1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * Compaq Hot Plug Controller Driver 4 * 5 * Copyright (C) 1995,2001 Compaq Computer Corporation 6 * Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com) 7 * Copyright (C) 2001 IBM Corp. 8 * 9 * All rights reserved. 10 * 11 * Send feedback to <greg@kroah.com> 12 * 13 */ 14 15 #include <linux/module.h> 16 #include <linux/kernel.h> 17 #include <linux/types.h> 18 #include <linux/slab.h> 19 #include <linux/workqueue.h> 20 #include <linux/interrupt.h> 21 #include <linux/delay.h> 22 #include <linux/wait.h> 23 #include <linux/pci.h> 24 #include <linux/pci_hotplug.h> 25 #include <linux/kthread.h> 26 #include "cpqphp.h" 27 28 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 29 u8 behind_bridge, struct resource_lists *resources); 30 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 31 u8 behind_bridge, struct resource_lists *resources); 32 static void interrupt_event_handler(struct controller *ctrl); 33 34 35 static struct task_struct *cpqhp_event_thread; 36 static struct timer_list *pushbutton_pending; /* = NULL */ 37 38 /* delay is in jiffies to wait for */ 39 static void long_delay(int delay) 40 { 41 /* 42 * XXX(hch): if someone is bored please convert all callers 43 * to call msleep_interruptible directly. They really want 44 * to specify timeouts in natural units and spend a lot of 45 * effort converting them to jiffies.. 46 */ 47 msleep_interruptible(jiffies_to_msecs(delay)); 48 } 49 50 51 /* FIXME: The following line needs to be somewhere else... */ 52 #define WRONG_BUS_FREQUENCY 0x07 53 static u8 handle_switch_change(u8 change, struct controller *ctrl) 54 { 55 int hp_slot; 56 u8 rc = 0; 57 u16 temp_word; 58 struct pci_func *func; 59 struct event_info *taskInfo; 60 61 if (!change) 62 return 0; 63 64 /* Switch Change */ 65 dbg("cpqsbd: Switch interrupt received.\n"); 66 67 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 68 if (change & (0x1L << hp_slot)) { 69 /* 70 * this one changed. 71 */ 72 func = cpqhp_slot_find(ctrl->bus, 73 (hp_slot + ctrl->slot_device_offset), 0); 74 75 /* this is the structure that tells the worker thread 76 * what to do 77 */ 78 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 79 ctrl->next_event = (ctrl->next_event + 1) % 10; 80 taskInfo->hp_slot = hp_slot; 81 82 rc++; 83 84 temp_word = ctrl->ctrl_int_comp >> 16; 85 func->presence_save = (temp_word >> hp_slot) & 0x01; 86 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 87 88 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 89 /* 90 * Switch opened 91 */ 92 93 func->switch_save = 0; 94 95 taskInfo->event_type = INT_SWITCH_OPEN; 96 } else { 97 /* 98 * Switch closed 99 */ 100 101 func->switch_save = 0x10; 102 103 taskInfo->event_type = INT_SWITCH_CLOSE; 104 } 105 } 106 } 107 108 return rc; 109 } 110 111 /** 112 * cpqhp_find_slot - find the struct slot of given device 113 * @ctrl: scan lots of this controller 114 * @device: the device id to find 115 */ 116 static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device) 117 { 118 struct slot *slot = ctrl->slot; 119 120 while (slot && (slot->device != device)) 121 slot = slot->next; 122 123 return slot; 124 } 125 126 127 static u8 handle_presence_change(u16 change, struct controller *ctrl) 128 { 129 int hp_slot; 130 u8 rc = 0; 131 u8 temp_byte; 132 u16 temp_word; 133 struct pci_func *func; 134 struct event_info *taskInfo; 135 struct slot *p_slot; 136 137 if (!change) 138 return 0; 139 140 /* 141 * Presence Change 142 */ 143 dbg("cpqsbd: Presence/Notify input change.\n"); 144 dbg(" Changed bits are 0x%4.4x\n", change); 145 146 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 147 if (change & (0x0101 << hp_slot)) { 148 /* 149 * this one changed. 150 */ 151 func = cpqhp_slot_find(ctrl->bus, 152 (hp_slot + ctrl->slot_device_offset), 0); 153 154 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 155 ctrl->next_event = (ctrl->next_event + 1) % 10; 156 taskInfo->hp_slot = hp_slot; 157 158 rc++; 159 160 p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4)); 161 if (!p_slot) 162 return 0; 163 164 /* If the switch closed, must be a button 165 * If not in button mode, nevermind 166 */ 167 if (func->switch_save && (ctrl->push_button == 1)) { 168 temp_word = ctrl->ctrl_int_comp >> 16; 169 temp_byte = (temp_word >> hp_slot) & 0x01; 170 temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02; 171 172 if (temp_byte != func->presence_save) { 173 /* 174 * button Pressed (doesn't do anything) 175 */ 176 dbg("hp_slot %d button pressed\n", hp_slot); 177 taskInfo->event_type = INT_BUTTON_PRESS; 178 } else { 179 /* 180 * button Released - TAKE ACTION!!!! 181 */ 182 dbg("hp_slot %d button released\n", hp_slot); 183 taskInfo->event_type = INT_BUTTON_RELEASE; 184 185 /* Cancel if we are still blinking */ 186 if ((p_slot->state == BLINKINGON_STATE) 187 || (p_slot->state == BLINKINGOFF_STATE)) { 188 taskInfo->event_type = INT_BUTTON_CANCEL; 189 dbg("hp_slot %d button cancel\n", hp_slot); 190 } else if ((p_slot->state == POWERON_STATE) 191 || (p_slot->state == POWEROFF_STATE)) { 192 /* info(msg_button_ignore, p_slot->number); */ 193 taskInfo->event_type = INT_BUTTON_IGNORE; 194 dbg("hp_slot %d button ignore\n", hp_slot); 195 } 196 } 197 } else { 198 /* Switch is open, assume a presence change 199 * Save the presence state 200 */ 201 temp_word = ctrl->ctrl_int_comp >> 16; 202 func->presence_save = (temp_word >> hp_slot) & 0x01; 203 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 204 205 if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) || 206 (!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) { 207 /* Present */ 208 taskInfo->event_type = INT_PRESENCE_ON; 209 } else { 210 /* Not Present */ 211 taskInfo->event_type = INT_PRESENCE_OFF; 212 } 213 } 214 } 215 } 216 217 return rc; 218 } 219 220 221 static u8 handle_power_fault(u8 change, struct controller *ctrl) 222 { 223 int hp_slot; 224 u8 rc = 0; 225 struct pci_func *func; 226 struct event_info *taskInfo; 227 228 if (!change) 229 return 0; 230 231 /* 232 * power fault 233 */ 234 235 info("power fault interrupt\n"); 236 237 for (hp_slot = 0; hp_slot < 6; hp_slot++) { 238 if (change & (0x01 << hp_slot)) { 239 /* 240 * this one changed. 241 */ 242 func = cpqhp_slot_find(ctrl->bus, 243 (hp_slot + ctrl->slot_device_offset), 0); 244 245 taskInfo = &(ctrl->event_queue[ctrl->next_event]); 246 ctrl->next_event = (ctrl->next_event + 1) % 10; 247 taskInfo->hp_slot = hp_slot; 248 249 rc++; 250 251 if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) { 252 /* 253 * power fault Cleared 254 */ 255 func->status = 0x00; 256 257 taskInfo->event_type = INT_POWER_FAULT_CLEAR; 258 } else { 259 /* 260 * power fault 261 */ 262 taskInfo->event_type = INT_POWER_FAULT; 263 264 if (ctrl->rev < 4) { 265 amber_LED_on(ctrl, hp_slot); 266 green_LED_off(ctrl, hp_slot); 267 set_SOGO(ctrl); 268 269 /* this is a fatal condition, we want 270 * to crash the machine to protect from 271 * data corruption. simulated_NMI 272 * shouldn't ever return */ 273 /* FIXME 274 simulated_NMI(hp_slot, ctrl); */ 275 276 /* The following code causes a software 277 * crash just in case simulated_NMI did 278 * return */ 279 /*FIXME 280 panic(msg_power_fault); */ 281 } else { 282 /* set power fault status for this board */ 283 func->status = 0xFF; 284 info("power fault bit %x set\n", hp_slot); 285 } 286 } 287 } 288 } 289 290 return rc; 291 } 292 293 294 /** 295 * sort_by_size - sort nodes on the list by their length, smallest first. 296 * @head: list to sort 297 */ 298 static int sort_by_size(struct pci_resource **head) 299 { 300 struct pci_resource *current_res; 301 struct pci_resource *next_res; 302 int out_of_order = 1; 303 304 if (!(*head)) 305 return 1; 306 307 if (!((*head)->next)) 308 return 0; 309 310 while (out_of_order) { 311 out_of_order = 0; 312 313 /* Special case for swapping list head */ 314 if (((*head)->next) && 315 ((*head)->length > (*head)->next->length)) { 316 out_of_order++; 317 current_res = *head; 318 *head = (*head)->next; 319 current_res->next = (*head)->next; 320 (*head)->next = current_res; 321 } 322 323 current_res = *head; 324 325 while (current_res->next && current_res->next->next) { 326 if (current_res->next->length > current_res->next->next->length) { 327 out_of_order++; 328 next_res = current_res->next; 329 current_res->next = current_res->next->next; 330 current_res = current_res->next; 331 next_res->next = current_res->next; 332 current_res->next = next_res; 333 } else 334 current_res = current_res->next; 335 } 336 } /* End of out_of_order loop */ 337 338 return 0; 339 } 340 341 342 /** 343 * sort_by_max_size - sort nodes on the list by their length, largest first. 344 * @head: list to sort 345 */ 346 static int sort_by_max_size(struct pci_resource **head) 347 { 348 struct pci_resource *current_res; 349 struct pci_resource *next_res; 350 int out_of_order = 1; 351 352 if (!(*head)) 353 return 1; 354 355 if (!((*head)->next)) 356 return 0; 357 358 while (out_of_order) { 359 out_of_order = 0; 360 361 /* Special case for swapping list head */ 362 if (((*head)->next) && 363 ((*head)->length < (*head)->next->length)) { 364 out_of_order++; 365 current_res = *head; 366 *head = (*head)->next; 367 current_res->next = (*head)->next; 368 (*head)->next = current_res; 369 } 370 371 current_res = *head; 372 373 while (current_res->next && current_res->next->next) { 374 if (current_res->next->length < current_res->next->next->length) { 375 out_of_order++; 376 next_res = current_res->next; 377 current_res->next = current_res->next->next; 378 current_res = current_res->next; 379 next_res->next = current_res->next; 380 current_res->next = next_res; 381 } else 382 current_res = current_res->next; 383 } 384 } /* End of out_of_order loop */ 385 386 return 0; 387 } 388 389 390 /** 391 * do_pre_bridge_resource_split - find node of resources that are unused 392 * @head: new list head 393 * @orig_head: original list head 394 * @alignment: max node size (?) 395 */ 396 static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head, 397 struct pci_resource **orig_head, u32 alignment) 398 { 399 struct pci_resource *prevnode = NULL; 400 struct pci_resource *node; 401 struct pci_resource *split_node; 402 u32 rc; 403 u32 temp_dword; 404 dbg("do_pre_bridge_resource_split\n"); 405 406 if (!(*head) || !(*orig_head)) 407 return NULL; 408 409 rc = cpqhp_resource_sort_and_combine(head); 410 411 if (rc) 412 return NULL; 413 414 if ((*head)->base != (*orig_head)->base) 415 return NULL; 416 417 if ((*head)->length == (*orig_head)->length) 418 return NULL; 419 420 421 /* If we got here, there the bridge requires some of the resource, but 422 * we may be able to split some off of the front 423 */ 424 425 node = *head; 426 427 if (node->length & (alignment - 1)) { 428 /* this one isn't an aligned length, so we'll make a new entry 429 * and split it up. 430 */ 431 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 432 433 if (!split_node) 434 return NULL; 435 436 temp_dword = (node->length | (alignment-1)) + 1 - alignment; 437 438 split_node->base = node->base; 439 split_node->length = temp_dword; 440 441 node->length -= temp_dword; 442 node->base += split_node->length; 443 444 /* Put it in the list */ 445 *head = split_node; 446 split_node->next = node; 447 } 448 449 if (node->length < alignment) 450 return NULL; 451 452 /* Now unlink it */ 453 if (*head == node) { 454 *head = node->next; 455 } else { 456 prevnode = *head; 457 while (prevnode->next != node) 458 prevnode = prevnode->next; 459 460 prevnode->next = node->next; 461 } 462 node->next = NULL; 463 464 return node; 465 } 466 467 468 /** 469 * do_bridge_resource_split - find one node of resources that aren't in use 470 * @head: list head 471 * @alignment: max node size (?) 472 */ 473 static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment) 474 { 475 struct pci_resource *prevnode = NULL; 476 struct pci_resource *node; 477 u32 rc; 478 u32 temp_dword; 479 480 rc = cpqhp_resource_sort_and_combine(head); 481 482 if (rc) 483 return NULL; 484 485 node = *head; 486 487 while (node->next) { 488 prevnode = node; 489 node = node->next; 490 kfree(prevnode); 491 } 492 493 if (node->length < alignment) 494 goto error; 495 496 if (node->base & (alignment - 1)) { 497 /* Short circuit if adjusted size is too small */ 498 temp_dword = (node->base | (alignment-1)) + 1; 499 if ((node->length - (temp_dword - node->base)) < alignment) 500 goto error; 501 502 node->length -= (temp_dword - node->base); 503 node->base = temp_dword; 504 } 505 506 if (node->length & (alignment - 1)) 507 /* There's stuff in use after this node */ 508 goto error; 509 510 return node; 511 error: 512 kfree(node); 513 return NULL; 514 } 515 516 517 /** 518 * get_io_resource - find first node of given size not in ISA aliasing window. 519 * @head: list to search 520 * @size: size of node to find, must be a power of two. 521 * 522 * Description: This function sorts the resource list by size and then 523 * returns the first node of "size" length that is not in the ISA aliasing 524 * window. If it finds a node larger than "size" it will split it up. 525 */ 526 static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size) 527 { 528 struct pci_resource *prevnode; 529 struct pci_resource *node; 530 struct pci_resource *split_node; 531 u32 temp_dword; 532 533 if (!(*head)) 534 return NULL; 535 536 if (cpqhp_resource_sort_and_combine(head)) 537 return NULL; 538 539 if (sort_by_size(head)) 540 return NULL; 541 542 for (node = *head; node; node = node->next) { 543 if (node->length < size) 544 continue; 545 546 if (node->base & (size - 1)) { 547 /* this one isn't base aligned properly 548 * so we'll make a new entry and split it up 549 */ 550 temp_dword = (node->base | (size-1)) + 1; 551 552 /* Short circuit if adjusted size is too small */ 553 if ((node->length - (temp_dword - node->base)) < size) 554 continue; 555 556 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 557 558 if (!split_node) 559 return NULL; 560 561 split_node->base = node->base; 562 split_node->length = temp_dword - node->base; 563 node->base = temp_dword; 564 node->length -= split_node->length; 565 566 /* Put it in the list */ 567 split_node->next = node->next; 568 node->next = split_node; 569 } /* End of non-aligned base */ 570 571 /* Don't need to check if too small since we already did */ 572 if (node->length > size) { 573 /* this one is longer than we need 574 * so we'll make a new entry and split it up 575 */ 576 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 577 578 if (!split_node) 579 return NULL; 580 581 split_node->base = node->base + size; 582 split_node->length = node->length - size; 583 node->length = size; 584 585 /* Put it in the list */ 586 split_node->next = node->next; 587 node->next = split_node; 588 } /* End of too big on top end */ 589 590 /* For IO make sure it's not in the ISA aliasing space */ 591 if (node->base & 0x300L) 592 continue; 593 594 /* If we got here, then it is the right size 595 * Now take it out of the list and break 596 */ 597 if (*head == node) { 598 *head = node->next; 599 } else { 600 prevnode = *head; 601 while (prevnode->next != node) 602 prevnode = prevnode->next; 603 604 prevnode->next = node->next; 605 } 606 node->next = NULL; 607 break; 608 } 609 610 return node; 611 } 612 613 614 /** 615 * get_max_resource - get largest node which has at least the given size. 616 * @head: the list to search the node in 617 * @size: the minimum size of the node to find 618 * 619 * Description: Gets the largest node that is at least "size" big from the 620 * list pointed to by head. It aligns the node on top and bottom 621 * to "size" alignment before returning it. 622 */ 623 static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size) 624 { 625 struct pci_resource *max; 626 struct pci_resource *temp; 627 struct pci_resource *split_node; 628 u32 temp_dword; 629 630 if (cpqhp_resource_sort_and_combine(head)) 631 return NULL; 632 633 if (sort_by_max_size(head)) 634 return NULL; 635 636 for (max = *head; max; max = max->next) { 637 /* If not big enough we could probably just bail, 638 * instead we'll continue to the next. 639 */ 640 if (max->length < size) 641 continue; 642 643 if (max->base & (size - 1)) { 644 /* this one isn't base aligned properly 645 * so we'll make a new entry and split it up 646 */ 647 temp_dword = (max->base | (size-1)) + 1; 648 649 /* Short circuit if adjusted size is too small */ 650 if ((max->length - (temp_dword - max->base)) < size) 651 continue; 652 653 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 654 655 if (!split_node) 656 return NULL; 657 658 split_node->base = max->base; 659 split_node->length = temp_dword - max->base; 660 max->base = temp_dword; 661 max->length -= split_node->length; 662 663 split_node->next = max->next; 664 max->next = split_node; 665 } 666 667 if ((max->base + max->length) & (size - 1)) { 668 /* this one isn't end aligned properly at the top 669 * so we'll make a new entry and split it up 670 */ 671 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 672 673 if (!split_node) 674 return NULL; 675 temp_dword = ((max->base + max->length) & ~(size - 1)); 676 split_node->base = temp_dword; 677 split_node->length = max->length + max->base 678 - split_node->base; 679 max->length -= split_node->length; 680 681 split_node->next = max->next; 682 max->next = split_node; 683 } 684 685 /* Make sure it didn't shrink too much when we aligned it */ 686 if (max->length < size) 687 continue; 688 689 /* Now take it out of the list */ 690 temp = *head; 691 if (temp == max) { 692 *head = max->next; 693 } else { 694 while (temp && temp->next != max) 695 temp = temp->next; 696 697 if (temp) 698 temp->next = max->next; 699 } 700 701 max->next = NULL; 702 break; 703 } 704 705 return max; 706 } 707 708 709 /** 710 * get_resource - find resource of given size and split up larger ones. 711 * @head: the list to search for resources 712 * @size: the size limit to use 713 * 714 * Description: This function sorts the resource list by size and then 715 * returns the first node of "size" length. If it finds a node 716 * larger than "size" it will split it up. 717 * 718 * size must be a power of two. 719 */ 720 static struct pci_resource *get_resource(struct pci_resource **head, u32 size) 721 { 722 struct pci_resource *prevnode; 723 struct pci_resource *node; 724 struct pci_resource *split_node; 725 u32 temp_dword; 726 727 if (cpqhp_resource_sort_and_combine(head)) 728 return NULL; 729 730 if (sort_by_size(head)) 731 return NULL; 732 733 for (node = *head; node; node = node->next) { 734 dbg("%s: req_size =%x node=%p, base=%x, length=%x\n", 735 __func__, size, node, node->base, node->length); 736 if (node->length < size) 737 continue; 738 739 if (node->base & (size - 1)) { 740 dbg("%s: not aligned\n", __func__); 741 /* this one isn't base aligned properly 742 * so we'll make a new entry and split it up 743 */ 744 temp_dword = (node->base | (size-1)) + 1; 745 746 /* Short circuit if adjusted size is too small */ 747 if ((node->length - (temp_dword - node->base)) < size) 748 continue; 749 750 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 751 752 if (!split_node) 753 return NULL; 754 755 split_node->base = node->base; 756 split_node->length = temp_dword - node->base; 757 node->base = temp_dword; 758 node->length -= split_node->length; 759 760 split_node->next = node->next; 761 node->next = split_node; 762 } /* End of non-aligned base */ 763 764 /* Don't need to check if too small since we already did */ 765 if (node->length > size) { 766 dbg("%s: too big\n", __func__); 767 /* this one is longer than we need 768 * so we'll make a new entry and split it up 769 */ 770 split_node = kmalloc(sizeof(*split_node), GFP_KERNEL); 771 772 if (!split_node) 773 return NULL; 774 775 split_node->base = node->base + size; 776 split_node->length = node->length - size; 777 node->length = size; 778 779 /* Put it in the list */ 780 split_node->next = node->next; 781 node->next = split_node; 782 } /* End of too big on top end */ 783 784 dbg("%s: got one!!!\n", __func__); 785 /* If we got here, then it is the right size 786 * Now take it out of the list */ 787 if (*head == node) { 788 *head = node->next; 789 } else { 790 prevnode = *head; 791 while (prevnode->next != node) 792 prevnode = prevnode->next; 793 794 prevnode->next = node->next; 795 } 796 node->next = NULL; 797 break; 798 } 799 return node; 800 } 801 802 803 /** 804 * cpqhp_resource_sort_and_combine - sort nodes by base addresses and clean up 805 * @head: the list to sort and clean up 806 * 807 * Description: Sorts all of the nodes in the list in ascending order by 808 * their base addresses. Also does garbage collection by 809 * combining adjacent nodes. 810 * 811 * Returns %0 if success. 812 */ 813 int cpqhp_resource_sort_and_combine(struct pci_resource **head) 814 { 815 struct pci_resource *node1; 816 struct pci_resource *node2; 817 int out_of_order = 1; 818 819 dbg("%s: head = %p, *head = %p\n", __func__, head, *head); 820 821 if (!(*head)) 822 return 1; 823 824 dbg("*head->next = %p\n", (*head)->next); 825 826 if (!(*head)->next) 827 return 0; /* only one item on the list, already sorted! */ 828 829 dbg("*head->base = 0x%x\n", (*head)->base); 830 dbg("*head->next->base = 0x%x\n", (*head)->next->base); 831 while (out_of_order) { 832 out_of_order = 0; 833 834 /* Special case for swapping list head */ 835 if (((*head)->next) && 836 ((*head)->base > (*head)->next->base)) { 837 node1 = *head; 838 (*head) = (*head)->next; 839 node1->next = (*head)->next; 840 (*head)->next = node1; 841 out_of_order++; 842 } 843 844 node1 = (*head); 845 846 while (node1->next && node1->next->next) { 847 if (node1->next->base > node1->next->next->base) { 848 out_of_order++; 849 node2 = node1->next; 850 node1->next = node1->next->next; 851 node1 = node1->next; 852 node2->next = node1->next; 853 node1->next = node2; 854 } else 855 node1 = node1->next; 856 } 857 } /* End of out_of_order loop */ 858 859 node1 = *head; 860 861 while (node1 && node1->next) { 862 if ((node1->base + node1->length) == node1->next->base) { 863 /* Combine */ 864 dbg("8..\n"); 865 node1->length += node1->next->length; 866 node2 = node1->next; 867 node1->next = node1->next->next; 868 kfree(node2); 869 } else 870 node1 = node1->next; 871 } 872 873 return 0; 874 } 875 876 877 irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data) 878 { 879 struct controller *ctrl = data; 880 u8 schedule_flag = 0; 881 u8 reset; 882 u16 misc; 883 u32 Diff; 884 885 886 misc = readw(ctrl->hpc_reg + MISC); 887 /* 888 * Check to see if it was our interrupt 889 */ 890 if (!(misc & 0x000C)) 891 return IRQ_NONE; 892 893 if (misc & 0x0004) { 894 /* 895 * Serial Output interrupt Pending 896 */ 897 898 /* Clear the interrupt */ 899 misc |= 0x0004; 900 writew(misc, ctrl->hpc_reg + MISC); 901 902 /* Read to clear posted writes */ 903 misc = readw(ctrl->hpc_reg + MISC); 904 905 dbg("%s - waking up\n", __func__); 906 wake_up_interruptible(&ctrl->queue); 907 } 908 909 if (misc & 0x0008) { 910 /* General-interrupt-input interrupt Pending */ 911 Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp; 912 913 ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 914 915 /* Clear the interrupt */ 916 writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR); 917 918 /* Read it back to clear any posted writes */ 919 readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 920 921 if (!Diff) 922 /* Clear all interrupts */ 923 writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR); 924 925 schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl); 926 schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl); 927 schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl); 928 } 929 930 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 931 if (reset & 0x40) { 932 /* Bus reset has completed */ 933 reset &= 0xCF; 934 writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE); 935 reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE); 936 wake_up_interruptible(&ctrl->queue); 937 } 938 939 if (schedule_flag) { 940 wake_up_process(cpqhp_event_thread); 941 dbg("Waking even thread"); 942 } 943 return IRQ_HANDLED; 944 } 945 946 947 /** 948 * cpqhp_slot_create - Creates a node and adds it to the proper bus. 949 * @busnumber: bus where new node is to be located 950 * 951 * Returns pointer to the new node or %NULL if unsuccessful. 952 */ 953 struct pci_func *cpqhp_slot_create(u8 busnumber) 954 { 955 struct pci_func *new_slot; 956 struct pci_func *next; 957 958 new_slot = kzalloc(sizeof(*new_slot), GFP_KERNEL); 959 if (new_slot == NULL) 960 return new_slot; 961 962 new_slot->next = NULL; 963 new_slot->configured = 1; 964 965 if (cpqhp_slot_list[busnumber] == NULL) { 966 cpqhp_slot_list[busnumber] = new_slot; 967 } else { 968 next = cpqhp_slot_list[busnumber]; 969 while (next->next != NULL) 970 next = next->next; 971 next->next = new_slot; 972 } 973 return new_slot; 974 } 975 976 977 /** 978 * slot_remove - Removes a node from the linked list of slots. 979 * @old_slot: slot to remove 980 * 981 * Returns %0 if successful, !0 otherwise. 982 */ 983 static int slot_remove(struct pci_func *old_slot) 984 { 985 struct pci_func *next; 986 987 if (old_slot == NULL) 988 return 1; 989 990 next = cpqhp_slot_list[old_slot->bus]; 991 if (next == NULL) 992 return 1; 993 994 if (next == old_slot) { 995 cpqhp_slot_list[old_slot->bus] = old_slot->next; 996 cpqhp_destroy_board_resources(old_slot); 997 kfree(old_slot); 998 return 0; 999 } 1000 1001 while ((next->next != old_slot) && (next->next != NULL)) 1002 next = next->next; 1003 1004 if (next->next == old_slot) { 1005 next->next = old_slot->next; 1006 cpqhp_destroy_board_resources(old_slot); 1007 kfree(old_slot); 1008 return 0; 1009 } else 1010 return 2; 1011 } 1012 1013 1014 /** 1015 * bridge_slot_remove - Removes a node from the linked list of slots. 1016 * @bridge: bridge to remove 1017 * 1018 * Returns %0 if successful, !0 otherwise. 1019 */ 1020 static int bridge_slot_remove(struct pci_func *bridge) 1021 { 1022 u8 subordinateBus, secondaryBus; 1023 u8 tempBus; 1024 struct pci_func *next; 1025 1026 secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF; 1027 subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF; 1028 1029 for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) { 1030 next = cpqhp_slot_list[tempBus]; 1031 1032 while (!slot_remove(next)) 1033 next = cpqhp_slot_list[tempBus]; 1034 } 1035 1036 next = cpqhp_slot_list[bridge->bus]; 1037 1038 if (next == NULL) 1039 return 1; 1040 1041 if (next == bridge) { 1042 cpqhp_slot_list[bridge->bus] = bridge->next; 1043 goto out; 1044 } 1045 1046 while ((next->next != bridge) && (next->next != NULL)) 1047 next = next->next; 1048 1049 if (next->next != bridge) 1050 return 2; 1051 next->next = bridge->next; 1052 out: 1053 kfree(bridge); 1054 return 0; 1055 } 1056 1057 1058 /** 1059 * cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed 1060 * @bus: bus to find 1061 * @device: device to find 1062 * @index: is %0 for first function found, %1 for the second... 1063 * 1064 * Returns pointer to the node if successful, %NULL otherwise. 1065 */ 1066 struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index) 1067 { 1068 int found = -1; 1069 struct pci_func *func; 1070 1071 func = cpqhp_slot_list[bus]; 1072 1073 if ((func == NULL) || ((func->device == device) && (index == 0))) 1074 return func; 1075 1076 if (func->device == device) 1077 found++; 1078 1079 while (func->next != NULL) { 1080 func = func->next; 1081 1082 if (func->device == device) 1083 found++; 1084 1085 if (found == index) 1086 return func; 1087 } 1088 1089 return NULL; 1090 } 1091 1092 1093 /* DJZ: I don't think is_bridge will work as is. 1094 * FIXME */ 1095 static int is_bridge(struct pci_func *func) 1096 { 1097 /* Check the header type */ 1098 if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01) 1099 return 1; 1100 else 1101 return 0; 1102 } 1103 1104 1105 /** 1106 * set_controller_speed - set the frequency and/or mode of a specific controller segment. 1107 * @ctrl: controller to change frequency/mode for. 1108 * @adapter_speed: the speed of the adapter we want to match. 1109 * @hp_slot: the slot number where the adapter is installed. 1110 * 1111 * Returns %0 if we successfully change frequency and/or mode to match the 1112 * adapter speed. 1113 */ 1114 static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot) 1115 { 1116 struct slot *slot; 1117 struct pci_bus *bus = ctrl->pci_bus; 1118 u8 reg; 1119 u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER); 1120 u16 reg16; 1121 u32 leds = readl(ctrl->hpc_reg + LED_CONTROL); 1122 1123 if (bus->cur_bus_speed == adapter_speed) 1124 return 0; 1125 1126 /* We don't allow freq/mode changes if we find another adapter running 1127 * in another slot on this controller 1128 */ 1129 for (slot = ctrl->slot; slot; slot = slot->next) { 1130 if (slot->device == (hp_slot + ctrl->slot_device_offset)) 1131 continue; 1132 if (get_presence_status(ctrl, slot) == 0) 1133 continue; 1134 /* If another adapter is running on the same segment but at a 1135 * lower speed/mode, we allow the new adapter to function at 1136 * this rate if supported 1137 */ 1138 if (bus->cur_bus_speed < adapter_speed) 1139 return 0; 1140 1141 return 1; 1142 } 1143 1144 /* If the controller doesn't support freq/mode changes and the 1145 * controller is running at a higher mode, we bail 1146 */ 1147 if ((bus->cur_bus_speed > adapter_speed) && (!ctrl->pcix_speed_capability)) 1148 return 1; 1149 1150 /* But we allow the adapter to run at a lower rate if possible */ 1151 if ((bus->cur_bus_speed < adapter_speed) && (!ctrl->pcix_speed_capability)) 1152 return 0; 1153 1154 /* We try to set the max speed supported by both the adapter and 1155 * controller 1156 */ 1157 if (bus->max_bus_speed < adapter_speed) { 1158 if (bus->cur_bus_speed == bus->max_bus_speed) 1159 return 0; 1160 adapter_speed = bus->max_bus_speed; 1161 } 1162 1163 writel(0x0L, ctrl->hpc_reg + LED_CONTROL); 1164 writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE); 1165 1166 set_SOGO(ctrl); 1167 wait_for_ctrl_irq(ctrl); 1168 1169 if (adapter_speed != PCI_SPEED_133MHz_PCIX) 1170 reg = 0xF5; 1171 else 1172 reg = 0xF4; 1173 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1174 1175 reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ); 1176 reg16 &= ~0x000F; 1177 switch (adapter_speed) { 1178 case(PCI_SPEED_133MHz_PCIX): 1179 reg = 0x75; 1180 reg16 |= 0xB; 1181 break; 1182 case(PCI_SPEED_100MHz_PCIX): 1183 reg = 0x74; 1184 reg16 |= 0xA; 1185 break; 1186 case(PCI_SPEED_66MHz_PCIX): 1187 reg = 0x73; 1188 reg16 |= 0x9; 1189 break; 1190 case(PCI_SPEED_66MHz): 1191 reg = 0x73; 1192 reg16 |= 0x1; 1193 break; 1194 default: /* 33MHz PCI 2.2 */ 1195 reg = 0x71; 1196 break; 1197 1198 } 1199 reg16 |= 0xB << 12; 1200 writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ); 1201 1202 mdelay(5); 1203 1204 /* Re-enable interrupts */ 1205 writel(0, ctrl->hpc_reg + INT_MASK); 1206 1207 pci_write_config_byte(ctrl->pci_dev, 0x41, reg); 1208 1209 /* Restart state machine */ 1210 reg = ~0xF; 1211 pci_read_config_byte(ctrl->pci_dev, 0x43, ®); 1212 pci_write_config_byte(ctrl->pci_dev, 0x43, reg); 1213 1214 /* Only if mode change...*/ 1215 if (((bus->cur_bus_speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) || 1216 ((bus->cur_bus_speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz))) 1217 set_SOGO(ctrl); 1218 1219 wait_for_ctrl_irq(ctrl); 1220 mdelay(1100); 1221 1222 /* Restore LED/Slot state */ 1223 writel(leds, ctrl->hpc_reg + LED_CONTROL); 1224 writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE); 1225 1226 set_SOGO(ctrl); 1227 wait_for_ctrl_irq(ctrl); 1228 1229 bus->cur_bus_speed = adapter_speed; 1230 slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1231 1232 info("Successfully changed frequency/mode for adapter in slot %d\n", 1233 slot->number); 1234 return 0; 1235 } 1236 1237 /* the following routines constitute the bulk of the 1238 * hotplug controller logic 1239 */ 1240 1241 1242 /** 1243 * board_replaced - Called after a board has been replaced in the system. 1244 * @func: PCI device/function information 1245 * @ctrl: hotplug controller 1246 * 1247 * This is only used if we don't have resources for hot add. 1248 * Turns power on for the board. 1249 * Checks to see if board is the same. 1250 * If board is same, reconfigures it. 1251 * If board isn't same, turns it back off. 1252 */ 1253 static u32 board_replaced(struct pci_func *func, struct controller *ctrl) 1254 { 1255 struct pci_bus *bus = ctrl->pci_bus; 1256 u8 hp_slot; 1257 u8 temp_byte; 1258 u8 adapter_speed; 1259 u32 rc = 0; 1260 1261 hp_slot = func->device - ctrl->slot_device_offset; 1262 1263 /* 1264 * The switch is open. 1265 */ 1266 if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) 1267 rc = INTERLOCK_OPEN; 1268 /* 1269 * The board is already on 1270 */ 1271 else if (is_slot_enabled(ctrl, hp_slot)) 1272 rc = CARD_FUNCTIONING; 1273 else { 1274 mutex_lock(&ctrl->crit_sect); 1275 1276 /* turn on board without attaching to the bus */ 1277 enable_slot_power(ctrl, hp_slot); 1278 1279 set_SOGO(ctrl); 1280 1281 /* Wait for SOBS to be unset */ 1282 wait_for_ctrl_irq(ctrl); 1283 1284 /* Change bits in slot power register to force another shift out 1285 * NOTE: this is to work around the timer bug */ 1286 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1287 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1288 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1289 1290 set_SOGO(ctrl); 1291 1292 /* Wait for SOBS to be unset */ 1293 wait_for_ctrl_irq(ctrl); 1294 1295 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1296 if (bus->cur_bus_speed != adapter_speed) 1297 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1298 rc = WRONG_BUS_FREQUENCY; 1299 1300 /* turn off board without attaching to the bus */ 1301 disable_slot_power(ctrl, hp_slot); 1302 1303 set_SOGO(ctrl); 1304 1305 /* Wait for SOBS to be unset */ 1306 wait_for_ctrl_irq(ctrl); 1307 1308 mutex_unlock(&ctrl->crit_sect); 1309 1310 if (rc) 1311 return rc; 1312 1313 mutex_lock(&ctrl->crit_sect); 1314 1315 slot_enable(ctrl, hp_slot); 1316 green_LED_blink(ctrl, hp_slot); 1317 1318 amber_LED_off(ctrl, hp_slot); 1319 1320 set_SOGO(ctrl); 1321 1322 /* Wait for SOBS to be unset */ 1323 wait_for_ctrl_irq(ctrl); 1324 1325 mutex_unlock(&ctrl->crit_sect); 1326 1327 /* Wait for ~1 second because of hot plug spec */ 1328 long_delay(1*HZ); 1329 1330 /* Check for a power fault */ 1331 if (func->status == 0xFF) { 1332 /* power fault occurred, but it was benign */ 1333 rc = POWER_FAILURE; 1334 func->status = 0; 1335 } else 1336 rc = cpqhp_valid_replace(ctrl, func); 1337 1338 if (!rc) { 1339 /* It must be the same board */ 1340 1341 rc = cpqhp_configure_board(ctrl, func); 1342 1343 /* If configuration fails, turn it off 1344 * Get slot won't work for devices behind 1345 * bridges, but in this case it will always be 1346 * called for the "base" bus/dev/func of an 1347 * adapter. 1348 */ 1349 1350 mutex_lock(&ctrl->crit_sect); 1351 1352 amber_LED_on(ctrl, hp_slot); 1353 green_LED_off(ctrl, hp_slot); 1354 slot_disable(ctrl, hp_slot); 1355 1356 set_SOGO(ctrl); 1357 1358 /* Wait for SOBS to be unset */ 1359 wait_for_ctrl_irq(ctrl); 1360 1361 mutex_unlock(&ctrl->crit_sect); 1362 1363 if (rc) 1364 return rc; 1365 else 1366 return 1; 1367 1368 } else { 1369 /* Something is wrong 1370 1371 * Get slot won't work for devices behind bridges, but 1372 * in this case it will always be called for the "base" 1373 * bus/dev/func of an adapter. 1374 */ 1375 1376 mutex_lock(&ctrl->crit_sect); 1377 1378 amber_LED_on(ctrl, hp_slot); 1379 green_LED_off(ctrl, hp_slot); 1380 slot_disable(ctrl, hp_slot); 1381 1382 set_SOGO(ctrl); 1383 1384 /* Wait for SOBS to be unset */ 1385 wait_for_ctrl_irq(ctrl); 1386 1387 mutex_unlock(&ctrl->crit_sect); 1388 } 1389 1390 } 1391 return rc; 1392 1393 } 1394 1395 1396 /** 1397 * board_added - Called after a board has been added to the system. 1398 * @func: PCI device/function info 1399 * @ctrl: hotplug controller 1400 * 1401 * Turns power on for the board. 1402 * Configures board. 1403 */ 1404 static u32 board_added(struct pci_func *func, struct controller *ctrl) 1405 { 1406 u8 hp_slot; 1407 u8 temp_byte; 1408 u8 adapter_speed; 1409 int index; 1410 u32 temp_register = 0xFFFFFFFF; 1411 u32 rc = 0; 1412 struct pci_func *new_slot = NULL; 1413 struct pci_bus *bus = ctrl->pci_bus; 1414 struct resource_lists res_lists; 1415 1416 hp_slot = func->device - ctrl->slot_device_offset; 1417 dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n", 1418 __func__, func->device, ctrl->slot_device_offset, hp_slot); 1419 1420 mutex_lock(&ctrl->crit_sect); 1421 1422 /* turn on board without attaching to the bus */ 1423 enable_slot_power(ctrl, hp_slot); 1424 1425 set_SOGO(ctrl); 1426 1427 /* Wait for SOBS to be unset */ 1428 wait_for_ctrl_irq(ctrl); 1429 1430 /* Change bits in slot power register to force another shift out 1431 * NOTE: this is to work around the timer bug 1432 */ 1433 temp_byte = readb(ctrl->hpc_reg + SLOT_POWER); 1434 writeb(0x00, ctrl->hpc_reg + SLOT_POWER); 1435 writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER); 1436 1437 set_SOGO(ctrl); 1438 1439 /* Wait for SOBS to be unset */ 1440 wait_for_ctrl_irq(ctrl); 1441 1442 adapter_speed = get_adapter_speed(ctrl, hp_slot); 1443 if (bus->cur_bus_speed != adapter_speed) 1444 if (set_controller_speed(ctrl, adapter_speed, hp_slot)) 1445 rc = WRONG_BUS_FREQUENCY; 1446 1447 /* turn off board without attaching to the bus */ 1448 disable_slot_power(ctrl, hp_slot); 1449 1450 set_SOGO(ctrl); 1451 1452 /* Wait for SOBS to be unset */ 1453 wait_for_ctrl_irq(ctrl); 1454 1455 mutex_unlock(&ctrl->crit_sect); 1456 1457 if (rc) 1458 return rc; 1459 1460 cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1461 1462 /* turn on board and blink green LED */ 1463 1464 dbg("%s: before down\n", __func__); 1465 mutex_lock(&ctrl->crit_sect); 1466 dbg("%s: after down\n", __func__); 1467 1468 dbg("%s: before slot_enable\n", __func__); 1469 slot_enable(ctrl, hp_slot); 1470 1471 dbg("%s: before green_LED_blink\n", __func__); 1472 green_LED_blink(ctrl, hp_slot); 1473 1474 dbg("%s: before amber_LED_blink\n", __func__); 1475 amber_LED_off(ctrl, hp_slot); 1476 1477 dbg("%s: before set_SOGO\n", __func__); 1478 set_SOGO(ctrl); 1479 1480 /* Wait for SOBS to be unset */ 1481 dbg("%s: before wait_for_ctrl_irq\n", __func__); 1482 wait_for_ctrl_irq(ctrl); 1483 dbg("%s: after wait_for_ctrl_irq\n", __func__); 1484 1485 dbg("%s: before up\n", __func__); 1486 mutex_unlock(&ctrl->crit_sect); 1487 dbg("%s: after up\n", __func__); 1488 1489 /* Wait for ~1 second because of hot plug spec */ 1490 dbg("%s: before long_delay\n", __func__); 1491 long_delay(1*HZ); 1492 dbg("%s: after long_delay\n", __func__); 1493 1494 dbg("%s: func status = %x\n", __func__, func->status); 1495 /* Check for a power fault */ 1496 if (func->status == 0xFF) { 1497 /* power fault occurred, but it was benign */ 1498 temp_register = 0xFFFFFFFF; 1499 dbg("%s: temp register set to %x by power fault\n", __func__, temp_register); 1500 rc = POWER_FAILURE; 1501 func->status = 0; 1502 } else { 1503 /* Get vendor/device ID u32 */ 1504 ctrl->pci_bus->number = func->bus; 1505 rc = pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register); 1506 dbg("%s: pci_read_config_dword returns %d\n", __func__, rc); 1507 dbg("%s: temp_register is %x\n", __func__, temp_register); 1508 1509 if (rc != 0) { 1510 /* Something's wrong here */ 1511 temp_register = 0xFFFFFFFF; 1512 dbg("%s: temp register set to %x by error\n", __func__, temp_register); 1513 } 1514 /* Preset return code. It will be changed later if things go okay. */ 1515 rc = NO_ADAPTER_PRESENT; 1516 } 1517 1518 /* All F's is an empty slot or an invalid board */ 1519 if (temp_register != 0xFFFFFFFF) { 1520 res_lists.io_head = ctrl->io_head; 1521 res_lists.mem_head = ctrl->mem_head; 1522 res_lists.p_mem_head = ctrl->p_mem_head; 1523 res_lists.bus_head = ctrl->bus_head; 1524 res_lists.irqs = NULL; 1525 1526 rc = configure_new_device(ctrl, func, 0, &res_lists); 1527 1528 dbg("%s: back from configure_new_device\n", __func__); 1529 ctrl->io_head = res_lists.io_head; 1530 ctrl->mem_head = res_lists.mem_head; 1531 ctrl->p_mem_head = res_lists.p_mem_head; 1532 ctrl->bus_head = res_lists.bus_head; 1533 1534 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1535 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1536 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1537 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1538 1539 if (rc) { 1540 mutex_lock(&ctrl->crit_sect); 1541 1542 amber_LED_on(ctrl, hp_slot); 1543 green_LED_off(ctrl, hp_slot); 1544 slot_disable(ctrl, hp_slot); 1545 1546 set_SOGO(ctrl); 1547 1548 /* Wait for SOBS to be unset */ 1549 wait_for_ctrl_irq(ctrl); 1550 1551 mutex_unlock(&ctrl->crit_sect); 1552 return rc; 1553 } else { 1554 cpqhp_save_slot_config(ctrl, func); 1555 } 1556 1557 1558 func->status = 0; 1559 func->switch_save = 0x10; 1560 func->is_a_board = 0x01; 1561 1562 /* next, we will instantiate the linux pci_dev structures (with 1563 * appropriate driver notification, if already present) */ 1564 dbg("%s: configure linux pci_dev structure\n", __func__); 1565 index = 0; 1566 do { 1567 new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++); 1568 if (new_slot && !new_slot->pci_dev) 1569 cpqhp_configure_device(ctrl, new_slot); 1570 } while (new_slot); 1571 1572 mutex_lock(&ctrl->crit_sect); 1573 1574 green_LED_on(ctrl, hp_slot); 1575 1576 set_SOGO(ctrl); 1577 1578 /* Wait for SOBS to be unset */ 1579 wait_for_ctrl_irq(ctrl); 1580 1581 mutex_unlock(&ctrl->crit_sect); 1582 } else { 1583 mutex_lock(&ctrl->crit_sect); 1584 1585 amber_LED_on(ctrl, hp_slot); 1586 green_LED_off(ctrl, hp_slot); 1587 slot_disable(ctrl, hp_slot); 1588 1589 set_SOGO(ctrl); 1590 1591 /* Wait for SOBS to be unset */ 1592 wait_for_ctrl_irq(ctrl); 1593 1594 mutex_unlock(&ctrl->crit_sect); 1595 1596 return rc; 1597 } 1598 return 0; 1599 } 1600 1601 1602 /** 1603 * remove_board - Turns off slot and LEDs 1604 * @func: PCI device/function info 1605 * @replace_flag: whether replacing or adding a new device 1606 * @ctrl: target controller 1607 */ 1608 static u32 remove_board(struct pci_func *func, u32 replace_flag, struct controller *ctrl) 1609 { 1610 int index; 1611 u8 skip = 0; 1612 u8 device; 1613 u8 hp_slot; 1614 u8 temp_byte; 1615 struct resource_lists res_lists; 1616 struct pci_func *temp_func; 1617 1618 if (cpqhp_unconfigure_device(func)) 1619 return 1; 1620 1621 device = func->device; 1622 1623 hp_slot = func->device - ctrl->slot_device_offset; 1624 dbg("In %s, hp_slot = %d\n", __func__, hp_slot); 1625 1626 /* When we get here, it is safe to change base address registers. 1627 * We will attempt to save the base address register lengths */ 1628 if (replace_flag || !ctrl->add_support) 1629 cpqhp_save_base_addr_length(ctrl, func); 1630 else if (!func->bus_head && !func->mem_head && 1631 !func->p_mem_head && !func->io_head) { 1632 /* Here we check to see if we've saved any of the board's 1633 * resources already. If so, we'll skip the attempt to 1634 * determine what's being used. */ 1635 index = 0; 1636 temp_func = cpqhp_slot_find(func->bus, func->device, index++); 1637 while (temp_func) { 1638 if (temp_func->bus_head || temp_func->mem_head 1639 || temp_func->p_mem_head || temp_func->io_head) { 1640 skip = 1; 1641 break; 1642 } 1643 temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++); 1644 } 1645 1646 if (!skip) 1647 cpqhp_save_used_resources(ctrl, func); 1648 } 1649 /* Change status to shutdown */ 1650 if (func->is_a_board) 1651 func->status = 0x01; 1652 func->configured = 0; 1653 1654 mutex_lock(&ctrl->crit_sect); 1655 1656 green_LED_off(ctrl, hp_slot); 1657 slot_disable(ctrl, hp_slot); 1658 1659 set_SOGO(ctrl); 1660 1661 /* turn off SERR for slot */ 1662 temp_byte = readb(ctrl->hpc_reg + SLOT_SERR); 1663 temp_byte &= ~(0x01 << hp_slot); 1664 writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR); 1665 1666 /* Wait for SOBS to be unset */ 1667 wait_for_ctrl_irq(ctrl); 1668 1669 mutex_unlock(&ctrl->crit_sect); 1670 1671 if (!replace_flag && ctrl->add_support) { 1672 while (func) { 1673 res_lists.io_head = ctrl->io_head; 1674 res_lists.mem_head = ctrl->mem_head; 1675 res_lists.p_mem_head = ctrl->p_mem_head; 1676 res_lists.bus_head = ctrl->bus_head; 1677 1678 cpqhp_return_board_resources(func, &res_lists); 1679 1680 ctrl->io_head = res_lists.io_head; 1681 ctrl->mem_head = res_lists.mem_head; 1682 ctrl->p_mem_head = res_lists.p_mem_head; 1683 ctrl->bus_head = res_lists.bus_head; 1684 1685 cpqhp_resource_sort_and_combine(&(ctrl->mem_head)); 1686 cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head)); 1687 cpqhp_resource_sort_and_combine(&(ctrl->io_head)); 1688 cpqhp_resource_sort_and_combine(&(ctrl->bus_head)); 1689 1690 if (is_bridge(func)) { 1691 bridge_slot_remove(func); 1692 } else 1693 slot_remove(func); 1694 1695 func = cpqhp_slot_find(ctrl->bus, device, 0); 1696 } 1697 1698 /* Setup slot structure with entry for empty slot */ 1699 func = cpqhp_slot_create(ctrl->bus); 1700 1701 if (func == NULL) 1702 return 1; 1703 1704 func->bus = ctrl->bus; 1705 func->device = device; 1706 func->function = 0; 1707 func->configured = 0; 1708 func->switch_save = 0x10; 1709 func->is_a_board = 0; 1710 func->p_task_event = NULL; 1711 } 1712 1713 return 0; 1714 } 1715 1716 static void pushbutton_helper_thread(struct timer_list *t) 1717 { 1718 pushbutton_pending = t; 1719 1720 wake_up_process(cpqhp_event_thread); 1721 } 1722 1723 1724 /* this is the main worker thread */ 1725 static int event_thread(void *data) 1726 { 1727 struct controller *ctrl; 1728 1729 while (1) { 1730 dbg("!!!!event_thread sleeping\n"); 1731 set_current_state(TASK_INTERRUPTIBLE); 1732 schedule(); 1733 1734 if (kthread_should_stop()) 1735 break; 1736 /* Do stuff here */ 1737 if (pushbutton_pending) 1738 cpqhp_pushbutton_thread(pushbutton_pending); 1739 else 1740 for (ctrl = cpqhp_ctrl_list; ctrl; ctrl = ctrl->next) 1741 interrupt_event_handler(ctrl); 1742 } 1743 dbg("event_thread signals exit\n"); 1744 return 0; 1745 } 1746 1747 int cpqhp_event_start_thread(void) 1748 { 1749 cpqhp_event_thread = kthread_run(event_thread, NULL, "phpd_event"); 1750 if (IS_ERR(cpqhp_event_thread)) { 1751 err("Can't start up our event thread\n"); 1752 return PTR_ERR(cpqhp_event_thread); 1753 } 1754 1755 return 0; 1756 } 1757 1758 1759 void cpqhp_event_stop_thread(void) 1760 { 1761 kthread_stop(cpqhp_event_thread); 1762 } 1763 1764 1765 static void interrupt_event_handler(struct controller *ctrl) 1766 { 1767 int loop; 1768 int change = 1; 1769 struct pci_func *func; 1770 u8 hp_slot; 1771 struct slot *p_slot; 1772 1773 while (change) { 1774 change = 0; 1775 1776 for (loop = 0; loop < 10; loop++) { 1777 /* dbg("loop %d\n", loop); */ 1778 if (ctrl->event_queue[loop].event_type != 0) { 1779 hp_slot = ctrl->event_queue[loop].hp_slot; 1780 1781 func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0); 1782 if (!func) 1783 return; 1784 1785 p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset); 1786 if (!p_slot) 1787 return; 1788 1789 dbg("hp_slot %d, func %p, p_slot %p\n", 1790 hp_slot, func, p_slot); 1791 1792 if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) { 1793 dbg("button pressed\n"); 1794 } else if (ctrl->event_queue[loop].event_type == 1795 INT_BUTTON_CANCEL) { 1796 dbg("button cancel\n"); 1797 del_timer(&p_slot->task_event); 1798 1799 mutex_lock(&ctrl->crit_sect); 1800 1801 if (p_slot->state == BLINKINGOFF_STATE) { 1802 /* slot is on */ 1803 dbg("turn on green LED\n"); 1804 green_LED_on(ctrl, hp_slot); 1805 } else if (p_slot->state == BLINKINGON_STATE) { 1806 /* slot is off */ 1807 dbg("turn off green LED\n"); 1808 green_LED_off(ctrl, hp_slot); 1809 } 1810 1811 info(msg_button_cancel, p_slot->number); 1812 1813 p_slot->state = STATIC_STATE; 1814 1815 amber_LED_off(ctrl, hp_slot); 1816 1817 set_SOGO(ctrl); 1818 1819 /* Wait for SOBS to be unset */ 1820 wait_for_ctrl_irq(ctrl); 1821 1822 mutex_unlock(&ctrl->crit_sect); 1823 } 1824 /*** button Released (No action on press...) */ 1825 else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) { 1826 dbg("button release\n"); 1827 1828 if (is_slot_enabled(ctrl, hp_slot)) { 1829 dbg("slot is on\n"); 1830 p_slot->state = BLINKINGOFF_STATE; 1831 info(msg_button_off, p_slot->number); 1832 } else { 1833 dbg("slot is off\n"); 1834 p_slot->state = BLINKINGON_STATE; 1835 info(msg_button_on, p_slot->number); 1836 } 1837 mutex_lock(&ctrl->crit_sect); 1838 1839 dbg("blink green LED and turn off amber\n"); 1840 1841 amber_LED_off(ctrl, hp_slot); 1842 green_LED_blink(ctrl, hp_slot); 1843 1844 set_SOGO(ctrl); 1845 1846 /* Wait for SOBS to be unset */ 1847 wait_for_ctrl_irq(ctrl); 1848 1849 mutex_unlock(&ctrl->crit_sect); 1850 timer_setup(&p_slot->task_event, 1851 pushbutton_helper_thread, 1852 0); 1853 p_slot->hp_slot = hp_slot; 1854 p_slot->ctrl = ctrl; 1855 /* p_slot->physical_slot = physical_slot; */ 1856 p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */ 1857 1858 dbg("add_timer p_slot = %p\n", p_slot); 1859 add_timer(&p_slot->task_event); 1860 } 1861 /***********POWER FAULT */ 1862 else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) { 1863 dbg("power fault\n"); 1864 } 1865 1866 ctrl->event_queue[loop].event_type = 0; 1867 1868 change = 1; 1869 } 1870 } /* End of FOR loop */ 1871 } 1872 } 1873 1874 1875 /** 1876 * cpqhp_pushbutton_thread - handle pushbutton events 1877 * @t: pointer to struct timer_list which holds all timer-related callbacks 1878 * 1879 * Scheduled procedure to handle blocking stuff for the pushbuttons. 1880 * Handles all pending events and exits. 1881 */ 1882 void cpqhp_pushbutton_thread(struct timer_list *t) 1883 { 1884 u8 hp_slot; 1885 struct pci_func *func; 1886 struct slot *p_slot = from_timer(p_slot, t, task_event); 1887 struct controller *ctrl = (struct controller *) p_slot->ctrl; 1888 1889 pushbutton_pending = NULL; 1890 hp_slot = p_slot->hp_slot; 1891 1892 if (is_slot_enabled(ctrl, hp_slot)) { 1893 p_slot->state = POWEROFF_STATE; 1894 /* power Down board */ 1895 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1896 dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl); 1897 if (!func) { 1898 dbg("Error! func NULL in %s\n", __func__); 1899 return; 1900 } 1901 1902 if (cpqhp_process_SS(ctrl, func) != 0) { 1903 amber_LED_on(ctrl, hp_slot); 1904 green_LED_on(ctrl, hp_slot); 1905 1906 set_SOGO(ctrl); 1907 1908 /* Wait for SOBS to be unset */ 1909 wait_for_ctrl_irq(ctrl); 1910 } 1911 1912 p_slot->state = STATIC_STATE; 1913 } else { 1914 p_slot->state = POWERON_STATE; 1915 /* slot is off */ 1916 1917 func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0); 1918 dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl); 1919 if (!func) { 1920 dbg("Error! func NULL in %s\n", __func__); 1921 return; 1922 } 1923 1924 if (ctrl != NULL) { 1925 if (cpqhp_process_SI(ctrl, func) != 0) { 1926 amber_LED_on(ctrl, hp_slot); 1927 green_LED_off(ctrl, hp_slot); 1928 1929 set_SOGO(ctrl); 1930 1931 /* Wait for SOBS to be unset */ 1932 wait_for_ctrl_irq(ctrl); 1933 } 1934 } 1935 1936 p_slot->state = STATIC_STATE; 1937 } 1938 } 1939 1940 1941 int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func) 1942 { 1943 u8 device, hp_slot; 1944 u16 temp_word; 1945 u32 tempdword; 1946 int rc; 1947 struct slot *p_slot; 1948 1949 tempdword = 0; 1950 1951 device = func->device; 1952 hp_slot = device - ctrl->slot_device_offset; 1953 p_slot = cpqhp_find_slot(ctrl, device); 1954 1955 /* Check to see if the interlock is closed */ 1956 tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR); 1957 1958 if (tempdword & (0x01 << hp_slot)) 1959 return 1; 1960 1961 if (func->is_a_board) { 1962 rc = board_replaced(func, ctrl); 1963 } else { 1964 /* add board */ 1965 slot_remove(func); 1966 1967 func = cpqhp_slot_create(ctrl->bus); 1968 if (func == NULL) 1969 return 1; 1970 1971 func->bus = ctrl->bus; 1972 func->device = device; 1973 func->function = 0; 1974 func->configured = 0; 1975 func->is_a_board = 1; 1976 1977 /* We have to save the presence info for these slots */ 1978 temp_word = ctrl->ctrl_int_comp >> 16; 1979 func->presence_save = (temp_word >> hp_slot) & 0x01; 1980 func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02; 1981 1982 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 1983 func->switch_save = 0; 1984 } else { 1985 func->switch_save = 0x10; 1986 } 1987 1988 rc = board_added(func, ctrl); 1989 if (rc) { 1990 if (is_bridge(func)) { 1991 bridge_slot_remove(func); 1992 } else 1993 slot_remove(func); 1994 1995 /* Setup slot structure with entry for empty slot */ 1996 func = cpqhp_slot_create(ctrl->bus); 1997 1998 if (func == NULL) 1999 return 1; 2000 2001 func->bus = ctrl->bus; 2002 func->device = device; 2003 func->function = 0; 2004 func->configured = 0; 2005 func->is_a_board = 0; 2006 2007 /* We have to save the presence info for these slots */ 2008 temp_word = ctrl->ctrl_int_comp >> 16; 2009 func->presence_save = (temp_word >> hp_slot) & 0x01; 2010 func->presence_save |= 2011 (temp_word >> (hp_slot + 7)) & 0x02; 2012 2013 if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) { 2014 func->switch_save = 0; 2015 } else { 2016 func->switch_save = 0x10; 2017 } 2018 } 2019 } 2020 2021 if (rc) 2022 dbg("%s: rc = %d\n", __func__, rc); 2023 2024 return rc; 2025 } 2026 2027 2028 int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func) 2029 { 2030 u8 device, class_code, header_type, BCR; 2031 u8 index = 0; 2032 u8 replace_flag; 2033 u32 rc = 0; 2034 unsigned int devfn; 2035 struct slot *p_slot; 2036 struct pci_bus *pci_bus = ctrl->pci_bus; 2037 2038 device = func->device; 2039 func = cpqhp_slot_find(ctrl->bus, device, index++); 2040 p_slot = cpqhp_find_slot(ctrl, device); 2041 2042 /* Make sure there are no video controllers here */ 2043 while (func && !rc) { 2044 pci_bus->number = func->bus; 2045 devfn = PCI_DEVFN(func->device, func->function); 2046 2047 /* Check the Class Code */ 2048 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2049 if (rc) 2050 return rc; 2051 2052 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2053 /* Display/Video adapter (not supported) */ 2054 rc = REMOVE_NOT_SUPPORTED; 2055 } else { 2056 /* See if it's a bridge */ 2057 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &header_type); 2058 if (rc) 2059 return rc; 2060 2061 /* If it's a bridge, check the VGA Enable bit */ 2062 if ((header_type & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 2063 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR); 2064 if (rc) 2065 return rc; 2066 2067 /* If the VGA Enable bit is set, remove isn't 2068 * supported */ 2069 if (BCR & PCI_BRIDGE_CTL_VGA) 2070 rc = REMOVE_NOT_SUPPORTED; 2071 } 2072 } 2073 2074 func = cpqhp_slot_find(ctrl->bus, device, index++); 2075 } 2076 2077 func = cpqhp_slot_find(ctrl->bus, device, 0); 2078 if ((func != NULL) && !rc) { 2079 /* FIXME: Replace flag should be passed into process_SS */ 2080 replace_flag = !(ctrl->add_support); 2081 rc = remove_board(func, replace_flag, ctrl); 2082 } else if (!rc) { 2083 rc = 1; 2084 } 2085 2086 return rc; 2087 } 2088 2089 /** 2090 * switch_leds - switch the leds, go from one site to the other. 2091 * @ctrl: controller to use 2092 * @num_of_slots: number of slots to use 2093 * @work_LED: LED control value 2094 * @direction: 1 to start from the left side, 0 to start right. 2095 */ 2096 static void switch_leds(struct controller *ctrl, const int num_of_slots, 2097 u32 *work_LED, const int direction) 2098 { 2099 int loop; 2100 2101 for (loop = 0; loop < num_of_slots; loop++) { 2102 if (direction) 2103 *work_LED = *work_LED >> 1; 2104 else 2105 *work_LED = *work_LED << 1; 2106 writel(*work_LED, ctrl->hpc_reg + LED_CONTROL); 2107 2108 set_SOGO(ctrl); 2109 2110 /* Wait for SOGO interrupt */ 2111 wait_for_ctrl_irq(ctrl); 2112 2113 /* Get ready for next iteration */ 2114 long_delay((2*HZ)/10); 2115 } 2116 } 2117 2118 /** 2119 * cpqhp_hardware_test - runs hardware tests 2120 * @ctrl: target controller 2121 * @test_num: the number written to the "test" file in sysfs. 2122 * 2123 * For hot plug ctrl folks to play with. 2124 */ 2125 int cpqhp_hardware_test(struct controller *ctrl, int test_num) 2126 { 2127 u32 save_LED; 2128 u32 work_LED; 2129 int loop; 2130 int num_of_slots; 2131 2132 num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f; 2133 2134 switch (test_num) { 2135 case 1: 2136 /* Do stuff here! */ 2137 2138 /* Do that funky LED thing */ 2139 /* so we can restore them later */ 2140 save_LED = readl(ctrl->hpc_reg + LED_CONTROL); 2141 work_LED = 0x01010101; 2142 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2143 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2144 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2145 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2146 2147 work_LED = 0x01010000; 2148 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2149 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2150 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2151 work_LED = 0x00000101; 2152 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2153 switch_leds(ctrl, num_of_slots, &work_LED, 0); 2154 switch_leds(ctrl, num_of_slots, &work_LED, 1); 2155 2156 work_LED = 0x01010000; 2157 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2158 for (loop = 0; loop < num_of_slots; loop++) { 2159 set_SOGO(ctrl); 2160 2161 /* Wait for SOGO interrupt */ 2162 wait_for_ctrl_irq(ctrl); 2163 2164 /* Get ready for next iteration */ 2165 long_delay((3*HZ)/10); 2166 work_LED = work_LED >> 16; 2167 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2168 2169 set_SOGO(ctrl); 2170 2171 /* Wait for SOGO interrupt */ 2172 wait_for_ctrl_irq(ctrl); 2173 2174 /* Get ready for next iteration */ 2175 long_delay((3*HZ)/10); 2176 work_LED = work_LED << 16; 2177 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2178 work_LED = work_LED << 1; 2179 writel(work_LED, ctrl->hpc_reg + LED_CONTROL); 2180 } 2181 2182 /* put it back the way it was */ 2183 writel(save_LED, ctrl->hpc_reg + LED_CONTROL); 2184 2185 set_SOGO(ctrl); 2186 2187 /* Wait for SOBS to be unset */ 2188 wait_for_ctrl_irq(ctrl); 2189 break; 2190 case 2: 2191 /* Do other stuff here! */ 2192 break; 2193 case 3: 2194 /* and more... */ 2195 break; 2196 } 2197 return 0; 2198 } 2199 2200 2201 /** 2202 * configure_new_device - Configures the PCI header information of one board. 2203 * @ctrl: pointer to controller structure 2204 * @func: pointer to function structure 2205 * @behind_bridge: 1 if this is a recursive call, 0 if not 2206 * @resources: pointer to set of resource lists 2207 * 2208 * Returns 0 if success. 2209 */ 2210 static u32 configure_new_device(struct controller *ctrl, struct pci_func *func, 2211 u8 behind_bridge, struct resource_lists *resources) 2212 { 2213 u8 temp_byte, function, max_functions, stop_it; 2214 int rc; 2215 u32 ID; 2216 struct pci_func *new_slot; 2217 int index; 2218 2219 new_slot = func; 2220 2221 dbg("%s\n", __func__); 2222 /* Check for Multi-function device */ 2223 ctrl->pci_bus->number = func->bus; 2224 rc = pci_bus_read_config_byte(ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte); 2225 if (rc) { 2226 dbg("%s: rc = %d\n", __func__, rc); 2227 return rc; 2228 } 2229 2230 if (temp_byte & 0x80) /* Multi-function device */ 2231 max_functions = 8; 2232 else 2233 max_functions = 1; 2234 2235 function = 0; 2236 2237 do { 2238 rc = configure_new_function(ctrl, new_slot, behind_bridge, resources); 2239 2240 if (rc) { 2241 dbg("configure_new_function failed %d\n", rc); 2242 index = 0; 2243 2244 while (new_slot) { 2245 new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++); 2246 2247 if (new_slot) 2248 cpqhp_return_board_resources(new_slot, resources); 2249 } 2250 2251 return rc; 2252 } 2253 2254 function++; 2255 2256 stop_it = 0; 2257 2258 /* The following loop skips to the next present function 2259 * and creates a board structure */ 2260 2261 while ((function < max_functions) && (!stop_it)) { 2262 pci_bus_read_config_dword(ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID); 2263 2264 if (PCI_POSSIBLE_ERROR(ID)) { 2265 function++; 2266 } else { 2267 /* Setup slot structure. */ 2268 new_slot = cpqhp_slot_create(func->bus); 2269 2270 if (new_slot == NULL) 2271 return 1; 2272 2273 new_slot->bus = func->bus; 2274 new_slot->device = func->device; 2275 new_slot->function = function; 2276 new_slot->is_a_board = 1; 2277 new_slot->status = 0; 2278 2279 stop_it++; 2280 } 2281 } 2282 2283 } while (function < max_functions); 2284 dbg("returning from configure_new_device\n"); 2285 2286 return 0; 2287 } 2288 2289 2290 /* 2291 * Configuration logic that involves the hotplug data structures and 2292 * their bookkeeping 2293 */ 2294 2295 2296 /** 2297 * configure_new_function - Configures the PCI header information of one device 2298 * @ctrl: pointer to controller structure 2299 * @func: pointer to function structure 2300 * @behind_bridge: 1 if this is a recursive call, 0 if not 2301 * @resources: pointer to set of resource lists 2302 * 2303 * Calls itself recursively for bridged devices. 2304 * Returns 0 if success. 2305 */ 2306 static int configure_new_function(struct controller *ctrl, struct pci_func *func, 2307 u8 behind_bridge, 2308 struct resource_lists *resources) 2309 { 2310 int cloop; 2311 u8 IRQ = 0; 2312 u8 temp_byte; 2313 u8 device; 2314 u8 class_code; 2315 u16 command; 2316 u16 temp_word; 2317 u32 temp_dword; 2318 u32 rc; 2319 u32 temp_register; 2320 u32 base; 2321 u32 ID; 2322 unsigned int devfn; 2323 struct pci_resource *mem_node; 2324 struct pci_resource *p_mem_node; 2325 struct pci_resource *io_node; 2326 struct pci_resource *bus_node; 2327 struct pci_resource *hold_mem_node; 2328 struct pci_resource *hold_p_mem_node; 2329 struct pci_resource *hold_IO_node; 2330 struct pci_resource *hold_bus_node; 2331 struct irq_mapping irqs; 2332 struct pci_func *new_slot; 2333 struct pci_bus *pci_bus; 2334 struct resource_lists temp_resources; 2335 2336 pci_bus = ctrl->pci_bus; 2337 pci_bus->number = func->bus; 2338 devfn = PCI_DEVFN(func->device, func->function); 2339 2340 /* Check for Bridge */ 2341 rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte); 2342 if (rc) 2343 return rc; 2344 2345 if ((temp_byte & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_BRIDGE) { 2346 /* set Primary bus */ 2347 dbg("set Primary bus = %d\n", func->bus); 2348 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus); 2349 if (rc) 2350 return rc; 2351 2352 /* find range of buses to use */ 2353 dbg("find ranges of buses to use\n"); 2354 bus_node = get_max_resource(&(resources->bus_head), 1); 2355 2356 /* If we don't have any buses to allocate, we can't continue */ 2357 if (!bus_node) 2358 return -ENOMEM; 2359 2360 /* set Secondary bus */ 2361 temp_byte = bus_node->base; 2362 dbg("set Secondary bus = %d\n", bus_node->base); 2363 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte); 2364 if (rc) 2365 return rc; 2366 2367 /* set subordinate bus */ 2368 temp_byte = bus_node->base + bus_node->length - 1; 2369 dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1); 2370 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2371 if (rc) 2372 return rc; 2373 2374 /* set subordinate Latency Timer and base Latency Timer */ 2375 temp_byte = 0x40; 2376 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte); 2377 if (rc) 2378 return rc; 2379 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte); 2380 if (rc) 2381 return rc; 2382 2383 /* set Cache Line size */ 2384 temp_byte = 0x08; 2385 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte); 2386 if (rc) 2387 return rc; 2388 2389 /* Setup the IO, memory, and prefetchable windows */ 2390 io_node = get_max_resource(&(resources->io_head), 0x1000); 2391 if (!io_node) 2392 return -ENOMEM; 2393 mem_node = get_max_resource(&(resources->mem_head), 0x100000); 2394 if (!mem_node) 2395 return -ENOMEM; 2396 p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000); 2397 if (!p_mem_node) 2398 return -ENOMEM; 2399 dbg("Setup the IO, memory, and prefetchable windows\n"); 2400 dbg("io_node\n"); 2401 dbg("(base, len, next) (%x, %x, %p)\n", io_node->base, 2402 io_node->length, io_node->next); 2403 dbg("mem_node\n"); 2404 dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base, 2405 mem_node->length, mem_node->next); 2406 dbg("p_mem_node\n"); 2407 dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base, 2408 p_mem_node->length, p_mem_node->next); 2409 2410 /* set up the IRQ info */ 2411 if (!resources->irqs) { 2412 irqs.barber_pole = 0; 2413 irqs.interrupt[0] = 0; 2414 irqs.interrupt[1] = 0; 2415 irqs.interrupt[2] = 0; 2416 irqs.interrupt[3] = 0; 2417 irqs.valid_INT = 0; 2418 } else { 2419 irqs.barber_pole = resources->irqs->barber_pole; 2420 irqs.interrupt[0] = resources->irqs->interrupt[0]; 2421 irqs.interrupt[1] = resources->irqs->interrupt[1]; 2422 irqs.interrupt[2] = resources->irqs->interrupt[2]; 2423 irqs.interrupt[3] = resources->irqs->interrupt[3]; 2424 irqs.valid_INT = resources->irqs->valid_INT; 2425 } 2426 2427 /* set up resource lists that are now aligned on top and bottom 2428 * for anything behind the bridge. */ 2429 temp_resources.bus_head = bus_node; 2430 temp_resources.io_head = io_node; 2431 temp_resources.mem_head = mem_node; 2432 temp_resources.p_mem_head = p_mem_node; 2433 temp_resources.irqs = &irqs; 2434 2435 /* Make copies of the nodes we are going to pass down so that 2436 * if there is a problem,we can just use these to free resources 2437 */ 2438 hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL); 2439 hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL); 2440 hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL); 2441 hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL); 2442 2443 if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) { 2444 kfree(hold_bus_node); 2445 kfree(hold_IO_node); 2446 kfree(hold_mem_node); 2447 kfree(hold_p_mem_node); 2448 2449 return 1; 2450 } 2451 2452 memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource)); 2453 2454 bus_node->base += 1; 2455 bus_node->length -= 1; 2456 bus_node->next = NULL; 2457 2458 /* If we have IO resources copy them and fill in the bridge's 2459 * IO range registers */ 2460 memcpy(hold_IO_node, io_node, sizeof(struct pci_resource)); 2461 io_node->next = NULL; 2462 2463 /* set IO base and Limit registers */ 2464 temp_byte = io_node->base >> 8; 2465 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2466 2467 temp_byte = (io_node->base + io_node->length - 1) >> 8; 2468 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2469 2470 /* Copy the memory resources and fill in the bridge's memory 2471 * range registers. 2472 */ 2473 memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource)); 2474 mem_node->next = NULL; 2475 2476 /* set Mem base and Limit registers */ 2477 temp_word = mem_node->base >> 16; 2478 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2479 2480 temp_word = (mem_node->base + mem_node->length - 1) >> 16; 2481 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2482 2483 memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource)); 2484 p_mem_node->next = NULL; 2485 2486 /* set Pre Mem base and Limit registers */ 2487 temp_word = p_mem_node->base >> 16; 2488 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2489 2490 temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16; 2491 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2492 2493 /* Adjust this to compensate for extra adjustment in first loop 2494 */ 2495 irqs.barber_pole--; 2496 2497 rc = 0; 2498 2499 /* Here we actually find the devices and configure them */ 2500 for (device = 0; (device <= 0x1F) && !rc; device++) { 2501 irqs.barber_pole = (irqs.barber_pole + 1) & 0x03; 2502 2503 ID = 0xFFFFFFFF; 2504 pci_bus->number = hold_bus_node->base; 2505 pci_bus_read_config_dword(pci_bus, PCI_DEVFN(device, 0), 0x00, &ID); 2506 pci_bus->number = func->bus; 2507 2508 if (!PCI_POSSIBLE_ERROR(ID)) { /* device present */ 2509 /* Setup slot structure. */ 2510 new_slot = cpqhp_slot_create(hold_bus_node->base); 2511 2512 if (new_slot == NULL) { 2513 rc = -ENOMEM; 2514 continue; 2515 } 2516 2517 new_slot->bus = hold_bus_node->base; 2518 new_slot->device = device; 2519 new_slot->function = 0; 2520 new_slot->is_a_board = 1; 2521 new_slot->status = 0; 2522 2523 rc = configure_new_device(ctrl, new_slot, 1, &temp_resources); 2524 dbg("configure_new_device rc=0x%x\n", rc); 2525 } /* End of IF (device in slot?) */ 2526 } /* End of FOR loop */ 2527 2528 if (rc) 2529 goto free_and_out; 2530 /* save the interrupt routing information */ 2531 if (resources->irqs) { 2532 resources->irqs->interrupt[0] = irqs.interrupt[0]; 2533 resources->irqs->interrupt[1] = irqs.interrupt[1]; 2534 resources->irqs->interrupt[2] = irqs.interrupt[2]; 2535 resources->irqs->interrupt[3] = irqs.interrupt[3]; 2536 resources->irqs->valid_INT = irqs.valid_INT; 2537 } else if (!behind_bridge) { 2538 /* We need to hook up the interrupts here */ 2539 for (cloop = 0; cloop < 4; cloop++) { 2540 if (irqs.valid_INT & (0x01 << cloop)) { 2541 rc = cpqhp_set_irq(func->bus, func->device, 2542 cloop + 1, irqs.interrupt[cloop]); 2543 if (rc) 2544 goto free_and_out; 2545 } 2546 } /* end of for loop */ 2547 } 2548 /* Return unused bus resources 2549 * First use the temporary node to store information for 2550 * the board */ 2551 if (bus_node && temp_resources.bus_head) { 2552 hold_bus_node->length = bus_node->base - hold_bus_node->base; 2553 2554 hold_bus_node->next = func->bus_head; 2555 func->bus_head = hold_bus_node; 2556 2557 temp_byte = temp_resources.bus_head->base - 1; 2558 2559 /* set subordinate bus */ 2560 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte); 2561 2562 if (temp_resources.bus_head->length == 0) { 2563 kfree(temp_resources.bus_head); 2564 temp_resources.bus_head = NULL; 2565 } else { 2566 return_resource(&(resources->bus_head), temp_resources.bus_head); 2567 } 2568 } 2569 2570 /* If we have IO space available and there is some left, 2571 * return the unused portion */ 2572 if (hold_IO_node && temp_resources.io_head) { 2573 io_node = do_pre_bridge_resource_split(&(temp_resources.io_head), 2574 &hold_IO_node, 0x1000); 2575 2576 /* Check if we were able to split something off */ 2577 if (io_node) { 2578 hold_IO_node->base = io_node->base + io_node->length; 2579 2580 temp_byte = (hold_IO_node->base) >> 8; 2581 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_BASE, temp_byte); 2582 2583 return_resource(&(resources->io_head), io_node); 2584 } 2585 2586 io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000); 2587 2588 /* Check if we were able to split something off */ 2589 if (io_node) { 2590 /* First use the temporary node to store 2591 * information for the board */ 2592 hold_IO_node->length = io_node->base - hold_IO_node->base; 2593 2594 /* If we used any, add it to the board's list */ 2595 if (hold_IO_node->length) { 2596 hold_IO_node->next = func->io_head; 2597 func->io_head = hold_IO_node; 2598 2599 temp_byte = (io_node->base - 1) >> 8; 2600 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte); 2601 2602 return_resource(&(resources->io_head), io_node); 2603 } else { 2604 /* it doesn't need any IO */ 2605 temp_word = 0x0000; 2606 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_IO_LIMIT, temp_word); 2607 2608 return_resource(&(resources->io_head), io_node); 2609 kfree(hold_IO_node); 2610 } 2611 } else { 2612 /* it used most of the range */ 2613 hold_IO_node->next = func->io_head; 2614 func->io_head = hold_IO_node; 2615 } 2616 } else if (hold_IO_node) { 2617 /* it used the whole range */ 2618 hold_IO_node->next = func->io_head; 2619 func->io_head = hold_IO_node; 2620 } 2621 /* If we have memory space available and there is some left, 2622 * return the unused portion */ 2623 if (hold_mem_node && temp_resources.mem_head) { 2624 mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head), 2625 &hold_mem_node, 0x100000); 2626 2627 /* Check if we were able to split something off */ 2628 if (mem_node) { 2629 hold_mem_node->base = mem_node->base + mem_node->length; 2630 2631 temp_word = (hold_mem_node->base) >> 16; 2632 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word); 2633 2634 return_resource(&(resources->mem_head), mem_node); 2635 } 2636 2637 mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000); 2638 2639 /* Check if we were able to split something off */ 2640 if (mem_node) { 2641 /* First use the temporary node to store 2642 * information for the board */ 2643 hold_mem_node->length = mem_node->base - hold_mem_node->base; 2644 2645 if (hold_mem_node->length) { 2646 hold_mem_node->next = func->mem_head; 2647 func->mem_head = hold_mem_node; 2648 2649 /* configure end address */ 2650 temp_word = (mem_node->base - 1) >> 16; 2651 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2652 2653 /* Return unused resources to the pool */ 2654 return_resource(&(resources->mem_head), mem_node); 2655 } else { 2656 /* it doesn't need any Mem */ 2657 temp_word = 0x0000; 2658 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word); 2659 2660 return_resource(&(resources->mem_head), mem_node); 2661 kfree(hold_mem_node); 2662 } 2663 } else { 2664 /* it used most of the range */ 2665 hold_mem_node->next = func->mem_head; 2666 func->mem_head = hold_mem_node; 2667 } 2668 } else if (hold_mem_node) { 2669 /* it used the whole range */ 2670 hold_mem_node->next = func->mem_head; 2671 func->mem_head = hold_mem_node; 2672 } 2673 /* If we have prefetchable memory space available and there 2674 * is some left at the end, return the unused portion */ 2675 if (temp_resources.p_mem_head) { 2676 p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head), 2677 &hold_p_mem_node, 0x100000); 2678 2679 /* Check if we were able to split something off */ 2680 if (p_mem_node) { 2681 hold_p_mem_node->base = p_mem_node->base + p_mem_node->length; 2682 2683 temp_word = (hold_p_mem_node->base) >> 16; 2684 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word); 2685 2686 return_resource(&(resources->p_mem_head), p_mem_node); 2687 } 2688 2689 p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000); 2690 2691 /* Check if we were able to split something off */ 2692 if (p_mem_node) { 2693 /* First use the temporary node to store 2694 * information for the board */ 2695 hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base; 2696 2697 /* If we used any, add it to the board's list */ 2698 if (hold_p_mem_node->length) { 2699 hold_p_mem_node->next = func->p_mem_head; 2700 func->p_mem_head = hold_p_mem_node; 2701 2702 temp_word = (p_mem_node->base - 1) >> 16; 2703 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2704 2705 return_resource(&(resources->p_mem_head), p_mem_node); 2706 } else { 2707 /* it doesn't need any PMem */ 2708 temp_word = 0x0000; 2709 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word); 2710 2711 return_resource(&(resources->p_mem_head), p_mem_node); 2712 kfree(hold_p_mem_node); 2713 } 2714 } else { 2715 /* it used the most of the range */ 2716 hold_p_mem_node->next = func->p_mem_head; 2717 func->p_mem_head = hold_p_mem_node; 2718 } 2719 } else if (hold_p_mem_node) { 2720 /* it used the whole range */ 2721 hold_p_mem_node->next = func->p_mem_head; 2722 func->p_mem_head = hold_p_mem_node; 2723 } 2724 /* We should be configuring an IRQ and the bridge's base address 2725 * registers if it needs them. Although we have never seen such 2726 * a device */ 2727 2728 /* enable card */ 2729 command = 0x0157; /* = PCI_COMMAND_IO | 2730 * PCI_COMMAND_MEMORY | 2731 * PCI_COMMAND_MASTER | 2732 * PCI_COMMAND_INVALIDATE | 2733 * PCI_COMMAND_PARITY | 2734 * PCI_COMMAND_SERR */ 2735 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_COMMAND, command); 2736 2737 /* set Bridge Control Register */ 2738 command = 0x07; /* = PCI_BRIDGE_CTL_PARITY | 2739 * PCI_BRIDGE_CTL_SERR | 2740 * PCI_BRIDGE_CTL_NO_ISA */ 2741 rc = pci_bus_write_config_word(pci_bus, devfn, PCI_BRIDGE_CONTROL, command); 2742 } else if ((temp_byte & PCI_HEADER_TYPE_MASK) == PCI_HEADER_TYPE_NORMAL) { 2743 /* Standard device */ 2744 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2745 2746 if (class_code == PCI_BASE_CLASS_DISPLAY) { 2747 /* Display (video) adapter (not supported) */ 2748 return DEVICE_TYPE_NOT_SUPPORTED; 2749 } 2750 /* Figure out IO and memory needs */ 2751 for (cloop = 0x10; cloop <= 0x24; cloop += 4) { 2752 temp_register = 0xFFFFFFFF; 2753 2754 dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop); 2755 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, temp_register); 2756 2757 rc = pci_bus_read_config_dword(pci_bus, devfn, cloop, &temp_register); 2758 dbg("CND: base = 0x%x\n", temp_register); 2759 2760 if (temp_register) { /* If this register is implemented */ 2761 if ((temp_register & 0x03L) == 0x01) { 2762 /* Map IO */ 2763 2764 /* set base = amount of IO space */ 2765 base = temp_register & 0xFFFFFFFC; 2766 base = ~base + 1; 2767 2768 dbg("CND: length = 0x%x\n", base); 2769 io_node = get_io_resource(&(resources->io_head), base); 2770 if (!io_node) 2771 return -ENOMEM; 2772 dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n", 2773 io_node->base, io_node->length, io_node->next); 2774 dbg("func (%p) io_head (%p)\n", func, func->io_head); 2775 2776 /* allocate the resource to the board */ 2777 base = io_node->base; 2778 io_node->next = func->io_head; 2779 func->io_head = io_node; 2780 } else if ((temp_register & 0x0BL) == 0x08) { 2781 /* Map prefetchable memory */ 2782 base = temp_register & 0xFFFFFFF0; 2783 base = ~base + 1; 2784 2785 dbg("CND: length = 0x%x\n", base); 2786 p_mem_node = get_resource(&(resources->p_mem_head), base); 2787 2788 /* allocate the resource to the board */ 2789 if (p_mem_node) { 2790 base = p_mem_node->base; 2791 2792 p_mem_node->next = func->p_mem_head; 2793 func->p_mem_head = p_mem_node; 2794 } else 2795 return -ENOMEM; 2796 } else if ((temp_register & 0x0BL) == 0x00) { 2797 /* Map memory */ 2798 base = temp_register & 0xFFFFFFF0; 2799 base = ~base + 1; 2800 2801 dbg("CND: length = 0x%x\n", base); 2802 mem_node = get_resource(&(resources->mem_head), base); 2803 2804 /* allocate the resource to the board */ 2805 if (mem_node) { 2806 base = mem_node->base; 2807 2808 mem_node->next = func->mem_head; 2809 func->mem_head = mem_node; 2810 } else 2811 return -ENOMEM; 2812 } else { 2813 /* Reserved bits or requesting space below 1M */ 2814 return NOT_ENOUGH_RESOURCES; 2815 } 2816 2817 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2818 2819 /* Check for 64-bit base */ 2820 if ((temp_register & 0x07L) == 0x04) { 2821 cloop += 4; 2822 2823 /* Upper 32 bits of address always zero 2824 * on today's systems */ 2825 /* FIXME this is probably not true on 2826 * Alpha and ia64??? */ 2827 base = 0; 2828 rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base); 2829 } 2830 } 2831 } /* End of base register loop */ 2832 if (cpqhp_legacy_mode) { 2833 /* Figure out which interrupt pin this function uses */ 2834 rc = pci_bus_read_config_byte(pci_bus, devfn, 2835 PCI_INTERRUPT_PIN, &temp_byte); 2836 2837 /* If this function needs an interrupt and we are behind 2838 * a bridge and the pin is tied to something that's 2839 * already mapped, set this one the same */ 2840 if (temp_byte && resources->irqs && 2841 (resources->irqs->valid_INT & 2842 (0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) { 2843 /* We have to share with something already set up */ 2844 IRQ = resources->irqs->interrupt[(temp_byte + 2845 resources->irqs->barber_pole - 1) & 0x03]; 2846 } else { 2847 /* Program IRQ based on card type */ 2848 rc = pci_bus_read_config_byte(pci_bus, devfn, 0x0B, &class_code); 2849 2850 if (class_code == PCI_BASE_CLASS_STORAGE) 2851 IRQ = cpqhp_disk_irq; 2852 else 2853 IRQ = cpqhp_nic_irq; 2854 } 2855 2856 /* IRQ Line */ 2857 rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ); 2858 } 2859 2860 if (!behind_bridge) { 2861 rc = cpqhp_set_irq(func->bus, func->device, temp_byte, IRQ); 2862 if (rc) 2863 return 1; 2864 } else { 2865 /* TBD - this code may also belong in the other clause 2866 * of this If statement */ 2867 resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ; 2868 resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03; 2869 } 2870 2871 /* Latency Timer */ 2872 temp_byte = 0x40; 2873 rc = pci_bus_write_config_byte(pci_bus, devfn, 2874 PCI_LATENCY_TIMER, temp_byte); 2875 2876 /* Cache Line size */ 2877 temp_byte = 0x08; 2878 rc = pci_bus_write_config_byte(pci_bus, devfn, 2879 PCI_CACHE_LINE_SIZE, temp_byte); 2880 2881 /* disable ROM base Address */ 2882 temp_dword = 0x00L; 2883 rc = pci_bus_write_config_word(pci_bus, devfn, 2884 PCI_ROM_ADDRESS, temp_dword); 2885 2886 /* enable card */ 2887 temp_word = 0x0157; /* = PCI_COMMAND_IO | 2888 * PCI_COMMAND_MEMORY | 2889 * PCI_COMMAND_MASTER | 2890 * PCI_COMMAND_INVALIDATE | 2891 * PCI_COMMAND_PARITY | 2892 * PCI_COMMAND_SERR */ 2893 rc = pci_bus_write_config_word(pci_bus, devfn, 2894 PCI_COMMAND, temp_word); 2895 } else { /* End of Not-A-Bridge else */ 2896 /* It's some strange type of PCI adapter (Cardbus?) */ 2897 return DEVICE_TYPE_NOT_SUPPORTED; 2898 } 2899 2900 func->configured = 1; 2901 2902 return 0; 2903 free_and_out: 2904 cpqhp_destroy_resource_list(&temp_resources); 2905 2906 return_resource(&(resources->bus_head), hold_bus_node); 2907 return_resource(&(resources->io_head), hold_IO_node); 2908 return_resource(&(resources->mem_head), hold_mem_node); 2909 return_resource(&(resources->p_mem_head), hold_p_mem_node); 2910 return rc; 2911 } 2912