xref: /linux/drivers/pci/endpoint/pci-epf-core.c (revision daa2be74b1b2302004945b2a5e32424e177cc7da)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Endpoint *Function* (EPF) library
4  *
5  * Copyright (C) 2017 Texas Instruments
6  * Author: Kishon Vijay Abraham I <kishon@ti.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/slab.h>
12 #include <linux/module.h>
13 
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16 #include <linux/pci-ep-cfs.h>
17 
18 static DEFINE_MUTEX(pci_epf_mutex);
19 
20 static const struct bus_type pci_epf_bus_type;
21 static const struct device_type pci_epf_type;
22 
23 /**
24  * pci_epf_unbind() - Notify the function driver that the binding between the
25  *		      EPF device and EPC device has been lost
26  * @epf: the EPF device which has lost the binding with the EPC device
27  *
28  * Invoke to notify the function driver that the binding between the EPF device
29  * and EPC device has been lost.
30  */
31 void pci_epf_unbind(struct pci_epf *epf)
32 {
33 	struct pci_epf *epf_vf;
34 
35 	if (!epf->driver) {
36 		dev_WARN(&epf->dev, "epf device not bound to driver\n");
37 		return;
38 	}
39 
40 	mutex_lock(&epf->lock);
41 	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
42 		if (epf_vf->is_bound)
43 			epf_vf->driver->ops->unbind(epf_vf);
44 	}
45 	if (epf->is_bound)
46 		epf->driver->ops->unbind(epf);
47 	mutex_unlock(&epf->lock);
48 	module_put(epf->driver->owner);
49 }
50 EXPORT_SYMBOL_GPL(pci_epf_unbind);
51 
52 /**
53  * pci_epf_bind() - Notify the function driver that the EPF device has been
54  *		    bound to a EPC device
55  * @epf: the EPF device which has been bound to the EPC device
56  *
57  * Invoke to notify the function driver that it has been bound to a EPC device
58  */
59 int pci_epf_bind(struct pci_epf *epf)
60 {
61 	struct device *dev = &epf->dev;
62 	struct pci_epf *epf_vf;
63 	u8 func_no, vfunc_no;
64 	struct pci_epc *epc;
65 	int ret;
66 
67 	if (!epf->driver) {
68 		dev_WARN(dev, "epf device not bound to driver\n");
69 		return -EINVAL;
70 	}
71 
72 	if (!try_module_get(epf->driver->owner))
73 		return -EAGAIN;
74 
75 	mutex_lock(&epf->lock);
76 	list_for_each_entry(epf_vf, &epf->pci_vepf, list) {
77 		vfunc_no = epf_vf->vfunc_no;
78 
79 		if (vfunc_no < 1) {
80 			dev_err(dev, "Invalid virtual function number\n");
81 			ret = -EINVAL;
82 			goto ret;
83 		}
84 
85 		epc = epf->epc;
86 		func_no = epf->func_no;
87 		if (!IS_ERR_OR_NULL(epc)) {
88 			if (!epc->max_vfs) {
89 				dev_err(dev, "No support for virt function\n");
90 				ret = -EINVAL;
91 				goto ret;
92 			}
93 
94 			if (vfunc_no > epc->max_vfs[func_no]) {
95 				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
96 					func_no);
97 				ret = -EINVAL;
98 				goto ret;
99 			}
100 		}
101 
102 		epc = epf->sec_epc;
103 		func_no = epf->sec_epc_func_no;
104 		if (!IS_ERR_OR_NULL(epc)) {
105 			if (!epc->max_vfs) {
106 				dev_err(dev, "No support for virt function\n");
107 				ret = -EINVAL;
108 				goto ret;
109 			}
110 
111 			if (vfunc_no > epc->max_vfs[func_no]) {
112 				dev_err(dev, "PF%d: Exceeds max vfunc number\n",
113 					func_no);
114 				ret = -EINVAL;
115 				goto ret;
116 			}
117 		}
118 
119 		epf_vf->func_no = epf->func_no;
120 		epf_vf->sec_epc_func_no = epf->sec_epc_func_no;
121 		epf_vf->epc = epf->epc;
122 		epf_vf->sec_epc = epf->sec_epc;
123 		ret = epf_vf->driver->ops->bind(epf_vf);
124 		if (ret)
125 			goto ret;
126 		epf_vf->is_bound = true;
127 	}
128 
129 	ret = epf->driver->ops->bind(epf);
130 	if (ret)
131 		goto ret;
132 	epf->is_bound = true;
133 
134 	mutex_unlock(&epf->lock);
135 	return 0;
136 
137 ret:
138 	mutex_unlock(&epf->lock);
139 	pci_epf_unbind(epf);
140 
141 	return ret;
142 }
143 EXPORT_SYMBOL_GPL(pci_epf_bind);
144 
145 /**
146  * pci_epf_add_vepf() - associate virtual EP function to physical EP function
147  * @epf_pf: the physical EP function to which the virtual EP function should be
148  *   associated
149  * @epf_vf: the virtual EP function to be added
150  *
151  * A physical endpoint function can be associated with multiple virtual
152  * endpoint functions. Invoke pci_epf_add_epf() to add a virtual PCI endpoint
153  * function to a physical PCI endpoint function.
154  */
155 int pci_epf_add_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
156 {
157 	u32 vfunc_no;
158 
159 	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
160 		return -EINVAL;
161 
162 	if (epf_pf->epc || epf_vf->epc || epf_vf->epf_pf)
163 		return -EBUSY;
164 
165 	if (epf_pf->sec_epc || epf_vf->sec_epc)
166 		return -EBUSY;
167 
168 	mutex_lock(&epf_pf->lock);
169 	vfunc_no = find_first_zero_bit(&epf_pf->vfunction_num_map,
170 				       BITS_PER_LONG);
171 	if (vfunc_no >= BITS_PER_LONG) {
172 		mutex_unlock(&epf_pf->lock);
173 		return -EINVAL;
174 	}
175 
176 	set_bit(vfunc_no, &epf_pf->vfunction_num_map);
177 	epf_vf->vfunc_no = vfunc_no;
178 
179 	epf_vf->epf_pf = epf_pf;
180 	epf_vf->is_vf = true;
181 
182 	list_add_tail(&epf_vf->list, &epf_pf->pci_vepf);
183 	mutex_unlock(&epf_pf->lock);
184 
185 	return 0;
186 }
187 EXPORT_SYMBOL_GPL(pci_epf_add_vepf);
188 
189 /**
190  * pci_epf_remove_vepf() - remove virtual EP function from physical EP function
191  * @epf_pf: the physical EP function from which the virtual EP function should
192  *   be removed
193  * @epf_vf: the virtual EP function to be removed
194  *
195  * Invoke to remove a virtual endpoint function from the physical endpoint
196  * function.
197  */
198 void pci_epf_remove_vepf(struct pci_epf *epf_pf, struct pci_epf *epf_vf)
199 {
200 	if (IS_ERR_OR_NULL(epf_pf) || IS_ERR_OR_NULL(epf_vf))
201 		return;
202 
203 	mutex_lock(&epf_pf->lock);
204 	clear_bit(epf_vf->vfunc_no, &epf_pf->vfunction_num_map);
205 	list_del(&epf_vf->list);
206 	mutex_unlock(&epf_pf->lock);
207 }
208 EXPORT_SYMBOL_GPL(pci_epf_remove_vepf);
209 
210 /**
211  * pci_epf_free_space() - free the allocated PCI EPF register space
212  * @epf: the EPF device from whom to free the memory
213  * @addr: the virtual address of the PCI EPF register space
214  * @bar: the BAR number corresponding to the register space
215  * @type: Identifies if the allocated space is for primary EPC or secondary EPC
216  *
217  * Invoke to free the allocated PCI EPF register space.
218  */
219 void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar,
220 			enum pci_epc_interface_type type)
221 {
222 	struct device *dev;
223 	struct pci_epf_bar *epf_bar;
224 	struct pci_epc *epc;
225 
226 	if (!addr)
227 		return;
228 
229 	if (type == PRIMARY_INTERFACE) {
230 		epc = epf->epc;
231 		epf_bar = epf->bar;
232 	} else {
233 		epc = epf->sec_epc;
234 		epf_bar = epf->sec_epc_bar;
235 	}
236 
237 	dev = epc->dev.parent;
238 	dma_free_coherent(dev, epf_bar[bar].size, addr,
239 			  epf_bar[bar].phys_addr);
240 
241 	epf_bar[bar].phys_addr = 0;
242 	epf_bar[bar].addr = NULL;
243 	epf_bar[bar].size = 0;
244 	epf_bar[bar].barno = 0;
245 	epf_bar[bar].flags = 0;
246 }
247 EXPORT_SYMBOL_GPL(pci_epf_free_space);
248 
249 /**
250  * pci_epf_alloc_space() - allocate memory for the PCI EPF register space
251  * @epf: the EPF device to whom allocate the memory
252  * @size: the size of the memory that has to be allocated
253  * @bar: the BAR number corresponding to the allocated register space
254  * @epc_features: the features provided by the EPC specific to this EPF
255  * @type: Identifies if the allocation is for primary EPC or secondary EPC
256  *
257  * Invoke to allocate memory for the PCI EPF register space.
258  * Flag PCI_BASE_ADDRESS_MEM_TYPE_64 will automatically get set if the BAR
259  * can only be a 64-bit BAR, or if the requested size is larger than 2 GB.
260  */
261 void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar,
262 			  const struct pci_epc_features *epc_features,
263 			  enum pci_epc_interface_type type)
264 {
265 	u64 bar_fixed_size = epc_features->bar[bar].fixed_size;
266 	size_t align = epc_features->align;
267 	struct pci_epf_bar *epf_bar;
268 	dma_addr_t phys_addr;
269 	struct pci_epc *epc;
270 	struct device *dev;
271 	void *space;
272 
273 	if (size < 128)
274 		size = 128;
275 
276 	if (epc_features->bar[bar].type == BAR_FIXED && bar_fixed_size) {
277 		if (size > bar_fixed_size) {
278 			dev_err(&epf->dev,
279 				"requested BAR size is larger than fixed size\n");
280 			return NULL;
281 		}
282 		size = bar_fixed_size;
283 	}
284 
285 	if (align)
286 		size = ALIGN(size, align);
287 	else
288 		size = roundup_pow_of_two(size);
289 
290 	if (type == PRIMARY_INTERFACE) {
291 		epc = epf->epc;
292 		epf_bar = epf->bar;
293 	} else {
294 		epc = epf->sec_epc;
295 		epf_bar = epf->sec_epc_bar;
296 	}
297 
298 	dev = epc->dev.parent;
299 	space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL);
300 	if (!space) {
301 		dev_err(dev, "failed to allocate mem space\n");
302 		return NULL;
303 	}
304 
305 	epf_bar[bar].phys_addr = phys_addr;
306 	epf_bar[bar].addr = space;
307 	epf_bar[bar].size = size;
308 	epf_bar[bar].barno = bar;
309 	if (upper_32_bits(size) || epc_features->bar[bar].only_64bit)
310 		epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_64;
311 	else
312 		epf_bar[bar].flags |= PCI_BASE_ADDRESS_MEM_TYPE_32;
313 
314 	return space;
315 }
316 EXPORT_SYMBOL_GPL(pci_epf_alloc_space);
317 
318 static void pci_epf_remove_cfs(struct pci_epf_driver *driver)
319 {
320 	struct config_group *group, *tmp;
321 
322 	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
323 		return;
324 
325 	mutex_lock(&pci_epf_mutex);
326 	list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry)
327 		pci_ep_cfs_remove_epf_group(group);
328 	list_del(&driver->epf_group);
329 	mutex_unlock(&pci_epf_mutex);
330 }
331 
332 /**
333  * pci_epf_unregister_driver() - unregister the PCI EPF driver
334  * @driver: the PCI EPF driver that has to be unregistered
335  *
336  * Invoke to unregister the PCI EPF driver.
337  */
338 void pci_epf_unregister_driver(struct pci_epf_driver *driver)
339 {
340 	pci_epf_remove_cfs(driver);
341 	driver_unregister(&driver->driver);
342 }
343 EXPORT_SYMBOL_GPL(pci_epf_unregister_driver);
344 
345 static int pci_epf_add_cfs(struct pci_epf_driver *driver)
346 {
347 	struct config_group *group;
348 	const struct pci_epf_device_id *id;
349 
350 	if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS))
351 		return 0;
352 
353 	INIT_LIST_HEAD(&driver->epf_group);
354 
355 	id = driver->id_table;
356 	while (id->name[0]) {
357 		group = pci_ep_cfs_add_epf_group(id->name);
358 		if (IS_ERR(group)) {
359 			pci_epf_remove_cfs(driver);
360 			return PTR_ERR(group);
361 		}
362 
363 		mutex_lock(&pci_epf_mutex);
364 		list_add_tail(&group->group_entry, &driver->epf_group);
365 		mutex_unlock(&pci_epf_mutex);
366 		id++;
367 	}
368 
369 	return 0;
370 }
371 
372 /**
373  * __pci_epf_register_driver() - register a new PCI EPF driver
374  * @driver: structure representing PCI EPF driver
375  * @owner: the owner of the module that registers the PCI EPF driver
376  *
377  * Invoke to register a new PCI EPF driver.
378  */
379 int __pci_epf_register_driver(struct pci_epf_driver *driver,
380 			      struct module *owner)
381 {
382 	int ret;
383 
384 	if (!driver->ops)
385 		return -EINVAL;
386 
387 	if (!driver->ops->bind || !driver->ops->unbind)
388 		return -EINVAL;
389 
390 	driver->driver.bus = &pci_epf_bus_type;
391 	driver->driver.owner = owner;
392 
393 	ret = driver_register(&driver->driver);
394 	if (ret)
395 		return ret;
396 
397 	pci_epf_add_cfs(driver);
398 
399 	return 0;
400 }
401 EXPORT_SYMBOL_GPL(__pci_epf_register_driver);
402 
403 /**
404  * pci_epf_destroy() - destroy the created PCI EPF device
405  * @epf: the PCI EPF device that has to be destroyed.
406  *
407  * Invoke to destroy the PCI EPF device created by invoking pci_epf_create().
408  */
409 void pci_epf_destroy(struct pci_epf *epf)
410 {
411 	device_unregister(&epf->dev);
412 }
413 EXPORT_SYMBOL_GPL(pci_epf_destroy);
414 
415 /**
416  * pci_epf_create() - create a new PCI EPF device
417  * @name: the name of the PCI EPF device. This name will be used to bind the
418  *	  EPF device to a EPF driver
419  *
420  * Invoke to create a new PCI EPF device by providing the name of the function
421  * device.
422  */
423 struct pci_epf *pci_epf_create(const char *name)
424 {
425 	int ret;
426 	struct pci_epf *epf;
427 	struct device *dev;
428 	int len;
429 
430 	epf = kzalloc(sizeof(*epf), GFP_KERNEL);
431 	if (!epf)
432 		return ERR_PTR(-ENOMEM);
433 
434 	len = strchrnul(name, '.') - name;
435 	epf->name = kstrndup(name, len, GFP_KERNEL);
436 	if (!epf->name) {
437 		kfree(epf);
438 		return ERR_PTR(-ENOMEM);
439 	}
440 
441 	/* VFs are numbered starting with 1. So set BIT(0) by default */
442 	epf->vfunction_num_map = 1;
443 	INIT_LIST_HEAD(&epf->pci_vepf);
444 
445 	dev = &epf->dev;
446 	device_initialize(dev);
447 	dev->bus = &pci_epf_bus_type;
448 	dev->type = &pci_epf_type;
449 	mutex_init(&epf->lock);
450 
451 	ret = dev_set_name(dev, "%s", name);
452 	if (ret) {
453 		put_device(dev);
454 		return ERR_PTR(ret);
455 	}
456 
457 	ret = device_add(dev);
458 	if (ret) {
459 		put_device(dev);
460 		return ERR_PTR(ret);
461 	}
462 
463 	return epf;
464 }
465 EXPORT_SYMBOL_GPL(pci_epf_create);
466 
467 static void pci_epf_dev_release(struct device *dev)
468 {
469 	struct pci_epf *epf = to_pci_epf(dev);
470 
471 	kfree(epf->name);
472 	kfree(epf);
473 }
474 
475 static const struct device_type pci_epf_type = {
476 	.release	= pci_epf_dev_release,
477 };
478 
479 static const struct pci_epf_device_id *
480 pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf)
481 {
482 	while (id->name[0]) {
483 		if (strcmp(epf->name, id->name) == 0)
484 			return id;
485 		id++;
486 	}
487 
488 	return NULL;
489 }
490 
491 static int pci_epf_device_match(struct device *dev, const struct device_driver *drv)
492 {
493 	struct pci_epf *epf = to_pci_epf(dev);
494 	const struct pci_epf_driver *driver = to_pci_epf_driver(drv);
495 
496 	if (driver->id_table)
497 		return !!pci_epf_match_id(driver->id_table, epf);
498 
499 	return !strcmp(epf->name, drv->name);
500 }
501 
502 static int pci_epf_device_probe(struct device *dev)
503 {
504 	struct pci_epf *epf = to_pci_epf(dev);
505 	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
506 
507 	if (!driver->probe)
508 		return -ENODEV;
509 
510 	epf->driver = driver;
511 
512 	return driver->probe(epf, pci_epf_match_id(driver->id_table, epf));
513 }
514 
515 static void pci_epf_device_remove(struct device *dev)
516 {
517 	struct pci_epf *epf = to_pci_epf(dev);
518 	struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver);
519 
520 	if (driver->remove)
521 		driver->remove(epf);
522 	epf->driver = NULL;
523 }
524 
525 static const struct bus_type pci_epf_bus_type = {
526 	.name		= "pci-epf",
527 	.match		= pci_epf_device_match,
528 	.probe		= pci_epf_device_probe,
529 	.remove		= pci_epf_device_remove,
530 };
531 
532 static int __init pci_epf_init(void)
533 {
534 	int ret;
535 
536 	ret = bus_register(&pci_epf_bus_type);
537 	if (ret) {
538 		pr_err("failed to register pci epf bus --> %d\n", ret);
539 		return ret;
540 	}
541 
542 	return 0;
543 }
544 module_init(pci_epf_init);
545 
546 static void __exit pci_epf_exit(void)
547 {
548 	bus_unregister(&pci_epf_bus_type);
549 }
550 module_exit(pci_epf_exit);
551 
552 MODULE_DESCRIPTION("PCI EPF Library");
553 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
554