xref: /linux/drivers/pci/controller/vmd.c (revision bab2c80e5a6c855657482eac9e97f5f3eedb509a)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/srcu.h>
15 #include <linux/rculist.h>
16 #include <linux/rcupdate.h>
17 
18 #include <asm/irqdomain.h>
19 #include <asm/device.h>
20 #include <asm/msi.h>
21 #include <asm/msidef.h>
22 
23 #define VMD_CFGBAR	0
24 #define VMD_MEMBAR1	2
25 #define VMD_MEMBAR2	4
26 
27 #define PCI_REG_VMCAP		0x40
28 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
29 #define PCI_REG_VMCONFIG	0x44
30 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
31 #define PCI_REG_VMLOCK		0x70
32 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
33 
34 enum vmd_features {
35 	/*
36 	 * Device may contain registers which hint the physical location of the
37 	 * membars, in order to allow proper address translation during
38 	 * resource assignment to enable guest virtualization
39 	 */
40 	VMD_FEAT_HAS_MEMBAR_SHADOW	= (1 << 0),
41 
42 	/*
43 	 * Device may provide root port configuration information which limits
44 	 * bus numbering
45 	 */
46 	VMD_FEAT_HAS_BUS_RESTRICTIONS	= (1 << 1),
47 };
48 
49 /*
50  * Lock for manipulating VMD IRQ lists.
51  */
52 static DEFINE_RAW_SPINLOCK(list_lock);
53 
54 /**
55  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
56  * @node:	list item for parent traversal.
57  * @irq:	back pointer to parent.
58  * @enabled:	true if driver enabled IRQ
59  * @virq:	the virtual IRQ value provided to the requesting driver.
60  *
61  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
62  * a VMD IRQ using this structure.
63  */
64 struct vmd_irq {
65 	struct list_head	node;
66 	struct vmd_irq_list	*irq;
67 	bool			enabled;
68 	unsigned int		virq;
69 };
70 
71 /**
72  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
73  * @irq_list:	the list of irq's the VMD one demuxes to.
74  * @srcu:	SRCU struct for local synchronization.
75  * @count:	number of child IRQs assigned to this vector; used to track
76  *		sharing.
77  */
78 struct vmd_irq_list {
79 	struct list_head	irq_list;
80 	struct srcu_struct	srcu;
81 	unsigned int		count;
82 };
83 
84 struct vmd_dev {
85 	struct pci_dev		*dev;
86 
87 	spinlock_t		cfg_lock;
88 	char __iomem		*cfgbar;
89 
90 	int msix_count;
91 	struct vmd_irq_list	*irqs;
92 
93 	struct pci_sysdata	sysdata;
94 	struct resource		resources[3];
95 	struct irq_domain	*irq_domain;
96 	struct pci_bus		*bus;
97 
98 #ifdef CONFIG_X86_DEV_DMA_OPS
99 	struct dma_map_ops	dma_ops;
100 	struct dma_domain	dma_domain;
101 #endif
102 };
103 
104 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
105 {
106 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
107 }
108 
109 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
110 					   struct vmd_irq_list *irqs)
111 {
112 	return irqs - vmd->irqs;
113 }
114 
115 /*
116  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
117  * but the MSI entry for the hardware it's driving will be programmed with a
118  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
119  * domain into one of its own, and the VMD driver de-muxes these for the
120  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
121  * and irq_chip to set this up.
122  */
123 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
124 {
125 	struct vmd_irq *vmdirq = data->chip_data;
126 	struct vmd_irq_list *irq = vmdirq->irq;
127 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
128 
129 	msg->address_hi = MSI_ADDR_BASE_HI;
130 	msg->address_lo = MSI_ADDR_BASE_LO |
131 			  MSI_ADDR_DEST_ID(index_from_irqs(vmd, irq));
132 	msg->data = 0;
133 }
134 
135 /*
136  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
137  */
138 static void vmd_irq_enable(struct irq_data *data)
139 {
140 	struct vmd_irq *vmdirq = data->chip_data;
141 	unsigned long flags;
142 
143 	raw_spin_lock_irqsave(&list_lock, flags);
144 	WARN_ON(vmdirq->enabled);
145 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
146 	vmdirq->enabled = true;
147 	raw_spin_unlock_irqrestore(&list_lock, flags);
148 
149 	data->chip->irq_unmask(data);
150 }
151 
152 static void vmd_irq_disable(struct irq_data *data)
153 {
154 	struct vmd_irq *vmdirq = data->chip_data;
155 	unsigned long flags;
156 
157 	data->chip->irq_mask(data);
158 
159 	raw_spin_lock_irqsave(&list_lock, flags);
160 	if (vmdirq->enabled) {
161 		list_del_rcu(&vmdirq->node);
162 		vmdirq->enabled = false;
163 	}
164 	raw_spin_unlock_irqrestore(&list_lock, flags);
165 }
166 
167 /*
168  * XXX: Stubbed until we develop acceptable way to not create conflicts with
169  * other devices sharing the same vector.
170  */
171 static int vmd_irq_set_affinity(struct irq_data *data,
172 				const struct cpumask *dest, bool force)
173 {
174 	return -EINVAL;
175 }
176 
177 static struct irq_chip vmd_msi_controller = {
178 	.name			= "VMD-MSI",
179 	.irq_enable		= vmd_irq_enable,
180 	.irq_disable		= vmd_irq_disable,
181 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
182 	.irq_set_affinity	= vmd_irq_set_affinity,
183 };
184 
185 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
186 				     msi_alloc_info_t *arg)
187 {
188 	return 0;
189 }
190 
191 /*
192  * XXX: We can be even smarter selecting the best IRQ once we solve the
193  * affinity problem.
194  */
195 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
196 {
197 	int i, best = 1;
198 	unsigned long flags;
199 
200 	if (pci_is_bridge(msi_desc_to_pci_dev(desc)) || vmd->msix_count == 1)
201 		return &vmd->irqs[0];
202 
203 	raw_spin_lock_irqsave(&list_lock, flags);
204 	for (i = 1; i < vmd->msix_count; i++)
205 		if (vmd->irqs[i].count < vmd->irqs[best].count)
206 			best = i;
207 	vmd->irqs[best].count++;
208 	raw_spin_unlock_irqrestore(&list_lock, flags);
209 
210 	return &vmd->irqs[best];
211 }
212 
213 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
214 			unsigned int virq, irq_hw_number_t hwirq,
215 			msi_alloc_info_t *arg)
216 {
217 	struct msi_desc *desc = arg->desc;
218 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
219 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
220 	unsigned int index, vector;
221 
222 	if (!vmdirq)
223 		return -ENOMEM;
224 
225 	INIT_LIST_HEAD(&vmdirq->node);
226 	vmdirq->irq = vmd_next_irq(vmd, desc);
227 	vmdirq->virq = virq;
228 	index = index_from_irqs(vmd, vmdirq->irq);
229 	vector = pci_irq_vector(vmd->dev, index);
230 
231 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
232 			    handle_untracked_irq, vmd, NULL);
233 	return 0;
234 }
235 
236 static void vmd_msi_free(struct irq_domain *domain,
237 			struct msi_domain_info *info, unsigned int virq)
238 {
239 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
240 	unsigned long flags;
241 
242 	synchronize_srcu(&vmdirq->irq->srcu);
243 
244 	/* XXX: Potential optimization to rebalance */
245 	raw_spin_lock_irqsave(&list_lock, flags);
246 	vmdirq->irq->count--;
247 	raw_spin_unlock_irqrestore(&list_lock, flags);
248 
249 	kfree(vmdirq);
250 }
251 
252 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
253 			   int nvec, msi_alloc_info_t *arg)
254 {
255 	struct pci_dev *pdev = to_pci_dev(dev);
256 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
257 
258 	if (nvec > vmd->msix_count)
259 		return vmd->msix_count;
260 
261 	memset(arg, 0, sizeof(*arg));
262 	return 0;
263 }
264 
265 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
266 {
267 	arg->desc = desc;
268 }
269 
270 static struct msi_domain_ops vmd_msi_domain_ops = {
271 	.get_hwirq	= vmd_get_hwirq,
272 	.msi_init	= vmd_msi_init,
273 	.msi_free	= vmd_msi_free,
274 	.msi_prepare	= vmd_msi_prepare,
275 	.set_desc	= vmd_set_desc,
276 };
277 
278 static struct msi_domain_info vmd_msi_domain_info = {
279 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
280 			  MSI_FLAG_PCI_MSIX,
281 	.ops		= &vmd_msi_domain_ops,
282 	.chip		= &vmd_msi_controller,
283 };
284 
285 #ifdef CONFIG_X86_DEV_DMA_OPS
286 /*
287  * VMD replaces the requester ID with its own.  DMA mappings for devices in a
288  * VMD domain need to be mapped for the VMD, not the device requiring
289  * the mapping.
290  */
291 static struct device *to_vmd_dev(struct device *dev)
292 {
293 	struct pci_dev *pdev = to_pci_dev(dev);
294 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
295 
296 	return &vmd->dev->dev;
297 }
298 
299 static const struct dma_map_ops *vmd_dma_ops(struct device *dev)
300 {
301 	return get_dma_ops(to_vmd_dev(dev));
302 }
303 
304 static void *vmd_alloc(struct device *dev, size_t size, dma_addr_t *addr,
305 		       gfp_t flag, unsigned long attrs)
306 {
307 	return vmd_dma_ops(dev)->alloc(to_vmd_dev(dev), size, addr, flag,
308 				       attrs);
309 }
310 
311 static void vmd_free(struct device *dev, size_t size, void *vaddr,
312 		     dma_addr_t addr, unsigned long attrs)
313 {
314 	return vmd_dma_ops(dev)->free(to_vmd_dev(dev), size, vaddr, addr,
315 				      attrs);
316 }
317 
318 static int vmd_mmap(struct device *dev, struct vm_area_struct *vma,
319 		    void *cpu_addr, dma_addr_t addr, size_t size,
320 		    unsigned long attrs)
321 {
322 	return vmd_dma_ops(dev)->mmap(to_vmd_dev(dev), vma, cpu_addr, addr,
323 				      size, attrs);
324 }
325 
326 static int vmd_get_sgtable(struct device *dev, struct sg_table *sgt,
327 			   void *cpu_addr, dma_addr_t addr, size_t size,
328 			   unsigned long attrs)
329 {
330 	return vmd_dma_ops(dev)->get_sgtable(to_vmd_dev(dev), sgt, cpu_addr,
331 					     addr, size, attrs);
332 }
333 
334 static dma_addr_t vmd_map_page(struct device *dev, struct page *page,
335 			       unsigned long offset, size_t size,
336 			       enum dma_data_direction dir,
337 			       unsigned long attrs)
338 {
339 	return vmd_dma_ops(dev)->map_page(to_vmd_dev(dev), page, offset, size,
340 					  dir, attrs);
341 }
342 
343 static void vmd_unmap_page(struct device *dev, dma_addr_t addr, size_t size,
344 			   enum dma_data_direction dir, unsigned long attrs)
345 {
346 	vmd_dma_ops(dev)->unmap_page(to_vmd_dev(dev), addr, size, dir, attrs);
347 }
348 
349 static int vmd_map_sg(struct device *dev, struct scatterlist *sg, int nents,
350 		      enum dma_data_direction dir, unsigned long attrs)
351 {
352 	return vmd_dma_ops(dev)->map_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
353 }
354 
355 static void vmd_unmap_sg(struct device *dev, struct scatterlist *sg, int nents,
356 			 enum dma_data_direction dir, unsigned long attrs)
357 {
358 	vmd_dma_ops(dev)->unmap_sg(to_vmd_dev(dev), sg, nents, dir, attrs);
359 }
360 
361 static void vmd_sync_single_for_cpu(struct device *dev, dma_addr_t addr,
362 				    size_t size, enum dma_data_direction dir)
363 {
364 	vmd_dma_ops(dev)->sync_single_for_cpu(to_vmd_dev(dev), addr, size, dir);
365 }
366 
367 static void vmd_sync_single_for_device(struct device *dev, dma_addr_t addr,
368 				       size_t size, enum dma_data_direction dir)
369 {
370 	vmd_dma_ops(dev)->sync_single_for_device(to_vmd_dev(dev), addr, size,
371 						 dir);
372 }
373 
374 static void vmd_sync_sg_for_cpu(struct device *dev, struct scatterlist *sg,
375 				int nents, enum dma_data_direction dir)
376 {
377 	vmd_dma_ops(dev)->sync_sg_for_cpu(to_vmd_dev(dev), sg, nents, dir);
378 }
379 
380 static void vmd_sync_sg_for_device(struct device *dev, struct scatterlist *sg,
381 				   int nents, enum dma_data_direction dir)
382 {
383 	vmd_dma_ops(dev)->sync_sg_for_device(to_vmd_dev(dev), sg, nents, dir);
384 }
385 
386 static int vmd_mapping_error(struct device *dev, dma_addr_t addr)
387 {
388 	return vmd_dma_ops(dev)->mapping_error(to_vmd_dev(dev), addr);
389 }
390 
391 static int vmd_dma_supported(struct device *dev, u64 mask)
392 {
393 	return vmd_dma_ops(dev)->dma_supported(to_vmd_dev(dev), mask);
394 }
395 
396 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
397 static u64 vmd_get_required_mask(struct device *dev)
398 {
399 	return vmd_dma_ops(dev)->get_required_mask(to_vmd_dev(dev));
400 }
401 #endif
402 
403 static void vmd_teardown_dma_ops(struct vmd_dev *vmd)
404 {
405 	struct dma_domain *domain = &vmd->dma_domain;
406 
407 	if (get_dma_ops(&vmd->dev->dev))
408 		del_dma_domain(domain);
409 }
410 
411 #define ASSIGN_VMD_DMA_OPS(source, dest, fn)	\
412 	do {					\
413 		if (source->fn)			\
414 			dest->fn = vmd_##fn;	\
415 	} while (0)
416 
417 static void vmd_setup_dma_ops(struct vmd_dev *vmd)
418 {
419 	const struct dma_map_ops *source = get_dma_ops(&vmd->dev->dev);
420 	struct dma_map_ops *dest = &vmd->dma_ops;
421 	struct dma_domain *domain = &vmd->dma_domain;
422 
423 	domain->domain_nr = vmd->sysdata.domain;
424 	domain->dma_ops = dest;
425 
426 	if (!source)
427 		return;
428 	ASSIGN_VMD_DMA_OPS(source, dest, alloc);
429 	ASSIGN_VMD_DMA_OPS(source, dest, free);
430 	ASSIGN_VMD_DMA_OPS(source, dest, mmap);
431 	ASSIGN_VMD_DMA_OPS(source, dest, get_sgtable);
432 	ASSIGN_VMD_DMA_OPS(source, dest, map_page);
433 	ASSIGN_VMD_DMA_OPS(source, dest, unmap_page);
434 	ASSIGN_VMD_DMA_OPS(source, dest, map_sg);
435 	ASSIGN_VMD_DMA_OPS(source, dest, unmap_sg);
436 	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_cpu);
437 	ASSIGN_VMD_DMA_OPS(source, dest, sync_single_for_device);
438 	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_cpu);
439 	ASSIGN_VMD_DMA_OPS(source, dest, sync_sg_for_device);
440 	ASSIGN_VMD_DMA_OPS(source, dest, mapping_error);
441 	ASSIGN_VMD_DMA_OPS(source, dest, dma_supported);
442 #ifdef ARCH_HAS_DMA_GET_REQUIRED_MASK
443 	ASSIGN_VMD_DMA_OPS(source, dest, get_required_mask);
444 #endif
445 	add_dma_domain(domain);
446 }
447 #undef ASSIGN_VMD_DMA_OPS
448 #else
449 static void vmd_teardown_dma_ops(struct vmd_dev *vmd) {}
450 static void vmd_setup_dma_ops(struct vmd_dev *vmd) {}
451 #endif
452 
453 static char __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
454 				  unsigned int devfn, int reg, int len)
455 {
456 	char __iomem *addr = vmd->cfgbar +
457 			     (bus->number << 20) + (devfn << 12) + reg;
458 
459 	if ((addr - vmd->cfgbar) + len >=
460 	    resource_size(&vmd->dev->resource[VMD_CFGBAR]))
461 		return NULL;
462 
463 	return addr;
464 }
465 
466 /*
467  * CPU may deadlock if config space is not serialized on some versions of this
468  * hardware, so all config space access is done under a spinlock.
469  */
470 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
471 			int len, u32 *value)
472 {
473 	struct vmd_dev *vmd = vmd_from_bus(bus);
474 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
475 	unsigned long flags;
476 	int ret = 0;
477 
478 	if (!addr)
479 		return -EFAULT;
480 
481 	spin_lock_irqsave(&vmd->cfg_lock, flags);
482 	switch (len) {
483 	case 1:
484 		*value = readb(addr);
485 		break;
486 	case 2:
487 		*value = readw(addr);
488 		break;
489 	case 4:
490 		*value = readl(addr);
491 		break;
492 	default:
493 		ret = -EINVAL;
494 		break;
495 	}
496 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
497 	return ret;
498 }
499 
500 /*
501  * VMD h/w converts non-posted config writes to posted memory writes. The
502  * read-back in this function forces the completion so it returns only after
503  * the config space was written, as expected.
504  */
505 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
506 			 int len, u32 value)
507 {
508 	struct vmd_dev *vmd = vmd_from_bus(bus);
509 	char __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
510 	unsigned long flags;
511 	int ret = 0;
512 
513 	if (!addr)
514 		return -EFAULT;
515 
516 	spin_lock_irqsave(&vmd->cfg_lock, flags);
517 	switch (len) {
518 	case 1:
519 		writeb(value, addr);
520 		readb(addr);
521 		break;
522 	case 2:
523 		writew(value, addr);
524 		readw(addr);
525 		break;
526 	case 4:
527 		writel(value, addr);
528 		readl(addr);
529 		break;
530 	default:
531 		ret = -EINVAL;
532 		break;
533 	}
534 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
535 	return ret;
536 }
537 
538 static struct pci_ops vmd_ops = {
539 	.read		= vmd_pci_read,
540 	.write		= vmd_pci_write,
541 };
542 
543 static void vmd_attach_resources(struct vmd_dev *vmd)
544 {
545 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
546 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
547 }
548 
549 static void vmd_detach_resources(struct vmd_dev *vmd)
550 {
551 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
552 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
553 }
554 
555 /*
556  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
557  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
558  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
559  * currently reserved.
560  */
561 static int vmd_find_free_domain(void)
562 {
563 	int domain = 0xffff;
564 	struct pci_bus *bus = NULL;
565 
566 	while ((bus = pci_find_next_bus(bus)) != NULL)
567 		domain = max_t(int, domain, pci_domain_nr(bus));
568 	return domain + 1;
569 }
570 
571 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
572 {
573 	struct pci_sysdata *sd = &vmd->sysdata;
574 	struct fwnode_handle *fn;
575 	struct resource *res;
576 	u32 upper_bits;
577 	unsigned long flags;
578 	LIST_HEAD(resources);
579 	resource_size_t offset[2] = {0};
580 	resource_size_t membar2_offset = 0x2000, busn_start = 0;
581 
582 	/*
583 	 * Shadow registers may exist in certain VMD device ids which allow
584 	 * guests to correctly assign host physical addresses to the root ports
585 	 * and child devices. These registers will either return the host value
586 	 * or 0, depending on an enable bit in the VMD device.
587 	 */
588 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
589 		u32 vmlock;
590 		int ret;
591 
592 		membar2_offset = 0x2018;
593 		ret = pci_read_config_dword(vmd->dev, PCI_REG_VMLOCK, &vmlock);
594 		if (ret || vmlock == ~0)
595 			return -ENODEV;
596 
597 		if (MB2_SHADOW_EN(vmlock)) {
598 			void __iomem *membar2;
599 
600 			membar2 = pci_iomap(vmd->dev, VMD_MEMBAR2, 0);
601 			if (!membar2)
602 				return -ENOMEM;
603 			offset[0] = vmd->dev->resource[VMD_MEMBAR1].start -
604 						readq(membar2 + 0x2008);
605 			offset[1] = vmd->dev->resource[VMD_MEMBAR2].start -
606 						readq(membar2 + 0x2010);
607 			pci_iounmap(vmd->dev, membar2);
608 		}
609 	}
610 
611 	/*
612 	 * Certain VMD devices may have a root port configuration option which
613 	 * limits the bus range to between 0-127 or 128-255
614 	 */
615 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
616 		u32 vmcap, vmconfig;
617 
618 		pci_read_config_dword(vmd->dev, PCI_REG_VMCAP, &vmcap);
619 		pci_read_config_dword(vmd->dev, PCI_REG_VMCONFIG, &vmconfig);
620 		if (BUS_RESTRICT_CAP(vmcap) &&
621 		    (BUS_RESTRICT_CFG(vmconfig) == 0x1))
622 			busn_start = 128;
623 	}
624 
625 	res = &vmd->dev->resource[VMD_CFGBAR];
626 	vmd->resources[0] = (struct resource) {
627 		.name  = "VMD CFGBAR",
628 		.start = busn_start,
629 		.end   = busn_start + (resource_size(res) >> 20) - 1,
630 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
631 	};
632 
633 	/*
634 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
635 	 * put 32-bit resources in the window.
636 	 *
637 	 * There's no hardware reason why a 64-bit window *couldn't*
638 	 * contain a 32-bit resource, but pbus_size_mem() computes the
639 	 * bridge window size assuming a 64-bit window will contain no
640 	 * 32-bit resources.  __pci_assign_resource() enforces that
641 	 * artificial restriction to make sure everything will fit.
642 	 *
643 	 * The only way we could use a 64-bit non-prefechable MEMBAR is
644 	 * if its address is <4GB so that we can convert it to a 32-bit
645 	 * resource.  To be visible to the host OS, all VMD endpoints must
646 	 * be initially configured by platform BIOS, which includes setting
647 	 * up these resources.  We can assume the device is configured
648 	 * according to the platform needs.
649 	 */
650 	res = &vmd->dev->resource[VMD_MEMBAR1];
651 	upper_bits = upper_32_bits(res->end);
652 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
653 	if (!upper_bits)
654 		flags &= ~IORESOURCE_MEM_64;
655 	vmd->resources[1] = (struct resource) {
656 		.name  = "VMD MEMBAR1",
657 		.start = res->start,
658 		.end   = res->end,
659 		.flags = flags,
660 		.parent = res,
661 	};
662 
663 	res = &vmd->dev->resource[VMD_MEMBAR2];
664 	upper_bits = upper_32_bits(res->end);
665 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
666 	if (!upper_bits)
667 		flags &= ~IORESOURCE_MEM_64;
668 	vmd->resources[2] = (struct resource) {
669 		.name  = "VMD MEMBAR2",
670 		.start = res->start + membar2_offset,
671 		.end   = res->end,
672 		.flags = flags,
673 		.parent = res,
674 	};
675 
676 	sd->vmd_domain = true;
677 	sd->domain = vmd_find_free_domain();
678 	if (sd->domain < 0)
679 		return sd->domain;
680 
681 	sd->node = pcibus_to_node(vmd->dev->bus);
682 
683 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
684 	if (!fn)
685 		return -ENODEV;
686 
687 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info,
688 						    x86_vector_domain);
689 	irq_domain_free_fwnode(fn);
690 	if (!vmd->irq_domain)
691 		return -ENODEV;
692 
693 	pci_add_resource(&resources, &vmd->resources[0]);
694 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
695 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
696 
697 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, busn_start, &vmd_ops,
698 				       sd, &resources);
699 	if (!vmd->bus) {
700 		pci_free_resource_list(&resources);
701 		irq_domain_remove(vmd->irq_domain);
702 		return -ENODEV;
703 	}
704 
705 	vmd_attach_resources(vmd);
706 	vmd_setup_dma_ops(vmd);
707 	dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
708 	pci_rescan_bus(vmd->bus);
709 
710 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
711 			       "domain"), "Can't create symlink to domain\n");
712 	return 0;
713 }
714 
715 static irqreturn_t vmd_irq(int irq, void *data)
716 {
717 	struct vmd_irq_list *irqs = data;
718 	struct vmd_irq *vmdirq;
719 	int idx;
720 
721 	idx = srcu_read_lock(&irqs->srcu);
722 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
723 		generic_handle_irq(vmdirq->virq);
724 	srcu_read_unlock(&irqs->srcu, idx);
725 
726 	return IRQ_HANDLED;
727 }
728 
729 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
730 {
731 	struct vmd_dev *vmd;
732 	int i, err;
733 
734 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
735 		return -ENOMEM;
736 
737 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
738 	if (!vmd)
739 		return -ENOMEM;
740 
741 	vmd->dev = dev;
742 	err = pcim_enable_device(dev);
743 	if (err < 0)
744 		return err;
745 
746 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
747 	if (!vmd->cfgbar)
748 		return -ENOMEM;
749 
750 	pci_set_master(dev);
751 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
752 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
753 		return -ENODEV;
754 
755 	vmd->msix_count = pci_msix_vec_count(dev);
756 	if (vmd->msix_count < 0)
757 		return -ENODEV;
758 
759 	vmd->msix_count = pci_alloc_irq_vectors(dev, 1, vmd->msix_count,
760 					PCI_IRQ_MSIX);
761 	if (vmd->msix_count < 0)
762 		return vmd->msix_count;
763 
764 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
765 				 GFP_KERNEL);
766 	if (!vmd->irqs)
767 		return -ENOMEM;
768 
769 	for (i = 0; i < vmd->msix_count; i++) {
770 		err = init_srcu_struct(&vmd->irqs[i].srcu);
771 		if (err)
772 			return err;
773 
774 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
775 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
776 				       vmd_irq, IRQF_NO_THREAD,
777 				       "vmd", &vmd->irqs[i]);
778 		if (err)
779 			return err;
780 	}
781 
782 	spin_lock_init(&vmd->cfg_lock);
783 	pci_set_drvdata(dev, vmd);
784 	err = vmd_enable_domain(vmd, (unsigned long) id->driver_data);
785 	if (err)
786 		return err;
787 
788 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
789 		 vmd->sysdata.domain);
790 	return 0;
791 }
792 
793 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
794 {
795 	int i;
796 
797 	for (i = 0; i < vmd->msix_count; i++)
798 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
799 }
800 
801 static void vmd_remove(struct pci_dev *dev)
802 {
803 	struct vmd_dev *vmd = pci_get_drvdata(dev);
804 
805 	vmd_detach_resources(vmd);
806 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
807 	pci_stop_root_bus(vmd->bus);
808 	pci_remove_root_bus(vmd->bus);
809 	vmd_cleanup_srcu(vmd);
810 	vmd_teardown_dma_ops(vmd);
811 	irq_domain_remove(vmd->irq_domain);
812 }
813 
814 #ifdef CONFIG_PM_SLEEP
815 static int vmd_suspend(struct device *dev)
816 {
817 	struct pci_dev *pdev = to_pci_dev(dev);
818 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
819 	int i;
820 
821 	for (i = 0; i < vmd->msix_count; i++)
822                 devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
823 
824 	pci_save_state(pdev);
825 	return 0;
826 }
827 
828 static int vmd_resume(struct device *dev)
829 {
830 	struct pci_dev *pdev = to_pci_dev(dev);
831 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
832 	int err, i;
833 
834 	for (i = 0; i < vmd->msix_count; i++) {
835 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
836 				       vmd_irq, IRQF_NO_THREAD,
837 				       "vmd", &vmd->irqs[i]);
838 		if (err)
839 			return err;
840 	}
841 
842 	pci_restore_state(pdev);
843 	return 0;
844 }
845 #endif
846 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
847 
848 static const struct pci_device_id vmd_ids[] = {
849 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),},
850 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
851 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
852 				VMD_FEAT_HAS_BUS_RESTRICTIONS,},
853 	{0,}
854 };
855 MODULE_DEVICE_TABLE(pci, vmd_ids);
856 
857 static struct pci_driver vmd_drv = {
858 	.name		= "vmd",
859 	.id_table	= vmd_ids,
860 	.probe		= vmd_probe,
861 	.remove		= vmd_remove,
862 	.driver		= {
863 		.pm	= &vmd_dev_pm_ops,
864 	},
865 };
866 module_pci_driver(vmd_drv);
867 
868 MODULE_AUTHOR("Intel Corporation");
869 MODULE_LICENSE("GPL v2");
870 MODULE_VERSION("0.6");
871