xref: /linux/drivers/pci/endpoint/pci-epf-core.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Endpoint *Function* (EPF) library
4  *
5  * Copyright (C) 2017 Texas Instruments
6  * Author: Kishon Vijay Abraham I <kishon@ti.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16 #include <linux/pci-ep-cfs.h>
17 
18 static DEFINE_MUTEX(pci_epf_mutex);
19 
20 static const struct bus_type pci_epf_bus_type;
21 static const struct device_type pci_epf_type;
22 
23 /**
24  * pci_epf_unbind() - Notify the function driver that the binding between the
25  *		      EPF device and EPC device has been lost
26  * @epf: the EPF device which has lost the binding with the EPC device
27  *
28  * Invoke to notify the function driver that the binding between the EPF device
29  * and EPC device has been lost.
30  */
31 void pci_epf_unbind(struct pci_epf *epf)
32 {
33 	struct pci_epf *epf_vf;
34 
35 	if (!epf->driver) {
36 		dev_WARN(&epf->dev, "epf device not bound to driver\n");
37 		return;
38 	}
39 
40 	mutex_lock(&epf->lock);
41 	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
42 		if (epf_vf->is_bound)
43 			epf_vf->driver->ops->unbind(epf_vf);
44 	}
45 	if (epf->is_bound)
46 		epf->driver->ops->unbind(epf);
47 	mutex_unlock(&epf->lock);
48 	module_put(epf->driver->owner);
49 }
50 EXPORT_SYMBOL_GPL(pci_epf_unbind);
51 
52 /**
53  * pci_epf_bind() - Notify the function driver that the EPF device has been
54  *		    bound to a EPC device
55  * @epf: the EPF device which has been bound to the EPC device
56  *
57  * Invoke to notify the function driver that it has been bound to a EPC device
58  */
59 int pci_epf_bind(struct pci_epf *epf)
60 {
61 	struct device *dev = &epf->dev;
62 	struct pci_epf *epf_vf;
63 	u8 func_no, vfunc_no;
64 	struct pci_epc *epc;
65 	int ret;
66 
67 	if (!epf->driver) {
68 		dev_WARN(dev, "epf device not bound to driver\n");
69 		return -EINVAL;
70 	}
71 
72 	if (!try_module_get(epf->driver->owner))
73 		return -EAGAIN;
74 
75 	mutex_lock(&epf->lock);
76 	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
77 		vfunc_no = epf_vf->vfunc_no;
78 
79 		if (vfunc_no < 1) {
80 			dev_err(dev, "Invalid virtual function number\n");
81 			ret = -EINVAL;
82 			goto ret;
83 		}
84 
85 		epc = epf->epc;
86 		func_no = epf->func_no;
87 		if (!IS_ERR_OR_NULL(epc)) {
88 			if (!epc->max_vfs) {
89 				dev_err(dev, "No support for virt function\n");
90 				ret = -EINVAL;
91 				goto ret;
92 			}
93 
94 			if (vfunc_no > epc->max_vfs[func_no]) {
95 				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
96 					func_no);
97 				ret = -EINVAL;
98 				goto ret;
99 			}
100 		}
101 
102 		epc = epf->sec_epc;
103 		func_no = epf->sec_epc_func_no;
104 		if (!IS_ERR_OR_NULL(epc)) {
105 			if (!epc->max_vfs) {
106 				dev_err(dev, "No support for virt function\n");
107 				ret = -EINVAL;
108 				goto ret;
109 			}
110 
111 			if (vfunc_no > epc->max_vfs[func_no]) {
112 				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
113 					func_no);
114 				ret = -EINVAL;
115 				goto ret;
116 			}
117 		}
118 
119 		epf_vf->func_no = epf->func_no;
120 		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
121 		epf_vf->epc = epf->epc;
122 		epf_vf->sec_epc = epf->sec_epc;
123 		ret = epf_vf->driver->ops->bind(epf_vf);
124 		if (ret)
125 			goto ret;
126 		epf_vf->is_bound = true;
127 	}
128 
129 	ret = epf->driver->ops->bind(epf);
130 	if (ret)
131 		goto ret;
132 	epf->is_bound = true;
133 
134 	mutex_unlock(&epf->lock);
135 	return 0;
136 
137 ret:
138 	mutex_unlock(&epf->lock);
139 	pci_epf_unbind(epf);
140 
141 	return ret;
142 }
143 EXPORT_SYMBOL_GPL(pci_epf_bind);
144 
145 /**
146  * pci_epf_add_vepf() - associate virtual EP function to physical EP function
147  * @epf_pf: the physical EP function to which the virtual EP function should be
148  *   associated
149  * @epf_vf: the virtual EP function to be added
150  *
151  * A physical endpoint function can be associated with multiple virtual
152  * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
153  * function to a physical PCI endpoint function.
154  */
155 int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
156 {
157 	u32 vfunc_no;
158 
159 	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
160 		return -EINVAL;
161 
162 	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
163 		return -EBUSY;
164 
165 	if (epf_pf->sec_epc || epf_vf->sec_epc)
166 		return -EBUSY;
167 
168 	mutex_lock(&epf_pf->lock);
169 	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
170 				       BITS_PER_LONG);
171 	if (vfunc_no >= BITS_PER_LONG) {
172 		mutex_unlock(&epf_pf->lock);
173 		return -EINVAL;
174 	}
175 
176 	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
177 	epf_vf->vfunc_no = vfunc_no;
178 
179 	epf_vf->epf_pf = epf_pf;
180 	epf_vf->is_vf = true;
181 
182 	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
183 	mutex_unlock(&epf_pf->lock);
184 
185 	return 0;
186 }
187 EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
188 
189 /**
190  * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
191  * @epf_pf: the physical EP function from which the virtual EP function should
192  *   be removed
193  * @epf_vf: the virtual EP function to be removed
194  *
195  * Invoke to remove a virtual endpoint function from the physical endpoint
196  * function.
197  */
198 void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
199 {
200 	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
201 		return;
202 
203 	mutex_lock(&epf_pf->lock);
204 	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
205 	list_del(&epf_vf->list);
206 	mutex_unlock(&epf_pf->lock);
207 }
208 EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
209 
210 /**
211  * pci_epf_free_space() - free the allocated PCI EPF register space
212  * @epf: the EPF device from whom to free the memory
213  * @addr: the virtual address of the PCI EPF register space
214  * @bar: the BAR number corresponding to the register space
215  * @type: Identifies if the allocated space is for primary EPC or secondary EPC
216  *
217  * Invoke to free the allocated PCI EPF register space.
218  */
219 void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
220 			enum pci_epc_interface_type type)
221 {
222 	struct device *dev;
223 	struct pci_epf_bar *epf_bar;
224 	struct pci_epc *epc;
225 
226 	if (!addr)
227 		return;
228 
229 	if (type == PRIMARY_INTERFACE) {
230 		epc = epf->epc;
231 		epf_bar = epf->bar;
232 	} else {
233 		epc = epf->sec_epc;
234 		epf_bar = epf->sec_epc_bar;
235 	}
236 
237 	dev = epc->dev.parent;
238 	dma_free_coherent(dev, epf_bar[bar].size, addr,
239 			  epf_bar[bar].phys_addr);
240 
241 	epf_bar[bar].phys_addr = 0;
242 	epf_bar[bar].addr = NULL;
243 	epf_bar[bar].size = 0;
244 	epf_bar[bar].barno = 0;
245 	epf_bar[bar].flags = 0;
246 }
247 EXPORT_SYMBOL_GPL(pci_epf_free_space);
248 
249 /**
250  * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
251  * @epf: the EPF device to whom allocate the memory
252  * @size: the size of the memory that has to be allocated
253  * @bar: the BAR number corresponding to the allocated register space
254  * @epc_features: the features provided by the EPC specific to this EPF
255  * @type: Identifies if the allocation is for primary EPC or secondary EPC
256  *
257  * Invoke to allocate memory for the PCI EPF register space.
258  */
259 void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
260 			  const struct pci_epc_features *epc_features,
261 			  enum pci_epc_interface_type type)
262 {
263 	u64 bar_fixed_size = epc_features->bar[bar].fixed_size;
264 	size_t align = epc_features->align;
265 	struct pci_epf_bar *epf_bar;
266 	dma_addr_t phys_addr;
267 	struct pci_epc *epc;
268 	struct device *dev;
269 	void *space;
270 
271 	if (size < 128)
272 		size = 128;
273 
274 	if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) {
275 		if (size > bar_fixed_size) {
276 			dev_err(&epf->dev,
277 				"requested BAR size is larger than fixed size\n");
278 			return NULL;
279 		}
280 		size = bar_fixed_size;
281 	}
282 
283 	if (align)
284 		size = ALIGN(size, align);
285 	else
286 		size = roundup_pow_of_two(size);
287 
288 	if (type == PRIMARY_INTERFACE) {
289 		epc = epf->epc;
290 		epf_bar = epf->bar;
291 	} else {
292 		epc = epf->sec_epc;
293 		epf_bar = epf->sec_epc_bar;
294 	}
295 
296 	dev = epc->dev.parent;
297 	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
298 	if (!space) {
299 		dev_err(dev, "failed to allocate mem space\n");
300 		return NULL;
301 	}
302 
303 	epf_bar[bar].phys_addr = phys_addr;
304 	epf_bar[bar].addr = space;
305 	epf_bar[bar].size = size;
306 	epf_bar[bar].barno = bar;
307 	epf_bar[bar].flags |= upper_32_bits(size) ?
308 				PCI_BASE_ADDRESS_MEM_TYPE_64 :
309 				PCI_BASE_ADDRESS_MEM_TYPE_32;
310 
311 	return space;
312 }
313 EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
314 
315 static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
316 {
317 	struct config_group *group, *tmp;
318 
319 	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
320 		return;
321 
322 	mutex_lock(&pci_epf_mutex);
323 	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
324 		pci_ep_cfs_remove_epf_group(group);
325 	list_del(&driver->epf_group);
326 	mutex_unlock(&pci_epf_mutex);
327 }
328 
329 /**
330  * pci_epf_unregister_driver() - unregister the PCI EPF driver
331  * @driver: the PCI EPF driver that has to be unregistered
332  *
333  * Invoke to unregister the PCI EPF driver.
334  */
335 void pci_epf_unregister_driver(struct pci_epf_driver *driver)
336 {
337 	pci_epf_remove_cfs(driver);
338 	driver_unregister(&driver->driver);
339 }
340 EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
341 
342 static int pci_epf_add_cfs(struct pci_epf_driver *driver)
343 {
344 	struct config_group *group;
345 	const struct pci_epf_device_id *id;
346 
347 	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
348 		return 0;
349 
350 	INIT_LIST_HEAD(&driver->epf_group);
351 
352 	id = driver->id_table;
353 	while (id->name[0]) {
354 		group = pci_ep_cfs_add_epf_group(id->name);
355 		if (IS_ERR(group)) {
356 			pci_epf_remove_cfs(driver);
357 			return PTR_ERR(group);
358 		}
359 
360 		mutex_lock(&pci_epf_mutex);
361 		list_add_tail(&group->group_entry, &driver->epf_group);
362 		mutex_unlock(&pci_epf_mutex);
363 		id++;
364 	}
365 
366 	return 0;
367 }
368 
369 /**
370  * __pci_epf_register_driver() - register a new PCI EPF driver
371  * @driver: structure representing PCI EPF driver
372  * @owner: the owner of the module that registers the PCI EPF driver
373  *
374  * Invoke to register a new PCI EPF driver.
375  */
376 int __pci_epf_register_driver(struct pci_epf_driver *driver,
377 			      struct module *owner)
378 {
379 	int ret;
380 
381 	if (!driver->ops)
382 		return -EINVAL;
383 
384 	if (!driver->ops->bind || !driver->ops->unbind)
385 		return -EINVAL;
386 
387 	driver->driver.bus = &pci_epf_bus_type;
388 	driver->driver.owner = owner;
389 
390 	ret = driver_register(&driver->driver);
391 	if (ret)
392 		return ret;
393 
394 	pci_epf_add_cfs(driver);
395 
396 	return 0;
397 }
398 EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
399 
400 /**
401  * pci_epf_destroy() - destroy the created PCI EPF device
402  * @epf: the PCI EPF device that has to be destroyed.
403  *
404  * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
405  */
406 void pci_epf_destroy(struct pci_epf *epf)
407 {
408 	device_unregister(&epf->dev);
409 }
410 EXPORT_SYMBOL_GPL(pci_epf_destroy);
411 
412 /**
413  * pci_epf_create() - create a new PCI EPF device
414  * @name: the name of the PCI EPF device. This name will be used to bind the
415  *	  EPF device to a EPF driver
416  *
417  * Invoke to create a new PCI EPF device by providing the name of the function
418  * device.
419  */
420 struct pci_epf *pci_epf_create(const char *name)
421 {
422 	int ret;
423 	struct pci_epf *epf;
424 	struct device *dev;
425 	int len;
426 
427 	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
428 	if (!epf)
429 		return ERR_PTR(-ENOMEM);
430 
431 	len = strchrnul(name, '.') - name;
432 	epf->name = kstrndup(name, len, GFP_KERNEL);
433 	if (!epf->name) {
434 		kfree(epf);
435 		return ERR_PTR(-ENOMEM);
436 	}
437 
438 	/* VFs are numbered starting with 1. So set BIT(0) by default */
439 	epf->vfunction_num_map = 1;
440 	INIT_LIST_HEAD(&epf->pci_vepf);
441 
442 	dev = &epf->dev;
443 	device_initialize(dev);
444 	dev->bus = &pci_epf_bus_type;
445 	dev->type = &pci_epf_type;
446 	mutex_init(&epf->lock);
447 
448 	ret = dev_set_name(dev, "%s", name);
449 	if (ret) {
450 		put_device(dev);
451 		return ERR_PTR(ret);
452 	}
453 
454 	ret = device_add(dev);
455 	if (ret) {
456 		put_device(dev);
457 		return ERR_PTR(ret);
458 	}
459 
460 	return epf;
461 }
462 EXPORT_SYMBOL_GPL(pci_epf_create);
463 
464 static void pci_epf_dev_release(struct device *dev)
465 {
466 	struct pci_epf *epf = to_pci_epf(dev);
467 
468 	kfree(epf->name);
469 	kfree(epf);
470 }
471 
472 static const struct device_type pci_epf_type = {
473 	.release	= pci_epf_dev_release,
474 };
475 
476 static const struct pci_epf_device_id *
477 pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
478 {
479 	while (id->name[0]) {
480 		if (strcmp(epf->name, id->name) == 0)
481 			return id;
482 		id++;
483 	}
484 
485 	return NULL;
486 }
487 
488 static int pci_epf_device_match(struct device *dev, struct device_driver *drv)
489 {
490 	struct pci_epf *epf = to_pci_epf(dev);
491 	struct pci_epf_driver *driver = to_pci_epf_driver(drv);
492 
493 	if (driver->id_table)
494 		return !!pci_epf_match_id(driver->id_table, epf);
495 
496 	return !strcmp(epf->name, drv->name);
497 }
498 
499 static int pci_epf_device_probe(struct device *dev)
500 {
501 	struct pci_epf *epf = to_pci_epf(dev);
502 	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
503 
504 	if (!driver->probe)
505 		return -ENODEV;
506 
507 	epf->driver = driver;
508 
509 	return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
510 }
511 
512 static void pci_epf_device_remove(struct device *dev)
513 {
514 	struct pci_epf *epf = to_pci_epf(dev);
515 	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
516 
517 	if (driver->remove)
518 		driver->remove(epf);
519 	epf->driver = NULL;
520 }
521 
522 static const struct bus_type pci_epf_bus_type = {
523 	.name		= "pci-epf",
524 	.match		= pci_epf_device_match,
525 	.probe		= pci_epf_device_probe,
526 	.remove		= pci_epf_device_remove,
527 };
528 
529 static int __init pci_epf_init(void)
530 {
531 	int ret;
532 
533 	ret = bus_register(&pci_epf_bus_type);
534 	if (ret) {
535 		pr_err("failed to register pci epf bus --> %d\n", ret);
536 		return ret;
537 	}
538 
539 	return 0;
540 }
541 module_init(pci_epf_init);
542 
543 static void __exit pci_epf_exit(void)
544 {
545 	bus_unregister(&pci_epf_bus_type);
546 }
547 module_exit(pci_epf_exit);
548 
549 MODULE_DESCRIPTION("PCI EPF Library");
550 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
551