xref: /linux/drivers/pci/endpoint/functions/pci-epf-mhi.c (revision c435bce6af9b2a277662698875a689c389358f17)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI EPF driver for MHI Endpoint devices
4  *
5  * Copyright (C) 2023 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/mhi_ep.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16 
17 #define MHI_VERSION_1_0 0x01000000
18 
19 #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
20 
21 /* Platform specific flags */
22 #define MHI_EPF_USE_DMA BIT(0)
23 
24 struct pci_epf_mhi_dma_transfer {
25 	struct pci_epf_mhi *epf_mhi;
26 	struct mhi_ep_buf_info buf_info;
27 	struct list_head node;
28 	dma_addr_t paddr;
29 	enum dma_data_direction dir;
30 	size_t size;
31 };
32 
33 struct pci_epf_mhi_ep_info {
34 	const struct mhi_ep_cntrl_config *config;
35 	struct pci_epf_header *epf_header;
36 	enum pci_barno bar_num;
37 	u32 epf_flags;
38 	u32 msi_count;
39 	u32 mru;
40 	u32 flags;
41 };
42 
43 #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction)	\
44 	{							\
45 		.num = ch_num,					\
46 		.name = ch_name,				\
47 		.dir = direction,				\
48 	}
49 
50 #define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name)		\
51 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
52 
53 #define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name)		\
54 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
55 
56 static const struct mhi_ep_channel_config mhi_v1_channels[] = {
57 	MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
58 	MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
59 	MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
60 	MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
61 	MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
62 	MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
63 	MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
64 	MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
65 	MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
66 	MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
67 	MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
68 	MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
69 	MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
70 	MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
71 	MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
72 	MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
73 	MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
74 	MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
75 	MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
76 	MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
77 	MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
78 	MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
79 	MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
80 	MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
81 	MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
82 	MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
83 };
84 
85 static const struct mhi_ep_cntrl_config mhi_v1_config = {
86 	.max_channels = 128,
87 	.num_channels = ARRAY_SIZE(mhi_v1_channels),
88 	.ch_cfg = mhi_v1_channels,
89 	.mhi_version = MHI_VERSION_1_0,
90 };
91 
92 static struct pci_epf_header sdx55_header = {
93 	.vendorid = PCI_VENDOR_ID_QCOM,
94 	.deviceid = 0x0306,
95 	.baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
96 	.subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
97 	.interrupt_pin	= PCI_INTERRUPT_INTA,
98 };
99 
100 static const struct pci_epf_mhi_ep_info sdx55_info = {
101 	.config = &mhi_v1_config,
102 	.epf_header = &sdx55_header,
103 	.bar_num = BAR_0,
104 	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
105 	.msi_count = 32,
106 	.mru = 0x8000,
107 };
108 
109 static struct pci_epf_header sm8450_header = {
110 	.vendorid = PCI_VENDOR_ID_QCOM,
111 	.deviceid = 0x0306,
112 	.baseclass_code = PCI_CLASS_OTHERS,
113 	.interrupt_pin = PCI_INTERRUPT_INTA,
114 };
115 
116 static const struct pci_epf_mhi_ep_info sm8450_info = {
117 	.config = &mhi_v1_config,
118 	.epf_header = &sm8450_header,
119 	.bar_num = BAR_0,
120 	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
121 	.msi_count = 32,
122 	.mru = 0x8000,
123 	.flags = MHI_EPF_USE_DMA,
124 };
125 
126 struct pci_epf_mhi {
127 	const struct pci_epc_features *epc_features;
128 	const struct pci_epf_mhi_ep_info *info;
129 	struct mhi_ep_cntrl mhi_cntrl;
130 	struct pci_epf *epf;
131 	struct mutex lock;
132 	void __iomem *mmio;
133 	resource_size_t mmio_phys;
134 	struct dma_chan *dma_chan_tx;
135 	struct dma_chan *dma_chan_rx;
136 	struct workqueue_struct *dma_wq;
137 	struct work_struct dma_work;
138 	struct list_head dma_list;
139 	spinlock_t list_lock;
140 	u32 mmio_size;
141 	int irq;
142 };
143 
144 static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
145 {
146 	return addr & (epf_mhi->epc_features->align -1);
147 }
148 
149 static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
150 				 phys_addr_t *paddr, void __iomem **vaddr,
151 				 size_t offset, size_t size)
152 {
153 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
154 	struct pci_epf *epf = epf_mhi->epf;
155 	struct pci_epc *epc = epf->epc;
156 	int ret;
157 
158 	*vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
159 	if (!*vaddr)
160 		return -ENOMEM;
161 
162 	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
163 			       pci_addr - offset, size + offset);
164 	if (ret) {
165 		pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
166 		return ret;
167 	}
168 
169 	*paddr = *paddr + offset;
170 	*vaddr = *vaddr + offset;
171 
172 	return 0;
173 }
174 
175 static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
176 				 phys_addr_t *paddr, void __iomem **vaddr,
177 				 size_t size)
178 {
179 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
180 	size_t offset = get_align_offset(epf_mhi, pci_addr);
181 
182 	return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
183 				      offset, size);
184 }
185 
186 static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
187 				     u64 pci_addr, phys_addr_t paddr,
188 				     void __iomem *vaddr, size_t offset,
189 				     size_t size)
190 {
191 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
192 	struct pci_epf *epf = epf_mhi->epf;
193 	struct pci_epc *epc = epf->epc;
194 
195 	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
196 	pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
197 			      size + offset);
198 }
199 
200 static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
201 				   phys_addr_t paddr, void __iomem *vaddr,
202 				   size_t size)
203 {
204 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
205 	size_t offset = get_align_offset(epf_mhi, pci_addr);
206 
207 	__pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
208 				 size);
209 }
210 
211 static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
212 {
213 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
214 	struct pci_epf *epf = epf_mhi->epf;
215 	struct pci_epc *epc = epf->epc;
216 
217 	/*
218 	 * MHI supplies 0 based MSI vectors but the API expects the vector
219 	 * number to start from 1, so we need to increment the vector by 1.
220 	 */
221 	pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_IRQ_MSI,
222 			  vector + 1);
223 }
224 
225 static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl,
226 				 struct mhi_ep_buf_info *buf_info)
227 {
228 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
229 	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
230 	void __iomem *tre_buf;
231 	phys_addr_t tre_phys;
232 	int ret;
233 
234 	mutex_lock(&epf_mhi->lock);
235 
236 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
237 				      &tre_buf, offset, buf_info->size);
238 	if (ret) {
239 		mutex_unlock(&epf_mhi->lock);
240 		return ret;
241 	}
242 
243 	memcpy_fromio(buf_info->dev_addr, tre_buf, buf_info->size);
244 
245 	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
246 				 tre_buf, offset, buf_info->size);
247 
248 	mutex_unlock(&epf_mhi->lock);
249 
250 	if (buf_info->cb)
251 		buf_info->cb(buf_info);
252 
253 	return 0;
254 }
255 
256 static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
257 				  struct mhi_ep_buf_info *buf_info)
258 {
259 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
260 	size_t offset = get_align_offset(epf_mhi, buf_info->host_addr);
261 	void __iomem *tre_buf;
262 	phys_addr_t tre_phys;
263 	int ret;
264 
265 	mutex_lock(&epf_mhi->lock);
266 
267 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, buf_info->host_addr, &tre_phys,
268 				      &tre_buf, offset, buf_info->size);
269 	if (ret) {
270 		mutex_unlock(&epf_mhi->lock);
271 		return ret;
272 	}
273 
274 	memcpy_toio(tre_buf, buf_info->dev_addr, buf_info->size);
275 
276 	__pci_epf_mhi_unmap_free(mhi_cntrl, buf_info->host_addr, tre_phys,
277 				 tre_buf, offset, buf_info->size);
278 
279 	mutex_unlock(&epf_mhi->lock);
280 
281 	if (buf_info->cb)
282 		buf_info->cb(buf_info);
283 
284 	return 0;
285 }
286 
287 static void pci_epf_mhi_dma_callback(void *param)
288 {
289 	complete(param);
290 }
291 
292 static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl,
293 				 struct mhi_ep_buf_info *buf_info)
294 {
295 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
296 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
297 	struct dma_chan *chan = epf_mhi->dma_chan_rx;
298 	struct device *dev = &epf_mhi->epf->dev;
299 	DECLARE_COMPLETION_ONSTACK(complete);
300 	struct dma_async_tx_descriptor *desc;
301 	struct dma_slave_config config = {};
302 	dma_cookie_t cookie;
303 	dma_addr_t dst_addr;
304 	int ret;
305 
306 	if (buf_info->size < SZ_4K)
307 		return pci_epf_mhi_iatu_read(mhi_cntrl, buf_info);
308 
309 	mutex_lock(&epf_mhi->lock);
310 
311 	config.direction = DMA_DEV_TO_MEM;
312 	config.src_addr = buf_info->host_addr;
313 
314 	ret = dmaengine_slave_config(chan, &config);
315 	if (ret) {
316 		dev_err(dev, "Failed to configure DMA channel\n");
317 		goto err_unlock;
318 	}
319 
320 	dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
321 				  DMA_FROM_DEVICE);
322 	ret = dma_mapping_error(dma_dev, dst_addr);
323 	if (ret) {
324 		dev_err(dev, "Failed to map remote memory\n");
325 		goto err_unlock;
326 	}
327 
328 	desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
329 					   DMA_DEV_TO_MEM,
330 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
331 	if (!desc) {
332 		dev_err(dev, "Failed to prepare DMA\n");
333 		ret = -EIO;
334 		goto err_unmap;
335 	}
336 
337 	desc->callback = pci_epf_mhi_dma_callback;
338 	desc->callback_param = &complete;
339 
340 	cookie = dmaengine_submit(desc);
341 	ret = dma_submit_error(cookie);
342 	if (ret) {
343 		dev_err(dev, "Failed to do DMA submit\n");
344 		goto err_unmap;
345 	}
346 
347 	dma_async_issue_pending(chan);
348 	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
349 	if (!ret) {
350 		dev_err(dev, "DMA transfer timeout\n");
351 		dmaengine_terminate_sync(chan);
352 		ret = -ETIMEDOUT;
353 	}
354 
355 err_unmap:
356 	dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
357 err_unlock:
358 	mutex_unlock(&epf_mhi->lock);
359 
360 	return ret;
361 }
362 
363 static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl,
364 				  struct mhi_ep_buf_info *buf_info)
365 {
366 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
367 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
368 	struct dma_chan *chan = epf_mhi->dma_chan_tx;
369 	struct device *dev = &epf_mhi->epf->dev;
370 	DECLARE_COMPLETION_ONSTACK(complete);
371 	struct dma_async_tx_descriptor *desc;
372 	struct dma_slave_config config = {};
373 	dma_cookie_t cookie;
374 	dma_addr_t src_addr;
375 	int ret;
376 
377 	if (buf_info->size < SZ_4K)
378 		return pci_epf_mhi_iatu_write(mhi_cntrl, buf_info);
379 
380 	mutex_lock(&epf_mhi->lock);
381 
382 	config.direction = DMA_MEM_TO_DEV;
383 	config.dst_addr = buf_info->host_addr;
384 
385 	ret = dmaengine_slave_config(chan, &config);
386 	if (ret) {
387 		dev_err(dev, "Failed to configure DMA channel\n");
388 		goto err_unlock;
389 	}
390 
391 	src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
392 				  DMA_TO_DEVICE);
393 	ret = dma_mapping_error(dma_dev, src_addr);
394 	if (ret) {
395 		dev_err(dev, "Failed to map remote memory\n");
396 		goto err_unlock;
397 	}
398 
399 	desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
400 					   DMA_MEM_TO_DEV,
401 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
402 	if (!desc) {
403 		dev_err(dev, "Failed to prepare DMA\n");
404 		ret = -EIO;
405 		goto err_unmap;
406 	}
407 
408 	desc->callback = pci_epf_mhi_dma_callback;
409 	desc->callback_param = &complete;
410 
411 	cookie = dmaengine_submit(desc);
412 	ret = dma_submit_error(cookie);
413 	if (ret) {
414 		dev_err(dev, "Failed to do DMA submit\n");
415 		goto err_unmap;
416 	}
417 
418 	dma_async_issue_pending(chan);
419 	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
420 	if (!ret) {
421 		dev_err(dev, "DMA transfer timeout\n");
422 		dmaengine_terminate_sync(chan);
423 		ret = -ETIMEDOUT;
424 	}
425 
426 err_unmap:
427 	dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
428 err_unlock:
429 	mutex_unlock(&epf_mhi->lock);
430 
431 	return ret;
432 }
433 
434 static void pci_epf_mhi_dma_worker(struct work_struct *work)
435 {
436 	struct pci_epf_mhi *epf_mhi = container_of(work, struct pci_epf_mhi, dma_work);
437 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
438 	struct pci_epf_mhi_dma_transfer *itr, *tmp;
439 	struct mhi_ep_buf_info *buf_info;
440 	unsigned long flags;
441 	LIST_HEAD(head);
442 
443 	spin_lock_irqsave(&epf_mhi->list_lock, flags);
444 	list_splice_tail_init(&epf_mhi->dma_list, &head);
445 	spin_unlock_irqrestore(&epf_mhi->list_lock, flags);
446 
447 	list_for_each_entry_safe(itr, tmp, &head, node) {
448 		list_del(&itr->node);
449 		dma_unmap_single(dma_dev, itr->paddr, itr->size, itr->dir);
450 		buf_info = &itr->buf_info;
451 		buf_info->cb(buf_info);
452 		kfree(itr);
453 	}
454 }
455 
456 static void pci_epf_mhi_dma_async_callback(void *param)
457 {
458 	struct pci_epf_mhi_dma_transfer *transfer = param;
459 	struct pci_epf_mhi *epf_mhi = transfer->epf_mhi;
460 
461 	spin_lock(&epf_mhi->list_lock);
462 	list_add_tail(&transfer->node, &epf_mhi->dma_list);
463 	spin_unlock(&epf_mhi->list_lock);
464 
465 	queue_work(epf_mhi->dma_wq, &epf_mhi->dma_work);
466 }
467 
468 static int pci_epf_mhi_edma_read_async(struct mhi_ep_cntrl *mhi_cntrl,
469 				       struct mhi_ep_buf_info *buf_info)
470 {
471 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
472 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
473 	struct pci_epf_mhi_dma_transfer *transfer = NULL;
474 	struct dma_chan *chan = epf_mhi->dma_chan_rx;
475 	struct device *dev = &epf_mhi->epf->dev;
476 	DECLARE_COMPLETION_ONSTACK(complete);
477 	struct dma_async_tx_descriptor *desc;
478 	struct dma_slave_config config = {};
479 	dma_cookie_t cookie;
480 	dma_addr_t dst_addr;
481 	int ret;
482 
483 	mutex_lock(&epf_mhi->lock);
484 
485 	config.direction = DMA_DEV_TO_MEM;
486 	config.src_addr = buf_info->host_addr;
487 
488 	ret = dmaengine_slave_config(chan, &config);
489 	if (ret) {
490 		dev_err(dev, "Failed to configure DMA channel\n");
491 		goto err_unlock;
492 	}
493 
494 	dst_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
495 				  DMA_FROM_DEVICE);
496 	ret = dma_mapping_error(dma_dev, dst_addr);
497 	if (ret) {
498 		dev_err(dev, "Failed to map remote memory\n");
499 		goto err_unlock;
500 	}
501 
502 	desc = dmaengine_prep_slave_single(chan, dst_addr, buf_info->size,
503 					   DMA_DEV_TO_MEM,
504 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
505 	if (!desc) {
506 		dev_err(dev, "Failed to prepare DMA\n");
507 		ret = -EIO;
508 		goto err_unmap;
509 	}
510 
511 	transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
512 	if (!transfer) {
513 		ret = -ENOMEM;
514 		goto err_unmap;
515 	}
516 
517 	transfer->epf_mhi = epf_mhi;
518 	transfer->paddr = dst_addr;
519 	transfer->size = buf_info->size;
520 	transfer->dir = DMA_FROM_DEVICE;
521 	memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
522 
523 	desc->callback = pci_epf_mhi_dma_async_callback;
524 	desc->callback_param = transfer;
525 
526 	cookie = dmaengine_submit(desc);
527 	ret = dma_submit_error(cookie);
528 	if (ret) {
529 		dev_err(dev, "Failed to do DMA submit\n");
530 		goto err_free_transfer;
531 	}
532 
533 	dma_async_issue_pending(chan);
534 
535 	goto err_unlock;
536 
537 err_free_transfer:
538 	kfree(transfer);
539 err_unmap:
540 	dma_unmap_single(dma_dev, dst_addr, buf_info->size, DMA_FROM_DEVICE);
541 err_unlock:
542 	mutex_unlock(&epf_mhi->lock);
543 
544 	return ret;
545 }
546 
547 static int pci_epf_mhi_edma_write_async(struct mhi_ep_cntrl *mhi_cntrl,
548 					struct mhi_ep_buf_info *buf_info)
549 {
550 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
551 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
552 	struct pci_epf_mhi_dma_transfer *transfer = NULL;
553 	struct dma_chan *chan = epf_mhi->dma_chan_tx;
554 	struct device *dev = &epf_mhi->epf->dev;
555 	DECLARE_COMPLETION_ONSTACK(complete);
556 	struct dma_async_tx_descriptor *desc;
557 	struct dma_slave_config config = {};
558 	dma_cookie_t cookie;
559 	dma_addr_t src_addr;
560 	int ret;
561 
562 	mutex_lock(&epf_mhi->lock);
563 
564 	config.direction = DMA_MEM_TO_DEV;
565 	config.dst_addr = buf_info->host_addr;
566 
567 	ret = dmaengine_slave_config(chan, &config);
568 	if (ret) {
569 		dev_err(dev, "Failed to configure DMA channel\n");
570 		goto err_unlock;
571 	}
572 
573 	src_addr = dma_map_single(dma_dev, buf_info->dev_addr, buf_info->size,
574 				  DMA_TO_DEVICE);
575 	ret = dma_mapping_error(dma_dev, src_addr);
576 	if (ret) {
577 		dev_err(dev, "Failed to map remote memory\n");
578 		goto err_unlock;
579 	}
580 
581 	desc = dmaengine_prep_slave_single(chan, src_addr, buf_info->size,
582 					   DMA_MEM_TO_DEV,
583 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
584 	if (!desc) {
585 		dev_err(dev, "Failed to prepare DMA\n");
586 		ret = -EIO;
587 		goto err_unmap;
588 	}
589 
590 	transfer = kzalloc(sizeof(*transfer), GFP_KERNEL);
591 	if (!transfer) {
592 		ret = -ENOMEM;
593 		goto err_unmap;
594 	}
595 
596 	transfer->epf_mhi = epf_mhi;
597 	transfer->paddr = src_addr;
598 	transfer->size = buf_info->size;
599 	transfer->dir = DMA_TO_DEVICE;
600 	memcpy(&transfer->buf_info, buf_info, sizeof(*buf_info));
601 
602 	desc->callback = pci_epf_mhi_dma_async_callback;
603 	desc->callback_param = transfer;
604 
605 	cookie = dmaengine_submit(desc);
606 	ret = dma_submit_error(cookie);
607 	if (ret) {
608 		dev_err(dev, "Failed to do DMA submit\n");
609 		goto err_free_transfer;
610 	}
611 
612 	dma_async_issue_pending(chan);
613 
614 	goto err_unlock;
615 
616 err_free_transfer:
617 	kfree(transfer);
618 err_unmap:
619 	dma_unmap_single(dma_dev, src_addr, buf_info->size, DMA_TO_DEVICE);
620 err_unlock:
621 	mutex_unlock(&epf_mhi->lock);
622 
623 	return ret;
624 }
625 
626 struct epf_dma_filter {
627 	struct device *dev;
628 	u32 dma_mask;
629 };
630 
631 static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
632 {
633 	struct epf_dma_filter *filter = node;
634 	struct dma_slave_caps caps;
635 
636 	memset(&caps, 0, sizeof(caps));
637 	dma_get_slave_caps(chan, &caps);
638 
639 	return chan->device->dev == filter->dev && filter->dma_mask &
640 					caps.directions;
641 }
642 
643 static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
644 {
645 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
646 	struct device *dev = &epf_mhi->epf->dev;
647 	struct epf_dma_filter filter;
648 	dma_cap_mask_t mask;
649 	int ret;
650 
651 	dma_cap_zero(mask);
652 	dma_cap_set(DMA_SLAVE, mask);
653 
654 	filter.dev = dma_dev;
655 	filter.dma_mask = BIT(DMA_MEM_TO_DEV);
656 	epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
657 						   &filter);
658 	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
659 		dev_err(dev, "Failed to request tx channel\n");
660 		return -ENODEV;
661 	}
662 
663 	filter.dma_mask = BIT(DMA_DEV_TO_MEM);
664 	epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
665 						   &filter);
666 	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
667 		dev_err(dev, "Failed to request rx channel\n");
668 		ret = -ENODEV;
669 		goto err_release_tx;
670 	}
671 
672 	epf_mhi->dma_wq = alloc_workqueue("pci_epf_mhi_dma_wq", 0, 0);
673 	if (!epf_mhi->dma_wq) {
674 		ret = -ENOMEM;
675 		goto err_release_rx;
676 	}
677 
678 	INIT_LIST_HEAD(&epf_mhi->dma_list);
679 	INIT_WORK(&epf_mhi->dma_work, pci_epf_mhi_dma_worker);
680 	spin_lock_init(&epf_mhi->list_lock);
681 
682 	return 0;
683 
684 err_release_rx:
685 	dma_release_channel(epf_mhi->dma_chan_rx);
686 	epf_mhi->dma_chan_rx = NULL;
687 err_release_tx:
688 	dma_release_channel(epf_mhi->dma_chan_tx);
689 	epf_mhi->dma_chan_tx = NULL;
690 
691 	return ret;
692 }
693 
694 static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
695 {
696 	destroy_workqueue(epf_mhi->dma_wq);
697 	dma_release_channel(epf_mhi->dma_chan_tx);
698 	dma_release_channel(epf_mhi->dma_chan_rx);
699 	epf_mhi->dma_chan_tx = NULL;
700 	epf_mhi->dma_chan_rx = NULL;
701 }
702 
703 static int pci_epf_mhi_core_init(struct pci_epf *epf)
704 {
705 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
706 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
707 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
708 	struct pci_epc *epc = epf->epc;
709 	struct device *dev = &epf->dev;
710 	int ret;
711 
712 	epf_bar->phys_addr = epf_mhi->mmio_phys;
713 	epf_bar->size = epf_mhi->mmio_size;
714 	epf_bar->barno = info->bar_num;
715 	epf_bar->flags = info->epf_flags;
716 	ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
717 	if (ret) {
718 		dev_err(dev, "Failed to set BAR: %d\n", ret);
719 		return ret;
720 	}
721 
722 	ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
723 			      order_base_2(info->msi_count));
724 	if (ret) {
725 		dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
726 		return ret;
727 	}
728 
729 	ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
730 				   epf->header);
731 	if (ret) {
732 		dev_err(dev, "Failed to set Configuration header: %d\n", ret);
733 		return ret;
734 	}
735 
736 	epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
737 	if (!epf_mhi->epc_features)
738 		return -ENODATA;
739 
740 	return 0;
741 }
742 
743 static int pci_epf_mhi_link_up(struct pci_epf *epf)
744 {
745 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
746 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
747 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
748 	struct pci_epc *epc = epf->epc;
749 	struct device *dev = &epf->dev;
750 	int ret;
751 
752 	if (info->flags & MHI_EPF_USE_DMA) {
753 		ret = pci_epf_mhi_dma_init(epf_mhi);
754 		if (ret) {
755 			dev_err(dev, "Failed to initialize DMA: %d\n", ret);
756 			return ret;
757 		}
758 	}
759 
760 	mhi_cntrl->mmio = epf_mhi->mmio;
761 	mhi_cntrl->irq = epf_mhi->irq;
762 	mhi_cntrl->mru = info->mru;
763 
764 	/* Assign the struct dev of PCI EP as MHI controller device */
765 	mhi_cntrl->cntrl_dev = epc->dev.parent;
766 	mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
767 	mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
768 	mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
769 	mhi_cntrl->read_sync = mhi_cntrl->read_async = pci_epf_mhi_iatu_read;
770 	mhi_cntrl->write_sync = mhi_cntrl->write_async = pci_epf_mhi_iatu_write;
771 	if (info->flags & MHI_EPF_USE_DMA) {
772 		mhi_cntrl->read_sync = pci_epf_mhi_edma_read;
773 		mhi_cntrl->write_sync = pci_epf_mhi_edma_write;
774 		mhi_cntrl->read_async = pci_epf_mhi_edma_read_async;
775 		mhi_cntrl->write_async = pci_epf_mhi_edma_write_async;
776 	}
777 
778 	/* Register the MHI EP controller */
779 	ret = mhi_ep_register_controller(mhi_cntrl, info->config);
780 	if (ret) {
781 		dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
782 		if (info->flags & MHI_EPF_USE_DMA)
783 			pci_epf_mhi_dma_deinit(epf_mhi);
784 		return ret;
785 	}
786 
787 	return 0;
788 }
789 
790 static int pci_epf_mhi_link_down(struct pci_epf *epf)
791 {
792 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
793 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
794 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
795 
796 	if (mhi_cntrl->mhi_dev) {
797 		mhi_ep_power_down(mhi_cntrl);
798 		if (info->flags & MHI_EPF_USE_DMA)
799 			pci_epf_mhi_dma_deinit(epf_mhi);
800 		mhi_ep_unregister_controller(mhi_cntrl);
801 	}
802 
803 	return 0;
804 }
805 
806 static int pci_epf_mhi_bme(struct pci_epf *epf)
807 {
808 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
809 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
810 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
811 	struct device *dev = &epf->dev;
812 	int ret;
813 
814 	/*
815 	 * Power up the MHI EP stack if link is up and stack is in power down
816 	 * state.
817 	 */
818 	if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
819 		ret = mhi_ep_power_up(mhi_cntrl);
820 		if (ret) {
821 			dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
822 			if (info->flags & MHI_EPF_USE_DMA)
823 				pci_epf_mhi_dma_deinit(epf_mhi);
824 			mhi_ep_unregister_controller(mhi_cntrl);
825 		}
826 	}
827 
828 	return 0;
829 }
830 
831 static int pci_epf_mhi_bind(struct pci_epf *epf)
832 {
833 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
834 	struct pci_epc *epc = epf->epc;
835 	struct platform_device *pdev = to_platform_device(epc->dev.parent);
836 	struct resource *res;
837 	int ret;
838 
839 	/* Get MMIO base address from Endpoint controller */
840 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
841 	epf_mhi->mmio_phys = res->start;
842 	epf_mhi->mmio_size = resource_size(res);
843 
844 	epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
845 	if (!epf_mhi->mmio)
846 		return -ENOMEM;
847 
848 	ret = platform_get_irq_byname(pdev, "doorbell");
849 	if (ret < 0) {
850 		iounmap(epf_mhi->mmio);
851 		return ret;
852 	}
853 
854 	epf_mhi->irq = ret;
855 
856 	return 0;
857 }
858 
859 static void pci_epf_mhi_unbind(struct pci_epf *epf)
860 {
861 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
862 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
863 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
864 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
865 	struct pci_epc *epc = epf->epc;
866 
867 	/*
868 	 * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
869 	 * stack back to working state after successive bind is by getting BME
870 	 * from host.
871 	 */
872 	if (mhi_cntrl->mhi_dev) {
873 		mhi_ep_power_down(mhi_cntrl);
874 		if (info->flags & MHI_EPF_USE_DMA)
875 			pci_epf_mhi_dma_deinit(epf_mhi);
876 		mhi_ep_unregister_controller(mhi_cntrl);
877 	}
878 
879 	iounmap(epf_mhi->mmio);
880 	pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
881 }
882 
883 static const struct pci_epc_event_ops pci_epf_mhi_event_ops = {
884 	.core_init = pci_epf_mhi_core_init,
885 	.link_up = pci_epf_mhi_link_up,
886 	.link_down = pci_epf_mhi_link_down,
887 	.bme = pci_epf_mhi_bme,
888 };
889 
890 static int pci_epf_mhi_probe(struct pci_epf *epf,
891 			     const struct pci_epf_device_id *id)
892 {
893 	struct pci_epf_mhi_ep_info *info =
894 			(struct pci_epf_mhi_ep_info *)id->driver_data;
895 	struct pci_epf_mhi *epf_mhi;
896 	struct device *dev = &epf->dev;
897 
898 	epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
899 	if (!epf_mhi)
900 		return -ENOMEM;
901 
902 	epf->header = info->epf_header;
903 	epf_mhi->info = info;
904 	epf_mhi->epf = epf;
905 
906 	epf->event_ops = &pci_epf_mhi_event_ops;
907 
908 	mutex_init(&epf_mhi->lock);
909 
910 	epf_set_drvdata(epf, epf_mhi);
911 
912 	return 0;
913 }
914 
915 static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
916 	{ .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
917 	{ .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
918 	{},
919 };
920 
921 static const struct pci_epf_ops pci_epf_mhi_ops = {
922 	.unbind	= pci_epf_mhi_unbind,
923 	.bind	= pci_epf_mhi_bind,
924 };
925 
926 static struct pci_epf_driver pci_epf_mhi_driver = {
927 	.driver.name	= "pci_epf_mhi",
928 	.probe		= pci_epf_mhi_probe,
929 	.id_table	= pci_epf_mhi_ids,
930 	.ops		= &pci_epf_mhi_ops,
931 	.owner		= THIS_MODULE,
932 };
933 
934 static int __init pci_epf_mhi_init(void)
935 {
936 	return pci_epf_register_driver(&pci_epf_mhi_driver);
937 }
938 module_init(pci_epf_mhi_init);
939 
940 static void __exit pci_epf_mhi_exit(void)
941 {
942 	pci_epf_unregister_driver(&pci_epf_mhi_driver);
943 }
944 module_exit(pci_epf_mhi_exit);
945 
946 MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
947 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
948 MODULE_LICENSE("GPL");
949