1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/irqchip/irq-msi-lib.h> 11 #include <linux/kernel.h> 12 #include <linux/module.h> 13 #include <linux/msi.h> 14 #include <linux/pci.h> 15 #include <linux/pci-acpi.h> 16 #include <linux/pci-ecam.h> 17 #include <linux/srcu.h> 18 #include <linux/rculist.h> 19 #include <linux/rcupdate.h> 20 21 #include <xen/xen.h> 22 23 #include <asm/irqdomain.h> 24 25 #define VMD_CFGBAR 0 26 #define VMD_MEMBAR1 2 27 #define VMD_MEMBAR2 4 28 29 #define PCI_REG_VMCAP 0x40 30 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 31 #define PCI_REG_VMCONFIG 0x44 32 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 33 #define VMCONFIG_MSI_REMAP 0x2 34 #define PCI_REG_VMLOCK 0x70 35 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 36 37 #define MB2_SHADOW_OFFSET 0x2000 38 #define MB2_SHADOW_SIZE 16 39 40 enum vmd_features { 41 /* 42 * Device may contain registers which hint the physical location of the 43 * membars, in order to allow proper address translation during 44 * resource assignment to enable guest virtualization 45 */ 46 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 47 48 /* 49 * Device may provide root port configuration information which limits 50 * bus numbering 51 */ 52 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 53 54 /* 55 * Device contains physical location shadow registers in 56 * vendor-specific capability space 57 */ 58 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 59 60 /* 61 * Device may use MSI-X vector 0 for software triggering and will not 62 * be used for MSI remapping 63 */ 64 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), 65 66 /* 67 * Device can bypass remapping MSI-X transactions into its MSI-X table, 68 * avoiding the requirement of a VMD MSI domain for child device 69 * interrupt handling. 70 */ 71 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), 72 73 /* 74 * Enable ASPM on the PCIE root ports and set the default LTR of the 75 * storage devices on platforms where these values are not configured by 76 * BIOS. This is needed for laptops, which require these settings for 77 * proper power management of the SoC. 78 */ 79 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5), 80 }; 81 82 #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */ 83 84 #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \ 85 VMD_FEAT_HAS_BUS_RESTRICTIONS | \ 86 VMD_FEAT_OFFSET_FIRST_VECTOR | \ 87 VMD_FEAT_BIOS_PM_QUIRK) 88 89 static DEFINE_IDA(vmd_instance_ida); 90 91 /* 92 * Lock for manipulating VMD IRQ lists. 93 */ 94 static DEFINE_RAW_SPINLOCK(list_lock); 95 96 /** 97 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 98 * @node: list item for parent traversal. 99 * @irq: back pointer to parent. 100 * @enabled: true if driver enabled IRQ 101 * @virq: the virtual IRQ value provided to the requesting driver. 102 * 103 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 104 * a VMD IRQ using this structure. 105 */ 106 struct vmd_irq { 107 struct list_head node; 108 struct vmd_irq_list *irq; 109 bool enabled; 110 unsigned int virq; 111 }; 112 113 /** 114 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 115 * @irq_list: the list of irq's the VMD one demuxes to. 116 * @srcu: SRCU struct for local synchronization. 117 * @count: number of child IRQs assigned to this vector; used to track 118 * sharing. 119 * @virq: The underlying VMD Linux interrupt number 120 */ 121 struct vmd_irq_list { 122 struct list_head irq_list; 123 struct srcu_struct srcu; 124 unsigned int count; 125 unsigned int virq; 126 }; 127 128 struct vmd_dev { 129 struct pci_dev *dev; 130 131 raw_spinlock_t cfg_lock; 132 void __iomem *cfgbar; 133 134 int msix_count; 135 struct vmd_irq_list *irqs; 136 137 struct pci_sysdata sysdata; 138 struct resource resources[3]; 139 struct irq_domain *irq_domain; 140 struct pci_bus *bus; 141 u8 busn_start; 142 u8 first_vec; 143 char *name; 144 int instance; 145 }; 146 147 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 148 { 149 return container_of(bus->sysdata, struct vmd_dev, sysdata); 150 } 151 152 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 153 struct vmd_irq_list *irqs) 154 { 155 return irqs - vmd->irqs; 156 } 157 158 /* 159 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 160 * but the MSI entry for the hardware it's driving will be programmed with a 161 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 162 * domain into one of its own, and the VMD driver de-muxes these for the 163 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 164 * and irq_chip to set this up. 165 */ 166 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 167 { 168 struct vmd_irq *vmdirq = data->chip_data; 169 struct vmd_irq_list *irq = vmdirq->irq; 170 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 171 172 memset(msg, 0, sizeof(*msg)); 173 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 174 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 175 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); 176 } 177 178 static void vmd_irq_enable(struct irq_data *data) 179 { 180 struct vmd_irq *vmdirq = data->chip_data; 181 182 scoped_guard(raw_spinlock_irqsave, &list_lock) { 183 WARN_ON(vmdirq->enabled); 184 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 185 vmdirq->enabled = true; 186 } 187 } 188 189 static void vmd_pci_msi_enable(struct irq_data *data) 190 { 191 vmd_irq_enable(data->parent_data); 192 data->chip->irq_unmask(data); 193 } 194 195 static void vmd_irq_disable(struct irq_data *data) 196 { 197 struct vmd_irq *vmdirq = data->chip_data; 198 199 scoped_guard(raw_spinlock_irqsave, &list_lock) { 200 if (vmdirq->enabled) { 201 list_del_rcu(&vmdirq->node); 202 vmdirq->enabled = false; 203 } 204 } 205 } 206 207 static void vmd_pci_msi_disable(struct irq_data *data) 208 { 209 data->chip->irq_mask(data); 210 vmd_irq_disable(data->parent_data); 211 } 212 213 static struct irq_chip vmd_msi_controller = { 214 .name = "VMD-MSI", 215 .irq_compose_msi_msg = vmd_compose_msi_msg, 216 }; 217 218 /* 219 * XXX: We can be even smarter selecting the best IRQ once we solve the 220 * affinity problem. 221 */ 222 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 223 { 224 int i, best; 225 226 if (vmd->msix_count == 1 + vmd->first_vec) 227 return &vmd->irqs[vmd->first_vec]; 228 229 /* 230 * White list for fast-interrupt handlers. All others will share the 231 * "slow" interrupt vector. 232 */ 233 switch (msi_desc_to_pci_dev(desc)->class) { 234 case PCI_CLASS_STORAGE_EXPRESS: 235 break; 236 default: 237 return &vmd->irqs[vmd->first_vec]; 238 } 239 240 scoped_guard(raw_spinlock_irq, &list_lock) { 241 best = vmd->first_vec + 1; 242 for (i = best; i < vmd->msix_count; i++) 243 if (vmd->irqs[i].count < vmd->irqs[best].count) 244 best = i; 245 vmd->irqs[best].count++; 246 } 247 248 return &vmd->irqs[best]; 249 } 250 251 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq, 252 unsigned int nr_irqs); 253 254 static int vmd_msi_alloc(struct irq_domain *domain, unsigned int virq, 255 unsigned int nr_irqs, void *arg) 256 { 257 struct msi_desc *desc = ((msi_alloc_info_t *)arg)->desc; 258 struct vmd_dev *vmd = domain->host_data; 259 struct vmd_irq *vmdirq; 260 261 for (int i = 0; i < nr_irqs; ++i) { 262 vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 263 if (!vmdirq) { 264 vmd_msi_free(domain, virq, i); 265 return -ENOMEM; 266 } 267 268 INIT_LIST_HEAD(&vmdirq->node); 269 vmdirq->irq = vmd_next_irq(vmd, desc); 270 vmdirq->virq = virq + i; 271 272 irq_domain_set_info(domain, virq + i, vmdirq->irq->virq, 273 &vmd_msi_controller, vmdirq, 274 handle_untracked_irq, vmd, NULL); 275 } 276 277 return 0; 278 } 279 280 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq, 281 unsigned int nr_irqs) 282 { 283 struct vmd_irq *vmdirq; 284 285 for (int i = 0; i < nr_irqs; ++i) { 286 vmdirq = irq_get_chip_data(virq + i); 287 288 synchronize_srcu(&vmdirq->irq->srcu); 289 290 /* XXX: Potential optimization to rebalance */ 291 scoped_guard(raw_spinlock_irq, &list_lock) 292 vmdirq->irq->count--; 293 294 kfree(vmdirq); 295 } 296 } 297 298 static const struct irq_domain_ops vmd_msi_domain_ops = { 299 .alloc = vmd_msi_alloc, 300 .free = vmd_msi_free, 301 }; 302 303 static bool vmd_init_dev_msi_info(struct device *dev, struct irq_domain *domain, 304 struct irq_domain *real_parent, 305 struct msi_domain_info *info) 306 { 307 if (WARN_ON_ONCE(info->bus_token != DOMAIN_BUS_PCI_DEVICE_MSIX)) 308 return false; 309 310 if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info)) 311 return false; 312 313 info->chip->irq_enable = vmd_pci_msi_enable; 314 info->chip->irq_disable = vmd_pci_msi_disable; 315 return true; 316 } 317 318 #define VMD_MSI_FLAGS_SUPPORTED (MSI_GENERIC_FLAGS_MASK | MSI_FLAG_PCI_MSIX) 319 #define VMD_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_NO_AFFINITY) 320 321 static const struct msi_parent_ops vmd_msi_parent_ops = { 322 .supported_flags = VMD_MSI_FLAGS_SUPPORTED, 323 .required_flags = VMD_MSI_FLAGS_REQUIRED, 324 .bus_select_token = DOMAIN_BUS_VMD_MSI, 325 .bus_select_mask = MATCH_PCI_MSI, 326 .prefix = "VMD-", 327 .init_dev_msi_info = vmd_init_dev_msi_info, 328 }; 329 330 static int vmd_create_irq_domain(struct vmd_dev *vmd) 331 { 332 struct irq_domain_info info = { 333 .size = vmd->msix_count, 334 .ops = &vmd_msi_domain_ops, 335 .host_data = vmd, 336 }; 337 338 info.fwnode = irq_domain_alloc_named_id_fwnode("VMD-MSI", 339 vmd->sysdata.domain); 340 if (!info.fwnode) 341 return -ENODEV; 342 343 vmd->irq_domain = msi_create_parent_irq_domain(&info, 344 &vmd_msi_parent_ops); 345 if (!vmd->irq_domain) { 346 irq_domain_free_fwnode(info.fwnode); 347 return -ENODEV; 348 } 349 350 return 0; 351 } 352 353 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) 354 { 355 u16 reg; 356 357 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); 358 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : 359 (reg | VMCONFIG_MSI_REMAP); 360 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); 361 } 362 363 static void vmd_remove_irq_domain(struct vmd_dev *vmd) 364 { 365 /* 366 * Some production BIOS won't enable remapping between soft reboots. 367 * Ensure remapping is restored before unloading the driver. 368 */ 369 if (!vmd->msix_count) 370 vmd_set_msi_remapping(vmd, true); 371 372 if (vmd->irq_domain) { 373 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 374 375 irq_domain_remove(vmd->irq_domain); 376 irq_domain_free_fwnode(fn); 377 } 378 } 379 380 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 381 unsigned int devfn, int reg, int len) 382 { 383 unsigned int busnr_ecam = bus->number - vmd->busn_start; 384 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); 385 386 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) 387 return NULL; 388 389 return vmd->cfgbar + offset; 390 } 391 392 /* 393 * CPU may deadlock if config space is not serialized on some versions of this 394 * hardware, so all config space access is done under a spinlock. 395 */ 396 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 397 int len, u32 *value) 398 { 399 struct vmd_dev *vmd = vmd_from_bus(bus); 400 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 401 402 if (!addr) 403 return -EFAULT; 404 405 guard(raw_spinlock_irqsave)(&vmd->cfg_lock); 406 switch (len) { 407 case 1: 408 *value = readb(addr); 409 return 0; 410 case 2: 411 *value = readw(addr); 412 return 0; 413 case 4: 414 *value = readl(addr); 415 return 0; 416 default: 417 return -EINVAL; 418 } 419 } 420 421 /* 422 * VMD h/w converts non-posted config writes to posted memory writes. The 423 * read-back in this function forces the completion so it returns only after 424 * the config space was written, as expected. 425 */ 426 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 427 int len, u32 value) 428 { 429 struct vmd_dev *vmd = vmd_from_bus(bus); 430 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 431 432 if (!addr) 433 return -EFAULT; 434 435 guard(raw_spinlock_irqsave)(&vmd->cfg_lock); 436 switch (len) { 437 case 1: 438 writeb(value, addr); 439 readb(addr); 440 return 0; 441 case 2: 442 writew(value, addr); 443 readw(addr); 444 return 0; 445 case 4: 446 writel(value, addr); 447 readl(addr); 448 return 0; 449 default: 450 return -EINVAL; 451 } 452 } 453 454 static struct pci_ops vmd_ops = { 455 .read = vmd_pci_read, 456 .write = vmd_pci_write, 457 }; 458 459 #ifdef CONFIG_ACPI 460 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) 461 { 462 struct pci_host_bridge *bridge; 463 u32 busnr, addr; 464 465 if (pci_dev->bus->ops != &vmd_ops) 466 return NULL; 467 468 bridge = pci_find_host_bridge(pci_dev->bus); 469 busnr = pci_dev->bus->number - bridge->bus->number; 470 /* 471 * The address computation below is only applicable to relative bus 472 * numbers below 32. 473 */ 474 if (busnr > 31) 475 return NULL; 476 477 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; 478 479 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", 480 addr); 481 482 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, 483 false); 484 } 485 486 static bool hook_installed; 487 488 static void vmd_acpi_begin(void) 489 { 490 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) 491 return; 492 493 hook_installed = true; 494 } 495 496 static void vmd_acpi_end(void) 497 { 498 if (!hook_installed) 499 return; 500 501 pci_acpi_clear_companion_lookup_hook(); 502 hook_installed = false; 503 } 504 #else 505 static inline void vmd_acpi_begin(void) { } 506 static inline void vmd_acpi_end(void) { } 507 #endif /* CONFIG_ACPI */ 508 509 static void vmd_domain_reset(struct vmd_dev *vmd) 510 { 511 u16 bus, max_buses = resource_size(&vmd->resources[0]); 512 u8 dev, functions, fn, hdr_type; 513 char __iomem *base; 514 515 for (bus = 0; bus < max_buses; bus++) { 516 for (dev = 0; dev < 32; dev++) { 517 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 518 PCI_DEVFN(dev, 0), 0); 519 520 hdr_type = readb(base + PCI_HEADER_TYPE); 521 522 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1; 523 for (fn = 0; fn < functions; fn++) { 524 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 525 PCI_DEVFN(dev, fn), 0); 526 527 hdr_type = readb(base + PCI_HEADER_TYPE) & 528 PCI_HEADER_TYPE_MASK; 529 530 if (hdr_type != PCI_HEADER_TYPE_BRIDGE || 531 (readw(base + PCI_CLASS_DEVICE) != 532 PCI_CLASS_BRIDGE_PCI)) 533 continue; 534 535 /* 536 * Temporarily disable the I/O range before updating 537 * PCI_IO_BASE. 538 */ 539 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16); 540 /* Update lower 16 bits of I/O base/limit */ 541 writew(0x00f0, base + PCI_IO_BASE); 542 /* Update upper 16 bits of I/O base/limit */ 543 writel(0, base + PCI_IO_BASE_UPPER16); 544 545 /* MMIO Base/Limit */ 546 writel(0x0000fff0, base + PCI_MEMORY_BASE); 547 548 /* Prefetchable MMIO Base/Limit */ 549 writel(0, base + PCI_PREF_LIMIT_UPPER32); 550 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE); 551 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32); 552 } 553 } 554 } 555 } 556 557 static void vmd_attach_resources(struct vmd_dev *vmd) 558 { 559 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 560 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 561 } 562 563 static void vmd_detach_resources(struct vmd_dev *vmd) 564 { 565 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 566 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 567 } 568 569 /* 570 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 571 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 572 * 16 bits are the PCI Segment Group (domain) number. Other bits are 573 * currently reserved. 574 */ 575 static int vmd_find_free_domain(void) 576 { 577 int domain = 0xffff; 578 struct pci_bus *bus = NULL; 579 580 while ((bus = pci_find_next_bus(bus)) != NULL) 581 domain = max_t(int, domain, pci_domain_nr(bus)); 582 return domain + 1; 583 } 584 585 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, 586 resource_size_t *offset1, 587 resource_size_t *offset2) 588 { 589 struct pci_dev *dev = vmd->dev; 590 u64 phys1, phys2; 591 592 if (native_hint) { 593 u32 vmlock; 594 int ret; 595 596 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); 597 if (ret || PCI_POSSIBLE_ERROR(vmlock)) 598 return -ENODEV; 599 600 if (MB2_SHADOW_EN(vmlock)) { 601 void __iomem *membar2; 602 603 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); 604 if (!membar2) 605 return -ENOMEM; 606 phys1 = readq(membar2 + MB2_SHADOW_OFFSET); 607 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); 608 pci_iounmap(dev, membar2); 609 } else 610 return 0; 611 } else { 612 /* Hypervisor-Emulated Vendor-Specific Capability */ 613 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); 614 u32 reg, regu; 615 616 pci_read_config_dword(dev, pos + 4, ®); 617 618 /* "SHDW" */ 619 if (pos && reg == 0x53484457) { 620 pci_read_config_dword(dev, pos + 8, ®); 621 pci_read_config_dword(dev, pos + 12, ®u); 622 phys1 = (u64) regu << 32 | reg; 623 624 pci_read_config_dword(dev, pos + 16, ®); 625 pci_read_config_dword(dev, pos + 20, ®u); 626 phys2 = (u64) regu << 32 | reg; 627 } else 628 return 0; 629 } 630 631 *offset1 = dev->resource[VMD_MEMBAR1].start - 632 (phys1 & PCI_BASE_ADDRESS_MEM_MASK); 633 *offset2 = dev->resource[VMD_MEMBAR2].start - 634 (phys2 & PCI_BASE_ADDRESS_MEM_MASK); 635 636 return 0; 637 } 638 639 static int vmd_get_bus_number_start(struct vmd_dev *vmd) 640 { 641 struct pci_dev *dev = vmd->dev; 642 u16 reg; 643 644 pci_read_config_word(dev, PCI_REG_VMCAP, ®); 645 if (BUS_RESTRICT_CAP(reg)) { 646 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); 647 648 switch (BUS_RESTRICT_CFG(reg)) { 649 case 0: 650 vmd->busn_start = 0; 651 break; 652 case 1: 653 vmd->busn_start = 128; 654 break; 655 case 2: 656 vmd->busn_start = 224; 657 break; 658 default: 659 pci_err(dev, "Unknown Bus Offset Setting (%d)\n", 660 BUS_RESTRICT_CFG(reg)); 661 return -ENODEV; 662 } 663 } 664 665 return 0; 666 } 667 668 static irqreturn_t vmd_irq(int irq, void *data) 669 { 670 struct vmd_irq_list *irqs = data; 671 struct vmd_irq *vmdirq; 672 int idx; 673 674 idx = srcu_read_lock(&irqs->srcu); 675 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 676 generic_handle_irq(vmdirq->virq); 677 srcu_read_unlock(&irqs->srcu, idx); 678 679 return IRQ_HANDLED; 680 } 681 682 static int vmd_alloc_irqs(struct vmd_dev *vmd) 683 { 684 struct pci_dev *dev = vmd->dev; 685 int i, err; 686 687 vmd->msix_count = pci_msix_vec_count(dev); 688 if (vmd->msix_count < 0) 689 return -ENODEV; 690 691 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, 692 vmd->msix_count, PCI_IRQ_MSIX); 693 if (vmd->msix_count < 0) 694 return vmd->msix_count; 695 696 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 697 GFP_KERNEL); 698 if (!vmd->irqs) 699 return -ENOMEM; 700 701 for (i = 0; i < vmd->msix_count; i++) { 702 err = init_srcu_struct(&vmd->irqs[i].srcu); 703 if (err) 704 return err; 705 706 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 707 vmd->irqs[i].virq = pci_irq_vector(dev, i); 708 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq, 709 vmd_irq, IRQF_NO_THREAD, 710 vmd->name, &vmd->irqs[i]); 711 if (err) 712 return err; 713 } 714 715 return 0; 716 } 717 718 /* 719 * Since VMD is an aperture to regular PCIe root ports, only allow it to 720 * control features that the OS is allowed to control on the physical PCI bus. 721 */ 722 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge, 723 struct pci_host_bridge *vmd_bridge) 724 { 725 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug; 726 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug; 727 vmd_bridge->native_aer = root_bridge->native_aer; 728 vmd_bridge->native_pme = root_bridge->native_pme; 729 vmd_bridge->native_ltr = root_bridge->native_ltr; 730 vmd_bridge->native_dpc = root_bridge->native_dpc; 731 } 732 733 /* 734 * Enable ASPM and LTR settings on devices that aren't configured by BIOS. 735 */ 736 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata) 737 { 738 unsigned long features = *(unsigned long *)userdata; 739 u16 ltr = VMD_BIOS_PM_QUIRK_LTR; 740 u32 ltr_reg; 741 int pos; 742 743 if (!(features & VMD_FEAT_BIOS_PM_QUIRK)) 744 return 0; 745 746 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR); 747 if (!pos) 748 goto out_state_change; 749 750 /* 751 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it 752 * so the LTR quirk is not needed. 753 */ 754 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg); 755 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK))) 756 goto out_state_change; 757 758 /* 759 * Set the default values to the maximum required by the platform to 760 * allow the deepest power management savings. Write as a DWORD where 761 * the lower word is the max snoop latency and the upper word is the 762 * max non-snoop latency. 763 */ 764 ltr_reg = (ltr << 16) | ltr; 765 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg); 766 pci_info(pdev, "VMD: Default LTR value set by driver\n"); 767 768 out_state_change: 769 /* 770 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per 771 * PCIe r6.0, sec 5.5.4. 772 */ 773 pci_set_power_state_locked(pdev, PCI_D0); 774 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL); 775 return 0; 776 } 777 778 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 779 { 780 struct pci_sysdata *sd = &vmd->sysdata; 781 struct resource *res; 782 u32 upper_bits; 783 unsigned long flags; 784 LIST_HEAD(resources); 785 resource_size_t offset[2] = {0}; 786 resource_size_t membar2_offset = 0x2000; 787 struct pci_bus *child; 788 struct pci_dev *dev; 789 int ret; 790 791 /* 792 * Shadow registers may exist in certain VMD device ids which allow 793 * guests to correctly assign host physical addresses to the root ports 794 * and child devices. These registers will either return the host value 795 * or 0, depending on an enable bit in the VMD device. 796 */ 797 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 798 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 799 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); 800 if (ret) 801 return ret; 802 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 803 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); 804 if (ret) 805 return ret; 806 } 807 808 /* 809 * Certain VMD devices may have a root port configuration option which 810 * limits the bus range to between 0-127, 128-255, or 224-255 811 */ 812 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 813 ret = vmd_get_bus_number_start(vmd); 814 if (ret) 815 return ret; 816 } 817 818 res = &vmd->dev->resource[VMD_CFGBAR]; 819 vmd->resources[0] = (struct resource) { 820 .name = "VMD CFGBAR", 821 .start = vmd->busn_start, 822 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 823 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 824 }; 825 826 /* 827 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 828 * put 32-bit resources in the window. 829 * 830 * There's no hardware reason why a 64-bit window *couldn't* 831 * contain a 32-bit resource, but pbus_size_mem() computes the 832 * bridge window size assuming a 64-bit window will contain no 833 * 32-bit resources. __pci_assign_resource() enforces that 834 * artificial restriction to make sure everything will fit. 835 * 836 * The only way we could use a 64-bit non-prefetchable MEMBAR is 837 * if its address is <4GB so that we can convert it to a 32-bit 838 * resource. To be visible to the host OS, all VMD endpoints must 839 * be initially configured by platform BIOS, which includes setting 840 * up these resources. We can assume the device is configured 841 * according to the platform needs. 842 */ 843 res = &vmd->dev->resource[VMD_MEMBAR1]; 844 upper_bits = upper_32_bits(res->end); 845 flags = res->flags & ~IORESOURCE_SIZEALIGN; 846 if (!upper_bits) 847 flags &= ~IORESOURCE_MEM_64; 848 vmd->resources[1] = (struct resource) { 849 .name = "VMD MEMBAR1", 850 .start = res->start, 851 .end = res->end, 852 .flags = flags, 853 .parent = res, 854 }; 855 856 res = &vmd->dev->resource[VMD_MEMBAR2]; 857 upper_bits = upper_32_bits(res->end); 858 flags = res->flags & ~IORESOURCE_SIZEALIGN; 859 if (!upper_bits) 860 flags &= ~IORESOURCE_MEM_64; 861 vmd->resources[2] = (struct resource) { 862 .name = "VMD MEMBAR2", 863 .start = res->start + membar2_offset, 864 .end = res->end, 865 .flags = flags, 866 .parent = res, 867 }; 868 869 sd->vmd_dev = vmd->dev; 870 sd->domain = vmd_find_free_domain(); 871 if (sd->domain < 0) 872 return sd->domain; 873 874 sd->node = pcibus_to_node(vmd->dev->bus); 875 876 /* 877 * Currently MSI remapping must be enabled in guest passthrough mode 878 * due to some missing interrupt remapping plumbing. This is probably 879 * acceptable because the guest is usually CPU-limited and MSI 880 * remapping doesn't become a performance bottleneck. 881 */ 882 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || 883 offset[0] || offset[1]) { 884 ret = vmd_alloc_irqs(vmd); 885 if (ret) 886 return ret; 887 888 vmd_set_msi_remapping(vmd, true); 889 890 ret = vmd_create_irq_domain(vmd); 891 if (ret) 892 return ret; 893 } else { 894 vmd_set_msi_remapping(vmd, false); 895 } 896 897 pci_add_resource(&resources, &vmd->resources[0]); 898 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 899 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 900 901 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 902 &vmd_ops, sd, &resources); 903 if (!vmd->bus) { 904 pci_free_resource_list(&resources); 905 vmd_remove_irq_domain(vmd); 906 return -ENODEV; 907 } 908 909 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus), 910 to_pci_host_bridge(vmd->bus->bridge)); 911 912 vmd_attach_resources(vmd); 913 if (vmd->irq_domain) 914 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 915 else 916 dev_set_msi_domain(&vmd->bus->dev, 917 dev_get_msi_domain(&vmd->dev->dev)); 918 919 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 920 "domain"), "Can't create symlink to domain\n"); 921 922 vmd_acpi_begin(); 923 924 pci_scan_child_bus(vmd->bus); 925 vmd_domain_reset(vmd); 926 927 /* When Intel VMD is enabled, the OS does not discover the Root Ports 928 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies 929 * a reset to the parent of the PCI device supplied as argument. This 930 * is why we pass a child device, so the reset can be triggered at 931 * the Intel bridge level and propagated to all the children in the 932 * hierarchy. 933 */ 934 list_for_each_entry(child, &vmd->bus->children, node) { 935 if (!list_empty(&child->devices)) { 936 dev = list_first_entry(&child->devices, 937 struct pci_dev, bus_list); 938 ret = pci_reset_bus(dev); 939 if (ret) 940 pci_warn(dev, "can't reset device: %d\n", ret); 941 942 break; 943 } 944 } 945 946 pci_assign_unassigned_bus_resources(vmd->bus); 947 948 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features); 949 950 /* 951 * VMD root buses are virtual and don't return true on pci_is_pcie() 952 * and will fail pcie_bus_configure_settings() early. It can instead be 953 * run on each of the real root ports. 954 */ 955 list_for_each_entry(child, &vmd->bus->children, node) 956 pcie_bus_configure_settings(child); 957 958 pci_bus_add_devices(vmd->bus); 959 960 vmd_acpi_end(); 961 return 0; 962 } 963 964 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 965 { 966 unsigned long features = (unsigned long) id->driver_data; 967 struct vmd_dev *vmd; 968 int err; 969 970 if (xen_domain()) { 971 /* 972 * Xen doesn't have knowledge about devices in the VMD bus 973 * because the config space of devices behind the VMD bridge is 974 * not known to Xen, and hence Xen cannot discover or configure 975 * them in any way. 976 * 977 * Bypass of MSI remapping won't work in that case as direct 978 * write by Linux to the MSI entries won't result in functional 979 * interrupts, as Xen is the entity that manages the host 980 * interrupt controller and must configure interrupts. However 981 * multiplexing of interrupts by the VMD bridge will work under 982 * Xen, so force the usage of that mode which must always be 983 * supported by VMD bridges. 984 */ 985 features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP; 986 } 987 988 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 989 return -ENOMEM; 990 991 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 992 if (!vmd) 993 return -ENOMEM; 994 995 vmd->dev = dev; 996 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL); 997 if (vmd->instance < 0) 998 return vmd->instance; 999 1000 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d", 1001 vmd->instance); 1002 if (!vmd->name) { 1003 err = -ENOMEM; 1004 goto out_release_instance; 1005 } 1006 1007 err = pcim_enable_device(dev); 1008 if (err < 0) 1009 goto out_release_instance; 1010 1011 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 1012 if (!vmd->cfgbar) { 1013 err = -ENOMEM; 1014 goto out_release_instance; 1015 } 1016 1017 pci_set_master(dev); 1018 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 1019 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { 1020 err = -ENODEV; 1021 goto out_release_instance; 1022 } 1023 1024 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) 1025 vmd->first_vec = 1; 1026 1027 raw_spin_lock_init(&vmd->cfg_lock); 1028 pci_set_drvdata(dev, vmd); 1029 err = vmd_enable_domain(vmd, features); 1030 if (err) 1031 goto out_release_instance; 1032 1033 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 1034 vmd->sysdata.domain); 1035 return 0; 1036 1037 out_release_instance: 1038 ida_free(&vmd_instance_ida, vmd->instance); 1039 return err; 1040 } 1041 1042 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 1043 { 1044 int i; 1045 1046 for (i = 0; i < vmd->msix_count; i++) 1047 cleanup_srcu_struct(&vmd->irqs[i].srcu); 1048 } 1049 1050 static void vmd_remove(struct pci_dev *dev) 1051 { 1052 struct vmd_dev *vmd = pci_get_drvdata(dev); 1053 1054 pci_stop_root_bus(vmd->bus); 1055 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 1056 pci_remove_root_bus(vmd->bus); 1057 vmd_cleanup_srcu(vmd); 1058 vmd_detach_resources(vmd); 1059 vmd_remove_irq_domain(vmd); 1060 ida_free(&vmd_instance_ida, vmd->instance); 1061 } 1062 1063 static void vmd_shutdown(struct pci_dev *dev) 1064 { 1065 struct vmd_dev *vmd = pci_get_drvdata(dev); 1066 1067 vmd_remove_irq_domain(vmd); 1068 } 1069 1070 #ifdef CONFIG_PM_SLEEP 1071 static int vmd_suspend(struct device *dev) 1072 { 1073 struct pci_dev *pdev = to_pci_dev(dev); 1074 struct vmd_dev *vmd = pci_get_drvdata(pdev); 1075 int i; 1076 1077 for (i = 0; i < vmd->msix_count; i++) 1078 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]); 1079 1080 return 0; 1081 } 1082 1083 static int vmd_resume(struct device *dev) 1084 { 1085 struct pci_dev *pdev = to_pci_dev(dev); 1086 struct vmd_dev *vmd = pci_get_drvdata(pdev); 1087 int err, i; 1088 1089 vmd_set_msi_remapping(vmd, !!vmd->irq_domain); 1090 1091 for (i = 0; i < vmd->msix_count; i++) { 1092 err = devm_request_irq(dev, vmd->irqs[i].virq, 1093 vmd_irq, IRQF_NO_THREAD, 1094 vmd->name, &vmd->irqs[i]); 1095 if (err) 1096 return err; 1097 } 1098 1099 return 0; 1100 } 1101 #endif 1102 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 1103 1104 static const struct pci_device_id vmd_ids[] = { 1105 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 1106 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 1107 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 1108 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 1109 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1110 VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, 1111 {PCI_VDEVICE(INTEL, 0x467f), 1112 .driver_data = VMD_FEATS_CLIENT,}, 1113 {PCI_VDEVICE(INTEL, 0x4c3d), 1114 .driver_data = VMD_FEATS_CLIENT,}, 1115 {PCI_VDEVICE(INTEL, 0xa77f), 1116 .driver_data = VMD_FEATS_CLIENT,}, 1117 {PCI_VDEVICE(INTEL, 0x7d0b), 1118 .driver_data = VMD_FEATS_CLIENT,}, 1119 {PCI_VDEVICE(INTEL, 0xad0b), 1120 .driver_data = VMD_FEATS_CLIENT,}, 1121 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 1122 .driver_data = VMD_FEATS_CLIENT,}, 1123 {PCI_VDEVICE(INTEL, 0xb60b), 1124 .driver_data = VMD_FEATS_CLIENT,}, 1125 {PCI_VDEVICE(INTEL, 0xb06f), 1126 .driver_data = VMD_FEATS_CLIENT,}, 1127 {PCI_VDEVICE(INTEL, 0xb07f), 1128 .driver_data = VMD_FEATS_CLIENT,}, 1129 {0,} 1130 }; 1131 MODULE_DEVICE_TABLE(pci, vmd_ids); 1132 1133 static struct pci_driver vmd_drv = { 1134 .name = "vmd", 1135 .id_table = vmd_ids, 1136 .probe = vmd_probe, 1137 .remove = vmd_remove, 1138 .shutdown = vmd_shutdown, 1139 .driver = { 1140 .pm = &vmd_dev_pm_ops, 1141 }, 1142 }; 1143 module_pci_driver(vmd_drv); 1144 1145 MODULE_AUTHOR("Intel Corporation"); 1146 MODULE_DESCRIPTION("Volume Management Device driver"); 1147 MODULE_LICENSE("GPL v2"); 1148 MODULE_VERSION("0.6"); 1149