1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Volume Management Device driver 4 * Copyright (c) 2015, Intel Corporation. 5 */ 6 7 #include <linux/device.h> 8 #include <linux/interrupt.h> 9 #include <linux/irq.h> 10 #include <linux/kernel.h> 11 #include <linux/module.h> 12 #include <linux/msi.h> 13 #include <linux/pci.h> 14 #include <linux/pci-acpi.h> 15 #include <linux/pci-ecam.h> 16 #include <linux/srcu.h> 17 #include <linux/rculist.h> 18 #include <linux/rcupdate.h> 19 20 #include <asm/irqdomain.h> 21 22 #define VMD_CFGBAR 0 23 #define VMD_MEMBAR1 2 24 #define VMD_MEMBAR2 4 25 26 #define PCI_REG_VMCAP 0x40 27 #define BUS_RESTRICT_CAP(vmcap) (vmcap & 0x1) 28 #define PCI_REG_VMCONFIG 0x44 29 #define BUS_RESTRICT_CFG(vmcfg) ((vmcfg >> 8) & 0x3) 30 #define VMCONFIG_MSI_REMAP 0x2 31 #define PCI_REG_VMLOCK 0x70 32 #define MB2_SHADOW_EN(vmlock) (vmlock & 0x2) 33 34 #define MB2_SHADOW_OFFSET 0x2000 35 #define MB2_SHADOW_SIZE 16 36 37 enum vmd_features { 38 /* 39 * Device may contain registers which hint the physical location of the 40 * membars, in order to allow proper address translation during 41 * resource assignment to enable guest virtualization 42 */ 43 VMD_FEAT_HAS_MEMBAR_SHADOW = (1 << 0), 44 45 /* 46 * Device may provide root port configuration information which limits 47 * bus numbering 48 */ 49 VMD_FEAT_HAS_BUS_RESTRICTIONS = (1 << 1), 50 51 /* 52 * Device contains physical location shadow registers in 53 * vendor-specific capability space 54 */ 55 VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP = (1 << 2), 56 57 /* 58 * Device may use MSI-X vector 0 for software triggering and will not 59 * be used for MSI remapping 60 */ 61 VMD_FEAT_OFFSET_FIRST_VECTOR = (1 << 3), 62 63 /* 64 * Device can bypass remapping MSI-X transactions into its MSI-X table, 65 * avoiding the requirement of a VMD MSI domain for child device 66 * interrupt handling. 67 */ 68 VMD_FEAT_CAN_BYPASS_MSI_REMAP = (1 << 4), 69 70 /* 71 * Enable ASPM on the PCIE root ports and set the default LTR of the 72 * storage devices on platforms where these values are not configured by 73 * BIOS. This is needed for laptops, which require these settings for 74 * proper power management of the SoC. 75 */ 76 VMD_FEAT_BIOS_PM_QUIRK = (1 << 5), 77 }; 78 79 #define VMD_BIOS_PM_QUIRK_LTR 0x1003 /* 3145728 ns */ 80 81 #define VMD_FEATS_CLIENT (VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP | \ 82 VMD_FEAT_HAS_BUS_RESTRICTIONS | \ 83 VMD_FEAT_OFFSET_FIRST_VECTOR | \ 84 VMD_FEAT_BIOS_PM_QUIRK) 85 86 static DEFINE_IDA(vmd_instance_ida); 87 88 /* 89 * Lock for manipulating VMD IRQ lists. 90 */ 91 static DEFINE_RAW_SPINLOCK(list_lock); 92 93 /** 94 * struct vmd_irq - private data to map driver IRQ to the VMD shared vector 95 * @node: list item for parent traversal. 96 * @irq: back pointer to parent. 97 * @enabled: true if driver enabled IRQ 98 * @virq: the virtual IRQ value provided to the requesting driver. 99 * 100 * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to 101 * a VMD IRQ using this structure. 102 */ 103 struct vmd_irq { 104 struct list_head node; 105 struct vmd_irq_list *irq; 106 bool enabled; 107 unsigned int virq; 108 }; 109 110 /** 111 * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector 112 * @irq_list: the list of irq's the VMD one demuxes to. 113 * @srcu: SRCU struct for local synchronization. 114 * @count: number of child IRQs assigned to this vector; used to track 115 * sharing. 116 * @virq: The underlying VMD Linux interrupt number 117 */ 118 struct vmd_irq_list { 119 struct list_head irq_list; 120 struct srcu_struct srcu; 121 unsigned int count; 122 unsigned int virq; 123 }; 124 125 struct vmd_dev { 126 struct pci_dev *dev; 127 128 spinlock_t cfg_lock; 129 void __iomem *cfgbar; 130 131 int msix_count; 132 struct vmd_irq_list *irqs; 133 134 struct pci_sysdata sysdata; 135 struct resource resources[3]; 136 struct irq_domain *irq_domain; 137 struct pci_bus *bus; 138 u8 busn_start; 139 u8 first_vec; 140 char *name; 141 int instance; 142 }; 143 144 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus) 145 { 146 return container_of(bus->sysdata, struct vmd_dev, sysdata); 147 } 148 149 static inline unsigned int index_from_irqs(struct vmd_dev *vmd, 150 struct vmd_irq_list *irqs) 151 { 152 return irqs - vmd->irqs; 153 } 154 155 /* 156 * Drivers managing a device in a VMD domain allocate their own IRQs as before, 157 * but the MSI entry for the hardware it's driving will be programmed with a 158 * destination ID for the VMD MSI-X table. The VMD muxes interrupts in its 159 * domain into one of its own, and the VMD driver de-muxes these for the 160 * handlers sharing that VMD IRQ. The vmd irq_domain provides the operations 161 * and irq_chip to set this up. 162 */ 163 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 164 { 165 struct vmd_irq *vmdirq = data->chip_data; 166 struct vmd_irq_list *irq = vmdirq->irq; 167 struct vmd_dev *vmd = irq_data_get_irq_handler_data(data); 168 169 memset(msg, 0, sizeof(*msg)); 170 msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH; 171 msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW; 172 msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq); 173 } 174 175 /* 176 * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops. 177 */ 178 static void vmd_irq_enable(struct irq_data *data) 179 { 180 struct vmd_irq *vmdirq = data->chip_data; 181 unsigned long flags; 182 183 raw_spin_lock_irqsave(&list_lock, flags); 184 WARN_ON(vmdirq->enabled); 185 list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list); 186 vmdirq->enabled = true; 187 raw_spin_unlock_irqrestore(&list_lock, flags); 188 189 data->chip->irq_unmask(data); 190 } 191 192 static void vmd_irq_disable(struct irq_data *data) 193 { 194 struct vmd_irq *vmdirq = data->chip_data; 195 unsigned long flags; 196 197 data->chip->irq_mask(data); 198 199 raw_spin_lock_irqsave(&list_lock, flags); 200 if (vmdirq->enabled) { 201 list_del_rcu(&vmdirq->node); 202 vmdirq->enabled = false; 203 } 204 raw_spin_unlock_irqrestore(&list_lock, flags); 205 } 206 207 static struct irq_chip vmd_msi_controller = { 208 .name = "VMD-MSI", 209 .irq_enable = vmd_irq_enable, 210 .irq_disable = vmd_irq_disable, 211 .irq_compose_msi_msg = vmd_compose_msi_msg, 212 }; 213 214 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info, 215 msi_alloc_info_t *arg) 216 { 217 return 0; 218 } 219 220 /* 221 * XXX: We can be even smarter selecting the best IRQ once we solve the 222 * affinity problem. 223 */ 224 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc) 225 { 226 unsigned long flags; 227 int i, best; 228 229 if (vmd->msix_count == 1 + vmd->first_vec) 230 return &vmd->irqs[vmd->first_vec]; 231 232 /* 233 * White list for fast-interrupt handlers. All others will share the 234 * "slow" interrupt vector. 235 */ 236 switch (msi_desc_to_pci_dev(desc)->class) { 237 case PCI_CLASS_STORAGE_EXPRESS: 238 break; 239 default: 240 return &vmd->irqs[vmd->first_vec]; 241 } 242 243 raw_spin_lock_irqsave(&list_lock, flags); 244 best = vmd->first_vec + 1; 245 for (i = best; i < vmd->msix_count; i++) 246 if (vmd->irqs[i].count < vmd->irqs[best].count) 247 best = i; 248 vmd->irqs[best].count++; 249 raw_spin_unlock_irqrestore(&list_lock, flags); 250 251 return &vmd->irqs[best]; 252 } 253 254 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info, 255 unsigned int virq, irq_hw_number_t hwirq, 256 msi_alloc_info_t *arg) 257 { 258 struct msi_desc *desc = arg->desc; 259 struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus); 260 struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL); 261 262 if (!vmdirq) 263 return -ENOMEM; 264 265 INIT_LIST_HEAD(&vmdirq->node); 266 vmdirq->irq = vmd_next_irq(vmd, desc); 267 vmdirq->virq = virq; 268 269 irq_domain_set_info(domain, virq, vmdirq->irq->virq, info->chip, vmdirq, 270 handle_untracked_irq, vmd, NULL); 271 return 0; 272 } 273 274 static void vmd_msi_free(struct irq_domain *domain, 275 struct msi_domain_info *info, unsigned int virq) 276 { 277 struct vmd_irq *vmdirq = irq_get_chip_data(virq); 278 unsigned long flags; 279 280 synchronize_srcu(&vmdirq->irq->srcu); 281 282 /* XXX: Potential optimization to rebalance */ 283 raw_spin_lock_irqsave(&list_lock, flags); 284 vmdirq->irq->count--; 285 raw_spin_unlock_irqrestore(&list_lock, flags); 286 287 kfree(vmdirq); 288 } 289 290 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev, 291 int nvec, msi_alloc_info_t *arg) 292 { 293 struct pci_dev *pdev = to_pci_dev(dev); 294 struct vmd_dev *vmd = vmd_from_bus(pdev->bus); 295 296 if (nvec > vmd->msix_count) 297 return vmd->msix_count; 298 299 memset(arg, 0, sizeof(*arg)); 300 return 0; 301 } 302 303 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc) 304 { 305 arg->desc = desc; 306 } 307 308 static struct msi_domain_ops vmd_msi_domain_ops = { 309 .get_hwirq = vmd_get_hwirq, 310 .msi_init = vmd_msi_init, 311 .msi_free = vmd_msi_free, 312 .msi_prepare = vmd_msi_prepare, 313 .set_desc = vmd_set_desc, 314 }; 315 316 static struct msi_domain_info vmd_msi_domain_info = { 317 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 318 MSI_FLAG_NO_AFFINITY | MSI_FLAG_PCI_MSIX, 319 .ops = &vmd_msi_domain_ops, 320 .chip = &vmd_msi_controller, 321 }; 322 323 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable) 324 { 325 u16 reg; 326 327 pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, ®); 328 reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) : 329 (reg | VMCONFIG_MSI_REMAP); 330 pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg); 331 } 332 333 static int vmd_create_irq_domain(struct vmd_dev *vmd) 334 { 335 struct fwnode_handle *fn; 336 337 fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain); 338 if (!fn) 339 return -ENODEV; 340 341 vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL); 342 if (!vmd->irq_domain) { 343 irq_domain_free_fwnode(fn); 344 return -ENODEV; 345 } 346 347 return 0; 348 } 349 350 static void vmd_remove_irq_domain(struct vmd_dev *vmd) 351 { 352 /* 353 * Some production BIOS won't enable remapping between soft reboots. 354 * Ensure remapping is restored before unloading the driver. 355 */ 356 if (!vmd->msix_count) 357 vmd_set_msi_remapping(vmd, true); 358 359 if (vmd->irq_domain) { 360 struct fwnode_handle *fn = vmd->irq_domain->fwnode; 361 362 irq_domain_remove(vmd->irq_domain); 363 irq_domain_free_fwnode(fn); 364 } 365 } 366 367 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus, 368 unsigned int devfn, int reg, int len) 369 { 370 unsigned int busnr_ecam = bus->number - vmd->busn_start; 371 u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg); 372 373 if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR])) 374 return NULL; 375 376 return vmd->cfgbar + offset; 377 } 378 379 /* 380 * CPU may deadlock if config space is not serialized on some versions of this 381 * hardware, so all config space access is done under a spinlock. 382 */ 383 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg, 384 int len, u32 *value) 385 { 386 struct vmd_dev *vmd = vmd_from_bus(bus); 387 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 388 unsigned long flags; 389 int ret = 0; 390 391 if (!addr) 392 return -EFAULT; 393 394 spin_lock_irqsave(&vmd->cfg_lock, flags); 395 switch (len) { 396 case 1: 397 *value = readb(addr); 398 break; 399 case 2: 400 *value = readw(addr); 401 break; 402 case 4: 403 *value = readl(addr); 404 break; 405 default: 406 ret = -EINVAL; 407 break; 408 } 409 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 410 return ret; 411 } 412 413 /* 414 * VMD h/w converts non-posted config writes to posted memory writes. The 415 * read-back in this function forces the completion so it returns only after 416 * the config space was written, as expected. 417 */ 418 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg, 419 int len, u32 value) 420 { 421 struct vmd_dev *vmd = vmd_from_bus(bus); 422 void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len); 423 unsigned long flags; 424 int ret = 0; 425 426 if (!addr) 427 return -EFAULT; 428 429 spin_lock_irqsave(&vmd->cfg_lock, flags); 430 switch (len) { 431 case 1: 432 writeb(value, addr); 433 readb(addr); 434 break; 435 case 2: 436 writew(value, addr); 437 readw(addr); 438 break; 439 case 4: 440 writel(value, addr); 441 readl(addr); 442 break; 443 default: 444 ret = -EINVAL; 445 break; 446 } 447 spin_unlock_irqrestore(&vmd->cfg_lock, flags); 448 return ret; 449 } 450 451 static struct pci_ops vmd_ops = { 452 .read = vmd_pci_read, 453 .write = vmd_pci_write, 454 }; 455 456 #ifdef CONFIG_ACPI 457 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev) 458 { 459 struct pci_host_bridge *bridge; 460 u32 busnr, addr; 461 462 if (pci_dev->bus->ops != &vmd_ops) 463 return NULL; 464 465 bridge = pci_find_host_bridge(pci_dev->bus); 466 busnr = pci_dev->bus->number - bridge->bus->number; 467 /* 468 * The address computation below is only applicable to relative bus 469 * numbers below 32. 470 */ 471 if (busnr > 31) 472 return NULL; 473 474 addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU; 475 476 dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n", 477 addr); 478 479 return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr, 480 false); 481 } 482 483 static bool hook_installed; 484 485 static void vmd_acpi_begin(void) 486 { 487 if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion)) 488 return; 489 490 hook_installed = true; 491 } 492 493 static void vmd_acpi_end(void) 494 { 495 if (!hook_installed) 496 return; 497 498 pci_acpi_clear_companion_lookup_hook(); 499 hook_installed = false; 500 } 501 #else 502 static inline void vmd_acpi_begin(void) { } 503 static inline void vmd_acpi_end(void) { } 504 #endif /* CONFIG_ACPI */ 505 506 static void vmd_domain_reset(struct vmd_dev *vmd) 507 { 508 u16 bus, max_buses = resource_size(&vmd->resources[0]); 509 u8 dev, functions, fn, hdr_type; 510 char __iomem *base; 511 512 for (bus = 0; bus < max_buses; bus++) { 513 for (dev = 0; dev < 32; dev++) { 514 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 515 PCI_DEVFN(dev, 0), 0); 516 517 hdr_type = readb(base + PCI_HEADER_TYPE); 518 519 functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1; 520 for (fn = 0; fn < functions; fn++) { 521 base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus, 522 PCI_DEVFN(dev, fn), 0); 523 524 hdr_type = readb(base + PCI_HEADER_TYPE) & 525 PCI_HEADER_TYPE_MASK; 526 527 if (hdr_type != PCI_HEADER_TYPE_BRIDGE || 528 (readw(base + PCI_CLASS_DEVICE) != 529 PCI_CLASS_BRIDGE_PCI)) 530 continue; 531 532 /* 533 * Temporarily disable the I/O range before updating 534 * PCI_IO_BASE. 535 */ 536 writel(0x0000ffff, base + PCI_IO_BASE_UPPER16); 537 /* Update lower 16 bits of I/O base/limit */ 538 writew(0x00f0, base + PCI_IO_BASE); 539 /* Update upper 16 bits of I/O base/limit */ 540 writel(0, base + PCI_IO_BASE_UPPER16); 541 542 /* MMIO Base/Limit */ 543 writel(0x0000fff0, base + PCI_MEMORY_BASE); 544 545 /* Prefetchable MMIO Base/Limit */ 546 writel(0, base + PCI_PREF_LIMIT_UPPER32); 547 writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE); 548 writel(0xffffffff, base + PCI_PREF_BASE_UPPER32); 549 } 550 } 551 } 552 } 553 554 static void vmd_attach_resources(struct vmd_dev *vmd) 555 { 556 vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1]; 557 vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2]; 558 } 559 560 static void vmd_detach_resources(struct vmd_dev *vmd) 561 { 562 vmd->dev->resource[VMD_MEMBAR1].child = NULL; 563 vmd->dev->resource[VMD_MEMBAR2].child = NULL; 564 } 565 566 /* 567 * VMD domains start at 0x10000 to not clash with ACPI _SEG domains. 568 * Per ACPI r6.0, sec 6.5.6, _SEG returns an integer, of which the lower 569 * 16 bits are the PCI Segment Group (domain) number. Other bits are 570 * currently reserved. 571 */ 572 static int vmd_find_free_domain(void) 573 { 574 int domain = 0xffff; 575 struct pci_bus *bus = NULL; 576 577 while ((bus = pci_find_next_bus(bus)) != NULL) 578 domain = max_t(int, domain, pci_domain_nr(bus)); 579 return domain + 1; 580 } 581 582 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint, 583 resource_size_t *offset1, 584 resource_size_t *offset2) 585 { 586 struct pci_dev *dev = vmd->dev; 587 u64 phys1, phys2; 588 589 if (native_hint) { 590 u32 vmlock; 591 int ret; 592 593 ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock); 594 if (ret || PCI_POSSIBLE_ERROR(vmlock)) 595 return -ENODEV; 596 597 if (MB2_SHADOW_EN(vmlock)) { 598 void __iomem *membar2; 599 600 membar2 = pci_iomap(dev, VMD_MEMBAR2, 0); 601 if (!membar2) 602 return -ENOMEM; 603 phys1 = readq(membar2 + MB2_SHADOW_OFFSET); 604 phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8); 605 pci_iounmap(dev, membar2); 606 } else 607 return 0; 608 } else { 609 /* Hypervisor-Emulated Vendor-Specific Capability */ 610 int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR); 611 u32 reg, regu; 612 613 pci_read_config_dword(dev, pos + 4, ®); 614 615 /* "SHDW" */ 616 if (pos && reg == 0x53484457) { 617 pci_read_config_dword(dev, pos + 8, ®); 618 pci_read_config_dword(dev, pos + 12, ®u); 619 phys1 = (u64) regu << 32 | reg; 620 621 pci_read_config_dword(dev, pos + 16, ®); 622 pci_read_config_dword(dev, pos + 20, ®u); 623 phys2 = (u64) regu << 32 | reg; 624 } else 625 return 0; 626 } 627 628 *offset1 = dev->resource[VMD_MEMBAR1].start - 629 (phys1 & PCI_BASE_ADDRESS_MEM_MASK); 630 *offset2 = dev->resource[VMD_MEMBAR2].start - 631 (phys2 & PCI_BASE_ADDRESS_MEM_MASK); 632 633 return 0; 634 } 635 636 static int vmd_get_bus_number_start(struct vmd_dev *vmd) 637 { 638 struct pci_dev *dev = vmd->dev; 639 u16 reg; 640 641 pci_read_config_word(dev, PCI_REG_VMCAP, ®); 642 if (BUS_RESTRICT_CAP(reg)) { 643 pci_read_config_word(dev, PCI_REG_VMCONFIG, ®); 644 645 switch (BUS_RESTRICT_CFG(reg)) { 646 case 0: 647 vmd->busn_start = 0; 648 break; 649 case 1: 650 vmd->busn_start = 128; 651 break; 652 case 2: 653 vmd->busn_start = 224; 654 break; 655 default: 656 pci_err(dev, "Unknown Bus Offset Setting (%d)\n", 657 BUS_RESTRICT_CFG(reg)); 658 return -ENODEV; 659 } 660 } 661 662 return 0; 663 } 664 665 static irqreturn_t vmd_irq(int irq, void *data) 666 { 667 struct vmd_irq_list *irqs = data; 668 struct vmd_irq *vmdirq; 669 int idx; 670 671 idx = srcu_read_lock(&irqs->srcu); 672 list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node) 673 generic_handle_irq(vmdirq->virq); 674 srcu_read_unlock(&irqs->srcu, idx); 675 676 return IRQ_HANDLED; 677 } 678 679 static int vmd_alloc_irqs(struct vmd_dev *vmd) 680 { 681 struct pci_dev *dev = vmd->dev; 682 int i, err; 683 684 vmd->msix_count = pci_msix_vec_count(dev); 685 if (vmd->msix_count < 0) 686 return -ENODEV; 687 688 vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1, 689 vmd->msix_count, PCI_IRQ_MSIX); 690 if (vmd->msix_count < 0) 691 return vmd->msix_count; 692 693 vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs), 694 GFP_KERNEL); 695 if (!vmd->irqs) 696 return -ENOMEM; 697 698 for (i = 0; i < vmd->msix_count; i++) { 699 err = init_srcu_struct(&vmd->irqs[i].srcu); 700 if (err) 701 return err; 702 703 INIT_LIST_HEAD(&vmd->irqs[i].irq_list); 704 vmd->irqs[i].virq = pci_irq_vector(dev, i); 705 err = devm_request_irq(&dev->dev, vmd->irqs[i].virq, 706 vmd_irq, IRQF_NO_THREAD, 707 vmd->name, &vmd->irqs[i]); 708 if (err) 709 return err; 710 } 711 712 return 0; 713 } 714 715 /* 716 * Since VMD is an aperture to regular PCIe root ports, only allow it to 717 * control features that the OS is allowed to control on the physical PCI bus. 718 */ 719 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge, 720 struct pci_host_bridge *vmd_bridge) 721 { 722 vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug; 723 vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug; 724 vmd_bridge->native_aer = root_bridge->native_aer; 725 vmd_bridge->native_pme = root_bridge->native_pme; 726 vmd_bridge->native_ltr = root_bridge->native_ltr; 727 vmd_bridge->native_dpc = root_bridge->native_dpc; 728 } 729 730 /* 731 * Enable ASPM and LTR settings on devices that aren't configured by BIOS. 732 */ 733 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata) 734 { 735 unsigned long features = *(unsigned long *)userdata; 736 u16 ltr = VMD_BIOS_PM_QUIRK_LTR; 737 u32 ltr_reg; 738 int pos; 739 740 if (!(features & VMD_FEAT_BIOS_PM_QUIRK)) 741 return 0; 742 743 pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL); 744 745 pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR); 746 if (!pos) 747 return 0; 748 749 /* 750 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it 751 * so the LTR quirk is not needed. 752 */ 753 pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, <r_reg); 754 if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK))) 755 return 0; 756 757 /* 758 * Set the default values to the maximum required by the platform to 759 * allow the deepest power management savings. Write as a DWORD where 760 * the lower word is the max snoop latency and the upper word is the 761 * max non-snoop latency. 762 */ 763 ltr_reg = (ltr << 16) | ltr; 764 pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg); 765 pci_info(pdev, "VMD: Default LTR value set by driver\n"); 766 767 return 0; 768 } 769 770 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features) 771 { 772 struct pci_sysdata *sd = &vmd->sysdata; 773 struct resource *res; 774 u32 upper_bits; 775 unsigned long flags; 776 LIST_HEAD(resources); 777 resource_size_t offset[2] = {0}; 778 resource_size_t membar2_offset = 0x2000; 779 struct pci_bus *child; 780 struct pci_dev *dev; 781 int ret; 782 783 /* 784 * Shadow registers may exist in certain VMD device ids which allow 785 * guests to correctly assign host physical addresses to the root ports 786 * and child devices. These registers will either return the host value 787 * or 0, depending on an enable bit in the VMD device. 788 */ 789 if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) { 790 membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE; 791 ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]); 792 if (ret) 793 return ret; 794 } else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) { 795 ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]); 796 if (ret) 797 return ret; 798 } 799 800 /* 801 * Certain VMD devices may have a root port configuration option which 802 * limits the bus range to between 0-127, 128-255, or 224-255 803 */ 804 if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) { 805 ret = vmd_get_bus_number_start(vmd); 806 if (ret) 807 return ret; 808 } 809 810 res = &vmd->dev->resource[VMD_CFGBAR]; 811 vmd->resources[0] = (struct resource) { 812 .name = "VMD CFGBAR", 813 .start = vmd->busn_start, 814 .end = vmd->busn_start + (resource_size(res) >> 20) - 1, 815 .flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED, 816 }; 817 818 /* 819 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can 820 * put 32-bit resources in the window. 821 * 822 * There's no hardware reason why a 64-bit window *couldn't* 823 * contain a 32-bit resource, but pbus_size_mem() computes the 824 * bridge window size assuming a 64-bit window will contain no 825 * 32-bit resources. __pci_assign_resource() enforces that 826 * artificial restriction to make sure everything will fit. 827 * 828 * The only way we could use a 64-bit non-prefetchable MEMBAR is 829 * if its address is <4GB so that we can convert it to a 32-bit 830 * resource. To be visible to the host OS, all VMD endpoints must 831 * be initially configured by platform BIOS, which includes setting 832 * up these resources. We can assume the device is configured 833 * according to the platform needs. 834 */ 835 res = &vmd->dev->resource[VMD_MEMBAR1]; 836 upper_bits = upper_32_bits(res->end); 837 flags = res->flags & ~IORESOURCE_SIZEALIGN; 838 if (!upper_bits) 839 flags &= ~IORESOURCE_MEM_64; 840 vmd->resources[1] = (struct resource) { 841 .name = "VMD MEMBAR1", 842 .start = res->start, 843 .end = res->end, 844 .flags = flags, 845 .parent = res, 846 }; 847 848 res = &vmd->dev->resource[VMD_MEMBAR2]; 849 upper_bits = upper_32_bits(res->end); 850 flags = res->flags & ~IORESOURCE_SIZEALIGN; 851 if (!upper_bits) 852 flags &= ~IORESOURCE_MEM_64; 853 vmd->resources[2] = (struct resource) { 854 .name = "VMD MEMBAR2", 855 .start = res->start + membar2_offset, 856 .end = res->end, 857 .flags = flags, 858 .parent = res, 859 }; 860 861 sd->vmd_dev = vmd->dev; 862 sd->domain = vmd_find_free_domain(); 863 if (sd->domain < 0) 864 return sd->domain; 865 866 sd->node = pcibus_to_node(vmd->dev->bus); 867 868 /* 869 * Currently MSI remapping must be enabled in guest passthrough mode 870 * due to some missing interrupt remapping plumbing. This is probably 871 * acceptable because the guest is usually CPU-limited and MSI 872 * remapping doesn't become a performance bottleneck. 873 */ 874 if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) || 875 offset[0] || offset[1]) { 876 ret = vmd_alloc_irqs(vmd); 877 if (ret) 878 return ret; 879 880 vmd_set_msi_remapping(vmd, true); 881 882 ret = vmd_create_irq_domain(vmd); 883 if (ret) 884 return ret; 885 886 /* 887 * Override the IRQ domain bus token so the domain can be 888 * distinguished from a regular PCI/MSI domain. 889 */ 890 irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI); 891 } else { 892 vmd_set_msi_remapping(vmd, false); 893 } 894 895 pci_add_resource(&resources, &vmd->resources[0]); 896 pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]); 897 pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]); 898 899 vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start, 900 &vmd_ops, sd, &resources); 901 if (!vmd->bus) { 902 pci_free_resource_list(&resources); 903 vmd_remove_irq_domain(vmd); 904 return -ENODEV; 905 } 906 907 vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus), 908 to_pci_host_bridge(vmd->bus->bridge)); 909 910 vmd_attach_resources(vmd); 911 if (vmd->irq_domain) 912 dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain); 913 else 914 dev_set_msi_domain(&vmd->bus->dev, 915 dev_get_msi_domain(&vmd->dev->dev)); 916 917 WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj, 918 "domain"), "Can't create symlink to domain\n"); 919 920 vmd_acpi_begin(); 921 922 pci_scan_child_bus(vmd->bus); 923 vmd_domain_reset(vmd); 924 925 /* When Intel VMD is enabled, the OS does not discover the Root Ports 926 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies 927 * a reset to the parent of the PCI device supplied as argument. This 928 * is why we pass a child device, so the reset can be triggered at 929 * the Intel bridge level and propagated to all the children in the 930 * hierarchy. 931 */ 932 list_for_each_entry(child, &vmd->bus->children, node) { 933 if (!list_empty(&child->devices)) { 934 dev = list_first_entry(&child->devices, 935 struct pci_dev, bus_list); 936 ret = pci_reset_bus(dev); 937 if (ret) 938 pci_warn(dev, "can't reset device: %d\n", ret); 939 940 break; 941 } 942 } 943 944 pci_assign_unassigned_bus_resources(vmd->bus); 945 946 pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features); 947 948 /* 949 * VMD root buses are virtual and don't return true on pci_is_pcie() 950 * and will fail pcie_bus_configure_settings() early. It can instead be 951 * run on each of the real root ports. 952 */ 953 list_for_each_entry(child, &vmd->bus->children, node) 954 pcie_bus_configure_settings(child); 955 956 pci_bus_add_devices(vmd->bus); 957 958 vmd_acpi_end(); 959 return 0; 960 } 961 962 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id) 963 { 964 unsigned long features = (unsigned long) id->driver_data; 965 struct vmd_dev *vmd; 966 int err; 967 968 if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20)) 969 return -ENOMEM; 970 971 vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL); 972 if (!vmd) 973 return -ENOMEM; 974 975 vmd->dev = dev; 976 vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL); 977 if (vmd->instance < 0) 978 return vmd->instance; 979 980 vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d", 981 vmd->instance); 982 if (!vmd->name) { 983 err = -ENOMEM; 984 goto out_release_instance; 985 } 986 987 err = pcim_enable_device(dev); 988 if (err < 0) 989 goto out_release_instance; 990 991 vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0); 992 if (!vmd->cfgbar) { 993 err = -ENOMEM; 994 goto out_release_instance; 995 } 996 997 pci_set_master(dev); 998 if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) && 999 dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) { 1000 err = -ENODEV; 1001 goto out_release_instance; 1002 } 1003 1004 if (features & VMD_FEAT_OFFSET_FIRST_VECTOR) 1005 vmd->first_vec = 1; 1006 1007 spin_lock_init(&vmd->cfg_lock); 1008 pci_set_drvdata(dev, vmd); 1009 err = vmd_enable_domain(vmd, features); 1010 if (err) 1011 goto out_release_instance; 1012 1013 dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n", 1014 vmd->sysdata.domain); 1015 return 0; 1016 1017 out_release_instance: 1018 ida_free(&vmd_instance_ida, vmd->instance); 1019 return err; 1020 } 1021 1022 static void vmd_cleanup_srcu(struct vmd_dev *vmd) 1023 { 1024 int i; 1025 1026 for (i = 0; i < vmd->msix_count; i++) 1027 cleanup_srcu_struct(&vmd->irqs[i].srcu); 1028 } 1029 1030 static void vmd_remove(struct pci_dev *dev) 1031 { 1032 struct vmd_dev *vmd = pci_get_drvdata(dev); 1033 1034 pci_stop_root_bus(vmd->bus); 1035 sysfs_remove_link(&vmd->dev->dev.kobj, "domain"); 1036 pci_remove_root_bus(vmd->bus); 1037 vmd_cleanup_srcu(vmd); 1038 vmd_detach_resources(vmd); 1039 vmd_remove_irq_domain(vmd); 1040 ida_free(&vmd_instance_ida, vmd->instance); 1041 } 1042 1043 static void vmd_shutdown(struct pci_dev *dev) 1044 { 1045 struct vmd_dev *vmd = pci_get_drvdata(dev); 1046 1047 vmd_remove_irq_domain(vmd); 1048 } 1049 1050 #ifdef CONFIG_PM_SLEEP 1051 static int vmd_suspend(struct device *dev) 1052 { 1053 struct pci_dev *pdev = to_pci_dev(dev); 1054 struct vmd_dev *vmd = pci_get_drvdata(pdev); 1055 int i; 1056 1057 for (i = 0; i < vmd->msix_count; i++) 1058 devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]); 1059 1060 return 0; 1061 } 1062 1063 static int vmd_resume(struct device *dev) 1064 { 1065 struct pci_dev *pdev = to_pci_dev(dev); 1066 struct vmd_dev *vmd = pci_get_drvdata(pdev); 1067 int err, i; 1068 1069 vmd_set_msi_remapping(vmd, !!vmd->irq_domain); 1070 1071 for (i = 0; i < vmd->msix_count; i++) { 1072 err = devm_request_irq(dev, vmd->irqs[i].virq, 1073 vmd_irq, IRQF_NO_THREAD, 1074 vmd->name, &vmd->irqs[i]); 1075 if (err) 1076 return err; 1077 } 1078 1079 return 0; 1080 } 1081 #endif 1082 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume); 1083 1084 static const struct pci_device_id vmd_ids[] = { 1085 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D), 1086 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,}, 1087 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0), 1088 .driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW | 1089 VMD_FEAT_HAS_BUS_RESTRICTIONS | 1090 VMD_FEAT_CAN_BYPASS_MSI_REMAP,}, 1091 {PCI_VDEVICE(INTEL, 0x467f), 1092 .driver_data = VMD_FEATS_CLIENT,}, 1093 {PCI_VDEVICE(INTEL, 0x4c3d), 1094 .driver_data = VMD_FEATS_CLIENT,}, 1095 {PCI_VDEVICE(INTEL, 0xa77f), 1096 .driver_data = VMD_FEATS_CLIENT,}, 1097 {PCI_VDEVICE(INTEL, 0x7d0b), 1098 .driver_data = VMD_FEATS_CLIENT,}, 1099 {PCI_VDEVICE(INTEL, 0xad0b), 1100 .driver_data = VMD_FEATS_CLIENT,}, 1101 {PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B), 1102 .driver_data = VMD_FEATS_CLIENT,}, 1103 {0,} 1104 }; 1105 MODULE_DEVICE_TABLE(pci, vmd_ids); 1106 1107 static struct pci_driver vmd_drv = { 1108 .name = "vmd", 1109 .id_table = vmd_ids, 1110 .probe = vmd_probe, 1111 .remove = vmd_remove, 1112 .shutdown = vmd_shutdown, 1113 .driver = { 1114 .pm = &vmd_dev_pm_ops, 1115 }, 1116 }; 1117 module_pci_driver(vmd_drv); 1118 1119 MODULE_AUTHOR("Intel Corporation"); 1120 MODULE_DESCRIPTION("Volume Management Device driver"); 1121 MODULE_LICENSE("GPL v2"); 1122 MODULE_VERSION("0.6"); 1123