xref: /linux/drivers/pci/endpoint/functions/pci-epf-mhi.c (revision 4eca0ef49af9b2b0c52ef2b58e045ab34629796b)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * PCI EPF driver for MHI Endpoint devices
4  *
5  * Copyright (C) 2023 Linaro Ltd.
6  * Author: Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>
7  */
8 
9 #include <linux/dmaengine.h>
10 #include <linux/mhi_ep.h>
11 #include <linux/module.h>
12 #include <linux/of_dma.h>
13 #include <linux/platform_device.h>
14 #include <linux/pci-epc.h>
15 #include <linux/pci-epf.h>
16 
17 #define MHI_VERSION_1_0 0x01000000
18 
19 #define to_epf_mhi(cntrl) container_of(cntrl, struct pci_epf_mhi, cntrl)
20 
21 /* Platform specific flags */
22 #define MHI_EPF_USE_DMA BIT(0)
23 
24 struct pci_epf_mhi_ep_info {
25 	const struct mhi_ep_cntrl_config *config;
26 	struct pci_epf_header *epf_header;
27 	enum pci_barno bar_num;
28 	u32 epf_flags;
29 	u32 msi_count;
30 	u32 mru;
31 	u32 flags;
32 };
33 
34 #define MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, direction)	\
35 	{							\
36 		.num = ch_num,					\
37 		.name = ch_name,				\
38 		.dir = direction,				\
39 	}
40 
41 #define MHI_EP_CHANNEL_CONFIG_UL(ch_num, ch_name)		\
42 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_TO_DEVICE)
43 
44 #define MHI_EP_CHANNEL_CONFIG_DL(ch_num, ch_name)		\
45 	MHI_EP_CHANNEL_CONFIG(ch_num, ch_name, DMA_FROM_DEVICE)
46 
47 static const struct mhi_ep_channel_config mhi_v1_channels[] = {
48 	MHI_EP_CHANNEL_CONFIG_UL(0, "LOOPBACK"),
49 	MHI_EP_CHANNEL_CONFIG_DL(1, "LOOPBACK"),
50 	MHI_EP_CHANNEL_CONFIG_UL(2, "SAHARA"),
51 	MHI_EP_CHANNEL_CONFIG_DL(3, "SAHARA"),
52 	MHI_EP_CHANNEL_CONFIG_UL(4, "DIAG"),
53 	MHI_EP_CHANNEL_CONFIG_DL(5, "DIAG"),
54 	MHI_EP_CHANNEL_CONFIG_UL(6, "SSR"),
55 	MHI_EP_CHANNEL_CONFIG_DL(7, "SSR"),
56 	MHI_EP_CHANNEL_CONFIG_UL(8, "QDSS"),
57 	MHI_EP_CHANNEL_CONFIG_DL(9, "QDSS"),
58 	MHI_EP_CHANNEL_CONFIG_UL(10, "EFS"),
59 	MHI_EP_CHANNEL_CONFIG_DL(11, "EFS"),
60 	MHI_EP_CHANNEL_CONFIG_UL(12, "MBIM"),
61 	MHI_EP_CHANNEL_CONFIG_DL(13, "MBIM"),
62 	MHI_EP_CHANNEL_CONFIG_UL(14, "QMI"),
63 	MHI_EP_CHANNEL_CONFIG_DL(15, "QMI"),
64 	MHI_EP_CHANNEL_CONFIG_UL(16, "QMI"),
65 	MHI_EP_CHANNEL_CONFIG_DL(17, "QMI"),
66 	MHI_EP_CHANNEL_CONFIG_UL(18, "IP-CTRL-1"),
67 	MHI_EP_CHANNEL_CONFIG_DL(19, "IP-CTRL-1"),
68 	MHI_EP_CHANNEL_CONFIG_UL(20, "IPCR"),
69 	MHI_EP_CHANNEL_CONFIG_DL(21, "IPCR"),
70 	MHI_EP_CHANNEL_CONFIG_UL(32, "DUN"),
71 	MHI_EP_CHANNEL_CONFIG_DL(33, "DUN"),
72 	MHI_EP_CHANNEL_CONFIG_UL(46, "IP_SW0"),
73 	MHI_EP_CHANNEL_CONFIG_DL(47, "IP_SW0"),
74 };
75 
76 static const struct mhi_ep_cntrl_config mhi_v1_config = {
77 	.max_channels = 128,
78 	.num_channels = ARRAY_SIZE(mhi_v1_channels),
79 	.ch_cfg = mhi_v1_channels,
80 	.mhi_version = MHI_VERSION_1_0,
81 };
82 
83 static struct pci_epf_header sdx55_header = {
84 	.vendorid = PCI_VENDOR_ID_QCOM,
85 	.deviceid = 0x0306,
86 	.baseclass_code = PCI_BASE_CLASS_COMMUNICATION,
87 	.subclass_code = PCI_CLASS_COMMUNICATION_MODEM & 0xff,
88 	.interrupt_pin	= PCI_INTERRUPT_INTA,
89 };
90 
91 static const struct pci_epf_mhi_ep_info sdx55_info = {
92 	.config = &mhi_v1_config,
93 	.epf_header = &sdx55_header,
94 	.bar_num = BAR_0,
95 	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
96 	.msi_count = 32,
97 	.mru = 0x8000,
98 };
99 
100 static struct pci_epf_header sm8450_header = {
101 	.vendorid = PCI_VENDOR_ID_QCOM,
102 	.deviceid = 0x0306,
103 	.baseclass_code = PCI_CLASS_OTHERS,
104 	.interrupt_pin = PCI_INTERRUPT_INTA,
105 };
106 
107 static const struct pci_epf_mhi_ep_info sm8450_info = {
108 	.config = &mhi_v1_config,
109 	.epf_header = &sm8450_header,
110 	.bar_num = BAR_0,
111 	.epf_flags = PCI_BASE_ADDRESS_MEM_TYPE_32,
112 	.msi_count = 32,
113 	.mru = 0x8000,
114 	.flags = MHI_EPF_USE_DMA,
115 };
116 
117 struct pci_epf_mhi {
118 	const struct pci_epc_features *epc_features;
119 	const struct pci_epf_mhi_ep_info *info;
120 	struct mhi_ep_cntrl mhi_cntrl;
121 	struct pci_epf *epf;
122 	struct mutex lock;
123 	void __iomem *mmio;
124 	resource_size_t mmio_phys;
125 	struct dma_chan *dma_chan_tx;
126 	struct dma_chan *dma_chan_rx;
127 	u32 mmio_size;
128 	int irq;
129 };
130 
131 static size_t get_align_offset(struct pci_epf_mhi *epf_mhi, u64 addr)
132 {
133 	return addr & (epf_mhi->epc_features->align -1);
134 }
135 
136 static int __pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
137 				 phys_addr_t *paddr, void __iomem **vaddr,
138 				 size_t offset, size_t size)
139 {
140 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
141 	struct pci_epf *epf = epf_mhi->epf;
142 	struct pci_epc *epc = epf->epc;
143 	int ret;
144 
145 	*vaddr = pci_epc_mem_alloc_addr(epc, paddr, size + offset);
146 	if (!*vaddr)
147 		return -ENOMEM;
148 
149 	ret = pci_epc_map_addr(epc, epf->func_no, epf->vfunc_no, *paddr,
150 			       pci_addr - offset, size + offset);
151 	if (ret) {
152 		pci_epc_mem_free_addr(epc, *paddr, *vaddr, size + offset);
153 		return ret;
154 	}
155 
156 	*paddr = *paddr + offset;
157 	*vaddr = *vaddr + offset;
158 
159 	return 0;
160 }
161 
162 static int pci_epf_mhi_alloc_map(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
163 				 phys_addr_t *paddr, void __iomem **vaddr,
164 				 size_t size)
165 {
166 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
167 	size_t offset = get_align_offset(epf_mhi, pci_addr);
168 
169 	return __pci_epf_mhi_alloc_map(mhi_cntrl, pci_addr, paddr, vaddr,
170 				      offset, size);
171 }
172 
173 static void __pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl,
174 				     u64 pci_addr, phys_addr_t paddr,
175 				     void __iomem *vaddr, size_t offset,
176 				     size_t size)
177 {
178 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
179 	struct pci_epf *epf = epf_mhi->epf;
180 	struct pci_epc *epc = epf->epc;
181 
182 	pci_epc_unmap_addr(epc, epf->func_no, epf->vfunc_no, paddr - offset);
183 	pci_epc_mem_free_addr(epc, paddr - offset, vaddr - offset,
184 			      size + offset);
185 }
186 
187 static void pci_epf_mhi_unmap_free(struct mhi_ep_cntrl *mhi_cntrl, u64 pci_addr,
188 				   phys_addr_t paddr, void __iomem *vaddr,
189 				   size_t size)
190 {
191 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
192 	size_t offset = get_align_offset(epf_mhi, pci_addr);
193 
194 	__pci_epf_mhi_unmap_free(mhi_cntrl, pci_addr, paddr, vaddr, offset,
195 				 size);
196 }
197 
198 static void pci_epf_mhi_raise_irq(struct mhi_ep_cntrl *mhi_cntrl, u32 vector)
199 {
200 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
201 	struct pci_epf *epf = epf_mhi->epf;
202 	struct pci_epc *epc = epf->epc;
203 
204 	/*
205 	 * MHI supplies 0 based MSI vectors but the API expects the vector
206 	 * number to start from 1, so we need to increment the vector by 1.
207 	 */
208 	pci_epc_raise_irq(epc, epf->func_no, epf->vfunc_no, PCI_EPC_IRQ_MSI,
209 			  vector + 1);
210 }
211 
212 static int pci_epf_mhi_iatu_read(struct mhi_ep_cntrl *mhi_cntrl, u64 from,
213 				 void *to, size_t size)
214 {
215 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
216 	size_t offset = get_align_offset(epf_mhi, from);
217 	void __iomem *tre_buf;
218 	phys_addr_t tre_phys;
219 	int ret;
220 
221 	mutex_lock(&epf_mhi->lock);
222 
223 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, from, &tre_phys, &tre_buf,
224 				      offset, size);
225 	if (ret) {
226 		mutex_unlock(&epf_mhi->lock);
227 		return ret;
228 	}
229 
230 	memcpy_fromio(to, tre_buf, size);
231 
232 	__pci_epf_mhi_unmap_free(mhi_cntrl, from, tre_phys, tre_buf, offset,
233 				 size);
234 
235 	mutex_unlock(&epf_mhi->lock);
236 
237 	return 0;
238 }
239 
240 static int pci_epf_mhi_iatu_write(struct mhi_ep_cntrl *mhi_cntrl,
241 				  void *from, u64 to, size_t size)
242 {
243 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
244 	size_t offset = get_align_offset(epf_mhi, to);
245 	void __iomem *tre_buf;
246 	phys_addr_t tre_phys;
247 	int ret;
248 
249 	mutex_lock(&epf_mhi->lock);
250 
251 	ret = __pci_epf_mhi_alloc_map(mhi_cntrl, to, &tre_phys, &tre_buf,
252 				      offset, size);
253 	if (ret) {
254 		mutex_unlock(&epf_mhi->lock);
255 		return ret;
256 	}
257 
258 	memcpy_toio(tre_buf, from, size);
259 
260 	__pci_epf_mhi_unmap_free(mhi_cntrl, to, tre_phys, tre_buf, offset,
261 				 size);
262 
263 	mutex_unlock(&epf_mhi->lock);
264 
265 	return 0;
266 }
267 
268 static void pci_epf_mhi_dma_callback(void *param)
269 {
270 	complete(param);
271 }
272 
273 static int pci_epf_mhi_edma_read(struct mhi_ep_cntrl *mhi_cntrl, u64 from,
274 				 void *to, size_t size)
275 {
276 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
277 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
278 	struct dma_chan *chan = epf_mhi->dma_chan_rx;
279 	struct device *dev = &epf_mhi->epf->dev;
280 	DECLARE_COMPLETION_ONSTACK(complete);
281 	struct dma_async_tx_descriptor *desc;
282 	struct dma_slave_config config = {};
283 	dma_cookie_t cookie;
284 	dma_addr_t dst_addr;
285 	int ret;
286 
287 	if (size < SZ_4K)
288 		return pci_epf_mhi_iatu_read(mhi_cntrl, from, to, size);
289 
290 	mutex_lock(&epf_mhi->lock);
291 
292 	config.direction = DMA_DEV_TO_MEM;
293 	config.src_addr = from;
294 
295 	ret = dmaengine_slave_config(chan, &config);
296 	if (ret) {
297 		dev_err(dev, "Failed to configure DMA channel\n");
298 		goto err_unlock;
299 	}
300 
301 	dst_addr = dma_map_single(dma_dev, to, size, DMA_FROM_DEVICE);
302 	ret = dma_mapping_error(dma_dev, dst_addr);
303 	if (ret) {
304 		dev_err(dev, "Failed to map remote memory\n");
305 		goto err_unlock;
306 	}
307 
308 	desc = dmaengine_prep_slave_single(chan, dst_addr, size, DMA_DEV_TO_MEM,
309 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
310 	if (!desc) {
311 		dev_err(dev, "Failed to prepare DMA\n");
312 		ret = -EIO;
313 		goto err_unmap;
314 	}
315 
316 	desc->callback = pci_epf_mhi_dma_callback;
317 	desc->callback_param = &complete;
318 
319 	cookie = dmaengine_submit(desc);
320 	ret = dma_submit_error(cookie);
321 	if (ret) {
322 		dev_err(dev, "Failed to do DMA submit\n");
323 		goto err_unmap;
324 	}
325 
326 	dma_async_issue_pending(chan);
327 	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
328 	if (!ret) {
329 		dev_err(dev, "DMA transfer timeout\n");
330 		dmaengine_terminate_sync(chan);
331 		ret = -ETIMEDOUT;
332 	}
333 
334 err_unmap:
335 	dma_unmap_single(dma_dev, dst_addr, size, DMA_FROM_DEVICE);
336 err_unlock:
337 	mutex_unlock(&epf_mhi->lock);
338 
339 	return ret;
340 }
341 
342 static int pci_epf_mhi_edma_write(struct mhi_ep_cntrl *mhi_cntrl, void *from,
343 				  u64 to, size_t size)
344 {
345 	struct pci_epf_mhi *epf_mhi = to_epf_mhi(mhi_cntrl);
346 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
347 	struct dma_chan *chan = epf_mhi->dma_chan_tx;
348 	struct device *dev = &epf_mhi->epf->dev;
349 	DECLARE_COMPLETION_ONSTACK(complete);
350 	struct dma_async_tx_descriptor *desc;
351 	struct dma_slave_config config = {};
352 	dma_cookie_t cookie;
353 	dma_addr_t src_addr;
354 	int ret;
355 
356 	if (size < SZ_4K)
357 		return pci_epf_mhi_iatu_write(mhi_cntrl, from, to, size);
358 
359 	mutex_lock(&epf_mhi->lock);
360 
361 	config.direction = DMA_MEM_TO_DEV;
362 	config.dst_addr = to;
363 
364 	ret = dmaengine_slave_config(chan, &config);
365 	if (ret) {
366 		dev_err(dev, "Failed to configure DMA channel\n");
367 		goto err_unlock;
368 	}
369 
370 	src_addr = dma_map_single(dma_dev, from, size, DMA_TO_DEVICE);
371 	ret = dma_mapping_error(dma_dev, src_addr);
372 	if (ret) {
373 		dev_err(dev, "Failed to map remote memory\n");
374 		goto err_unlock;
375 	}
376 
377 	desc = dmaengine_prep_slave_single(chan, src_addr, size, DMA_MEM_TO_DEV,
378 					   DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
379 	if (!desc) {
380 		dev_err(dev, "Failed to prepare DMA\n");
381 		ret = -EIO;
382 		goto err_unmap;
383 	}
384 
385 	desc->callback = pci_epf_mhi_dma_callback;
386 	desc->callback_param = &complete;
387 
388 	cookie = dmaengine_submit(desc);
389 	ret = dma_submit_error(cookie);
390 	if (ret) {
391 		dev_err(dev, "Failed to do DMA submit\n");
392 		goto err_unmap;
393 	}
394 
395 	dma_async_issue_pending(chan);
396 	ret = wait_for_completion_timeout(&complete, msecs_to_jiffies(1000));
397 	if (!ret) {
398 		dev_err(dev, "DMA transfer timeout\n");
399 		dmaengine_terminate_sync(chan);
400 		ret = -ETIMEDOUT;
401 	}
402 
403 err_unmap:
404 	dma_unmap_single(dma_dev, src_addr, size, DMA_FROM_DEVICE);
405 err_unlock:
406 	mutex_unlock(&epf_mhi->lock);
407 
408 	return ret;
409 }
410 
411 struct epf_dma_filter {
412 	struct device *dev;
413 	u32 dma_mask;
414 };
415 
416 static bool pci_epf_mhi_filter(struct dma_chan *chan, void *node)
417 {
418 	struct epf_dma_filter *filter = node;
419 	struct dma_slave_caps caps;
420 
421 	memset(&caps, 0, sizeof(caps));
422 	dma_get_slave_caps(chan, &caps);
423 
424 	return chan->device->dev == filter->dev && filter->dma_mask &
425 					caps.directions;
426 }
427 
428 static int pci_epf_mhi_dma_init(struct pci_epf_mhi *epf_mhi)
429 {
430 	struct device *dma_dev = epf_mhi->epf->epc->dev.parent;
431 	struct device *dev = &epf_mhi->epf->dev;
432 	struct epf_dma_filter filter;
433 	dma_cap_mask_t mask;
434 
435 	dma_cap_zero(mask);
436 	dma_cap_set(DMA_SLAVE, mask);
437 
438 	filter.dev = dma_dev;
439 	filter.dma_mask = BIT(DMA_MEM_TO_DEV);
440 	epf_mhi->dma_chan_tx = dma_request_channel(mask, pci_epf_mhi_filter,
441 						   &filter);
442 	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_tx)) {
443 		dev_err(dev, "Failed to request tx channel\n");
444 		return -ENODEV;
445 	}
446 
447 	filter.dma_mask = BIT(DMA_DEV_TO_MEM);
448 	epf_mhi->dma_chan_rx = dma_request_channel(mask, pci_epf_mhi_filter,
449 						   &filter);
450 	if (IS_ERR_OR_NULL(epf_mhi->dma_chan_rx)) {
451 		dev_err(dev, "Failed to request rx channel\n");
452 		dma_release_channel(epf_mhi->dma_chan_tx);
453 		epf_mhi->dma_chan_tx = NULL;
454 		return -ENODEV;
455 	}
456 
457 	return 0;
458 }
459 
460 static void pci_epf_mhi_dma_deinit(struct pci_epf_mhi *epf_mhi)
461 {
462 	dma_release_channel(epf_mhi->dma_chan_tx);
463 	dma_release_channel(epf_mhi->dma_chan_rx);
464 	epf_mhi->dma_chan_tx = NULL;
465 	epf_mhi->dma_chan_rx = NULL;
466 }
467 
468 static int pci_epf_mhi_core_init(struct pci_epf *epf)
469 {
470 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
471 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
472 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
473 	struct pci_epc *epc = epf->epc;
474 	struct device *dev = &epf->dev;
475 	int ret;
476 
477 	epf_bar->phys_addr = epf_mhi->mmio_phys;
478 	epf_bar->size = epf_mhi->mmio_size;
479 	epf_bar->barno = info->bar_num;
480 	epf_bar->flags = info->epf_flags;
481 	ret = pci_epc_set_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
482 	if (ret) {
483 		dev_err(dev, "Failed to set BAR: %d\n", ret);
484 		return ret;
485 	}
486 
487 	ret = pci_epc_set_msi(epc, epf->func_no, epf->vfunc_no,
488 			      order_base_2(info->msi_count));
489 	if (ret) {
490 		dev_err(dev, "Failed to set MSI configuration: %d\n", ret);
491 		return ret;
492 	}
493 
494 	ret = pci_epc_write_header(epc, epf->func_no, epf->vfunc_no,
495 				   epf->header);
496 	if (ret) {
497 		dev_err(dev, "Failed to set Configuration header: %d\n", ret);
498 		return ret;
499 	}
500 
501 	epf_mhi->epc_features = pci_epc_get_features(epc, epf->func_no, epf->vfunc_no);
502 	if (!epf_mhi->epc_features)
503 		return -ENODATA;
504 
505 	return 0;
506 }
507 
508 static int pci_epf_mhi_link_up(struct pci_epf *epf)
509 {
510 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
511 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
512 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
513 	struct pci_epc *epc = epf->epc;
514 	struct device *dev = &epf->dev;
515 	int ret;
516 
517 	if (info->flags & MHI_EPF_USE_DMA) {
518 		ret = pci_epf_mhi_dma_init(epf_mhi);
519 		if (ret) {
520 			dev_err(dev, "Failed to initialize DMA: %d\n", ret);
521 			return ret;
522 		}
523 	}
524 
525 	mhi_cntrl->mmio = epf_mhi->mmio;
526 	mhi_cntrl->irq = epf_mhi->irq;
527 	mhi_cntrl->mru = info->mru;
528 
529 	/* Assign the struct dev of PCI EP as MHI controller device */
530 	mhi_cntrl->cntrl_dev = epc->dev.parent;
531 	mhi_cntrl->raise_irq = pci_epf_mhi_raise_irq;
532 	mhi_cntrl->alloc_map = pci_epf_mhi_alloc_map;
533 	mhi_cntrl->unmap_free = pci_epf_mhi_unmap_free;
534 	if (info->flags & MHI_EPF_USE_DMA) {
535 		mhi_cntrl->read_from_host = pci_epf_mhi_edma_read;
536 		mhi_cntrl->write_to_host = pci_epf_mhi_edma_write;
537 	} else {
538 		mhi_cntrl->read_from_host = pci_epf_mhi_iatu_read;
539 		mhi_cntrl->write_to_host = pci_epf_mhi_iatu_write;
540 	}
541 
542 	/* Register the MHI EP controller */
543 	ret = mhi_ep_register_controller(mhi_cntrl, info->config);
544 	if (ret) {
545 		dev_err(dev, "Failed to register MHI EP controller: %d\n", ret);
546 		if (info->flags & MHI_EPF_USE_DMA)
547 			pci_epf_mhi_dma_deinit(epf_mhi);
548 		return ret;
549 	}
550 
551 	return 0;
552 }
553 
554 static int pci_epf_mhi_link_down(struct pci_epf *epf)
555 {
556 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
557 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
558 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
559 
560 	if (mhi_cntrl->mhi_dev) {
561 		mhi_ep_power_down(mhi_cntrl);
562 		if (info->flags & MHI_EPF_USE_DMA)
563 			pci_epf_mhi_dma_deinit(epf_mhi);
564 		mhi_ep_unregister_controller(mhi_cntrl);
565 	}
566 
567 	return 0;
568 }
569 
570 static int pci_epf_mhi_bme(struct pci_epf *epf)
571 {
572 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
573 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
574 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
575 	struct device *dev = &epf->dev;
576 	int ret;
577 
578 	/*
579 	 * Power up the MHI EP stack if link is up and stack is in power down
580 	 * state.
581 	 */
582 	if (!mhi_cntrl->enabled && mhi_cntrl->mhi_dev) {
583 		ret = mhi_ep_power_up(mhi_cntrl);
584 		if (ret) {
585 			dev_err(dev, "Failed to power up MHI EP: %d\n", ret);
586 			if (info->flags & MHI_EPF_USE_DMA)
587 				pci_epf_mhi_dma_deinit(epf_mhi);
588 			mhi_ep_unregister_controller(mhi_cntrl);
589 		}
590 	}
591 
592 	return 0;
593 }
594 
595 static int pci_epf_mhi_bind(struct pci_epf *epf)
596 {
597 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
598 	struct pci_epc *epc = epf->epc;
599 	struct platform_device *pdev = to_platform_device(epc->dev.parent);
600 	struct resource *res;
601 	int ret;
602 
603 	/* Get MMIO base address from Endpoint controller */
604 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "mmio");
605 	epf_mhi->mmio_phys = res->start;
606 	epf_mhi->mmio_size = resource_size(res);
607 
608 	epf_mhi->mmio = ioremap(epf_mhi->mmio_phys, epf_mhi->mmio_size);
609 	if (!epf_mhi->mmio)
610 		return -ENOMEM;
611 
612 	ret = platform_get_irq_byname(pdev, "doorbell");
613 	if (ret < 0) {
614 		iounmap(epf_mhi->mmio);
615 		return ret;
616 	}
617 
618 	epf_mhi->irq = ret;
619 
620 	return 0;
621 }
622 
623 static void pci_epf_mhi_unbind(struct pci_epf *epf)
624 {
625 	struct pci_epf_mhi *epf_mhi = epf_get_drvdata(epf);
626 	const struct pci_epf_mhi_ep_info *info = epf_mhi->info;
627 	struct pci_epf_bar *epf_bar = &epf->bar[info->bar_num];
628 	struct mhi_ep_cntrl *mhi_cntrl = &epf_mhi->mhi_cntrl;
629 	struct pci_epc *epc = epf->epc;
630 
631 	/*
632 	 * Forcefully power down the MHI EP stack. Only way to bring the MHI EP
633 	 * stack back to working state after successive bind is by getting BME
634 	 * from host.
635 	 */
636 	if (mhi_cntrl->mhi_dev) {
637 		mhi_ep_power_down(mhi_cntrl);
638 		if (info->flags & MHI_EPF_USE_DMA)
639 			pci_epf_mhi_dma_deinit(epf_mhi);
640 		mhi_ep_unregister_controller(mhi_cntrl);
641 	}
642 
643 	iounmap(epf_mhi->mmio);
644 	pci_epc_clear_bar(epc, epf->func_no, epf->vfunc_no, epf_bar);
645 }
646 
647 static struct pci_epc_event_ops pci_epf_mhi_event_ops = {
648 	.core_init = pci_epf_mhi_core_init,
649 	.link_up = pci_epf_mhi_link_up,
650 	.link_down = pci_epf_mhi_link_down,
651 	.bme = pci_epf_mhi_bme,
652 };
653 
654 static int pci_epf_mhi_probe(struct pci_epf *epf,
655 			     const struct pci_epf_device_id *id)
656 {
657 	struct pci_epf_mhi_ep_info *info =
658 			(struct pci_epf_mhi_ep_info *)id->driver_data;
659 	struct pci_epf_mhi *epf_mhi;
660 	struct device *dev = &epf->dev;
661 
662 	epf_mhi = devm_kzalloc(dev, sizeof(*epf_mhi), GFP_KERNEL);
663 	if (!epf_mhi)
664 		return -ENOMEM;
665 
666 	epf->header = info->epf_header;
667 	epf_mhi->info = info;
668 	epf_mhi->epf = epf;
669 
670 	epf->event_ops = &pci_epf_mhi_event_ops;
671 
672 	mutex_init(&epf_mhi->lock);
673 
674 	epf_set_drvdata(epf, epf_mhi);
675 
676 	return 0;
677 }
678 
679 static const struct pci_epf_device_id pci_epf_mhi_ids[] = {
680 	{ .name = "sdx55", .driver_data = (kernel_ulong_t)&sdx55_info },
681 	{ .name = "sm8450", .driver_data = (kernel_ulong_t)&sm8450_info },
682 	{},
683 };
684 
685 static struct pci_epf_ops pci_epf_mhi_ops = {
686 	.unbind	= pci_epf_mhi_unbind,
687 	.bind	= pci_epf_mhi_bind,
688 };
689 
690 static struct pci_epf_driver pci_epf_mhi_driver = {
691 	.driver.name	= "pci_epf_mhi",
692 	.probe		= pci_epf_mhi_probe,
693 	.id_table	= pci_epf_mhi_ids,
694 	.ops		= &pci_epf_mhi_ops,
695 	.owner		= THIS_MODULE,
696 };
697 
698 static int __init pci_epf_mhi_init(void)
699 {
700 	return pci_epf_register_driver(&pci_epf_mhi_driver);
701 }
702 module_init(pci_epf_mhi_init);
703 
704 static void __exit pci_epf_mhi_exit(void)
705 {
706 	pci_epf_unregister_driver(&pci_epf_mhi_driver);
707 }
708 module_exit(pci_epf_mhi_exit);
709 
710 MODULE_DESCRIPTION("PCI EPF driver for MHI Endpoint devices");
711 MODULE_AUTHOR("Manivannan Sadhasivam <manivannan.sadhasivam@linaro.org>");
712 MODULE_LICENSE("GPL");
713