 			(*head)->next = current_res;
321 		}
322 
323 		current_res = *head;
324 
325 		while (current_res->next && current_res->next->next) {
326 			if (current_res->next->length > current_res->next->next->length) {
327 				out_of_order++;
328 				next_res = current_res->next;
329 				current_res->next = current_res->next->next;
330 				current_res = current_res->next;
331 				next_res->next = current_res->next;
332 				current_res->next = next_res;
333 			} else
334 				current_res = current_res->next;
335 		}
336 	}  /* End of out_of_order loop */
337 
338 	return 0;
339 }
340 
341 
342 /**
343  * sort_by_max_size - sort nodes on the list by their length, largest first.
344  * @head: list to sort
345  */
346 static int sort_by_max_size(struct pci_resource **head)
347 {
348 	struct pci_resource *current_res;
349 	struct pci_resource *next_res;
350 	int out_of_order = 1;
351 
352 	if (!(*head))
353 		return 1;
354 
355 	if (!((*head)->next))
356 		return 0;
357 
358 	while (out_of_order) {
359 		out_of_order = 0;
360 
361 		/* Special case for swapping list head */
362 		if (((*head)->next) &&
363 		    ((*head)->length < (*head)->next->length)) {
364 			out_of_order++;
365 			current_res = *head;
366 			*head = (*head)->next;
367 			current_res->next = (*head)->next;
368 			(*head)->next = current_res;
369 		}
370 
371 		current_res = *head;
372 
373 		while (current_res->next && current_res->next->next) {
374 			if (current_res->next->length < current_res->next->next->length) {
375 				out_of_order++;
376 				next_res = current_res->next;
377 				current_res->next = current_res->next->next;
378 				current_res = current_res->next;
379 				next_res->next = current_res->next;
380 				current_res->next = next_res;
381 			} else
382 				current_res = current_res->next;
383 		}
384 	}  /* End of out_of_order loop */
385 
386 	return 0;
387 }
388 
389 
390 /**
391  * do_pre_bridge_resource_split - find node of resources that are unused
392  * @head: new list head
393  * @orig_head: original list head
394  * @alignment: max node size (?)
395  */
396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
397 				struct pci_resource **orig_head, u32 alignment)
398 {
399 	struct pci_resource *prevnode = NULL;
400 	struct pci_resource *node;
401 	struct pci_resource *split_node;
402 	u32 rc;
403 	u32 temp_dword;
404 	dbg("do_pre_bridge_resource_split\n");
405 
406 	if (!(*head) || !(*orig_head))
407 		return NULL;
408 
409 	rc = cpqhp_resource_sort_and_combine(head);
410 
411 	if (rc)
412 		return NULL;
413 
414 	if ((*head)->base != (*orig_head)->base)
415 		return NULL;
416 
417 	if ((*head)->length == (*orig_head)->length)
418 		return NULL;
419 
420 
421 	/* If we got here, there the bridge requires some of the resource, but
422 	 * we may be able to split some off of the front
423 	 */
424 
425 	node = *head;
426 
427 	if (node->length & (alignment - 1)) {
428 		/* this one isn't an aligned length, so we'll make a new entry
429 		 * and split it up.
430 		 */
431 		split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
432 
433 		if (!split_node)
434 			return NULL;
435 
436 		temp_dword = (node->length | (alignment-1)) + 1 - alignment;
437 
438 		split_node->base = node->base;
439 		split_node->length = temp_dword;
440 
441 		node->length -= temp_dword;
442 		node->base += split_node->length;
443 
444 		/* Put it in the list */
445 		*head = split_node;
446 		split_node->next = node;
447 	}
448 
449 	if (node->length < alignment)
450 		return NULL;
451 
452 	/* Now unlink it */
453 	if (*head == node) {
454 		*head = node->next;
455 	} else {
456 		prevnode = *head;
457 		while (prevnode->next != node)
458 			prevnode = prevnode->next;
459 
460 		prevnode->next = node->next;
461 	}
462 	node->next = NULL;
463 
464 	return node;
465 }
466 
467 
468 /**
469  * do_bridge_resource_split - find one node of resources that aren't in use
470  * @head: list head
471  * @alignment: max node size (?)
472  */
473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
474 {
475 	struct pci_resource *prevnode = NULL;
476 	struct pci_resource *node;
477 	u32 rc;
478 	u32 temp_dword;
479 
480 	rc = cpqhp_resource_sort_and_combine(head);
481 
482 	if (rc)
483 		return NULL;
484 
485 	node = *head;
486 
487 	while (node->next) {
488 		prevnode = node;
489 		node = node->next;
490 		kfree(prevnode);
491 	}
492 
493 	if (node->length < alignment)
494 		goto error;
495 
496 	if (node->base & (alignment - 1)) {
497 		/* Short circuit if adjusted size is too small */
498 		temp_dword = (node->base | (alignment-1)) + 1;
499 		if ((node->length - (temp_dword - node->base)) < alignment)
500 			goto error;
501 
502 		node->length -= (temp_dword - node->base);
503 		node->base = temp_dword;
504 	}
505 
506 	if (node->length & (alignment - 1))
507 		/* There's stuff in use after this node */
508 		goto error;
509 
510 	return node;
511 error:
512 	kfree(node);
513 	return NULL;
514 }
515 
516 
517 /**
518  * get_io_resource - find first node of given size not in ISA aliasing window.
519  * @head: list to search
520  * @size: size of node to find, must be a power of two.
521  *
522  * Description: This function sorts the resource list by size and then
523  * returns the first node of "size" length that is not in the ISA aliasing
524  * window.  If it finds a node larger than "size" it will split it up.
525  */
526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
527 {
528 	struct pci_resource *prevnode;
529 	struct pci_resource *node;
530 	struct pci_resource *split_node;
531 	u32 temp_dword;
532 
533 	if (!(*head))
534 		return NULL;
535 
536 	if (cpqhp_resource_sort_and_combine(head))
537 		return NULL;
538 
539 	if (sort_by_size(head))
540 		return NULL;
541 
542 	for (node = *head; node; node = node->next) {
543 		if (node->length < size)
544 			continue;
545 
546 		if (node->base & (size - 1)) {
547 			/* this one isn't base aligned properly
548 			 * so we'll make a new entry and split it up
549 			 */
550 			temp_dword = (node->base | (size-1)) + 1;
551 
552 			/* Short circuit if adjusted size is too small */
553 			if ((node->length - (temp_dword - node->base)) < size)
554 				continue;
555 
556 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
557 
558 			if (!split_node)
559 				return NULL;
560 
561 			split_node->base = node->base;
562 			split_node->length = temp_dword - node->base;
563 			node->base = temp_dword;
564 			node->length -= split_node->length;
565 
566 			/* Put it in the list */
567 			split_node->next = node->next;
568 			node->next = split_node;
569 		} /* End of non-aligned base */
570 
571 		/* Don't need to check if too small since we already did */
572 		if (node->length > size) {
573 			/* this one is longer than we need
574 			 * so we'll make a new entry and split it up
575 			 */
576 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
577 
578 			if (!split_node)
579 				return NULL;
580 
581 			split_node->base = node->base + size;
582 			split_node->length = node->length - size;
583 			node->length = size;
584 
585 			/* Put it in the list */
586 			split_node->next = node->next;
587 			node->next = split_node;
588 		}  /* End of too big on top end */
589 
590 		/* For IO make sure it's not in the ISA aliasing space */
591 		if (node->base & 0x300L)
592 			continue;
593 
594 		/* If we got here, then it is the right size
595 		 * Now take it out of the list and break
596 		 */
597 		if (*head == node) {
598 			*head = node->next;
599 		} else {
600 			prevnode = *head;
601 			while (prevnode->next != node)
602 				prevnode = prevnode->next;
603 
604 			prevnode->next = node->next;
605 		}
606 		node->next = NULL;
607 		break;
608 	}
609 
610 	return node;
611 }
612 
613 
614 /**
615  * get_max_resource - get largest node which has at least the given size.
616  * @head: the list to search the node in
617  * @size: the minimum size of the node to find
618  *
619  * Description: Gets the largest node that is at least "size" big from the
620  * list pointed to by head.  It aligns the node on top and bottom
621  * to "size" alignment before returning it.
622  */
623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
624 {
625 	struct pci_resource *max;
626 	struct pci_resource *temp;
627 	struct pci_resource *split_node;
628 	u32 temp_dword;
629 
630 	if (cpqhp_resource_sort_and_combine(head))
631 		return NULL;
632 
633 	if (sort_by_max_size(head))
634 		return NULL;
635 
636 	for (max = *head; max; max = max->next) {
637 		/* If not big enough we could probably just bail,
638 		 * instead we'll continue to the next.
639 		 */
640 		if (max->length < size)
641 			continue;
642 
643 		if (max->base & (size - 1)) {
644 			/* this one isn't base aligned properly
645 			 * so we'll make a new entry and split it up
646 			 */
647 			temp_dword = (max->base | (size-1)) + 1;
648 
649 			/* Short circuit if adjusted size is too small */
650 			if ((max->length - (temp_dword - max->base)) < size)
651 				continue;
652 
653 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
654 
655 			if (!split_node)
656 				return NULL;
657 
658 			split_node->base = max->base;
659 			split_node->length = temp_dword - max->base;
660 			max->base = temp_dword;
661 			max->length -= split_node->length;
662 
663 			split_node->next = max->next;
664 			max->next = split_node;
665 		}
666 
667 		if ((max->base + max->length) & (size - 1)) {
668 			/* this one isn't end aligned properly at the top
669 			 * so we'll make a new entry and split it up
670 			 */
671 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
672 
673 			if (!split_node)
674 				return NULL;
675 			temp_dword = ((max->base + max->length) & ~(size - 1));
676 			split_node->base = temp_dword;
677 			split_node->length = max->length + max->base
678 					     - split_node->base;
679 			max->length -= split_node->length;
680 
681 			split_node->next = max->next;
682 			max->next = split_node;
683 		}
684 
685 		/* Make sure it didn't shrink too much when we aligned it */
686 		if (max->length < size)
687 			continue;
688 
689 		/* Now take it out of the list */
690 		temp = *head;
691 		if (temp == max) {
692 			*head = max->next;
693 		} else {
694 			while (temp && temp->next != max)
695 				temp = temp->next;
696 
697 			if (temp)
698 				temp->next = max->next;
699 		}
700 
701 		max->next = NULL;
702 		break;
703 	}
704 
705 	return max;
706 }
707 
708 
709 /**
710  * get_resource - find resource of given size and split up larger ones.
711  * @head: the list to search for resources
712  * @size: the size limit to use
713  *
714  * Description: This function sorts the resource list by size and then
715  * returns the first node of "size" length.  If it finds a node
716  * larger than "size" it will split it up.
717  *
718  * size must be a power of two.
719  */
720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
721 {
722 	struct pci_resource *prevnode;
723 	struct pci_resource *node;
724 	struct pci_resource *split_node;
725 	u32 temp_dword;
726 
727 	if (cpqhp_resource_sort_and_combine(head))
728 		return NULL;
729 
730 	if (sort_by_size(head))
731 		return NULL;
732 
733 	for (node = *head; node; node = node->next) {
734 		dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
735 		    __func__, size, node, node->base, node->length);
736 		if (node->length < size)
737 			continue;
738 
739 		if (node->base & (size - 1)) {
740 			dbg("%s: not aligned\n", __func__);
741 			/* this one isn't base aligned properly
742 			 * so we'll make a new entry and split it up
743 			 */
744 			temp_dword = (node->base | (size-1)) + 1;
745 
746 			/* Short circuit if adjusted size is too small */
747 			if ((node->length - (temp_dword - node->base)) < size)
748 				continue;
749 
750 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
751 
752 			if (!split_node)
753 				return NULL;
754 
755 			split_node->base = node->base;
756 			split_node->length = temp_dword - node->base;
757 			node->base = temp_dword;
758 			node->length -= split_node->length;
759 
760 			split_node->next = node->next;
761 			node->next = split_node;
762 		} /* End of non-aligned base */
763 
764 		/* Don't need to check if too small since we already did */
765 		if (node->length > size) {
766 			dbg("%s: too big\n", __func__);
767 			/* this one is longer than we need
768 			 * so we'll make a new entry and split it up
769 			 */
770 			split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
771 
772 			if (!split_node)
773 				return NULL;
774 
775 			split_node->base = node->base + size;
776 			split_node->length = node->length - size;
777 			node->length = size;
778 
779 			/* Put it in the list */
780 			split_node->next = node->next;
781 			node->next = split_node;
782 		}  /* End of too big on top end */
783 
784 		dbg("%s: got one!!!\n", __func__);
785 		/* If we got here, then it is the right size
786 		 * Now take it out of the list */
787 		if (*head == node) {
788 			*head = node->next;
789 		} else {
790 			prevnode = *head;
791 			while (prevnode->next != node)
792 				prevnode = prevnode->next;
793 
794 			prevnode->next = node->next;
795 		}
796 		node->next = NULL;
797 		break;
798 	}
799 	return node;
800 }
801 
802 
803 /**
804  * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up
805  * @head: the list to sort and clean up
806  *
807  * Description: Sorts all of the nodes in the list in ascending order by
808  * their base addresses.  Also does garbage collection by
809  * combining adjacent nodes.
810  *
811  * Returns %0 if success.
812  */
813 int cpqhp_resource_sort_and_combine(struct pci_resource **head)
814 {
815 	struct pci_resource *node1;
816 	struct pci_resource *node2;
817 	int out_of_order = 1;
818 
819 	dbg("%s: head = %p, *head = %p\n", __func__, head, *head);
820 
821 	if (!(*head))
822 		return 1;
823 
824 	dbg("*head->next = %p\n", (*head)->next);
825 
826 	if (!(*head)->next)
827 		return 0;	/* only one item on the list, already sorted! */
828 
829 	dbg("*head->base = 0x%x\n", (*head)->base);
830 	dbg("*head->next->base = 0x%x\n", (*head)->next->base);
831 	while (out_of_order) {
832 		out_of_order = 0;
833 
834 		/* Special case for swapping list head */
835 		if (((*head)->next) &&
836 		    ((*head)->base > (*head)->next->base)) {
837 			node1 = *head;
838 			(*head) = (*head)->next;
839 			node1->next = (*head)->next;
840 			(*head)->next = node1;
841 			out_of_order++;
842 		}
843 
844 		node1 = (*head);
845 
846 		while (node1->next && node1->next->next) {
847 			if (node1->next->base > node1->next->next->base) {
848 				out_of_order++;
849 				node2 = node1->next;
850 				node1->next = node1->next->next;
851 				node1 = node1->next;
852 				node2->next = node1->next;
853 				node1->next = node2;
854 			} else
855 				node1 = node1->next;
856 		}
857 	}  /* End of out_of_order loop */
858 
859 	node1 = *head;
860 
861 	while (node1 && node1->next) {
862 		if ((node1->base + node1->length) == node1->next->base) {
863 			/* Combine */
864 			dbg("8..\n");
865 			node1->length += node1->next->length;
866 			node2 = node1->next;
867 			node1->next = node1->next->next;
868 			kfree(node2);
869 		} else
870 			node1 = node1->next;
871 	}
872 
873 	return 0;
874 }
875 
876 
877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
878 {
879 	struct controller *ctrl = data;
880 	u8 schedule_flag = 0;
881 	u8 reset;
882 	u16 misc;
883 	u32 Diff;
884 
885 
886 	misc = readw(ctrl->hpc_reg + MISC);
887 	/*
888 	 * Check to see if it was our interrupt
889 	 */
890 	if (!(misc & 0x000C))
891 		return IRQ_NONE;
892 
893 	if (misc & 0x0004) {
894 		/*
895 		 * Serial Output interrupt Pending
896 		 */
897 
898 		/* Clear the interrupt */
899 		misc |= 0x0004;
900 		writew(misc, ctrl->hpc_reg + MISC);
901 
902 		/* Read to clear posted writes */
903 		misc = readw(ctrl->hpc_reg + MISC);
904 
905 		dbg("%s - waking up\n", __func__);
906 		wake_up_interruptible(&ctrl->queue);
907 	}
908 
909 	if (misc & 0x0008) {
910 		/* General-interrupt-input interrupt Pending */
911 		Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
912 
913 		ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
914 
915 		/* Clear the interrupt */
916 		writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
917 
918 		/* Read it back to clear any posted writes */
919 		readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
920 
921 		if (!Diff)
922 			/* Clear all interrupts */
923 			writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
924 
925 		schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
926 		schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
927 		schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
928 	}
929 
930 	reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
931 	if (reset & 0x40) {
932 		/* Bus reset has completed */
933 		reset &= 0xCF;
934 		writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
935 		reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
936 		wake_up_interruptible(&ctrl->queue);
937 	}
938 
939 	if (schedule_flag) {
940 		wake_up_process(cpqhp_event_thread);
941 		dbg("Waking even thread");
942 	}
943 	return IRQ_HANDLED;
944 }
945 
946 
947 /**
948  * cpqhp_slot_create - Creates a node and adds it to the proper bus.
949  * @busnumber: bus where new node is to be located
950  *
951  * Returns pointer to the new node or %NULL if unsuccessful.
952  */
953 struct pci_func *cpqhp_slot_create(u8 busnumber)
954 {
955 	struct pci_func *new_slot;
956 	struct pci_func *next;
957 
958 	new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL);
959 	if (new_slot == NULL)
960 		return new_slot;
961 
962 	new_slot->next = NULL;
963 	new_slot->configured = 1;
964 
965 	if (cpqhp_slot_list[busnumber] == NULL) {
966 		cpqhp_slot_list[busnumber] = new_slot;
967 	} else {
968 		next = cpqhp_slot_list[busnumber];
969 		while (next->next != NULL)
970 			next = next->next;
971 		next->next = new_slot;
972 	}
973 	return new_slot;
974 }
975 
976 
977 /**
978  * slot_remove - Removes a node from the linked list of slots.
979  * @old_slot: slot to remove
980  *
981  * Returns %0 if successful, !0 otherwise.
982  */
983 static int slot_remove(struct pci_func *old_slot)
984 {
985 	struct pci_func *next;
986 
987 	if (old_slot == NULL)
988 		return 1;
989 
990 	next = cpqhp_slot_list[old_slot->bus];
991 	if (next == NULL)
992 		return 1;
993 
994 	if (next == old_slot) {
995 		cpqhp_slot_list[old_slot->bus] = old_slot->next;
996 		cpqhp_destroy_board_resources(old_slot);
997 		kfree(old_slot);
998 		return 0;
999 	}
1000 
1001 	while ((next->next != old_slot) && (next->next != NULL))
1002 		next = next->next;
1003 
1004 	if (next->next == old_slot) {
1005 		next->next = old_slot->next;
1006 		cpqhp_destroy_board_resources(old_slot);
1007 		kfree(old_slot);
1008 		return 0;
1009 	} else
1010 		return 2;
1011 }
1012 
1013 
1014 /**
1015  * bridge_slot_remove - Removes a node from the linked list of slots.
1016  * @bridge: bridge to remove
1017  *
1018  * Returns %0 if successful, !0 otherwise.
1019  */
1020 static int bridge_slot_remove(struct pci_func *bridge)
1021 {
1022 	u8 subordinateBus, secondaryBus;
1023 	u8 tempBus;
1024 	struct pci_func *next;
1025 
1026 	secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
1027 	subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
1028 
1029 	for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
1030 		next = cpqhp_slot_list[tempBus];
1031 
1032 		while (!slot_remove(next))
1033 			next = cpqhp_slot_list[tempBus];
1034 	}
1035 
1036 	next = cpqhp_slot_list[bridge->bus];
1037 
1038 	if (next == NULL)
1039 		return 1;
1040 
1041 	if (next == bridge) {
1042 		cpqhp_slot_list[bridge->bus] = bridge->next;
1043 		goto out;
1044 	}
1045 
1046 	while ((next->next != bridge) && (next->next != NULL))
1047 		next = next->next;
1048 
1049 	if (next->next != bridge)
1050 		return 2;
1051 	next->next = bridge->next;
1052 out:
1053 	kfree(bridge);
1054 	return 0;
1055 }
1056 
1057 
1058 /**
1059  * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
1060  * @bus: bus to find
1061  * @device: device to find
1062  * @index: is %0 for first function found, %1 for the second...
1063  *
1064  * Returns pointer to the node if successful, %NULL otherwise.
1065  */
1066 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
1067 {
1068 	int found = -1;
1069 	struct pci_func *func;
1070 
1071 	func = cpqhp_slot_list[bus];
1072 
1073 	if ((func == NULL) || ((func->device == device) && (index == 0)))
1074 		return func;
1075 
1076 	if (func->device == device)
1077 		found++;
1078 
1079 	while (func->next != NULL) {
1080 		func = func->next;
1081 
1082 		if (func->device == device)
1083 			found++;
1084 
1085 		if (found == index)
1086 			return func;
1087 	}
1088 
1089 	return NULL;
1090 }
1091 
1092 
1093 /* DJZ: I don't think is_bridge will work as is.
1094  * FIXME */
1095 static int is_bridge(struct pci_func *func)
1096 {
1097 	/* Check the header type */
1098 	if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
1099 		return 1;
1100 	else
1101 		return 0;
1102 }
1103 
1104 
1105 /**
1106  * set_controller_speed - set the frequency and/or mode of a specific controller segment.
1107  * @ctrl: controller to change frequency/mode for.
1108  * @adapter_speed: the speed of the adapter we want to match.
1109  * @hp_slot: the slot number where the adapter is installed.
1110  *
1111  * Returns %0 if we successfully change frequency and/or mode to match the
1112  * adapter speed.
1113  */
1114 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
1115 {
1116 	struct slot *slot;
1117 	struct pci_bus *bus = ctrl->pci_bus;
1118 	u8 reg;
1119 	u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
1120 	u16 reg16;
1121 	u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
1122 
1123 	if (bus->cur_bus_speed == adapter_speed)
1124 		return 0;
1125 
1126 	/* We don't allow freq/mode changes if we find another adapter running
1127 	 * in another slot on this controller
1128 	 */
1129 	for (slot = ctrl->slot; slot; slot = slot->next) {
1130 		if (slot->device == (hp_slot + ctrl->slot_device_offset))
1131 			continue;
1132 		if (get_presence_status(ctrl, slot) == 0)
1133 			continue;
1134 		/* If another adapter is running on the same segment but at a
1135 		 * lower speed/mode, we allow the new adapter to function at
1136 		 * this rate if supported
1137 		 */
1138 		if (bus->cur_bus_speed < adapter_speed)
1139 			return 0;
1140 
1141 		return 1;
1142 	}
1143 
1144 	/* If the controller doesn't support freq/mode changes and the
1145 	 * controller is running at a higher mode, we bail
1146 	 */
1147 	if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability))
1148 		return 1;
1149 
1150 	/* But we allow the adapter to run at a lower rate if possible */
1151 	if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability))
1152 		return 0;
1153 
1154 	/* We try to set the max speed supported by both the adapter and
1155 	 * controller
1156 	 */
1157 	if (bus->max_bus_speed < adapter_speed) {
1158 		if (bus->cur_bus_speed == bus->max_bus_speed)
1159 			return 0;
1160 		adapter_speed = bus->max_bus_speed;
1161 	}
1162 
1163 	writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
1164 	writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
1165 
1166 	set_SOGO(ctrl);
1167 	wait_for_ctrl_irq(ctrl);
1168 
1169 	if (adapter_speed != PCI_SPEED_133MHz_PCIX)
1170 		reg = 0xF5;
1171 	else
1172 		reg = 0xF4;
1173 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1174 
1175 	reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
1176 	reg16 &= ~0x000F;
1177 	switch (adapter_speed) {
1178 		case(PCI_SPEED_133MHz_PCIX):
1179 			reg = 0x75;
1180 			reg16 |= 0xB;
1181 			break;
1182 		case(PCI_SPEED_100MHz_PCIX):
1183 			reg = 0x74;
1184 			reg16 |= 0xA;
1185 			break;
1186 		case(PCI_SPEED_66MHz_PCIX):
1187 			reg = 0x73;
1188 			reg16 |= 0x9;
1189 			break;
1190 		case(PCI_SPEED_66MHz):
1191 			reg = 0x73;
1192 			reg16 |= 0x1;
1193 			break;
1194 		default: /* 33MHz PCI 2.2 */
1195 			reg = 0x71;
1196 			break;
1197 
1198 	}
1199 	reg16 |= 0xB << 12;
1200 	writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
1201 
1202 	mdelay(5);
1203 
1204 	/* Re-enable interrupts */
1205 	writel(0, ctrl->hpc_reg + INT_MASK);
1206 
1207 	pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
1208 
1209 	/* Restart state machine */
1210 	reg = ~0xF;
1211 	pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
1212 	pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
1213 
1214 	/* Only if mode change...*/
1215 	if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
1216 		((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
1217 			set_SOGO(ctrl);
1218 
1219 	wait_for_ctrl_irq(ctrl);
1220 	mdelay(1100);
1221 
1222 	/* Restore LED/Slot state */
1223 	writel(leds, ctrl->hpc_reg + LED_CONTROL);
1224 	writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
1225 
1226 	set_SOGO(ctrl);
1227 	wait_for_ctrl_irq(ctrl);
1228 
1229 	bus->cur_bus_speed = adapter_speed;
1230 	slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1231 
1232 	info("Successfully changed frequency/mode for adapter in slot %d\n",
1233 			slot->number);
1234 	return 0;
1235 }
1236 
1237 /* the following routines constitute the bulk of the
1238  * hotplug controller logic
1239  */
1240 
1241 
1242 /**
1243  * board_replaced - Called after a board has been replaced in the system.
1244  * @func: PCI device/function information
1245  * @ctrl: hotplug controller
1246  *
1247  * This is only used if we don't have resources for hot add.
1248  * Turns power on for the board.
1249  * Checks to see if board is the same.
1250  * If board is same, reconfigures it.
1251  * If board isn't same, turns it back off.
1252  */
1253 static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
1254 {
1255 	struct pci_bus *bus = ctrl->pci_bus;
1256 	u8 hp_slot;
1257 	u8 temp_byte;
1258 	u8 adapter_speed;
1259 	u32 rc = 0;
1260 
1261 	hp_slot = func->device - ctrl->slot_device_offset;
1262 
1263 	/*
1264 	 * The switch is open.
1265 	 */
1266 	if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot))
1267 		rc = INTERLOCK_OPEN;
1268 	/*
1269 	 * The board is already on
1270 	 */
1271 	else if (is_slot_enabled(ctrl, hp_slot))
1272 		rc = CARD_FUNCTIONING;
1273 	else {
1274 		mutex_lock(&ctrl->crit_sect);
1275 
1276 		/* turn on board without attaching to the bus */
1277 		enable_slot_power(ctrl, hp_slot);
1278 
1279 		set_SOGO(ctrl);
1280 
1281 		/* Wait for SOBS to be unset */
1282 		wait_for_ctrl_irq(ctrl);
1283 
1284 		/* Change bits in slot power register to force another shift out
1285 		 * NOTE: this is to work around the timer bug */
1286 		temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1287 		writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1288 		writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1289 
1290 		set_SOGO(ctrl);
1291 
1292 		/* Wait for SOBS to be unset */
1293 		wait_for_ctrl_irq(ctrl);
1294 
1295 		adapter_speed = get_adapter_speed(ctrl, hp_slot);
1296 		if (bus->cur_bus_speed != adapter_speed)
1297 			if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1298 				rc = WRONG_BUS_FREQUENCY;
1299 
1300 		/* turn off board without attaching to the bus */
1301 		disable_slot_power(ctrl, hp_slot);
1302 
1303 		set_SOGO(ctrl);
1304 
1305 		/* Wait for SOBS to be unset */
1306 		wait_for_ctrl_irq(ctrl);
1307 
1308 		mutex_unlock(&ctrl->crit_sect);
1309 
1310 		if (rc)
1311 			return rc;
1312 
1313 		mutex_lock(&ctrl->crit_sect);
1314 
1315 		slot_enable(ctrl, hp_slot);
1316 		green_LED_blink(ctrl, hp_slot);
1317 
1318 		amber_LED_off(ctrl, hp_slot);
1319 
1320 		set_SOGO(ctrl);
1321 
1322 		/* Wait for SOBS to be unset */
1323 		wait_for_ctrl_irq(ctrl);
1324 
1325 		mutex_unlock(&ctrl->crit_sect);
1326 
1327 		/* Wait for ~1 second because of hot plug spec */
1328 		long_delay(1*HZ);
1329 
1330 		/* Check for a power fault */
1331 		if (func->status == 0xFF) {
1332 			/* power fault occurred, but it was benign */
1333 			rc = POWER_FAILURE;
1334 			func->status = 0;
1335 		} else
1336 			rc = cpqhp_valid_replace(ctrl, func);
1337 
1338 		if (!rc) {
1339 			/* It must be the same board */
1340 
1341 			rc = cpqhp_configure_board(ctrl, func);
1342 
1343 			/* If configuration fails, turn it off
1344 			 * Get slot won't work for devices behind
1345 			 * bridges, but in this case it will always be
1346 			 * called for the "base" bus/dev/func of an
1347 			 * adapter.
1348 			 */
1349 
1350 			mutex_lock(&ctrl->crit_sect);
1351 
1352 			amber_LED_on(ctrl, hp_slot);
1353 			green_LED_off(ctrl, hp_slot);
1354 			slot_disable(ctrl, hp_slot);
1355 
1356 			set_SOGO(ctrl);
1357 
1358 			/* Wait for SOBS to be unset */
1359 			wait_for_ctrl_irq(ctrl);
1360 
1361 			mutex_unlock(&ctrl->crit_sect);
1362 
1363 			if (rc)
1364 				return rc;
1365 			else
1366 				return 1;
1367 
1368 		} else {
1369 			/* Something is wrong
1370 
1371 			 * Get slot won't work for devices behind bridges, but
1372 			 * in this case it will always be called for the "base"
1373 			 * bus/dev/func of an adapter.
1374 			 */
1375 
1376 			mutex_lock(&ctrl->crit_sect);
1377 
1378 			amber_LED_on(ctrl, hp_slot);
1379 			green_LED_off(ctrl, hp_slot);
1380 			slot_disable(ctrl, hp_slot);
1381 
1382 			set_SOGO(ctrl);
1383 
1384 			/* Wait for SOBS to be unset */
1385 			wait_for_ctrl_irq(ctrl);
1386 
1387 			mutex_unlock(&ctrl->crit_sect);
1388 		}
1389 
1390 	}
1391 	return rc;
1392 
1393 }
1394 
1395 
1396 /**
1397  * board_added - Called after a board has been added to the system.
1398  * @func: PCI device/function info
1399  * @ctrl: hotplug controller
1400  *
1401  * Turns power on for the board.
1402  * Configures board.
1403  */
1404 static u32 board_added(struct pci_func *func, struct controller *ctrl)
1405 {
1406 	u8 hp_slot;
1407 	u8 temp_byte;
1408 	u8 adapter_speed;
1409 	int index;
1410 	u32 temp_register = 0xFFFFFFFF;
1411 	u32 rc = 0;
1412 	struct pci_func *new_slot = NULL;
1413 	struct pci_bus *bus = ctrl->pci_bus;
1414 	struct resource_lists res_lists;
1415 
1416 	hp_slot = func->device - ctrl->slot_device_offset;
1417 	dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
1418 	    __func__, func->device, ctrl->slot_device_offset, hp_slot);
1419 
1420 	mutex_lock(&ctrl->crit_sect);
1421 
1422 	/* turn on board without attaching to the bus */
1423 	enable_slot_power(ctrl, hp_slot);
1424 
1425 	set_SOGO(ctrl);
1426 
1427 	/* Wait for SOBS to be unset */
1428 	wait_for_ctrl_irq(ctrl);
1429 
1430 	/* Change bits in slot power register to force another shift out
1431 	 * NOTE: this is to work around the timer bug
1432 	 */
1433 	temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
1434 	writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
1435 	writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
1436 
1437 	set_SOGO(ctrl);
1438 
1439 	/* Wait for SOBS to be unset */
1440 	wait_for_ctrl_irq(ctrl);
1441 
1442 	adapter_speed = get_adapter_speed(ctrl, hp_slot);
1443 	if (bus->cur_bus_speed != adapter_speed)
1444 		if (set_controller_speed(ctrl, adapter_speed, hp_slot))
1445 			rc = WRONG_BUS_FREQUENCY;
1446 
1447 	/* turn off board without attaching to the bus */
1448 	disable_slot_power(ctrl, hp_slot);
1449 
1450 	set_SOGO(ctrl);
1451 
1452 	/* Wait for SOBS to be unset */
1453 	wait_for_ctrl_irq(ctrl);
1454 
1455 	mutex_unlock(&ctrl->crit_sect);
1456 
1457 	if (rc)
1458 		return rc;
1459 
1460 	cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1461 
1462 	/* turn on board and blink green LED */
1463 
1464 	dbg("%s: before down\n", __func__);
1465 	mutex_lock(&ctrl->crit_sect);
1466 	dbg("%s: after down\n", __func__);
1467 
1468 	dbg("%s: before slot_enable\n", __func__);
1469 	slot_enable(ctrl, hp_slot);
1470 
1471 	dbg("%s: before green_LED_blink\n", __func__);
1472 	green_LED_blink(ctrl, hp_slot);
1473 
1474 	dbg("%s: before amber_LED_blink\n", __func__);
1475 	amber_LED_off(ctrl, hp_slot);
1476 
1477 	dbg("%s: before set_SOGO\n", __func__);
1478 	set_SOGO(ctrl);
1479 
1480 	/* Wait for SOBS to be unset */
1481 	dbg("%s: before wait_for_ctrl_irq\n", __func__);
1482 	wait_for_ctrl_irq(ctrl);
1483 	dbg("%s: after wait_for_ctrl_irq\n", __func__);
1484 
1485 	dbg("%s: before up\n", __func__);
1486 	mutex_unlock(&ctrl->crit_sect);
1487 	dbg("%s: after up\n", __func__);
1488 
1489 	/* Wait for ~1 second because of hot plug spec */
1490 	dbg("%s: before long_delay\n", __func__);
1491 	long_delay(1*HZ);
1492 	dbg("%s: after long_delay\n", __func__);
1493 
1494 	dbg("%s: func status = %x\n", __func__, func->status);
1495 	/* Check for a power fault */
1496 	if (func->status == 0xFF) {
1497 		/* power fault occurred, but it was benign */
1498 		temp_register = 0xFFFFFFFF;
1499 		dbg("%s: temp register set to %x by power fault\n", __func__, temp_register);
1500 		rc = POWER_FAILURE;
1501 		func->status = 0;
1502 	} else {
1503 		/* Get vendor/device ID u32 */
1504 		ctrl->pci_bus->number = func->bus;
1505 		rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
1506 		dbg("%s: pci_read_config_dword returns %d\n", __func__, rc);
1507 		dbg("%s: temp_register is %x\n", __func__, temp_register);
1508 
1509 		if (rc != 0) {
1510 			/* Something's wrong here */
1511 			temp_register = 0xFFFFFFFF;
1512 			dbg("%s: temp register set to %x by error\n", __func__, temp_register);
1513 		}
1514 		/* Preset return code.  It will be changed later if things go okay. */
1515 		rc = NO_ADAPTER_PRESENT;
1516 	}
1517 
1518 	/* All F's is an empty slot or an invalid board */
1519 	if (temp_register != 0xFFFFFFFF) {
1520 		res_lists.io_head = ctrl->io_head;
1521 		res_lists.mem_head = ctrl->mem_head;
1522 		res_lists.p_mem_head = ctrl->p_mem_head;
1523 		res_lists.bus_head = ctrl->bus_head;
1524 		res_lists.irqs = NULL;
1525 
1526 		rc = configure_new_device(ctrl, func, 0, &res_lists);
1527 
1528 		dbg("%s: back from configure_new_device\n", __func__);
1529 		ctrl->io_head = res_lists.io_head;
1530 		ctrl->mem_head = res_lists.mem_head;
1531 		ctrl->p_mem_head = res_lists.p_mem_head;
1532 		ctrl->bus_head = res_lists.bus_head;
1533 
1534 		cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1535 		cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1536 		cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1537 		cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1538 
1539 		if (rc) {
1540 			mutex_lock(&ctrl->crit_sect);
1541 
1542 			amber_LED_on(ctrl, hp_slot);
1543 			green_LED_off(ctrl, hp_slot);
1544 			slot_disable(ctrl, hp_slot);
1545 
1546 			set_SOGO(ctrl);
1547 
1548 			/* Wait for SOBS to be unset */
1549 			wait_for_ctrl_irq(ctrl);
1550 
1551 			mutex_unlock(&ctrl->crit_sect);
1552 			return rc;
1553 		} else {
1554 			cpqhp_save_slot_config(ctrl, func);
1555 		}
1556 
1557 
1558 		func->status = 0;
1559 		func->switch_save = 0x10;
1560 		func->is_a_board = 0x01;
1561 
1562 		/* next, we will instantiate the linux pci_dev structures (with
1563 		 * appropriate driver notification, if already present) */
1564 		dbg("%s: configure linux pci_dev structure\n", __func__);
1565 		index = 0;
1566 		do {
1567 			new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
1568 			if (new_slot && !new_slot->pci_dev)
1569 				cpqhp_configure_device(ctrl, new_slot);
1570 		} while (new_slot);
1571 
1572 		mutex_lock(&ctrl->crit_sect);
1573 
1574 		green_LED_on(ctrl, hp_slot);
1575 
1576 		set_SOGO(ctrl);
1577 
1578 		/* Wait for SOBS to be unset */
1579 		wait_for_ctrl_irq(ctrl);
1580 
1581 		mutex_unlock(&ctrl->crit_sect);
1582 	} else {
1583 		mutex_lock(&ctrl->crit_sect);
1584 
1585 		amber_LED_on(ctrl, hp_slot);
1586 		green_LED_off(ctrl, hp_slot);
1587 		slot_disable(ctrl, hp_slot);
1588 
1589 		set_SOGO(ctrl);
1590 
1591 		/* Wait for SOBS to be unset */
1592 		wait_for_ctrl_irq(ctrl);
1593 
1594 		mutex_unlock(&ctrl->crit_sect);
1595 
1596 		return rc;
1597 	}
1598 	return 0;
1599 }
1600 
1601 
1602 /**
1603  * remove_board - Turns off slot and LEDs
1604  * @func: PCI device/function info
1605  * @replace_flag: whether replacing or adding a new device
1606  * @ctrl: target controller
1607  */
1608 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl)
1609 {
1610 	int index;
1611 	u8 skip = 0;
1612 	u8 device;
1613 	u8 hp_slot;
1614 	u8 temp_byte;
1615 	struct resource_lists res_lists;
1616 	struct pci_func *temp_func;
1617 
1618 	if (cpqhp_unconfigure_device(func))
1619 		return 1;
1620 
1621 	device = func->device;
1622 
1623 	hp_slot = func->device - ctrl->slot_device_offset;
1624 	dbg("In %s, hp_slot = %d\n", __func__, hp_slot);
1625 
1626 	/* When we get here, it is safe to change base address registers.
1627 	 * We will attempt to save the base address register lengths */
1628 	if (replace_flag || !ctrl->add_support)
1629 		cpqhp_save_base_addr_length(ctrl, func);
1630 	else if (!func->bus_head && !func->mem_head &&
1631 		 !func->p_mem_head && !func->io_head) {
1632 		/* Here we check to see if we've saved any of the board's
1633 		 * resources already.  If so, we'll skip the attempt to
1634 		 * determine what's being used. */
1635 		index = 0;
1636 		temp_func = cpqhp_slot_find(func->bus, func->device, index++);
1637 		while (temp_func) {
1638 			if (temp_func->bus_head || temp_func->mem_head
1639 			    || temp_func->p_mem_head || temp_func->io_head) {
1640 				skip = 1;
1641 				break;
1642 			}
1643 			temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
1644 		}
1645 
1646 		if (!skip)
1647 			cpqhp_save_used_resources(ctrl, func);
1648 	}
1649 	/* Change status to shutdown */
1650 	if (func->is_a_board)
1651 		func->status = 0x01;
1652 	func->configured = 0;
1653 
1654 	mutex_lock(&ctrl->crit_sect);
1655 
1656 	green_LED_off(ctrl, hp_slot);
1657 	slot_disable(ctrl, hp_slot);
1658 
1659 	set_SOGO(ctrl);
1660 
1661 	/* turn off SERR for slot */
1662 	temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
1663 	temp_byte &= ~(0x01 << hp_slot);
1664 	writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
1665 
1666 	/* Wait for SOBS to be unset */
1667 	wait_for_ctrl_irq(ctrl);
1668 
1669 	mutex_unlock(&ctrl->crit_sect);
1670 
1671 	if (!replace_flag && ctrl->add_support) {
1672 		while (func) {
1673 			res_lists.io_head = ctrl->io_head;
1674 			res_lists.mem_head = ctrl->mem_head;
1675 			res_lists.p_mem_head = ctrl->p_mem_head;
1676 			res_lists.bus_head = ctrl->bus_head;
1677 
1678 			cpqhp_return_board_resources(func, &res_lists);
1679 
1680 			ctrl->io_head = res_lists.io_head;
1681 			ctrl->mem_head = res_lists.mem_head;
1682 			ctrl->p_mem_head = res_lists.p_mem_head;
1683 			ctrl->bus_head = res_lists.bus_head;
1684 
1685 			cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
1686 			cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
1687 			cpqhp_resource_sort_and_combine(&(ctrl->io_head));
1688 			cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
1689 
1690 			if (is_bridge(func)) {
1691 				bridge_slot_remove(func);
1692 			} else
1693 				slot_remove(func);
1694 
1695 			func = cpqhp_slot_find(ctrl->bus, device, 0);
1696 		}
1697 
1698 		/* Setup slot structure with entry for empty slot */
1699 		func = cpqhp_slot_create(ctrl->bus);
1700 
1701 		if (func == NULL)
1702 			return 1;
1703 
1704 		func->bus = ctrl->bus;
1705 		func->device = device;
1706 		func->function = 0;
1707 		func->configured = 0;
1708 		func->switch_save = 0x10;
1709 		func->is_a_board = 0;
1710 		func->p_task_event = NULL;
1711 	}
1712 
1713 	return 0;
1714 }
1715 
1716 static void pushbutton_helper_thread(struct timer_list *t)
1717 {
1718 	pushbutton_pending = t;
1719 
1720 	wake_up_process(cpqhp_event_thread);
1721 }
1722 
1723 
1724 /* this is the main worker thread */
1725 static int event_thread(void *data)
1726 {
1727 	struct controller *ctrl;
1728 
1729 	while (1) {
1730 		dbg("!!!!event_thread sleeping\n");
1731 		set_current_state(TASK_INTERRUPTIBLE);
1732 		schedule();
1733 
1734 		if (kthread_should_stop())
1735 			break;
1736 		/* Do stuff here */
1737 		if (pushbutton_pending)
1738 			cpqhp_pushbutton_thread(pushbutton_pending);
1739 		else
1740 			for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next)
1741 				interrupt_event_handler(ctrl);
1742 	}
1743 	dbg("event_thread signals exit\n");
1744 	return 0;
1745 }
1746 
1747 int cpqhp_event_start_thread(void)
1748 {
1749 	cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event");
1750 	if (IS_ERR(cpqhp_event_thread)) {
1751 		err("Can't start up our event thread\n");
1752 		return PTR_ERR(cpqhp_event_thread);
1753 	}
1754 
1755 	return 0;
1756 }
1757 
1758 
1759 void cpqhp_event_stop_thread(void)
1760 {
1761 	kthread_stop(cpqhp_event_thread);
1762 }
1763 
1764 
1765 static void interrupt_event_handler(struct controller *ctrl)
1766 {
1767 	int loop;
1768 	int change = 1;
1769 	struct pci_func *func;
1770 	u8 hp_slot;
1771 	struct slot *p_slot;
1772 
1773 	while (change) {
1774 		change = 0;
1775 
1776 		for (loop = 0; loop < 10; loop++) {
1777 			/* dbg("loop %d\n", loop); */
1778 			if (ctrl->event_queue[loop].event_type != 0) {
1779 				hp_slot = ctrl->event_queue[loop].hp_slot;
1780 
1781 				func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
1782 				if (!func)
1783 					return;
1784 
1785 				p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
1786 				if (!p_slot)
1787 					return;
1788 
1789 				dbg("hp_slot %d, func %p, p_slot %p\n",
1790 				    hp_slot, func, p_slot);
1791 
1792 				if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
1793 					dbg("button pressed\n");
1794 				} else if (ctrl->event_queue[loop].event_type ==
1795 					   INT_BUTTON_CANCEL) {
1796 					dbg("button cancel\n");
1797 					del_timer(&p_slot->task_event);
1798 
1799 					mutex_lock(&ctrl->crit_sect);
1800 
1801 					if (p_slot->state == BLINKINGOFF_STATE) {
1802 						/* slot is on */
1803 						dbg("turn on green LED\n");
1804 						green_LED_on(ctrl, hp_slot);
1805 					} else if (p_slot->state == BLINKINGON_STATE) {
1806 						/* slot is off */
1807 						dbg("turn off green LED\n");
1808 						green_LED_off(ctrl, hp_slot);
1809 					}
1810 
1811 					info(msg_button_cancel, p_slot->number);
1812 
1813 					p_slot->state = STATIC_STATE;
1814 
1815 					amber_LED_off(ctrl, hp_slot);
1816 
1817 					set_SOGO(ctrl);
1818 
1819 					/* Wait for SOBS to be unset */
1820 					wait_for_ctrl_irq(ctrl);
1821 
1822 					mutex_unlock(&ctrl->crit_sect);
1823 				}
1824 				/*** button Released (No action on press...) */
1825 				else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
1826 					dbg("button release\n");
1827 
1828 					if (is_slot_enabled(ctrl, hp_slot)) {
1829 						dbg("slot is on\n");
1830 						p_slot->state = BLINKINGOFF_STATE;
1831 						info(msg_button_off, p_slot->number);
1832 					} else {
1833 						dbg("slot is off\n");
1834 						p_slot->state = BLINKINGON_STATE;
1835 						info(msg_button_on, p_slot->number);
1836 					}
1837 					mutex_lock(&ctrl->crit_sect);
1838 
1839 					dbg("blink green LED and turn off amber\n");
1840 
1841 					amber_LED_off(ctrl, hp_slot);
1842 					green_LED_blink(ctrl, hp_slot);
1843 
1844 					set_SOGO(ctrl);
1845 
1846 					/* Wait for SOBS to be unset */
1847 					wait_for_ctrl_irq(ctrl);
1848 
1849 					mutex_unlock(&ctrl->crit_sect);
1850 					timer_setup(&p_slot->task_event,
1851 						    pushbutton_helper_thread,
1852 						    0);
1853 					p_slot->hp_slot = hp_slot;
1854 					p_slot->ctrl = ctrl;
1855 /*					p_slot->physical_slot = physical_slot; */
1856 					p_slot->task_event.expires = jiffies + 5 * HZ;   /* 5 second delay */
1857 
1858 					dbg("add_timer p_slot = %p\n", p_slot);
1859 					add_timer(&p_slot->task_event);
1860 				}
1861 				/***********POWER FAULT */
1862 				else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
1863 					dbg("power fault\n");
1864 				}
1865 
1866 				ctrl->event_queue[loop].event_type = 0;
1867 
1868 				change = 1;
1869 			}
1870 		}		/* End of FOR loop */
1871 	}
1872 }
1873 
1874 
1875 /**
1876  * cpqhp_pushbutton_thread - handle pushbutton events
1877  * @t: pointer to struct timer_list which holds all timer-related callbacks
1878  *
1879  * Scheduled procedure to handle blocking stuff for the pushbuttons.
1880  * Handles all pending events and exits.
1881  */
1882 void cpqhp_pushbutton_thread(struct timer_list *t)
1883 {
1884 	u8 hp_slot;
1885 	struct pci_func *func;
1886 	struct slot *p_slot = from_timer(p_slot, t, task_event);
1887 	struct controller *ctrl = (struct controller *) p_slot->ctrl;
1888 
1889 	pushbutton_pending = NULL;
1890 	hp_slot = p_slot->hp_slot;
1891 
1892 	if (is_slot_enabled(ctrl, hp_slot)) {
1893 		p_slot->state = POWEROFF_STATE;
1894 		/* power Down board */
1895 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1896 		dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
1897 		if (!func) {
1898 			dbg("Error! func NULL in %s\n", __func__);
1899 			return;
1900 		}
1901 
1902 		if (cpqhp_process_SS(ctrl, func) != 0) {
1903 			amber_LED_on(ctrl, hp_slot);
1904 			green_LED_on(ctrl, hp_slot);
1905 
1906 			set_SOGO(ctrl);
1907 
1908 			/* Wait for SOBS to be unset */
1909 			wait_for_ctrl_irq(ctrl);
1910 		}
1911 
1912 		p_slot->state = STATIC_STATE;
1913 	} else {
1914 		p_slot->state = POWERON_STATE;
1915 		/* slot is off */
1916 
1917 		func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
1918 		dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
1919 		if (!func) {
1920 			dbg("Error! func NULL in %s\n", __func__);
1921 			return;
1922 		}
1923 
1924 		if (ctrl != NULL) {
1925 			if (cpqhp_process_SI(ctrl, func) != 0) {
1926 				amber_LED_on(ctrl, hp_slot);
1927 				green_LED_off(ctrl, hp_slot);
1928 
1929 				set_SOGO(ctrl);
1930 
1931 				/* Wait for SOBS to be unset */
1932 				wait_for_ctrl_irq(ctrl);
1933 			}
1934 		}
1935 
1936 		p_slot->state = STATIC_STATE;
1937 	}
1938 }
1939 
1940 
1941 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
1942 {
1943 	u8 device, hp_slot;
1944 	u16 temp_word;
1945 	u32 tempdword;
1946 	int rc;
1947 	struct slot *p_slot;
1948 
1949 	tempdword = 0;
1950 
1951 	device = func->device;
1952 	hp_slot = device - ctrl->slot_device_offset;
1953 	p_slot = cpqhp_find_slot(ctrl, device);
1954 
1955 	/* Check to see if the interlock is closed */
1956 	tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
1957 
1958 	if (tempdword & (0x01 << hp_slot))
1959 		return 1;
1960 
1961 	if (func->is_a_board) {
1962 		rc = board_replaced(func, ctrl);
1963 	} else {
1964 		/* add board */
1965 		slot_remove(func);
1966 
1967 		func = cpqhp_slot_create(ctrl->bus);
1968 		if (func == NULL)
1969 			return 1;
1970 
1971 		func->bus = ctrl->bus;
1972 		func->device = device;
1973 		func->function = 0;
1974 		func->configured = 0;
1975 		func->is_a_board = 1;
1976 
1977 		/* We have to save the presence info for these slots */
1978 		temp_word = ctrl->ctrl_int_comp >> 16;
1979 		func->presence_save = (temp_word >> hp_slot) & 0x01;
1980 		func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
1981 
1982 		if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
1983 			func->switch_save = 0;
1984 		} else {
1985 			func->switch_save = 0x10;
1986 		}
1987 
1988 		rc = board_added(func, ctrl);
1989 		if (rc) {
1990 			if (is_bridge(func)) {
1991 				bridge_slot_remove(func);
1992 			} else
1993 				slot_remove(func);
1994 
1995 			/* Setup slot structure with entry for empty slot */
1996 			func = cpqhp_slot_create(ctrl->bus);
1997 
1998 			if (func == NULL)
1999 				return 1;
2000 
2001 			func->bus = ctrl->bus;
2002 			func->device = device;
2003 			func->function = 0;
2004 			func->configured = 0;
2005 			func->is_a_board = 0;
2006 
2007 			/* We have to save the presence info for these slots */
2008 			temp_word = ctrl->ctrl_int_comp >> 16;
2009 			func->presence_save = (temp_word >> hp_slot) & 0x01;
2010 			func->presence_save |=
2011 			(temp_word >> (hp_slot + 7)) & 0x02;
2012 
2013 			if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
2014 				func->switch_save = 0;
2015 			} else {
2016 				func->switch_save = 0x10;
2017 			}
2018 		}
2019 	}
2020 
2021 	if (rc)
2022 		dbg("%s: rc = %d\n", __func__, rc);
2023 
2024 	return rc;
2025 }
2026 
2027 
2028 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
2029 {
2030 	u8 device, class_code, header_type, BCR;
2031 	u8 index = 0;
2032 	u8 replace_flag;
2033 	u32 rc = 0;
2034 	unsigned int devfn;
2035 	struct slot *p_slot;
2036 	struct pci_bus *pci_bus = ctrl->pci_bus;
2037 
2038 	device = func->device;
2039 	func = cpqhp_slot_find(ctrl->bus, device, index++);
2040 	p_slot = cpqhp_find_slot(ctrl, device);
2041 
2042 	/* Make sure there are no video controllers here */
2043 	while (func && !rc) {
2044 		pci_bus->number = func->bus;
2045 		devfn = PCI_DEVFN(func->device, func->function);
2046 
2047 		/* Check the Class Code */
2048 		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2049 		if (rc)
2050 			return rc;
2051 
2052 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2053 			/* Display/Video adapter (not supported) */
2054 			rc = REMOVE_NOT_SUPPORTED;
2055 		} else {
2056 			/* See if it's a bridge */
2057 			rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
2058 			if (rc)
2059 				return rc;
2060 
2061 			/* If it's a bridge, check the VGA Enable bit */
2062 			if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2063 				rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
2064 				if (rc)
2065 					return rc;
2066 
2067 				/* If the VGA Enable bit is set, remove isn't
2068 				 * supported */
2069 				if (BCR & PCI_BRIDGE_CTL_VGA)
2070 					rc = REMOVE_NOT_SUPPORTED;
2071 			}
2072 		}
2073 
2074 		func = cpqhp_slot_find(ctrl->bus, device, index++);
2075 	}
2076 
2077 	func = cpqhp_slot_find(ctrl->bus, device, 0);
2078 	if ((func != NULL) && !rc) {
2079 		/* FIXME: Replace flag should be passed into process_SS */
2080 		replace_flag = !(ctrl->add_support);
2081 		rc = remove_board(func, replace_flag, ctrl);
2082 	} else if (!rc) {
2083 		rc = 1;
2084 	}
2085 
2086 	return rc;
2087 }
2088 
2089 /**
2090  * switch_leds - switch the leds, go from one site to the other.
2091  * @ctrl: controller to use
2092  * @num_of_slots: number of slots to use
2093  * @work_LED: LED control value
2094  * @direction: 1 to start from the left side, 0 to start right.
2095  */
2096 static void switch_leds(struct controller *ctrl, const int num_of_slots,
2097 			u32 *work_LED, const int direction)
2098 {
2099 	int loop;
2100 
2101 	for (loop = 0; loop < num_of_slots; loop++) {
2102 		if (direction)
2103 			*work_LED = *work_LED >> 1;
2104 		else
2105 			*work_LED = *work_LED << 1;
2106 		writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
2107 
2108 		set_SOGO(ctrl);
2109 
2110 		/* Wait for SOGO interrupt */
2111 		wait_for_ctrl_irq(ctrl);
2112 
2113 		/* Get ready for next iteration */
2114 		long_delay((2*HZ)/10);
2115 	}
2116 }
2117 
2118 /**
2119  * cpqhp_hardware_test - runs hardware tests
2120  * @ctrl: target controller
2121  * @test_num: the number written to the "test" file in sysfs.
2122  *
2123  * For hot plug ctrl folks to play with.
2124  */
2125 int cpqhp_hardware_test(struct controller *ctrl, int test_num)
2126 {
2127 	u32 save_LED;
2128 	u32 work_LED;
2129 	int loop;
2130 	int num_of_slots;
2131 
2132 	num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
2133 
2134 	switch (test_num) {
2135 	case 1:
2136 		/* Do stuff here! */
2137 
2138 		/* Do that funky LED thing */
2139 		/* so we can restore them later */
2140 		save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
2141 		work_LED = 0x01010101;
2142 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2143 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2144 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2145 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2146 
2147 		work_LED = 0x01010000;
2148 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2149 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2150 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2151 		work_LED = 0x00000101;
2152 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2153 		switch_leds(ctrl, num_of_slots, &work_LED, 0);
2154 		switch_leds(ctrl, num_of_slots, &work_LED, 1);
2155 
2156 		work_LED = 0x01010000;
2157 		writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2158 		for (loop = 0; loop < num_of_slots; loop++) {
2159 			set_SOGO(ctrl);
2160 
2161 			/* Wait for SOGO interrupt */
2162 			wait_for_ctrl_irq(ctrl);
2163 
2164 			/* Get ready for next iteration */
2165 			long_delay((3*HZ)/10);
2166 			work_LED = work_LED >> 16;
2167 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2168 
2169 			set_SOGO(ctrl);
2170 
2171 			/* Wait for SOGO interrupt */
2172 			wait_for_ctrl_irq(ctrl);
2173 
2174 			/* Get ready for next iteration */
2175 			long_delay((3*HZ)/10);
2176 			work_LED = work_LED << 16;
2177 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2178 			work_LED = work_LED << 1;
2179 			writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
2180 		}
2181 
2182 		/* put it back the way it was */
2183 		writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
2184 
2185 		set_SOGO(ctrl);
2186 
2187 		/* Wait for SOBS to be unset */
2188 		wait_for_ctrl_irq(ctrl);
2189 		break;
2190 	case 2:
2191 		/* Do other stuff here! */
2192 		break;
2193 	case 3:
2194 		/* and more... */
2195 		break;
2196 	}
2197 	return 0;
2198 }
2199 
2200 
2201 /**
2202  * configure_new_device - Configures the PCI header information of one board.
2203  * @ctrl: pointer to controller structure
2204  * @func: pointer to function structure
2205  * @behind_bridge: 1 if this is a recursive call, 0 if not
2206  * @resources: pointer to set of resource lists
2207  *
2208  * Returns 0 if success.
2209  */
2210 static u32 configure_new_device(struct controller  *ctrl, struct pci_func  *func,
2211 				 u8 behind_bridge, struct resource_lists  *resources)
2212 {
2213 	u8 temp_byte, function, max_functions, stop_it;
2214 	int rc;
2215 	u32 ID;
2216 	struct pci_func *new_slot;
2217 	int index;
2218 
2219 	new_slot = func;
2220 
2221 	dbg("%s\n", __func__);
2222 	/* Check for Multi-function device */
2223 	ctrl->pci_bus->number = func->bus;
2224 	rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
2225 	if (rc) {
2226 		dbg("%s: rc = %d\n", __func__, rc);
2227 		return rc;
2228 	}
2229 
2230 	if (temp_byte & 0x80)	/* Multi-function device */
2231 		max_functions = 8;
2232 	else
2233 		max_functions = 1;
2234 
2235 	function = 0;
2236 
2237 	do {
2238 		rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
2239 
2240 		if (rc) {
2241 			dbg("configure_new_function failed %d\n", rc);
2242 			index = 0;
2243 
2244 			while (new_slot) {
2245 				new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
2246 
2247 				if (new_slot)
2248 					cpqhp_return_board_resources(new_slot, resources);
2249 			}
2250 
2251 			return rc;
2252 		}
2253 
2254 		function++;
2255 
2256 		stop_it = 0;
2257 
2258 		/* The following loop skips to the next present function
2259 		 * and creates a board structure */
2260 
2261 		while ((function < max_functions) && (!stop_it)) {
2262 			pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
2263 
2264 			if (PCI_POSSIBLE_ERROR(ID)) {
2265 				function++;
2266 			} else {
2267 				/* Setup slot structure. */
2268 				new_slot = cpqhp_slot_create(func->bus);
2269 
2270 				if (new_slot == NULL)
2271 					return 1;
2272 
2273 				new_slot->bus = func->bus;
2274 				new_slot->device = func->device;
2275 				new_slot->function = function;
2276 				new_slot->is_a_board = 1;
2277 				new_slot->status = 0;
2278 
2279 				stop_it++;
2280 			}
2281 		}
2282 
2283 	} while (function < max_functions);
2284 	dbg("returning from configure_new_device\n");
2285 
2286 	return 0;
2287 }
2288 
2289 
2290 /*
2291  * Configuration logic that involves the hotplug data structures and
2292  * their bookkeeping
2293  */
2294 
2295 
2296 /**
2297  * configure_new_function - Configures the PCI header information of one device
2298  * @ctrl: pointer to controller structure
2299  * @func: pointer to function structure
2300  * @behind_bridge: 1 if this is a recursive call, 0 if not
2301  * @resources: pointer to set of resource lists
2302  *
2303  * Calls itself recursively for bridged devices.
2304  * Returns 0 if success.
2305  */
2306 static int configure_new_function(struct controller *ctrl, struct pci_func *func,
2307 				   u8 behind_bridge,
2308 				   struct resource_lists *resources)
2309 {
2310 	int cloop;
2311 	u8 IRQ = 0;
2312 	u8 temp_byte;
2313 	u8 device;
2314 	u8 class_code;
2315 	u16 command;
2316 	u16 temp_word;
2317 	u32 temp_dword;
2318 	u32 rc;
2319 	u32 temp_register;
2320 	u32 base;
2321 	u32 ID;
2322 	unsigned int devfn;
2323 	struct pci_resource *mem_node;
2324 	struct pci_resource *p_mem_node;
2325 	struct pci_resource *io_node;
2326 	struct pci_resource *bus_node;
2327 	struct pci_resource *hold_mem_node;
2328 	struct pci_resource *hold_p_mem_node;
2329 	struct pci_resource *hold_IO_node;
2330 	struct pci_resource *hold_bus_node;
2331 	struct irq_mapping irqs;
2332 	struct pci_func *new_slot;
2333 	struct pci_bus *pci_bus;
2334 	struct resource_lists temp_resources;
2335 
2336 	pci_bus = ctrl->pci_bus;
2337 	pci_bus->number = func->bus;
2338 	devfn = PCI_DEVFN(func->device, func->function);
2339 
2340 	/* Check for Bridge */
2341 	rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
2342 	if (rc)
2343 		return rc;
2344 
2345 	if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
2346 		/* set Primary bus */
2347 		dbg("set Primary bus = %d\n", func->bus);
2348 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
2349 		if (rc)
2350 			return rc;
2351 
2352 		/* find range of buses to use */
2353 		dbg("find ranges of buses to use\n");
2354 		bus_node = get_max_resource(&(resources->bus_head), 1);
2355 
2356 		/* If we don't have any buses to allocate, we can't continue */
2357 		if (!bus_node)
2358 			return -ENOMEM;
2359 
2360 		/* set Secondary bus */
2361 		temp_byte = bus_node->base;
2362 		dbg("set Secondary bus = %d\n", bus_node->base);
2363 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
2364 		if (rc)
2365 			return rc;
2366 
2367 		/* set subordinate bus */
2368 		temp_byte = bus_node->base + bus_node->length - 1;
2369 		dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
2370 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2371 		if (rc)
2372 			return rc;
2373 
2374 		/* set subordinate Latency Timer and base Latency Timer */
2375 		temp_byte = 0x40;
2376 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
2377 		if (rc)
2378 			return rc;
2379 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
2380 		if (rc)
2381 			return rc;
2382 
2383 		/* set Cache Line size */
2384 		temp_byte = 0x08;
2385 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
2386 		if (rc)
2387 			return rc;
2388 
2389 		/* Setup the IO, memory, and prefetchable windows */
2390 		io_node = get_max_resource(&(resources->io_head), 0x1000);
2391 		if (!io_node)
2392 			return -ENOMEM;
2393 		mem_node = get_max_resource(&(resources->mem_head), 0x100000);
2394 		if (!mem_node)
2395 			return -ENOMEM;
2396 		p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
2397 		if (!p_mem_node)
2398 			return -ENOMEM;
2399 		dbg("Setup the IO, memory, and prefetchable windows\n");
2400 		dbg("io_node\n");
2401 		dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
2402 					io_node->length, io_node->next);
2403 		dbg("mem_node\n");
2404 		dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
2405 					mem_node->length, mem_node->next);
2406 		dbg("p_mem_node\n");
2407 		dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
2408 					p_mem_node->length, p_mem_node->next);
2409 
2410 		/* set up the IRQ info */
2411 		if (!resources->irqs) {
2412 			irqs.barber_pole = 0;
2413 			irqs.interrupt[0] = 0;
2414 			irqs.interrupt[1] = 0;
2415 			irqs.interrupt[2] = 0;
2416 			irqs.interrupt[3] = 0;
2417 			irqs.valid_INT = 0;
2418 		} else {
2419 			irqs.barber_pole = resources->irqs->barber_pole;
2420 			irqs.interrupt[0] = resources->irqs->interrupt[0];
2421 			irqs.interrupt[1] = resources->irqs->interrupt[1];
2422 			irqs.interrupt[2] = resources->irqs->interrupt[2];
2423 			irqs.interrupt[3] = resources->irqs->interrupt[3];
2424 			irqs.valid_INT = resources->irqs->valid_INT;
2425 		}
2426 
2427 		/* set up resource lists that are now aligned on top and bottom
2428 		 * for anything behind the bridge. */
2429 		temp_resources.bus_head = bus_node;
2430 		temp_resources.io_head = io_node;
2431 		temp_resources.mem_head = mem_node;
2432 		temp_resources.p_mem_head = p_mem_node;
2433 		temp_resources.irqs = &irqs;
2434 
2435 		/* Make copies of the nodes we are going to pass down so that
2436 		 * if there is a problem,we can just use these to free resources
2437 		 */
2438 		hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
2439 		hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
2440 		hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
2441 		hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
2442 
2443 		if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
2444 			kfree(hold_bus_node);
2445 			kfree(hold_IO_node);
2446 			kfree(hold_mem_node);
2447 			kfree(hold_p_mem_node);
2448 
2449 			return 1;
2450 		}
2451 
2452 		memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
2453 
2454 		bus_node->base += 1;
2455 		bus_node->length -= 1;
2456 		bus_node->next = NULL;
2457 
2458 		/* If we have IO resources copy them and fill in the bridge's
2459 		 * IO range registers */
2460 		memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
2461 		io_node->next = NULL;
2462 
2463 		/* set IO base and Limit registers */
2464 		temp_byte = io_node->base >> 8;
2465 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2466 
2467 		temp_byte = (io_node->base + io_node->length - 1) >> 8;
2468 		rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2469 
2470 		/* Copy the memory resources and fill in the bridge's memory
2471 		 * range registers.
2472 		 */
2473 		memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
2474 		mem_node->next = NULL;
2475 
2476 		/* set Mem base and Limit registers */
2477 		temp_word = mem_node->base >> 16;
2478 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2479 
2480 		temp_word = (mem_node->base + mem_node->length - 1) >> 16;
2481 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2482 
2483 		memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
2484 		p_mem_node->next = NULL;
2485 
2486 		/* set Pre Mem base and Limit registers */
2487 		temp_word = p_mem_node->base >> 16;
2488 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2489 
2490 		temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
2491 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2492 
2493 		/* Adjust this to compensate for extra adjustment in first loop
2494 		 */
2495 		irqs.barber_pole--;
2496 
2497 		rc = 0;
2498 
2499 		/* Here we actually find the devices and configure them */
2500 		for (device = 0; (device <= 0x1F) && !rc; device++) {
2501 			irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
2502 
2503 			ID = 0xFFFFFFFF;
2504 			pci_bus->number = hold_bus_node->base;
2505 			pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
2506 			pci_bus->number = func->bus;
2507 
2508 			if (!PCI_POSSIBLE_ERROR(ID)) {	  /*  device present */
2509 				/* Setup slot structure. */
2510 				new_slot = cpqhp_slot_create(hold_bus_node->base);
2511 
2512 				if (new_slot == NULL) {
2513 					rc = -ENOMEM;
2514 					continue;
2515 				}
2516 
2517 				new_slot->bus = hold_bus_node->base;
2518 				new_slot->device = device;
2519 				new_slot->function = 0;
2520 				new_slot->is_a_board = 1;
2521 				new_slot->status = 0;
2522 
2523 				rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
2524 				dbg("configure_new_device rc=0x%x\n", rc);
2525 			}	/* End of IF (device in slot?) */
2526 		}		/* End of FOR loop */
2527 
2528 		if (rc)
2529 			goto free_and_out;
2530 		/* save the interrupt routing information */
2531 		if (resources->irqs) {
2532 			resources->irqs->interrupt[0] = irqs.interrupt[0];
2533 			resources->irqs->interrupt[1] = irqs.interrupt[1];
2534 			resources->irqs->interrupt[2] = irqs.interrupt[2];
2535 			resources->irqs->interrupt[3] = irqs.interrupt[3];
2536 			resources->irqs->valid_INT = irqs.valid_INT;
2537 		} else if (!behind_bridge) {
2538 			/* We need to hook up the interrupts here */
2539 			for (cloop = 0; cloop < 4; cloop++) {
2540 				if (irqs.valid_INT & (0x01 << cloop)) {
2541 					rc = cpqhp_set_irq(func->bus, func->device,
2542 							   cloop + 1, irqs.interrupt[cloop]);
2543 					if (rc)
2544 						goto free_and_out;
2545 				}
2546 			}	/* end of for loop */
2547 		}
2548 		/* Return unused bus resources
2549 		 * First use the temporary node to store information for
2550 		 * the board */
2551 		if (bus_node && temp_resources.bus_head) {
2552 			hold_bus_node->length = bus_node->base - hold_bus_node->base;
2553 
2554 			hold_bus_node->next = func->bus_head;
2555 			func->bus_head = hold_bus_node;
2556 
2557 			temp_byte = temp_resources.bus_head->base - 1;
2558 
2559 			/* set subordinate bus */
2560 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
2561 
2562 			if (temp_resources.bus_head->length == 0) {
2563 				kfree(temp_resources.bus_head);
2564 				temp_resources.bus_head = NULL;
2565 			} else {
2566 				return_resource(&(resources->bus_head), temp_resources.bus_head);
2567 			}
2568 		}
2569 
2570 		/* If we have IO space available and there is some left,
2571 		 * return the unused portion */
2572 		if (hold_IO_node && temp_resources.io_head) {
2573 			io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
2574 							       &hold_IO_node, 0x1000);
2575 
2576 			/* Check if we were able to split something off */
2577 			if (io_node) {
2578 				hold_IO_node->base = io_node->base + io_node->length;
2579 
2580 				temp_byte = (hold_IO_node->base) >> 8;
2581 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte);
2582 
2583 				return_resource(&(resources->io_head), io_node);
2584 			}
2585 
2586 			io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
2587 
2588 			/* Check if we were able to split something off */
2589 			if (io_node) {
2590 				/* First use the temporary node to store
2591 				 * information for the board */
2592 				hold_IO_node->length = io_node->base - hold_IO_node->base;
2593 
2594 				/* If we used any, add it to the board's list */
2595 				if (hold_IO_node->length) {
2596 					hold_IO_node->next = func->io_head;
2597 					func->io_head = hold_IO_node;
2598 
2599 					temp_byte = (io_node->base - 1) >> 8;
2600 					rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
2601 
2602 					return_resource(&(resources->io_head), io_node);
2603 				} else {
2604 					/* it doesn't need any IO */
2605 					temp_word = 0x0000;
2606 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word);
2607 
2608 					return_resource(&(resources->io_head), io_node);
2609 					kfree(hold_IO_node);
2610 				}
2611 			} else {
2612 				/* it used most of the range */
2613 				hold_IO_node->next = func->io_head;
2614 				func->io_head = hold_IO_node;
2615 			}
2616 		} else if (hold_IO_node) {
2617 			/* it used the whole range */
2618 			hold_IO_node->next = func->io_head;
2619 			func->io_head = hold_IO_node;
2620 		}
2621 		/* If we have memory space available and there is some left,
2622 		 * return the unused portion */
2623 		if (hold_mem_node && temp_resources.mem_head) {
2624 			mem_node = do_pre_bridge_resource_split(&(temp_resources.  mem_head),
2625 								&hold_mem_node, 0x100000);
2626 
2627 			/* Check if we were able to split something off */
2628 			if (mem_node) {
2629 				hold_mem_node->base = mem_node->base + mem_node->length;
2630 
2631 				temp_word = (hold_mem_node->base) >> 16;
2632 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
2633 
2634 				return_resource(&(resources->mem_head), mem_node);
2635 			}
2636 
2637 			mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
2638 
2639 			/* Check if we were able to split something off */
2640 			if (mem_node) {
2641 				/* First use the temporary node to store
2642 				 * information for the board */
2643 				hold_mem_node->length = mem_node->base - hold_mem_node->base;
2644 
2645 				if (hold_mem_node->length) {
2646 					hold_mem_node->next = func->mem_head;
2647 					func->mem_head = hold_mem_node;
2648 
2649 					/* configure end address */
2650 					temp_word = (mem_node->base - 1) >> 16;
2651 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2652 
2653 					/* Return unused resources to the pool */
2654 					return_resource(&(resources->mem_head), mem_node);
2655 				} else {
2656 					/* it doesn't need any Mem */
2657 					temp_word = 0x0000;
2658 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
2659 
2660 					return_resource(&(resources->mem_head), mem_node);
2661 					kfree(hold_mem_node);
2662 				}
2663 			} else {
2664 				/* it used most of the range */
2665 				hold_mem_node->next = func->mem_head;
2666 				func->mem_head = hold_mem_node;
2667 			}
2668 		} else if (hold_mem_node) {
2669 			/* it used the whole range */
2670 			hold_mem_node->next = func->mem_head;
2671 			func->mem_head = hold_mem_node;
2672 		}
2673 		/* If we have prefetchable memory space available and there
2674 		 * is some left at the end, return the unused portion */
2675 		if (temp_resources.p_mem_head) {
2676 			p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
2677 								  &hold_p_mem_node, 0x100000);
2678 
2679 			/* Check if we were able to split something off */
2680 			if (p_mem_node) {
2681 				hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
2682 
2683 				temp_word = (hold_p_mem_node->base) >> 16;
2684 				rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
2685 
2686 				return_resource(&(resources->p_mem_head), p_mem_node);
2687 			}
2688 
2689 			p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
2690 
2691 			/* Check if we were able to split something off */
2692 			if (p_mem_node) {
2693 				/* First use the temporary node to store
2694 				 * information for the board */
2695 				hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
2696 
2697 				/* If we used any, add it to the board's list */
2698 				if (hold_p_mem_node->length) {
2699 					hold_p_mem_node->next = func->p_mem_head;
2700 					func->p_mem_head = hold_p_mem_node;
2701 
2702 					temp_word = (p_mem_node->base - 1) >> 16;
2703 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2704 
2705 					return_resource(&(resources->p_mem_head), p_mem_node);
2706 				} else {
2707 					/* it doesn't need any PMem */
2708 					temp_word = 0x0000;
2709 					rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
2710 
2711 					return_resource(&(resources->p_mem_head), p_mem_node);
2712 					kfree(hold_p_mem_node);
2713 				}
2714 			} else {
2715 				/* it used the most of the range */
2716 				hold_p_mem_node->next = func->p_mem_head;
2717 				func->p_mem_head = hold_p_mem_node;
2718 			}
2719 		} else if (hold_p_mem_node) {
2720 			/* it used the whole range */
2721 			hold_p_mem_node->next = func->p_mem_head;
2722 			func->p_mem_head = hold_p_mem_node;
2723 		}
2724 		/* We should be configuring an IRQ and the bridge's base address
2725 		 * registers if it needs them.  Although we have never seen such
2726 		 * a device */
2727 
2728 		/* enable card */
2729 		command = 0x0157;	/* = PCI_COMMAND_IO |
2730 					 *   PCI_COMMAND_MEMORY |
2731 					 *   PCI_COMMAND_MASTER |
2732 					 *   PCI_COMMAND_INVALIDATE |
2733 					 *   PCI_COMMAND_PARITY |
2734 					 *   PCI_COMMAND_SERR */
2735 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command);
2736 
2737 		/* set Bridge Control Register */
2738 		command = 0x07;		/* = PCI_BRIDGE_CTL_PARITY |
2739 					 *   PCI_BRIDGE_CTL_SERR |
2740 					 *   PCI_BRIDGE_CTL_NO_ISA */
2741 		rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
2742 	} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
2743 		/* Standard device */
2744 		rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2745 
2746 		if (class_code == PCI_BASE_CLASS_DISPLAY) {
2747 			/* Display (video) adapter (not supported) */
2748 			return DEVICE_TYPE_NOT_SUPPORTED;
2749 		}
2750 		/* Figure out IO and memory needs */
2751 		for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
2752 			temp_register = 0xFFFFFFFF;
2753 
2754 			dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
2755 			rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register);
2756 
2757 			rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register);
2758 			dbg("CND: base = 0x%x\n", temp_register);
2759 
2760 			if (temp_register) {	  /* If this register is implemented */
2761 				if ((temp_register & 0x03L) == 0x01) {
2762 					/* Map IO */
2763 
2764 					/* set base = amount of IO space */
2765 					base = temp_register & 0xFFFFFFFC;
2766 					base = ~base + 1;
2767 
2768 					dbg("CND:      length = 0x%x\n", base);
2769 					io_node = get_io_resource(&(resources->io_head), base);
2770 					if (!io_node)
2771 						return -ENOMEM;
2772 					dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
2773 					    io_node->base, io_node->length, io_node->next);
2774 					dbg("func (%p) io_head (%p)\n", func, func->io_head);
2775 
2776 					/* allocate the resource to the board */
2777 					base = io_node->base;
2778 					io_node->next = func->io_head;
2779 					func->io_head = io_node;
2780 				} else if ((temp_register & 0x0BL) == 0x08) {
2781 					/* Map prefetchable memory */
2782 					base = temp_register & 0xFFFFFFF0;
2783 					base = ~base + 1;
2784 
2785 					dbg("CND:      length = 0x%x\n", base);
2786 					p_mem_node = get_resource(&(resources->p_mem_head), base);
2787 
2788 					/* allocate the resource to the board */
2789 					if (p_mem_node) {
2790 						base = p_mem_node->base;
2791 
2792 						p_mem_node->next = func->p_mem_head;
2793 						func->p_mem_head = p_mem_node;
2794 					} else
2795 						return -ENOMEM;
2796 				} else if ((temp_register & 0x0BL) == 0x00) {
2797 					/* Map memory */
2798 					base = temp_register & 0xFFFFFFF0;
2799 					base = ~base + 1;
2800 
2801 					dbg("CND:      length = 0x%x\n", base);
2802 					mem_node = get_resource(&(resources->mem_head), base);
2803 
2804 					/* allocate the resource to the board */
2805 					if (mem_node) {
2806 						base = mem_node->base;
2807 
2808 						mem_node->next = func->mem_head;
2809 						func->mem_head = mem_node;
2810 					} else
2811 						return -ENOMEM;
2812 				} else {
2813 					/* Reserved bits or requesting space below 1M */
2814 					return NOT_ENOUGH_RESOURCES;
2815 				}
2816 
2817 				rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2818 
2819 				/* Check for 64-bit base */
2820 				if ((temp_register & 0x07L) == 0x04) {
2821 					cloop += 4;
2822 
2823 					/* Upper 32 bits of address always zero
2824 					 * on today's systems */
2825 					/* FIXME this is probably not true on
2826 					 * Alpha and ia64??? */
2827 					base = 0;
2828 					rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
2829 				}
2830 			}
2831 		}		/* End of base register loop */
2832 		if (cpqhp_legacy_mode) {
2833 			/* Figure out which interrupt pin this function uses */
2834 			rc = pci_bus_read_config_byte(pci_bus, devfn,
2835 				PCI_INTERRUPT_PIN, &temp_byte);
2836 
2837 			/* If this function needs an interrupt and we are behind
2838 			 * a bridge and the pin is tied to something that's
2839 			 * already mapped, set this one the same */
2840 			if (temp_byte && resources->irqs &&
2841 			    (resources->irqs->valid_INT &
2842 			     (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
2843 				/* We have to share with something already set up */
2844 				IRQ = resources->irqs->interrupt[(temp_byte +
2845 					resources->irqs->barber_pole - 1) & 0x03];
2846 			} else {
2847 				/* Program IRQ based on card type */
2848 				rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code);
2849 
2850 				if (class_code == PCI_BASE_CLASS_STORAGE)
2851 					IRQ = cpqhp_disk_irq;
2852 				else
2853 					IRQ = cpqhp_nic_irq;
2854 			}
2855 
2856 			/* IRQ Line */
2857 			rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
2858 		}
2859 
2860 		if (!behind_bridge) {
2861 			rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ);
2862 			if (rc)
2863 				return 1;
2864 		} else {
2865 			/* TBD - this code may also belong in the other clause
2866 			 * of this If statement */
2867 			resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
2868 			resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
2869 		}
2870 
2871 		/* Latency Timer */
2872 		temp_byte = 0x40;
2873 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2874 					PCI_LATENCY_TIMER, temp_byte);
2875 
2876 		/* Cache Line size */
2877 		temp_byte = 0x08;
2878 		rc = pci_bus_write_config_byte(pci_bus, devfn,
2879 					PCI_CACHE_LINE_SIZE, temp_byte);
2880 
2881 		/* disable ROM base Address */
2882 		temp_dword = 0x00L;
2883 		rc = pci_bus_write_config_word(pci_bus, devfn,
2884 					PCI_ROM_ADDRESS, temp_dword);
2885 
2886 		/* enable card */
2887 		temp_word = 0x0157;	/* = PCI_COMMAND_IO |
2888 					 *   PCI_COMMAND_MEMORY |
2889 					 *   PCI_COMMAND_MASTER |
2890 					 *   PCI_COMMAND_INVALIDATE |
2891 					 *   PCI_COMMAND_PARITY |
2892 					 *   PCI_COMMAND_SERR */
2893 		rc = pci_bus_write_config_word(pci_bus, devfn,
2894 					PCI_COMMAND, temp_word);
2895 	} else {		/* End of Not-A-Bridge else */
2896 		/* It's some strange type of PCI adapter (Cardbus?) */
2897 		return DEVICE_TYPE_NOT_SUPPORTED;
2898 	}
2899 
2900 	func->configured = 1;
2901 
2902 	return 0;
2903 free_and_out:
2904 	cpqhp_destroy_resource_list(&temp_resources);
2905 
2906 	return_resource(&(resources->bus_head), hold_bus_node);
2907 	return_resource(&(resources->io_head), hold_IO_node);
2908 	return_resource(&(resources->mem_head), hold_mem_node);
2909 	return_resource(&(resources->p_mem_head), hold_p_mem_node);
2910 	return rc;
2911 }
2912