xref: /linux/drivers/pci/endpoint/pci-epc-core.c (revision 001821b0e79716c4e17c71d8e053a23599a7a508)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI Endpoint *Controller* (EPC) library
4  *
5  * Copyright (C) 2017 Texas Instruments
6  * Author: Kishon Vijay Abraham I <kishon@ti.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/slab.h>
11 #include <linux/module.h>
12 
13 #include <linux/pci-epc.h>
14 #include <linux/pci-epf.h>
15 #include <linux/pci-ep-cfs.h>
16 
17 static struct class *pci_epc_class;
18 
19 static void devm_pci_epc_release(struct device *dev, void *res)
20 {
21 	struct pci_epc *epc = *(struct pci_epc **)res;
22 
23 	pci_epc_destroy(epc);
24 }
25 
26 static int devm_pci_epc_match(struct device *dev, void *res, void *match_data)
27 {
28 	struct pci_epc **epc = res;
29 
30 	return *epc == match_data;
31 }
32 
33 /**
34  * pci_epc_put() - release the PCI endpoint controller
35  * @epc: epc returned by pci_epc_get()
36  *
37  * release the refcount the caller obtained by invoking pci_epc_get()
38  */
39 void pci_epc_put(struct pci_epc *epc)
40 {
41 	if (IS_ERR_OR_NULL(epc))
42 		return;
43 
44 	module_put(epc->ops->owner);
45 	put_device(&epc->dev);
46 }
47 EXPORT_SYMBOL_GPL(pci_epc_put);
48 
49 /**
50  * pci_epc_get() - get the PCI endpoint controller
51  * @epc_name: device name of the endpoint controller
52  *
53  * Invoke to get struct pci_epc * corresponding to the device name of the
54  * endpoint controller
55  */
56 struct pci_epc *pci_epc_get(const char *epc_name)
57 {
58 	int ret = -EINVAL;
59 	struct pci_epc *epc;
60 	struct device *dev;
61 	struct class_dev_iter iter;
62 
63 	class_dev_iter_init(&iter, pci_epc_class, NULL, NULL);
64 	while ((dev = class_dev_iter_next(&iter))) {
65 		if (strcmp(epc_name, dev_name(dev)))
66 			continue;
67 
68 		epc = to_pci_epc(dev);
69 		if (!try_module_get(epc->ops->owner)) {
70 			ret = -EINVAL;
71 			goto err;
72 		}
73 
74 		class_dev_iter_exit(&iter);
75 		get_device(&epc->dev);
76 		return epc;
77 	}
78 
79 err:
80 	class_dev_iter_exit(&iter);
81 	return ERR_PTR(ret);
82 }
83 EXPORT_SYMBOL_GPL(pci_epc_get);
84 
85 /**
86  * pci_epc_get_first_free_bar() - helper to get first unreserved BAR
87  * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
88  *
89  * Invoke to get the first unreserved BAR that can be used by the endpoint
90  * function.
91  */
92 enum pci_barno
93 pci_epc_get_first_free_bar(const struct pci_epc_features *epc_features)
94 {
95 	return pci_epc_get_next_free_bar(epc_features, BAR_0);
96 }
97 EXPORT_SYMBOL_GPL(pci_epc_get_first_free_bar);
98 
99 /**
100  * pci_epc_get_next_free_bar() - helper to get unreserved BAR starting from @bar
101  * @epc_features: pci_epc_features structure that holds the reserved bar bitmap
102  * @bar: the starting BAR number from where unreserved BAR should be searched
103  *
104  * Invoke to get the next unreserved BAR starting from @bar that can be used
105  * for endpoint function.
106  */
107 enum pci_barno pci_epc_get_next_free_bar(const struct pci_epc_features
108 					 *epc_features, enum pci_barno bar)
109 {
110 	int i;
111 
112 	if (!epc_features)
113 		return BAR_0;
114 
115 	/* If 'bar - 1' is a 64-bit BAR, move to the next BAR */
116 	if (bar > 0 && epc_features->bar[bar - 1].only_64bit)
117 		bar++;
118 
119 	for (i = bar; i < PCI_STD_NUM_BARS; i++) {
120 		/* If the BAR is not reserved, return it. */
121 		if (epc_features->bar[i].type != BAR_RESERVED)
122 			return i;
123 	}
124 
125 	return NO_BAR;
126 }
127 EXPORT_SYMBOL_GPL(pci_epc_get_next_free_bar);
128 
129 /**
130  * pci_epc_get_features() - get the features supported by EPC
131  * @epc: the features supported by *this* EPC device will be returned
132  * @func_no: the features supported by the EPC device specific to the
133  *	     endpoint function with func_no will be returned
134  * @vfunc_no: the features supported by the EPC device specific to the
135  *	     virtual endpoint function with vfunc_no will be returned
136  *
137  * Invoke to get the features provided by the EPC which may be
138  * specific to an endpoint function. Returns pci_epc_features on success
139  * and NULL for any failures.
140  */
141 const struct pci_epc_features *pci_epc_get_features(struct pci_epc *epc,
142 						    u8 func_no, u8 vfunc_no)
143 {
144 	const struct pci_epc_features *epc_features;
145 
146 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
147 		return NULL;
148 
149 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
150 		return NULL;
151 
152 	if (!epc->ops->get_features)
153 		return NULL;
154 
155 	mutex_lock(&epc->lock);
156 	epc_features = epc->ops->get_features(epc, func_no, vfunc_no);
157 	mutex_unlock(&epc->lock);
158 
159 	return epc_features;
160 }
161 EXPORT_SYMBOL_GPL(pci_epc_get_features);
162 
163 /**
164  * pci_epc_stop() - stop the PCI link
165  * @epc: the link of the EPC device that has to be stopped
166  *
167  * Invoke to stop the PCI link
168  */
169 void pci_epc_stop(struct pci_epc *epc)
170 {
171 	if (IS_ERR(epc) || !epc->ops->stop)
172 		return;
173 
174 	mutex_lock(&epc->lock);
175 	epc->ops->stop(epc);
176 	mutex_unlock(&epc->lock);
177 }
178 EXPORT_SYMBOL_GPL(pci_epc_stop);
179 
180 /**
181  * pci_epc_start() - start the PCI link
182  * @epc: the link of *this* EPC device has to be started
183  *
184  * Invoke to start the PCI link
185  */
186 int pci_epc_start(struct pci_epc *epc)
187 {
188 	int ret;
189 
190 	if (IS_ERR(epc))
191 		return -EINVAL;
192 
193 	if (!epc->ops->start)
194 		return 0;
195 
196 	mutex_lock(&epc->lock);
197 	ret = epc->ops->start(epc);
198 	mutex_unlock(&epc->lock);
199 
200 	return ret;
201 }
202 EXPORT_SYMBOL_GPL(pci_epc_start);
203 
204 /**
205  * pci_epc_raise_irq() - interrupt the host system
206  * @epc: the EPC device which has to interrupt the host
207  * @func_no: the physical endpoint function number in the EPC device
208  * @vfunc_no: the virtual endpoint function number in the physical function
209  * @type: specify the type of interrupt; INTX, MSI or MSI-X
210  * @interrupt_num: the MSI or MSI-X interrupt number with range (1-N)
211  *
212  * Invoke to raise an INTX, MSI or MSI-X interrupt
213  */
214 int pci_epc_raise_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
215 		      unsigned int type, u16 interrupt_num)
216 {
217 	int ret;
218 
219 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
220 		return -EINVAL;
221 
222 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
223 		return -EINVAL;
224 
225 	if (!epc->ops->raise_irq)
226 		return 0;
227 
228 	mutex_lock(&epc->lock);
229 	ret = epc->ops->raise_irq(epc, func_no, vfunc_no, type, interrupt_num);
230 	mutex_unlock(&epc->lock);
231 
232 	return ret;
233 }
234 EXPORT_SYMBOL_GPL(pci_epc_raise_irq);
235 
236 /**
237  * pci_epc_map_msi_irq() - Map physical address to MSI address and return
238  *                         MSI data
239  * @epc: the EPC device which has the MSI capability
240  * @func_no: the physical endpoint function number in the EPC device
241  * @vfunc_no: the virtual endpoint function number in the physical function
242  * @phys_addr: the physical address of the outbound region
243  * @interrupt_num: the MSI interrupt number with range (1-N)
244  * @entry_size: Size of Outbound address region for each interrupt
245  * @msi_data: the data that should be written in order to raise MSI interrupt
246  *            with interrupt number as 'interrupt num'
247  * @msi_addr_offset: Offset of MSI address from the aligned outbound address
248  *                   to which the MSI address is mapped
249  *
250  * Invoke to map physical address to MSI address and return MSI data. The
251  * physical address should be an address in the outbound region. This is
252  * required to implement doorbell functionality of NTB wherein EPC on either
253  * side of the interface (primary and secondary) can directly write to the
254  * physical address (in outbound region) of the other interface to ring
255  * doorbell.
256  */
257 int pci_epc_map_msi_irq(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
258 			phys_addr_t phys_addr, u8 interrupt_num, u32 entry_size,
259 			u32 *msi_data, u32 *msi_addr_offset)
260 {
261 	int ret;
262 
263 	if (IS_ERR_OR_NULL(epc))
264 		return -EINVAL;
265 
266 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
267 		return -EINVAL;
268 
269 	if (!epc->ops->map_msi_irq)
270 		return -EINVAL;
271 
272 	mutex_lock(&epc->lock);
273 	ret = epc->ops->map_msi_irq(epc, func_no, vfunc_no, phys_addr,
274 				    interrupt_num, entry_size, msi_data,
275 				    msi_addr_offset);
276 	mutex_unlock(&epc->lock);
277 
278 	return ret;
279 }
280 EXPORT_SYMBOL_GPL(pci_epc_map_msi_irq);
281 
282 /**
283  * pci_epc_get_msi() - get the number of MSI interrupt numbers allocated
284  * @epc: the EPC device to which MSI interrupts was requested
285  * @func_no: the physical endpoint function number in the EPC device
286  * @vfunc_no: the virtual endpoint function number in the physical function
287  *
288  * Invoke to get the number of MSI interrupts allocated by the RC
289  */
290 int pci_epc_get_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
291 {
292 	int interrupt;
293 
294 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
295 		return 0;
296 
297 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
298 		return 0;
299 
300 	if (!epc->ops->get_msi)
301 		return 0;
302 
303 	mutex_lock(&epc->lock);
304 	interrupt = epc->ops->get_msi(epc, func_no, vfunc_no);
305 	mutex_unlock(&epc->lock);
306 
307 	if (interrupt < 0)
308 		return 0;
309 
310 	interrupt = 1 << interrupt;
311 
312 	return interrupt;
313 }
314 EXPORT_SYMBOL_GPL(pci_epc_get_msi);
315 
316 /**
317  * pci_epc_set_msi() - set the number of MSI interrupt numbers required
318  * @epc: the EPC device on which MSI has to be configured
319  * @func_no: the physical endpoint function number in the EPC device
320  * @vfunc_no: the virtual endpoint function number in the physical function
321  * @interrupts: number of MSI interrupts required by the EPF
322  *
323  * Invoke to set the required number of MSI interrupts.
324  */
325 int pci_epc_set_msi(struct pci_epc *epc, u8 func_no, u8 vfunc_no, u8 interrupts)
326 {
327 	int ret;
328 	u8 encode_int;
329 
330 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
331 	    interrupts < 1 || interrupts > 32)
332 		return -EINVAL;
333 
334 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
335 		return -EINVAL;
336 
337 	if (!epc->ops->set_msi)
338 		return 0;
339 
340 	encode_int = order_base_2(interrupts);
341 
342 	mutex_lock(&epc->lock);
343 	ret = epc->ops->set_msi(epc, func_no, vfunc_no, encode_int);
344 	mutex_unlock(&epc->lock);
345 
346 	return ret;
347 }
348 EXPORT_SYMBOL_GPL(pci_epc_set_msi);
349 
350 /**
351  * pci_epc_get_msix() - get the number of MSI-X interrupt numbers allocated
352  * @epc: the EPC device to which MSI-X interrupts was requested
353  * @func_no: the physical endpoint function number in the EPC device
354  * @vfunc_no: the virtual endpoint function number in the physical function
355  *
356  * Invoke to get the number of MSI-X interrupts allocated by the RC
357  */
358 int pci_epc_get_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no)
359 {
360 	int interrupt;
361 
362 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
363 		return 0;
364 
365 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
366 		return 0;
367 
368 	if (!epc->ops->get_msix)
369 		return 0;
370 
371 	mutex_lock(&epc->lock);
372 	interrupt = epc->ops->get_msix(epc, func_no, vfunc_no);
373 	mutex_unlock(&epc->lock);
374 
375 	if (interrupt < 0)
376 		return 0;
377 
378 	return interrupt + 1;
379 }
380 EXPORT_SYMBOL_GPL(pci_epc_get_msix);
381 
382 /**
383  * pci_epc_set_msix() - set the number of MSI-X interrupt numbers required
384  * @epc: the EPC device on which MSI-X has to be configured
385  * @func_no: the physical endpoint function number in the EPC device
386  * @vfunc_no: the virtual endpoint function number in the physical function
387  * @interrupts: number of MSI-X interrupts required by the EPF
388  * @bir: BAR where the MSI-X table resides
389  * @offset: Offset pointing to the start of MSI-X table
390  *
391  * Invoke to set the required number of MSI-X interrupts.
392  */
393 int pci_epc_set_msix(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
394 		     u16 interrupts, enum pci_barno bir, u32 offset)
395 {
396 	int ret;
397 
398 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
399 	    interrupts < 1 || interrupts > 2048)
400 		return -EINVAL;
401 
402 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
403 		return -EINVAL;
404 
405 	if (!epc->ops->set_msix)
406 		return 0;
407 
408 	mutex_lock(&epc->lock);
409 	ret = epc->ops->set_msix(epc, func_no, vfunc_no, interrupts - 1, bir,
410 				 offset);
411 	mutex_unlock(&epc->lock);
412 
413 	return ret;
414 }
415 EXPORT_SYMBOL_GPL(pci_epc_set_msix);
416 
417 /**
418  * pci_epc_unmap_addr() - unmap CPU address from PCI address
419  * @epc: the EPC device on which address is allocated
420  * @func_no: the physical endpoint function number in the EPC device
421  * @vfunc_no: the virtual endpoint function number in the physical function
422  * @phys_addr: physical address of the local system
423  *
424  * Invoke to unmap the CPU address from PCI address.
425  */
426 void pci_epc_unmap_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
427 			phys_addr_t phys_addr)
428 {
429 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
430 		return;
431 
432 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
433 		return;
434 
435 	if (!epc->ops->unmap_addr)
436 		return;
437 
438 	mutex_lock(&epc->lock);
439 	epc->ops->unmap_addr(epc, func_no, vfunc_no, phys_addr);
440 	mutex_unlock(&epc->lock);
441 }
442 EXPORT_SYMBOL_GPL(pci_epc_unmap_addr);
443 
444 /**
445  * pci_epc_map_addr() - map CPU address to PCI address
446  * @epc: the EPC device on which address is allocated
447  * @func_no: the physical endpoint function number in the EPC device
448  * @vfunc_no: the virtual endpoint function number in the physical function
449  * @phys_addr: physical address of the local system
450  * @pci_addr: PCI address to which the physical address should be mapped
451  * @size: the size of the allocation
452  *
453  * Invoke to map CPU address with PCI address.
454  */
455 int pci_epc_map_addr(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
456 		     phys_addr_t phys_addr, u64 pci_addr, size_t size)
457 {
458 	int ret;
459 
460 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
461 		return -EINVAL;
462 
463 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
464 		return -EINVAL;
465 
466 	if (!epc->ops->map_addr)
467 		return 0;
468 
469 	mutex_lock(&epc->lock);
470 	ret = epc->ops->map_addr(epc, func_no, vfunc_no, phys_addr, pci_addr,
471 				 size);
472 	mutex_unlock(&epc->lock);
473 
474 	return ret;
475 }
476 EXPORT_SYMBOL_GPL(pci_epc_map_addr);
477 
478 /**
479  * pci_epc_clear_bar() - reset the BAR
480  * @epc: the EPC device for which the BAR has to be cleared
481  * @func_no: the physical endpoint function number in the EPC device
482  * @vfunc_no: the virtual endpoint function number in the physical function
483  * @epf_bar: the struct epf_bar that contains the BAR information
484  *
485  * Invoke to reset the BAR of the endpoint device.
486  */
487 void pci_epc_clear_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
488 		       struct pci_epf_bar *epf_bar)
489 {
490 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
491 	    (epf_bar->barno == BAR_5 &&
492 	     epf_bar->flags & PCI_BASE_ADDRESS_MEM_TYPE_64))
493 		return;
494 
495 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
496 		return;
497 
498 	if (!epc->ops->clear_bar)
499 		return;
500 
501 	mutex_lock(&epc->lock);
502 	epc->ops->clear_bar(epc, func_no, vfunc_no, epf_bar);
503 	mutex_unlock(&epc->lock);
504 }
505 EXPORT_SYMBOL_GPL(pci_epc_clear_bar);
506 
507 /**
508  * pci_epc_set_bar() - configure BAR in order for host to assign PCI addr space
509  * @epc: the EPC device on which BAR has to be configured
510  * @func_no: the physical endpoint function number in the EPC device
511  * @vfunc_no: the virtual endpoint function number in the physical function
512  * @epf_bar: the struct epf_bar that contains the BAR information
513  *
514  * Invoke to configure the BAR of the endpoint device.
515  */
516 int pci_epc_set_bar(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
517 		    struct pci_epf_bar *epf_bar)
518 {
519 	int ret;
520 	int flags = epf_bar->flags;
521 
522 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions ||
523 	    (epf_bar->barno == BAR_5 &&
524 	     flags & PCI_BASE_ADDRESS_MEM_TYPE_64) ||
525 	    (flags & PCI_BASE_ADDRESS_SPACE_IO &&
526 	     flags & PCI_BASE_ADDRESS_IO_MASK) ||
527 	    (upper_32_bits(epf_bar->size) &&
528 	     !(flags & PCI_BASE_ADDRESS_MEM_TYPE_64)))
529 		return -EINVAL;
530 
531 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
532 		return -EINVAL;
533 
534 	if (!epc->ops->set_bar)
535 		return 0;
536 
537 	mutex_lock(&epc->lock);
538 	ret = epc->ops->set_bar(epc, func_no, vfunc_no, epf_bar);
539 	mutex_unlock(&epc->lock);
540 
541 	return ret;
542 }
543 EXPORT_SYMBOL_GPL(pci_epc_set_bar);
544 
545 /**
546  * pci_epc_write_header() - write standard configuration header
547  * @epc: the EPC device to which the configuration header should be written
548  * @func_no: the physical endpoint function number in the EPC device
549  * @vfunc_no: the virtual endpoint function number in the physical function
550  * @header: standard configuration header fields
551  *
552  * Invoke to write the configuration header to the endpoint controller. Every
553  * endpoint controller will have a dedicated location to which the standard
554  * configuration header would be written. The callback function should write
555  * the header fields to this dedicated location.
556  */
557 int pci_epc_write_header(struct pci_epc *epc, u8 func_no, u8 vfunc_no,
558 			 struct pci_epf_header *header)
559 {
560 	int ret;
561 
562 	if (IS_ERR_OR_NULL(epc) || func_no >= epc->max_functions)
563 		return -EINVAL;
564 
565 	if (vfunc_no > 0 && (!epc->max_vfs || vfunc_no > epc->max_vfs[func_no]))
566 		return -EINVAL;
567 
568 	/* Only Virtual Function #1 has deviceID */
569 	if (vfunc_no > 1)
570 		return -EINVAL;
571 
572 	if (!epc->ops->write_header)
573 		return 0;
574 
575 	mutex_lock(&epc->lock);
576 	ret = epc->ops->write_header(epc, func_no, vfunc_no, header);
577 	mutex_unlock(&epc->lock);
578 
579 	return ret;
580 }
581 EXPORT_SYMBOL_GPL(pci_epc_write_header);
582 
583 /**
584  * pci_epc_add_epf() - bind PCI endpoint function to an endpoint controller
585  * @epc: the EPC device to which the endpoint function should be added
586  * @epf: the endpoint function to be added
587  * @type: Identifies if the EPC is connected to the primary or secondary
588  *        interface of EPF
589  *
590  * A PCI endpoint device can have one or more functions. In the case of PCIe,
591  * the specification allows up to 8 PCIe endpoint functions. Invoke
592  * pci_epc_add_epf() to add a PCI endpoint function to an endpoint controller.
593  */
594 int pci_epc_add_epf(struct pci_epc *epc, struct pci_epf *epf,
595 		    enum pci_epc_interface_type type)
596 {
597 	struct list_head *list;
598 	u32 func_no;
599 	int ret = 0;
600 
601 	if (IS_ERR_OR_NULL(epc) || epf->is_vf)
602 		return -EINVAL;
603 
604 	if (type == PRIMARY_INTERFACE && epf->epc)
605 		return -EBUSY;
606 
607 	if (type == SECONDARY_INTERFACE && epf->sec_epc)
608 		return -EBUSY;
609 
610 	mutex_lock(&epc->list_lock);
611 	func_no = find_first_zero_bit(&epc->function_num_map,
612 				      BITS_PER_LONG);
613 	if (func_no >= BITS_PER_LONG) {
614 		ret = -EINVAL;
615 		goto ret;
616 	}
617 
618 	if (func_no > epc->max_functions - 1) {
619 		dev_err(&epc->dev, "Exceeding max supported Function Number\n");
620 		ret = -EINVAL;
621 		goto ret;
622 	}
623 
624 	set_bit(func_no, &epc->function_num_map);
625 	if (type == PRIMARY_INTERFACE) {
626 		epf->func_no = func_no;
627 		epf->epc = epc;
628 		list = &epf->list;
629 	} else {
630 		epf->sec_epc_func_no = func_no;
631 		epf->sec_epc = epc;
632 		list = &epf->sec_epc_list;
633 	}
634 
635 	list_add_tail(list, &epc->pci_epf);
636 ret:
637 	mutex_unlock(&epc->list_lock);
638 
639 	return ret;
640 }
641 EXPORT_SYMBOL_GPL(pci_epc_add_epf);
642 
643 /**
644  * pci_epc_remove_epf() - remove PCI endpoint function from endpoint controller
645  * @epc: the EPC device from which the endpoint function should be removed
646  * @epf: the endpoint function to be removed
647  * @type: identifies if the EPC is connected to the primary or secondary
648  *        interface of EPF
649  *
650  * Invoke to remove PCI endpoint function from the endpoint controller.
651  */
652 void pci_epc_remove_epf(struct pci_epc *epc, struct pci_epf *epf,
653 			enum pci_epc_interface_type type)
654 {
655 	struct list_head *list;
656 	u32 func_no = 0;
657 
658 	if (IS_ERR_OR_NULL(epc) || !epf)
659 		return;
660 
661 	if (type == PRIMARY_INTERFACE) {
662 		func_no = epf->func_no;
663 		list = &epf->list;
664 	} else {
665 		func_no = epf->sec_epc_func_no;
666 		list = &epf->sec_epc_list;
667 	}
668 
669 	mutex_lock(&epc->list_lock);
670 	clear_bit(func_no, &epc->function_num_map);
671 	list_del(list);
672 	epf->epc = NULL;
673 	mutex_unlock(&epc->list_lock);
674 }
675 EXPORT_SYMBOL_GPL(pci_epc_remove_epf);
676 
677 /**
678  * pci_epc_linkup() - Notify the EPF device that EPC device has established a
679  *		      connection with the Root Complex.
680  * @epc: the EPC device which has established link with the host
681  *
682  * Invoke to Notify the EPF device that the EPC device has established a
683  * connection with the Root Complex.
684  */
685 void pci_epc_linkup(struct pci_epc *epc)
686 {
687 	struct pci_epf *epf;
688 
689 	if (IS_ERR_OR_NULL(epc))
690 		return;
691 
692 	mutex_lock(&epc->list_lock);
693 	list_for_each_entry(epf, &epc->pci_epf, list) {
694 		mutex_lock(&epf->lock);
695 		if (epf->event_ops && epf->event_ops->link_up)
696 			epf->event_ops->link_up(epf);
697 		mutex_unlock(&epf->lock);
698 	}
699 	mutex_unlock(&epc->list_lock);
700 }
701 EXPORT_SYMBOL_GPL(pci_epc_linkup);
702 
703 /**
704  * pci_epc_linkdown() - Notify the EPF device that EPC device has dropped the
705  *			connection with the Root Complex.
706  * @epc: the EPC device which has dropped the link with the host
707  *
708  * Invoke to Notify the EPF device that the EPC device has dropped the
709  * connection with the Root Complex.
710  */
711 void pci_epc_linkdown(struct pci_epc *epc)
712 {
713 	struct pci_epf *epf;
714 
715 	if (IS_ERR_OR_NULL(epc))
716 		return;
717 
718 	mutex_lock(&epc->list_lock);
719 	list_for_each_entry(epf, &epc->pci_epf, list) {
720 		mutex_lock(&epf->lock);
721 		if (epf->event_ops && epf->event_ops->link_down)
722 			epf->event_ops->link_down(epf);
723 		mutex_unlock(&epf->lock);
724 	}
725 	mutex_unlock(&epc->list_lock);
726 }
727 EXPORT_SYMBOL_GPL(pci_epc_linkdown);
728 
729 /**
730  * pci_epc_init_notify() - Notify the EPF device that EPC device's core
731  *			   initialization is completed.
732  * @epc: the EPC device whose core initialization is completed
733  *
734  * Invoke to Notify the EPF device that the EPC device's initialization
735  * is completed.
736  */
737 void pci_epc_init_notify(struct pci_epc *epc)
738 {
739 	struct pci_epf *epf;
740 
741 	if (IS_ERR_OR_NULL(epc))
742 		return;
743 
744 	mutex_lock(&epc->list_lock);
745 	list_for_each_entry(epf, &epc->pci_epf, list) {
746 		mutex_lock(&epf->lock);
747 		if (epf->event_ops && epf->event_ops->core_init)
748 			epf->event_ops->core_init(epf);
749 		mutex_unlock(&epf->lock);
750 	}
751 	epc->init_complete = true;
752 	mutex_unlock(&epc->list_lock);
753 }
754 EXPORT_SYMBOL_GPL(pci_epc_init_notify);
755 
756 /**
757  * pci_epc_notify_pending_init() - Notify the pending EPC device initialization
758  *                                 complete to the EPF device
759  * @epc: the EPC device whose core initialization is pending to be notified
760  * @epf: the EPF device to be notified
761  *
762  * Invoke to notify the pending EPC device initialization complete to the EPF
763  * device. This is used to deliver the notification if the EPC initialization
764  * got completed before the EPF driver bind.
765  */
766 void pci_epc_notify_pending_init(struct pci_epc *epc, struct pci_epf *epf)
767 {
768 	if (epc->init_complete) {
769 		mutex_lock(&epf->lock);
770 		if (epf->event_ops && epf->event_ops->core_init)
771 			epf->event_ops->core_init(epf);
772 		mutex_unlock(&epf->lock);
773 	}
774 }
775 EXPORT_SYMBOL_GPL(pci_epc_notify_pending_init);
776 
777 /**
778  * pci_epc_bme_notify() - Notify the EPF device that the EPC device has received
779  *			  the BME event from the Root complex
780  * @epc: the EPC device that received the BME event
781  *
782  * Invoke to Notify the EPF device that the EPC device has received the Bus
783  * Master Enable (BME) event from the Root complex
784  */
785 void pci_epc_bme_notify(struct pci_epc *epc)
786 {
787 	struct pci_epf *epf;
788 
789 	if (IS_ERR_OR_NULL(epc))
790 		return;
791 
792 	mutex_lock(&epc->list_lock);
793 	list_for_each_entry(epf, &epc->pci_epf, list) {
794 		mutex_lock(&epf->lock);
795 		if (epf->event_ops && epf->event_ops->bme)
796 			epf->event_ops->bme(epf);
797 		mutex_unlock(&epf->lock);
798 	}
799 	mutex_unlock(&epc->list_lock);
800 }
801 EXPORT_SYMBOL_GPL(pci_epc_bme_notify);
802 
803 /**
804  * pci_epc_destroy() - destroy the EPC device
805  * @epc: the EPC device that has to be destroyed
806  *
807  * Invoke to destroy the PCI EPC device
808  */
809 void pci_epc_destroy(struct pci_epc *epc)
810 {
811 	pci_ep_cfs_remove_epc_group(epc->group);
812 	device_unregister(&epc->dev);
813 }
814 EXPORT_SYMBOL_GPL(pci_epc_destroy);
815 
816 /**
817  * devm_pci_epc_destroy() - destroy the EPC device
818  * @dev: device that wants to destroy the EPC
819  * @epc: the EPC device that has to be destroyed
820  *
821  * Invoke to destroy the devres associated with this
822  * pci_epc and destroy the EPC device.
823  */
824 void devm_pci_epc_destroy(struct device *dev, struct pci_epc *epc)
825 {
826 	int r;
827 
828 	r = devres_destroy(dev, devm_pci_epc_release, devm_pci_epc_match,
829 			   epc);
830 	dev_WARN_ONCE(dev, r, "couldn't find PCI EPC resource\n");
831 }
832 EXPORT_SYMBOL_GPL(devm_pci_epc_destroy);
833 
834 static void pci_epc_release(struct device *dev)
835 {
836 	kfree(to_pci_epc(dev));
837 }
838 
839 /**
840  * __pci_epc_create() - create a new endpoint controller (EPC) device
841  * @dev: device that is creating the new EPC
842  * @ops: function pointers for performing EPC operations
843  * @owner: the owner of the module that creates the EPC device
844  *
845  * Invoke to create a new EPC device and add it to pci_epc class.
846  */
847 struct pci_epc *
848 __pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
849 		 struct module *owner)
850 {
851 	int ret;
852 	struct pci_epc *epc;
853 
854 	if (WARN_ON(!dev)) {
855 		ret = -EINVAL;
856 		goto err_ret;
857 	}
858 
859 	epc = kzalloc(sizeof(*epc), GFP_KERNEL);
860 	if (!epc) {
861 		ret = -ENOMEM;
862 		goto err_ret;
863 	}
864 
865 	mutex_init(&epc->lock);
866 	mutex_init(&epc->list_lock);
867 	INIT_LIST_HEAD(&epc->pci_epf);
868 
869 	device_initialize(&epc->dev);
870 	epc->dev.class = pci_epc_class;
871 	epc->dev.parent = dev;
872 	epc->dev.release = pci_epc_release;
873 	epc->ops = ops;
874 
875 	ret = dev_set_name(&epc->dev, "%s", dev_name(dev));
876 	if (ret)
877 		goto put_dev;
878 
879 	ret = device_add(&epc->dev);
880 	if (ret)
881 		goto put_dev;
882 
883 	epc->group = pci_ep_cfs_add_epc_group(dev_name(dev));
884 
885 	return epc;
886 
887 put_dev:
888 	put_device(&epc->dev);
889 
890 err_ret:
891 	return ERR_PTR(ret);
892 }
893 EXPORT_SYMBOL_GPL(__pci_epc_create);
894 
895 /**
896  * __devm_pci_epc_create() - create a new endpoint controller (EPC) device
897  * @dev: device that is creating the new EPC
898  * @ops: function pointers for performing EPC operations
899  * @owner: the owner of the module that creates the EPC device
900  *
901  * Invoke to create a new EPC device and add it to pci_epc class.
902  * While at that, it also associates the device with the pci_epc using devres.
903  * On driver detach, release function is invoked on the devres data,
904  * then, devres data is freed.
905  */
906 struct pci_epc *
907 __devm_pci_epc_create(struct device *dev, const struct pci_epc_ops *ops,
908 		      struct module *owner)
909 {
910 	struct pci_epc **ptr, *epc;
911 
912 	ptr = devres_alloc(devm_pci_epc_release, sizeof(*ptr), GFP_KERNEL);
913 	if (!ptr)
914 		return ERR_PTR(-ENOMEM);
915 
916 	epc = __pci_epc_create(dev, ops, owner);
917 	if (!IS_ERR(epc)) {
918 		*ptr = epc;
919 		devres_add(dev, ptr);
920 	} else {
921 		devres_free(ptr);
922 	}
923 
924 	return epc;
925 }
926 EXPORT_SYMBOL_GPL(__devm_pci_epc_create);
927 
928 static int __init pci_epc_init(void)
929 {
930 	pci_epc_class = class_create("pci_epc");
931 	if (IS_ERR(pci_epc_class)) {
932 		pr_err("failed to create pci epc class --> %ld\n",
933 		       PTR_ERR(pci_epc_class));
934 		return PTR_ERR(pci_epc_class);
935 	}
936 
937 	return 0;
938 }
939 module_init(pci_epc_init);
940 
941 static void __exit pci_epc_exit(void)
942 {
943 	class_destroy(pci_epc_class);
944 }
945 module_exit(pci_epc_exit);
946 
947 MODULE_DESCRIPTION("PCI EPC Library");
948 MODULE_AUTHOR("Kishon Vijay Abraham I <kishon@ti.com>");
949