xref: /linux/drivers/pci/endpoint/pci-epc-core.c (revision 221013afb459e5deb8bd08e29b37050af5586d1c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Endpoint *Controller* (EPC) library
4  *
5  * Copyright (C) 2017 Texas Instruments
6  * Author: Kishon Vijay Abraham I <kishon@ti.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 
13 #include <linux/pci-epc.h>
14 #include <linux/pci-epf.h>
15 #include <linux/pci-ep-cfs.h>
16 
17 static const struct class pci_epc_class = {
18 	.name = "pci_epc",
19 };
20 
21 static void devm_pci_epc_release(struct device *dev, void *res)
22 {
23 	struct pci_epc *epc = *(struct pci_epc **)res;
24 
25 	pci_epc_destroy(epc);
26 }
27 
28 static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
29 {
30 	struct pci_epc **epc = res;
31 
32 	return *epc == match_data;
33 }
34 
35 /**
36  * pci_epc_put() - release the PCI endpoint controller
37  * @epc: epc returned by pci_epc_get()
38  *
39  * release the refcount the caller obtained by invoking pci_epc_get()
40  */
41 void pci_epc_put(struct pci_epc *epc)
42 {
43 	if (IS_ERR_OR_NULL(epc))
44 		return;
45 
46 	module_put(epc->ops->owner);
47 	put_device(&epc->dev);
48 }
49 EXPORT_SYMBOL_GPL(pci_epc_put);
50 
51 /**
52  * pci_epc_get() - get the PCI endpoint controller
53  * @epc_name: device name of the endpoint controller
54  *
55  * Invoke to get struct pci_epc * corresponding to the device name of the
56  * endpoint controller
57  */
58 struct pci_epc *pci_epc_get(const char *epc_name)
59 {
60 	int ret = -EINVAL;
61 	struct pci_epc *epc;
62 	struct device *dev;
63 	struct class_dev_iter iter;
64 
65 	class_dev_iter_init(&iter, &pci_epc_class, NULL, NULL);
66 	while ((dev = class_dev_iter_next(&iter))) {
67 		if (strcmp(epc_name, dev_name(dev)))
68 			continue;
69 
70 		epc = to_pci_epc(dev);
71 		if (!try_module_get(epc->ops->owner)) {
72 			ret = -EINVAL;
73 			goto err;
74 		}
75 
76 		class_dev_iter_exit(&iter);
77 		get_device(&epc->dev);
78 		return epc;
79 	}
80 
81 err:
82 	class_dev_iter_exit(&iter);
83 	return ERR_PTR(ret);
84 }
85 EXPORT_SYMBOL_GPL(pci_epc_get);
86 
87 /**
88  * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
89  * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
90  *
91  * Invoke to get the first unreserved BAR that can be used by the endpoint
92  * function.
93  */
94 enum pci_barno
95 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
96 {
97 	return pci_epc_get_next_free_bar(epc_features, BAR_0);
98 }
99 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
100 
101 /**
102  * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
103  * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
104  * @bar: the starting BAR number from where unreserved BAR should be searched
105  *
106  * Invoke to get the next unreserved BAR starting from @bar that can be used
107  * for endpoint function.
108  */
109 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
110 					 *epc_features, enum pci_barno bar)
111 {
112 	int i;
113 
114 	if (!epc_features)
115 		return BAR_0;
116 
117 	/* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
118 	if (bar > 0 && epc_features->bar[bar - 1].only_64bit)
119 		bar++;
120 
121 	for (i = bar; i < PCI_STD_NUM_BARS; i++) {
122 		/* If the BAR is not reserved, return it. */
123 		if (epc_features->bar[i].type != BAR_RESERVED)
124 			return i;
125 	}
126 
127 	return NO_BAR;
128 }
129 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
130 
131 /**
132  * pci_epc_get_features() - get the features supported by EPC
133  * @epc: the features supported by *this* EPC device will be returned
134  * @func_no: the features supported by the EPC device specific to the
135  *	     endpoint function with func_no will be returned
136  * @vfunc_no: the features supported by the EPC device specific to the
137  *	     virtual endpoint function with vfunc_no will be returned
138  *
139  * Invoke to get the features provided by the EPC which may be
140  * specific to an endpoint function. Returns pci_epc_features on success
141  * and NULL for any failures.
142  */
143 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
144 						    u8 func_no, u8 vfunc_no)
145 {
146 	const struct pci_epc_features *epc_features;
147 
148 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
149 		return NULL;
150 
151 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
152 		return NULL;
153 
154 	if (!epc->ops->get_features)
155 		return NULL;
156 
157 	mutex_lock(&epc->lock);
158 	epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
159 	mutex_unlock(&epc->lock);
160 
161 	return epc_features;
162 }
163 EXPORT_SYMBOL_GPL(pci_epc_get_features);
164 
165 /**
166  * pci_epc_stop() - stop the PCI link
167  * @epc: the link of the EPC device that has to be stopped
168  *
169  * Invoke to stop the PCI link
170  */
171 void pci_epc_stop(struct pci_epc *epc)
172 {
173 	if (IS_ERR(epc) || !epc->ops->stop)
174 		return;
175 
176 	mutex_lock(&epc->lock);
177 	epc->ops->stop(epc);
178 	mutex_unlock(&epc->lock);
179 }
180 EXPORT_SYMBOL_GPL(pci_epc_stop);
181 
182 /**
183  * pci_epc_start() - start the PCI link
184  * @epc: the link of *this* EPC device has to be started
185  *
186  * Invoke to start the PCI link
187  */
188 int pci_epc_start(struct pci_epc *epc)
189 {
190 	int ret;
191 
192 	if (IS_ERR(epc))
193 		return -EINVAL;
194 
195 	if (!epc->ops->start)
196 		return 0;
197 
198 	mutex_lock(&epc->lock);
199 	ret = epc->ops->start(epc);
200 	mutex_unlock(&epc->lock);
201 
202 	return ret;
203 }
204 EXPORT_SYMBOL_GPL(pci_epc_start);
205 
206 /**
207  * pci_epc_raise_irq() - interrupt the host system
208  * @epc: the EPC device which has to interrupt the host
209  * @func_no: the physical endpoint function number in the EPC device
210  * @vfunc_no: the virtual endpoint function number in the physical function
211  * @type: specify the type of interrupt; INTX, MSI or MSI-X
212  * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N)
213  *
214  * Invoke to raise an INTX, MSI or MSI-X interrupt
215  */
216 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
217 		      unsigned int type, u16 interrupt_num)
218 {
219 	int ret;
220 
221 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
222 		return -EINVAL;
223 
224 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
225 		return -EINVAL;
226 
227 	if (!epc->ops->raise_irq)
228 		return 0;
229 
230 	mutex_lock(&epc->lock);
231 	ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
232 	mutex_unlock(&epc->lock);
233 
234 	return ret;
235 }
236 EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
237 
238 /**
239  * pci_epc_map_msi_irq() - Map physical address to MSI address and return
240  *                         MSI data
241  * @epc: the EPC device which has the MSI capability
242  * @func_no: the physical endpoint function number in the EPC device
243  * @vfunc_no: the virtual endpoint function number in the physical function
244  * @phys_addr: the physical address of the outbound region
245  * @interrupt_num: the MSI interrupt number with range (1-N)
246  * @entry_size: Size of Outbound address region for each interrupt
247  * @msi_data: the data that should be written in order to raise MSI interrupt
248  *            with interrupt number as 'interrupt num'
249  * @msi_addr_offset: Offset of MSI address from the aligned outbound address
250  *                   to which the MSI address is mapped
251  *
252  * Invoke to map physical address to MSI address and return MSI data. The
253  * physical address should be an address in the outbound region. This is
254  * required to implement doorbell functionality of NTB wherein EPC on either
255  * side of the interface (primary and secondary) can directly write to the
256  * physical address (in outbound region) of the other interface to ring
257  * doorbell.
258  */
259 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
260 			phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
261 			u32 *msi_data, u32 *msi_addr_offset)
262 {
263 	int ret;
264 
265 	if (IS_ERR_OR_NULL(epc))
266 		return -EINVAL;
267 
268 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
269 		return -EINVAL;
270 
271 	if (!epc->ops->map_msi_irq)
272 		return -EINVAL;
273 
274 	mutex_lock(&epc->lock);
275 	ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
276 				    interrupt_num, entry_size, msi_data,
277 				    msi_addr_offset);
278 	mutex_unlock(&epc->lock);
279 
280 	return ret;
281 }
282 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
283 
284 /**
285  * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
286  * @epc: the EPC device to which MSI interrupts was requested
287  * @func_no: the physical endpoint function number in the EPC device
288  * @vfunc_no: the virtual endpoint function number in the physical function
289  *
290  * Invoke to get the number of MSI interrupts allocated by the RC
291  */
292 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
293 {
294 	int interrupt;
295 
296 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
297 		return 0;
298 
299 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
300 		return 0;
301 
302 	if (!epc->ops->get_msi)
303 		return 0;
304 
305 	mutex_lock(&epc->lock);
306 	interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
307 	mutex_unlock(&epc->lock);
308 
309 	if (interrupt < 0)
310 		return 0;
311 
312 	interrupt = 1 << interrupt;
313 
314 	return interrupt;
315 }
316 EXPORT_SYMBOL_GPL(pci_epc_get_msi);
317 
318 /**
319  * pci_epc_set_msi() - set the number of MSI interrupt numbers required
320  * @epc: the EPC device on which MSI has to be configured
321  * @func_no: the physical endpoint function number in the EPC device
322  * @vfunc_no: the virtual endpoint function number in the physical function
323  * @interrupts: number of MSI interrupts required by the EPF
324  *
325  * Invoke to set the required number of MSI interrupts.
326  */
327 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
328 {
329 	int ret;
330 	u8 encode_int;
331 
332 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
333 	    interrupts < 1 || interrupts > 32)
334 		return -EINVAL;
335 
336 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
337 		return -EINVAL;
338 
339 	if (!epc->ops->set_msi)
340 		return 0;
341 
342 	encode_int = order_base_2(interrupts);
343 
344 	mutex_lock(&epc->lock);
345 	ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
346 	mutex_unlock(&epc->lock);
347 
348 	return ret;
349 }
350 EXPORT_SYMBOL_GPL(pci_epc_set_msi);
351 
352 /**
353  * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
354  * @epc: the EPC device to which MSI-X interrupts was requested
355  * @func_no: the physical endpoint function number in the EPC device
356  * @vfunc_no: the virtual endpoint function number in the physical function
357  *
358  * Invoke to get the number of MSI-X interrupts allocated by the RC
359  */
360 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
361 {
362 	int interrupt;
363 
364 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
365 		return 0;
366 
367 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
368 		return 0;
369 
370 	if (!epc->ops->get_msix)
371 		return 0;
372 
373 	mutex_lock(&epc->lock);
374 	interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
375 	mutex_unlock(&epc->lock);
376 
377 	if (interrupt < 0)
378 		return 0;
379 
380 	return interrupt + 1;
381 }
382 EXPORT_SYMBOL_GPL(pci_epc_get_msix);
383 
384 /**
385  * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
386  * @epc: the EPC device on which MSI-X has to be configured
387  * @func_no: the physical endpoint function number in the EPC device
388  * @vfunc_no: the virtual endpoint function number in the physical function
389  * @interrupts: number of MSI-X interrupts required by the EPF
390  * @bir: BAR where the MSI-X table resides
391  * @offset: Offset pointing to the start of MSI-X table
392  *
393  * Invoke to set the required number of MSI-X interrupts.
394  */
395 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
396 		     u16 interrupts, enum pci_barno bir, u32 offset)
397 {
398 	int ret;
399 
400 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
401 	    interrupts < 1 || interrupts > 2048)
402 		return -EINVAL;
403 
404 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
405 		return -EINVAL;
406 
407 	if (!epc->ops->set_msix)
408 		return 0;
409 
410 	mutex_lock(&epc->lock);
411 	ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
412 				 offset);
413 	mutex_unlock(&epc->lock);
414 
415 	return ret;
416 }
417 EXPORT_SYMBOL_GPL(pci_epc_set_msix);
418 
419 /**
420  * pci_epc_unmap_addr() - unmap CPU address from PCI address
421  * @epc: the EPC device on which address is allocated
422  * @func_no: the physical endpoint function number in the EPC device
423  * @vfunc_no: the virtual endpoint function number in the physical function
424  * @phys_addr: physical address of the local system
425  *
426  * Invoke to unmap the CPU address from PCI address.
427  */
428 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
429 			phys_addr_t phys_addr)
430 {
431 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
432 		return;
433 
434 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
435 		return;
436 
437 	if (!epc->ops->unmap_addr)
438 		return;
439 
440 	mutex_lock(&epc->lock);
441 	epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
442 	mutex_unlock(&epc->lock);
443 }
444 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
445 
446 /**
447  * pci_epc_map_addr() - map CPU address to PCI address
448  * @epc: the EPC device on which address is allocated
449  * @func_no: the physical endpoint function number in the EPC device
450  * @vfunc_no: the virtual endpoint function number in the physical function
451  * @phys_addr: physical address of the local system
452  * @pci_addr: PCI address to which the physical address should be mapped
453  * @size: the size of the allocation
454  *
455  * Invoke to map CPU address with PCI address.
456  */
457 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
458 		     phys_addr_t phys_addr, u64 pci_addr, size_t size)
459 {
460 	int ret;
461 
462 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
463 		return -EINVAL;
464 
465 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
466 		return -EINVAL;
467 
468 	if (!epc->ops->map_addr)
469 		return 0;
470 
471 	mutex_lock(&epc->lock);
472 	ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
473 				 size);
474 	mutex_unlock(&epc->lock);
475 
476 	return ret;
477 }
478 EXPORT_SYMBOL_GPL(pci_epc_map_addr);
479 
480 /**
481  * pci_epc_clear_bar() - reset the BAR
482  * @epc: the EPC device for which the BAR has to be cleared
483  * @func_no: the physical endpoint function number in the EPC device
484  * @vfunc_no: the virtual endpoint function number in the physical function
485  * @epf_bar: the struct epf_bar that contains the BAR information
486  *
487  * Invoke to reset the BAR of the endpoint device.
488  */
489 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
490 		       struct pci_epf_bar *epf_bar)
491 {
492 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
493 	    (epf_bar->barno == BAR_5 &&
494 	     epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
495 		return;
496 
497 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
498 		return;
499 
500 	if (!epc->ops->clear_bar)
501 		return;
502 
503 	mutex_lock(&epc->lock);
504 	epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
505 	mutex_unlock(&epc->lock);
506 }
507 EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
508 
509 /**
510  * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
511  * @epc: the EPC device on which BAR has to be configured
512  * @func_no: the physical endpoint function number in the EPC device
513  * @vfunc_no: the virtual endpoint function number in the physical function
514  * @epf_bar: the struct epf_bar that contains the BAR information
515  *
516  * Invoke to configure the BAR of the endpoint device.
517  */
518 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
519 		    struct pci_epf_bar *epf_bar)
520 {
521 	int ret;
522 	int flags = epf_bar->flags;
523 
524 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
525 	    (epf_bar->barno == BAR_5 &&
526 	     flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
527 	    (flags & PCI_BASE_ADDRESS_SPACE_IO &&
528 	     flags & PCI_BASE_ADDRESS_IO_MASK) ||
529 	    (upper_32_bits(epf_bar->size) &&
530 	     !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
531 		return -EINVAL;
532 
533 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
534 		return -EINVAL;
535 
536 	if (!epc->ops->set_bar)
537 		return 0;
538 
539 	mutex_lock(&epc->lock);
540 	ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
541 	mutex_unlock(&epc->lock);
542 
543 	return ret;
544 }
545 EXPORT_SYMBOL_GPL(pci_epc_set_bar);
546 
547 /**
548  * pci_epc_write_header() - write standard configuration header
549  * @epc: the EPC device to which the configuration header should be written
550  * @func_no: the physical endpoint function number in the EPC device
551  * @vfunc_no: the virtual endpoint function number in the physical function
552  * @header: standard configuration header fields
553  *
554  * Invoke to write the configuration header to the endpoint controller. Every
555  * endpoint controller will have a dedicated location to which the standard
556  * configuration header would be written. The callback function should write
557  * the header fields to this dedicated location.
558  */
559 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
560 			 struct pci_epf_header *header)
561 {
562 	int ret;
563 
564 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
565 		return -EINVAL;
566 
567 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
568 		return -EINVAL;
569 
570 	/* Only Virtual Function #1 has deviceID */
571 	if (vfunc_no > 1)
572 		return -EINVAL;
573 
574 	if (!epc->ops->write_header)
575 		return 0;
576 
577 	mutex_lock(&epc->lock);
578 	ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
579 	mutex_unlock(&epc->lock);
580 
581 	return ret;
582 }
583 EXPORT_SYMBOL_GPL(pci_epc_write_header);
584 
585 /**
586  * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
587  * @epc: the EPC device to which the endpoint function should be added
588  * @epf: the endpoint function to be added
589  * @type: Identifies if the EPC is connected to the primary or secondary
590  *        interface of EPF
591  *
592  * A PCI endpoint device can have one or more functions. In the case of PCIe,
593  * the specification allows up to 8 PCIe endpoint functions. Invoke
594  * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
595  */
596 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
597 		    enum pci_epc_interface_type type)
598 {
599 	struct list_head *list;
600 	u32 func_no;
601 	int ret = 0;
602 
603 	if (IS_ERR_OR_NULL(epc) || epf->is_vf)
604 		return -EINVAL;
605 
606 	if (type == PRIMARY_INTERFACE && epf->epc)
607 		return -EBUSY;
608 
609 	if (type == SECONDARY_INTERFACE && epf->sec_epc)
610 		return -EBUSY;
611 
612 	mutex_lock(&epc->list_lock);
613 	func_no = find_first_zero_bit(&epc->function_num_map,
614 				      BITS_PER_LONG);
615 	if (func_no >= BITS_PER_LONG) {
616 		ret = -EINVAL;
617 		goto ret;
618 	}
619 
620 	if (func_no > epc->max_functions - 1) {
621 		dev_err(&epc->dev, "Exceeding max supported Function Number\n");
622 		ret = -EINVAL;
623 		goto ret;
624 	}
625 
626 	set_bit(func_no, &epc->function_num_map);
627 	if (type == PRIMARY_INTERFACE) {
628 		epf->func_no = func_no;
629 		epf->epc = epc;
630 		list = &epf->list;
631 	} else {
632 		epf->sec_epc_func_no = func_no;
633 		epf->sec_epc = epc;
634 		list = &epf->sec_epc_list;
635 	}
636 
637 	list_add_tail(list, &epc->pci_epf);
638 ret:
639 	mutex_unlock(&epc->list_lock);
640 
641 	return ret;
642 }
643 EXPORT_SYMBOL_GPL(pci_epc_add_epf);
644 
645 /**
646  * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
647  * @epc: the EPC device from which the endpoint function should be removed
648  * @epf: the endpoint function to be removed
649  * @type: identifies if the EPC is connected to the primary or secondary
650  *        interface of EPF
651  *
652  * Invoke to remove PCI endpoint function from the endpoint controller.
653  */
654 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
655 			enum pci_epc_interface_type type)
656 {
657 	struct list_head *list;
658 	u32 func_no = 0;
659 
660 	if (IS_ERR_OR_NULL(epc) || !epf)
661 		return;
662 
663 	if (type == PRIMARY_INTERFACE) {
664 		func_no = epf->func_no;
665 		list = &epf->list;
666 	} else {
667 		func_no = epf->sec_epc_func_no;
668 		list = &epf->sec_epc_list;
669 	}
670 
671 	mutex_lock(&epc->list_lock);
672 	clear_bit(func_no, &epc->function_num_map);
673 	list_del(list);
674 	epf->epc = NULL;
675 	mutex_unlock(&epc->list_lock);
676 }
677 EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
678 
679 /**
680  * pci_epc_linkup() - Notify the EPF device that EPC device has established a
681  *		      connection with the Root Complex.
682  * @epc: the EPC device which has established link with the host
683  *
684  * Invoke to Notify the EPF device that the EPC device has established a
685  * connection with the Root Complex.
686  */
687 void pci_epc_linkup(struct pci_epc *epc)
688 {
689 	struct pci_epf *epf;
690 
691 	if (IS_ERR_OR_NULL(epc))
692 		return;
693 
694 	mutex_lock(&epc->list_lock);
695 	list_for_each_entry(epf, &epc->pci_epf, list) {
696 		mutex_lock(&epf->lock);
697 		if (epf->event_ops && epf->event_ops->link_up)
698 			epf->event_ops->link_up(epf);
699 		mutex_unlock(&epf->lock);
700 	}
701 	mutex_unlock(&epc->list_lock);
702 }
703 EXPORT_SYMBOL_GPL(pci_epc_linkup);
704 
705 /**
706  * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the
707  *			connection with the Root Complex.
708  * @epc: the EPC device which has dropped the link with the host
709  *
710  * Invoke to Notify the EPF device that the EPC device has dropped the
711  * connection with the Root Complex.
712  */
713 void pci_epc_linkdown(struct pci_epc *epc)
714 {
715 	struct pci_epf *epf;
716 
717 	if (IS_ERR_OR_NULL(epc))
718 		return;
719 
720 	mutex_lock(&epc->list_lock);
721 	list_for_each_entry(epf, &epc->pci_epf, list) {
722 		mutex_lock(&epf->lock);
723 		if (epf->event_ops && epf->event_ops->link_down)
724 			epf->event_ops->link_down(epf);
725 		mutex_unlock(&epf->lock);
726 	}
727 	mutex_unlock(&epc->list_lock);
728 }
729 EXPORT_SYMBOL_GPL(pci_epc_linkdown);
730 
731 /**
732  * pci_epc_init_notify() - Notify the EPF device that EPC device initialization
733  *                         is completed.
734  * @epc: the EPC device whose initialization is completed
735  *
736  * Invoke to Notify the EPF device that the EPC device's initialization
737  * is completed.
738  */
739 void pci_epc_init_notify(struct pci_epc *epc)
740 {
741 	struct pci_epf *epf;
742 
743 	if (IS_ERR_OR_NULL(epc))
744 		return;
745 
746 	mutex_lock(&epc->list_lock);
747 	list_for_each_entry(epf, &epc->pci_epf, list) {
748 		mutex_lock(&epf->lock);
749 		if (epf->event_ops && epf->event_ops->epc_init)
750 			epf->event_ops->epc_init(epf);
751 		mutex_unlock(&epf->lock);
752 	}
753 	epc->init_complete = true;
754 	mutex_unlock(&epc->list_lock);
755 }
756 EXPORT_SYMBOL_GPL(pci_epc_init_notify);
757 
758 /**
759  * pci_epc_notify_pending_init() - Notify the pending EPC device initialization
760  *                                 complete to the EPF device
761  * @epc: the EPC device whose initialization is pending to be notified
762  * @epf: the EPF device to be notified
763  *
764  * Invoke to notify the pending EPC device initialization complete to the EPF
765  * device. This is used to deliver the notification if the EPC initialization
766  * got completed before the EPF driver bind.
767  */
768 void pci_epc_notify_pending_init(struct pci_epc *epc, struct pci_epf *epf)
769 {
770 	if (epc->init_complete) {
771 		mutex_lock(&epf->lock);
772 		if (epf->event_ops && epf->event_ops->epc_init)
773 			epf->event_ops->epc_init(epf);
774 		mutex_unlock(&epf->lock);
775 	}
776 }
777 EXPORT_SYMBOL_GPL(pci_epc_notify_pending_init);
778 
779 /**
780  * pci_epc_deinit_notify() - Notify the EPF device about EPC deinitialization
781  * @epc: the EPC device whose deinitialization is completed
782  *
783  * Invoke to notify the EPF device that the EPC deinitialization is completed.
784  */
785 void pci_epc_deinit_notify(struct pci_epc *epc)
786 {
787 	struct pci_epf *epf;
788 
789 	if (IS_ERR_OR_NULL(epc))
790 		return;
791 
792 	mutex_lock(&epc->list_lock);
793 	list_for_each_entry(epf, &epc->pci_epf, list) {
794 		mutex_lock(&epf->lock);
795 		if (epf->event_ops && epf->event_ops->epc_deinit)
796 			epf->event_ops->epc_deinit(epf);
797 		mutex_unlock(&epf->lock);
798 	}
799 	epc->init_complete = false;
800 	mutex_unlock(&epc->list_lock);
801 }
802 EXPORT_SYMBOL_GPL(pci_epc_deinit_notify);
803 
804 /**
805  * pci_epc_bus_master_enable_notify() - Notify the EPF device that the EPC
806  *					device has received the Bus Master
807  *					Enable event from the Root complex
808  * @epc: the EPC device that received the Bus Master Enable event
809  *
810  * Notify the EPF device that the EPC device has generated the Bus Master Enable
811  * event due to host setting the Bus Master Enable bit in the Command register.
812  */
813 void pci_epc_bus_master_enable_notify(struct pci_epc *epc)
814 {
815 	struct pci_epf *epf;
816 
817 	if (IS_ERR_OR_NULL(epc))
818 		return;
819 
820 	mutex_lock(&epc->list_lock);
821 	list_for_each_entry(epf, &epc->pci_epf, list) {
822 		mutex_lock(&epf->lock);
823 		if (epf->event_ops && epf->event_ops->bus_master_enable)
824 			epf->event_ops->bus_master_enable(epf);
825 		mutex_unlock(&epf->lock);
826 	}
827 	mutex_unlock(&epc->list_lock);
828 }
829 EXPORT_SYMBOL_GPL(pci_epc_bus_master_enable_notify);
830 
831 /**
832  * pci_epc_destroy() - destroy the EPC device
833  * @epc: the EPC device that has to be destroyed
834  *
835  * Invoke to destroy the PCI EPC device
836  */
837 void pci_epc_destroy(struct pci_epc *epc)
838 {
839 	pci_ep_cfs_remove_epc_group(epc->group);
840 	device_unregister(&epc->dev);
841 }
842 EXPORT_SYMBOL_GPL(pci_epc_destroy);
843 
844 /**
845  * devm_pci_epc_destroy() - destroy the EPC device
846  * @dev: device that wants to destroy the EPC
847  * @epc: the EPC device that has to be destroyed
848  *
849  * Invoke to destroy the devres associated with this
850  * pci_epc and destroy the EPC device.
851  */
852 void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
853 {
854 	int r;
855 
856 	r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
857 			   epc);
858 	dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
859 }
860 EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
861 
862 static void pci_epc_release(struct device *dev)
863 {
864 	kfree(to_pci_epc(dev));
865 }
866 
867 /**
868  * __pci_epc_create() - create a new endpoint controller (EPC) device
869  * @dev: device that is creating the new EPC
870  * @ops: function pointers for performing EPC operations
871  * @owner: the owner of the module that creates the EPC device
872  *
873  * Invoke to create a new EPC device and add it to pci_epc class.
874  */
875 struct pci_epc *
876 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
877 		 struct module *owner)
878 {
879 	int ret;
880 	struct pci_epc *epc;
881 
882 	if (WARN_ON(!dev)) {
883 		ret = -EINVAL;
884 		goto err_ret;
885 	}
886 
887 	epc = kzalloc(sizeof(*epc), GFP_KERNEL);
888 	if (!epc) {
889 		ret = -ENOMEM;
890 		goto err_ret;
891 	}
892 
893 	mutex_init(&epc->lock);
894 	mutex_init(&epc->list_lock);
895 	INIT_LIST_HEAD(&epc->pci_epf);
896 
897 	device_initialize(&epc->dev);
898 	epc->dev.class = &pci_epc_class;
899 	epc->dev.parent = dev;
900 	epc->dev.release = pci_epc_release;
901 	epc->ops = ops;
902 
903 	ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
904 	if (ret)
905 		goto put_dev;
906 
907 	ret = device_add(&epc->dev);
908 	if (ret)
909 		goto put_dev;
910 
911 	epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
912 
913 	return epc;
914 
915 put_dev:
916 	put_device(&epc->dev);
917 
918 err_ret:
919 	return ERR_PTR(ret);
920 }
921 EXPORT_SYMBOL_GPL(__pci_epc_create);
922 
923 /**
924  * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
925  * @dev: device that is creating the new EPC
926  * @ops: function pointers for performing EPC operations
927  * @owner: the owner of the module that creates the EPC device
928  *
929  * Invoke to create a new EPC device and add it to pci_epc class.
930  * While at that, it also associates the device with the pci_epc using devres.
931  * On driver detach, release function is invoked on the devres data,
932  * then, devres data is freed.
933  */
934 struct pci_epc *
935 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
936 		      struct module *owner)
937 {
938 	struct pci_epc **ptr, *epc;
939 
940 	ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
941 	if (!ptr)
942 		return ERR_PTR(-ENOMEM);
943 
944 	epc = __pci_epc_create(dev, ops, owner);
945 	if (!IS_ERR(epc)) {
946 		*ptr = epc;
947 		devres_add(dev, ptr);
948 	} else {
949 		devres_free(ptr);
950 	}
951 
952 	return epc;
953 }
954 EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
955 
956 static int __init pci_epc_init(void)
957 {
958 	return class_register(&pci_epc_class);
959 }
960 module_init(pci_epc_init);
961 
962 static void __exit pci_epc_exit(void)
963 {
964 	class_unregister(&pci_epc_class);
965 }
966 module_exit(pci_epc_exit);
967 
968 MODULE_DESCRIPTION("PCI EPC Library");
969 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
970