1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * PCI Endpoint *Function* (EPF) library 4 * 5 * Copyright (C) 2017 Texas Instruments 6 * Author: Kishon Vijay Abraham I <kishon@ti.com> 7 */ 8 9 #include <linux/device.h> 10 #include <linux/dma-mapping.h> 11 #include <linux/slab.h> 12 #include <linux/module.h> 13 14 #include <linux/pci-epc.h> 15 #include <linux/pci-epf.h> 16 #include <linux/pci-ep-cfs.h> 17 18 static DEFINE_MUTEX(pci_epf_mutex); 19 20 static struct bus_type pci_epf_bus_type; 21 static const struct device_type pci_epf_type; 22 23 /** 24 * pci_epf_type_add_cfs() - Help function drivers to expose function specific 25 * attributes in configfs 26 * @epf: the EPF device that has to be configured using configfs 27 * @group: the parent configfs group (corresponding to entries in 28 * pci_epf_device_id) 29 * 30 * Invoke to expose function specific attributes in configfs. If the function 31 * driver does not have anything to expose (attributes configured by user), 32 * return NULL. 33 */ 34 struct config_group *pci_epf_type_add_cfs(struct pci_epf *epf, 35 struct config_group *group) 36 { 37 struct config_group *epf_type_group; 38 39 if (!epf->driver) { 40 dev_err(&epf->dev, "epf device not bound to driver\n"); 41 return NULL; 42 } 43 44 if (!epf->driver->ops->add_cfs) 45 return NULL; 46 47 mutex_lock(&epf->lock); 48 epf_type_group = epf->driver->ops->add_cfs(epf, group); 49 mutex_unlock(&epf->lock); 50 51 return epf_type_group; 52 } 53 EXPORT_SYMBOL_GPL(pci_epf_type_add_cfs); 54 55 /** 56 * pci_epf_unbind() - Notify the function driver that the binding between the 57 * EPF device and EPC device has been lost 58 * @epf: the EPF device which has lost the binding with the EPC device 59 * 60 * Invoke to notify the function driver that the binding between the EPF device 61 * and EPC device has been lost. 62 */ 63 void pci_epf_unbind(struct pci_epf *epf) 64 { 65 if (!epf->driver) { 66 dev_WARN(&epf->dev, "epf device not bound to driver\n"); 67 return; 68 } 69 70 mutex_lock(&epf->lock); 71 epf->driver->ops->unbind(epf); 72 mutex_unlock(&epf->lock); 73 module_put(epf->driver->owner); 74 } 75 EXPORT_SYMBOL_GPL(pci_epf_unbind); 76 77 /** 78 * pci_epf_bind() - Notify the function driver that the EPF device has been 79 * bound to a EPC device 80 * @epf: the EPF device which has been bound to the EPC device 81 * 82 * Invoke to notify the function driver that it has been bound to a EPC device 83 */ 84 int pci_epf_bind(struct pci_epf *epf) 85 { 86 int ret; 87 88 if (!epf->driver) { 89 dev_WARN(&epf->dev, "epf device not bound to driver\n"); 90 return -EINVAL; 91 } 92 93 if (!try_module_get(epf->driver->owner)) 94 return -EAGAIN; 95 96 mutex_lock(&epf->lock); 97 ret = epf->driver->ops->bind(epf); 98 mutex_unlock(&epf->lock); 99 100 return ret; 101 } 102 EXPORT_SYMBOL_GPL(pci_epf_bind); 103 104 /** 105 * pci_epf_free_space() - free the allocated PCI EPF register space 106 * @epf: the EPF device from whom to free the memory 107 * @addr: the virtual address of the PCI EPF register space 108 * @bar: the BAR number corresponding to the register space 109 * @type: Identifies if the allocated space is for primary EPC or secondary EPC 110 * 111 * Invoke to free the allocated PCI EPF register space. 112 */ 113 void pci_epf_free_space(struct pci_epf *epf, void *addr, enum pci_barno bar, 114 enum pci_epc_interface_type type) 115 { 116 struct device *dev = epf->epc->dev.parent; 117 struct pci_epf_bar *epf_bar; 118 struct pci_epc *epc; 119 120 if (!addr) 121 return; 122 123 if (type == PRIMARY_INTERFACE) { 124 epc = epf->epc; 125 epf_bar = epf->bar; 126 } else { 127 epc = epf->sec_epc; 128 epf_bar = epf->sec_epc_bar; 129 } 130 131 dev = epc->dev.parent; 132 dma_free_coherent(dev, epf_bar[bar].size, addr, 133 epf_bar[bar].phys_addr); 134 135 epf_bar[bar].phys_addr = 0; 136 epf_bar[bar].addr = NULL; 137 epf_bar[bar].size = 0; 138 epf_bar[bar].barno = 0; 139 epf_bar[bar].flags = 0; 140 } 141 EXPORT_SYMBOL_GPL(pci_epf_free_space); 142 143 /** 144 * pci_epf_alloc_space() - allocate memory for the PCI EPF register space 145 * @epf: the EPF device to whom allocate the memory 146 * @size: the size of the memory that has to be allocated 147 * @bar: the BAR number corresponding to the allocated register space 148 * @align: alignment size for the allocation region 149 * @type: Identifies if the allocation is for primary EPC or secondary EPC 150 * 151 * Invoke to allocate memory for the PCI EPF register space. 152 */ 153 void *pci_epf_alloc_space(struct pci_epf *epf, size_t size, enum pci_barno bar, 154 size_t align, enum pci_epc_interface_type type) 155 { 156 struct pci_epf_bar *epf_bar; 157 dma_addr_t phys_addr; 158 struct pci_epc *epc; 159 struct device *dev; 160 void *space; 161 162 if (size < 128) 163 size = 128; 164 165 if (align) 166 size = ALIGN(size, align); 167 else 168 size = roundup_pow_of_two(size); 169 170 if (type == PRIMARY_INTERFACE) { 171 epc = epf->epc; 172 epf_bar = epf->bar; 173 } else { 174 epc = epf->sec_epc; 175 epf_bar = epf->sec_epc_bar; 176 } 177 178 dev = epc->dev.parent; 179 space = dma_alloc_coherent(dev, size, &phys_addr, GFP_KERNEL); 180 if (!space) { 181 dev_err(dev, "failed to allocate mem space\n"); 182 return NULL; 183 } 184 185 epf_bar[bar].phys_addr = phys_addr; 186 epf_bar[bar].addr = space; 187 epf_bar[bar].size = size; 188 epf_bar[bar].barno = bar; 189 epf_bar[bar].flags |= upper_32_bits(size) ? 190 PCI_BASE_ADDRESS_MEM_TYPE_64 : 191 PCI_BASE_ADDRESS_MEM_TYPE_32; 192 193 return space; 194 } 195 EXPORT_SYMBOL_GPL(pci_epf_alloc_space); 196 197 static void pci_epf_remove_cfs(struct pci_epf_driver *driver) 198 { 199 struct config_group *group, *tmp; 200 201 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 202 return; 203 204 mutex_lock(&pci_epf_mutex); 205 list_for_each_entry_safe(group, tmp, &driver->epf_group, group_entry) 206 pci_ep_cfs_remove_epf_group(group); 207 list_del(&driver->epf_group); 208 mutex_unlock(&pci_epf_mutex); 209 } 210 211 /** 212 * pci_epf_unregister_driver() - unregister the PCI EPF driver 213 * @driver: the PCI EPF driver that has to be unregistered 214 * 215 * Invoke to unregister the PCI EPF driver. 216 */ 217 void pci_epf_unregister_driver(struct pci_epf_driver *driver) 218 { 219 pci_epf_remove_cfs(driver); 220 driver_unregister(&driver->driver); 221 } 222 EXPORT_SYMBOL_GPL(pci_epf_unregister_driver); 223 224 static int pci_epf_add_cfs(struct pci_epf_driver *driver) 225 { 226 struct config_group *group; 227 const struct pci_epf_device_id *id; 228 229 if (!IS_ENABLED(CONFIG_PCI_ENDPOINT_CONFIGFS)) 230 return 0; 231 232 INIT_LIST_HEAD(&driver->epf_group); 233 234 id = driver->id_table; 235 while (id->name[0]) { 236 group = pci_ep_cfs_add_epf_group(id->name); 237 if (IS_ERR(group)) { 238 pci_epf_remove_cfs(driver); 239 return PTR_ERR(group); 240 } 241 242 mutex_lock(&pci_epf_mutex); 243 list_add_tail(&group->group_entry, &driver->epf_group); 244 mutex_unlock(&pci_epf_mutex); 245 id++; 246 } 247 248 return 0; 249 } 250 251 /** 252 * __pci_epf_register_driver() - register a new PCI EPF driver 253 * @driver: structure representing PCI EPF driver 254 * @owner: the owner of the module that registers the PCI EPF driver 255 * 256 * Invoke to register a new PCI EPF driver. 257 */ 258 int __pci_epf_register_driver(struct pci_epf_driver *driver, 259 struct module *owner) 260 { 261 int ret; 262 263 if (!driver->ops) 264 return -EINVAL; 265 266 if (!driver->ops->bind || !driver->ops->unbind) 267 return -EINVAL; 268 269 driver->driver.bus = &pci_epf_bus_type; 270 driver->driver.owner = owner; 271 272 ret = driver_register(&driver->driver); 273 if (ret) 274 return ret; 275 276 pci_epf_add_cfs(driver); 277 278 return 0; 279 } 280 EXPORT_SYMBOL_GPL(__pci_epf_register_driver); 281 282 /** 283 * pci_epf_destroy() - destroy the created PCI EPF device 284 * @epf: the PCI EPF device that has to be destroyed. 285 * 286 * Invoke to destroy the PCI EPF device created by invoking pci_epf_create(). 287 */ 288 void pci_epf_destroy(struct pci_epf *epf) 289 { 290 device_unregister(&epf->dev); 291 } 292 EXPORT_SYMBOL_GPL(pci_epf_destroy); 293 294 /** 295 * pci_epf_create() - create a new PCI EPF device 296 * @name: the name of the PCI EPF device. This name will be used to bind the 297 * the EPF device to a EPF driver 298 * 299 * Invoke to create a new PCI EPF device by providing the name of the function 300 * device. 301 */ 302 struct pci_epf *pci_epf_create(const char *name) 303 { 304 int ret; 305 struct pci_epf *epf; 306 struct device *dev; 307 int len; 308 309 epf = kzalloc(sizeof(*epf), GFP_KERNEL); 310 if (!epf) 311 return ERR_PTR(-ENOMEM); 312 313 len = strchrnul(name, '.') - name; 314 epf->name = kstrndup(name, len, GFP_KERNEL); 315 if (!epf->name) { 316 kfree(epf); 317 return ERR_PTR(-ENOMEM); 318 } 319 320 dev = &epf->dev; 321 device_initialize(dev); 322 dev->bus = &pci_epf_bus_type; 323 dev->type = &pci_epf_type; 324 mutex_init(&epf->lock); 325 326 ret = dev_set_name(dev, "%s", name); 327 if (ret) { 328 put_device(dev); 329 return ERR_PTR(ret); 330 } 331 332 ret = device_add(dev); 333 if (ret) { 334 put_device(dev); 335 return ERR_PTR(ret); 336 } 337 338 return epf; 339 } 340 EXPORT_SYMBOL_GPL(pci_epf_create); 341 342 static void pci_epf_dev_release(struct device *dev) 343 { 344 struct pci_epf *epf = to_pci_epf(dev); 345 346 kfree(epf->name); 347 kfree(epf); 348 } 349 350 static const struct device_type pci_epf_type = { 351 .release = pci_epf_dev_release, 352 }; 353 354 static int 355 pci_epf_match_id(const struct pci_epf_device_id *id, const struct pci_epf *epf) 356 { 357 while (id->name[0]) { 358 if (strcmp(epf->name, id->name) == 0) 359 return true; 360 id++; 361 } 362 363 return false; 364 } 365 366 static int pci_epf_device_match(struct device *dev, struct device_driver *drv) 367 { 368 struct pci_epf *epf = to_pci_epf(dev); 369 struct pci_epf_driver *driver = to_pci_epf_driver(drv); 370 371 if (driver->id_table) 372 return pci_epf_match_id(driver->id_table, epf); 373 374 return !strcmp(epf->name, drv->name); 375 } 376 377 static int pci_epf_device_probe(struct device *dev) 378 { 379 struct pci_epf *epf = to_pci_epf(dev); 380 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 381 382 if (!driver->probe) 383 return -ENODEV; 384 385 epf->driver = driver; 386 387 return driver->probe(epf); 388 } 389 390 static int pci_epf_device_remove(struct device *dev) 391 { 392 int ret = 0; 393 struct pci_epf *epf = to_pci_epf(dev); 394 struct pci_epf_driver *driver = to_pci_epf_driver(dev->driver); 395 396 if (driver->remove) 397 ret = driver->remove(epf); 398 epf->driver = NULL; 399 400 return ret; 401 } 402 403 static struct bus_type pci_epf_bus_type = { 404 .name = "pci-epf", 405 .match = pci_epf_device_match, 406 .probe = pci_epf_device_probe, 407 .remove = pci_epf_device_remove, 408 }; 409 410 static int __init pci_epf_init(void) 411 { 412 int ret; 413 414 ret = bus_register(&pci_epf_bus_type); 415 if (ret) { 416 pr_err("failed to register pci epf bus --> %d\n", ret); 417 return ret; 418 } 419 420 return 0; 421 } 422 module_init(pci_epf_init); 423 424 static void __exit pci_epf_exit(void) 425 { 426 bus_unregister(&pci_epf_bus_type); 427 } 428 module_exit(pci_epf_exit); 429 430 MODULE_DESCRIPTION("PCI EPF Library"); 431 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>"); 432 MODULE_LICENSE("GPL v2"); 433