xref: /linux/drivers/pci/controller/vmd.c (revision 0ad53fe3ae82443c74ff8cfd7bd13377cc1134a3)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/msi.h>
13 #include <linux/pci.h>
14 #include <linux/pci-acpi.h>
15 #include <linux/pci-ecam.h>
16 #include <linux/srcu.h>
17 #include <linux/rculist.h>
18 #include <linux/rcupdate.h>
19 
20 #include <asm/irqdomain.h>
21 #include <asm/device.h>
22 #include <asm/msi.h>
23 
24 #define VMD_CFGBAR	0
25 #define VMD_MEMBAR1	2
26 #define VMD_MEMBAR2	4
27 
28 #define PCI_REG_VMCAP		0x40
29 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
30 #define PCI_REG_VMCONFIG	0x44
31 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
32 #define VMCONFIG_MSI_REMAP	0x2
33 #define PCI_REG_VMLOCK		0x70
34 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
35 
36 #define MB2_SHADOW_OFFSET	0x2000
37 #define MB2_SHADOW_SIZE		16
38 
39 enum vmd_features {
40 	/*
41 	 * Device may contain registers which hint the physical location of the
42 	 * membars, in order to allow proper address translation during
43 	 * resource assignment to enable guest virtualization
44 	 */
45 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
46 
47 	/*
48 	 * Device may provide root port configuration information which limits
49 	 * bus numbering
50 	 */
51 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
52 
53 	/*
54 	 * Device contains physical location shadow registers in
55 	 * vendor-specific capability space
56 	 */
57 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
58 
59 	/*
60 	 * Device may use MSI-X vector 0 for software triggering and will not
61 	 * be used for MSI remapping
62 	 */
63 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
64 
65 	/*
66 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
67 	 * avoiding the requirement of a VMD MSI domain for child device
68 	 * interrupt handling.
69 	 */
70 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
71 };
72 
73 /*
74  * Lock for manipulating VMD IRQ lists.
75  */
76 static DEFINE_RAW_SPINLOCK(list_lock);
77 
78 /**
79  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
80  * @node:	list item for parent traversal.
81  * @irq:	back pointer to parent.
82  * @enabled:	true if driver enabled IRQ
83  * @virq:	the virtual IRQ value provided to the requesting driver.
84  *
85  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
86  * a VMD IRQ using this structure.
87  */
88 struct vmd_irq {
89 	struct list_head	node;
90 	struct vmd_irq_list	*irq;
91 	bool			enabled;
92 	unsigned int		virq;
93 };
94 
95 /**
96  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
97  * @irq_list:	the list of irq's the VMD one demuxes to.
98  * @srcu:	SRCU struct for local synchronization.
99  * @count:	number of child IRQs assigned to this vector; used to track
100  *		sharing.
101  */
102 struct vmd_irq_list {
103 	struct list_head	irq_list;
104 	struct srcu_struct	srcu;
105 	unsigned int		count;
106 };
107 
108 struct vmd_dev {
109 	struct pci_dev		*dev;
110 
111 	spinlock_t		cfg_lock;
112 	void __iomem		*cfgbar;
113 
114 	int msix_count;
115 	struct vmd_irq_list	*irqs;
116 
117 	struct pci_sysdata	sysdata;
118 	struct resource		resources[3];
119 	struct irq_domain	*irq_domain;
120 	struct pci_bus		*bus;
121 	u8			busn_start;
122 	u8			first_vec;
123 };
124 
125 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
126 {
127 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
128 }
129 
130 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
131 					   struct vmd_irq_list *irqs)
132 {
133 	return irqs - vmd->irqs;
134 }
135 
136 /*
137  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
138  * but the MSI entry for the hardware it's driving will be programmed with a
139  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
140  * domain into one of its own, and the VMD driver de-muxes these for the
141  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
142  * and irq_chip to set this up.
143  */
144 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
145 {
146 	struct vmd_irq *vmdirq = data->chip_data;
147 	struct vmd_irq_list *irq = vmdirq->irq;
148 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
149 
150 	memset(msg, 0, sizeof(*msg));
151 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
152 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
153 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
154 }
155 
156 /*
157  * We rely on MSI_FLAG_USE_DEF_CHIP_OPS to set the IRQ mask/unmask ops.
158  */
159 static void vmd_irq_enable(struct irq_data *data)
160 {
161 	struct vmd_irq *vmdirq = data->chip_data;
162 	unsigned long flags;
163 
164 	raw_spin_lock_irqsave(&list_lock, flags);
165 	WARN_ON(vmdirq->enabled);
166 	list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
167 	vmdirq->enabled = true;
168 	raw_spin_unlock_irqrestore(&list_lock, flags);
169 
170 	data->chip->irq_unmask(data);
171 }
172 
173 static void vmd_irq_disable(struct irq_data *data)
174 {
175 	struct vmd_irq *vmdirq = data->chip_data;
176 	unsigned long flags;
177 
178 	data->chip->irq_mask(data);
179 
180 	raw_spin_lock_irqsave(&list_lock, flags);
181 	if (vmdirq->enabled) {
182 		list_del_rcu(&vmdirq->node);
183 		vmdirq->enabled = false;
184 	}
185 	raw_spin_unlock_irqrestore(&list_lock, flags);
186 }
187 
188 /*
189  * XXX: Stubbed until we develop acceptable way to not create conflicts with
190  * other devices sharing the same vector.
191  */
192 static int vmd_irq_set_affinity(struct irq_data *data,
193 				const struct cpumask *dest, bool force)
194 {
195 	return -EINVAL;
196 }
197 
198 static struct irq_chip vmd_msi_controller = {
199 	.name			= "VMD-MSI",
200 	.irq_enable		= vmd_irq_enable,
201 	.irq_disable		= vmd_irq_disable,
202 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
203 	.irq_set_affinity	= vmd_irq_set_affinity,
204 };
205 
206 static irq_hw_number_t vmd_get_hwirq(struct msi_domain_info *info,
207 				     msi_alloc_info_t *arg)
208 {
209 	return 0;
210 }
211 
212 /*
213  * XXX: We can be even smarter selecting the best IRQ once we solve the
214  * affinity problem.
215  */
216 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
217 {
218 	unsigned long flags;
219 	int i, best;
220 
221 	if (vmd->msix_count == 1 + vmd->first_vec)
222 		return &vmd->irqs[vmd->first_vec];
223 
224 	/*
225 	 * White list for fast-interrupt handlers. All others will share the
226 	 * "slow" interrupt vector.
227 	 */
228 	switch (msi_desc_to_pci_dev(desc)->class) {
229 	case PCI_CLASS_STORAGE_EXPRESS:
230 		break;
231 	default:
232 		return &vmd->irqs[vmd->first_vec];
233 	}
234 
235 	raw_spin_lock_irqsave(&list_lock, flags);
236 	best = vmd->first_vec + 1;
237 	for (i = best; i < vmd->msix_count; i++)
238 		if (vmd->irqs[i].count < vmd->irqs[best].count)
239 			best = i;
240 	vmd->irqs[best].count++;
241 	raw_spin_unlock_irqrestore(&list_lock, flags);
242 
243 	return &vmd->irqs[best];
244 }
245 
246 static int vmd_msi_init(struct irq_domain *domain, struct msi_domain_info *info,
247 			unsigned int virq, irq_hw_number_t hwirq,
248 			msi_alloc_info_t *arg)
249 {
250 	struct msi_desc *desc = arg->desc;
251 	struct vmd_dev *vmd = vmd_from_bus(msi_desc_to_pci_dev(desc)->bus);
252 	struct vmd_irq *vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
253 	unsigned int index, vector;
254 
255 	if (!vmdirq)
256 		return -ENOMEM;
257 
258 	INIT_LIST_HEAD(&vmdirq->node);
259 	vmdirq->irq = vmd_next_irq(vmd, desc);
260 	vmdirq->virq = virq;
261 	index = index_from_irqs(vmd, vmdirq->irq);
262 	vector = pci_irq_vector(vmd->dev, index);
263 
264 	irq_domain_set_info(domain, virq, vector, info->chip, vmdirq,
265 			    handle_untracked_irq, vmd, NULL);
266 	return 0;
267 }
268 
269 static void vmd_msi_free(struct irq_domain *domain,
270 			struct msi_domain_info *info, unsigned int virq)
271 {
272 	struct vmd_irq *vmdirq = irq_get_chip_data(virq);
273 	unsigned long flags;
274 
275 	synchronize_srcu(&vmdirq->irq->srcu);
276 
277 	/* XXX: Potential optimization to rebalance */
278 	raw_spin_lock_irqsave(&list_lock, flags);
279 	vmdirq->irq->count--;
280 	raw_spin_unlock_irqrestore(&list_lock, flags);
281 
282 	kfree(vmdirq);
283 }
284 
285 static int vmd_msi_prepare(struct irq_domain *domain, struct device *dev,
286 			   int nvec, msi_alloc_info_t *arg)
287 {
288 	struct pci_dev *pdev = to_pci_dev(dev);
289 	struct vmd_dev *vmd = vmd_from_bus(pdev->bus);
290 
291 	if (nvec > vmd->msix_count)
292 		return vmd->msix_count;
293 
294 	memset(arg, 0, sizeof(*arg));
295 	return 0;
296 }
297 
298 static void vmd_set_desc(msi_alloc_info_t *arg, struct msi_desc *desc)
299 {
300 	arg->desc = desc;
301 }
302 
303 static struct msi_domain_ops vmd_msi_domain_ops = {
304 	.get_hwirq	= vmd_get_hwirq,
305 	.msi_init	= vmd_msi_init,
306 	.msi_free	= vmd_msi_free,
307 	.msi_prepare	= vmd_msi_prepare,
308 	.set_desc	= vmd_set_desc,
309 };
310 
311 static struct msi_domain_info vmd_msi_domain_info = {
312 	.flags		= MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS |
313 			  MSI_FLAG_PCI_MSIX,
314 	.ops		= &vmd_msi_domain_ops,
315 	.chip		= &vmd_msi_controller,
316 };
317 
318 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
319 {
320 	u16 reg;
321 
322 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
323 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
324 		       (reg | VMCONFIG_MSI_REMAP);
325 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
326 }
327 
328 static int vmd_create_irq_domain(struct vmd_dev *vmd)
329 {
330 	struct fwnode_handle *fn;
331 
332 	fn = irq_domain_alloc_named_id_fwnode("VMD-MSI", vmd->sysdata.domain);
333 	if (!fn)
334 		return -ENODEV;
335 
336 	vmd->irq_domain = pci_msi_create_irq_domain(fn, &vmd_msi_domain_info, NULL);
337 	if (!vmd->irq_domain) {
338 		irq_domain_free_fwnode(fn);
339 		return -ENODEV;
340 	}
341 
342 	return 0;
343 }
344 
345 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
346 {
347 	/*
348 	 * Some production BIOS won't enable remapping between soft reboots.
349 	 * Ensure remapping is restored before unloading the driver.
350 	 */
351 	if (!vmd->msix_count)
352 		vmd_set_msi_remapping(vmd, true);
353 
354 	if (vmd->irq_domain) {
355 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
356 
357 		irq_domain_remove(vmd->irq_domain);
358 		irq_domain_free_fwnode(fn);
359 	}
360 }
361 
362 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
363 				  unsigned int devfn, int reg, int len)
364 {
365 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
366 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
367 
368 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
369 		return NULL;
370 
371 	return vmd->cfgbar + offset;
372 }
373 
374 /*
375  * CPU may deadlock if config space is not serialized on some versions of this
376  * hardware, so all config space access is done under a spinlock.
377  */
378 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
379 			int len, u32 *value)
380 {
381 	struct vmd_dev *vmd = vmd_from_bus(bus);
382 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
383 	unsigned long flags;
384 	int ret = 0;
385 
386 	if (!addr)
387 		return -EFAULT;
388 
389 	spin_lock_irqsave(&vmd->cfg_lock, flags);
390 	switch (len) {
391 	case 1:
392 		*value = readb(addr);
393 		break;
394 	case 2:
395 		*value = readw(addr);
396 		break;
397 	case 4:
398 		*value = readl(addr);
399 		break;
400 	default:
401 		ret = -EINVAL;
402 		break;
403 	}
404 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
405 	return ret;
406 }
407 
408 /*
409  * VMD h/w converts non-posted config writes to posted memory writes. The
410  * read-back in this function forces the completion so it returns only after
411  * the config space was written, as expected.
412  */
413 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
414 			 int len, u32 value)
415 {
416 	struct vmd_dev *vmd = vmd_from_bus(bus);
417 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
418 	unsigned long flags;
419 	int ret = 0;
420 
421 	if (!addr)
422 		return -EFAULT;
423 
424 	spin_lock_irqsave(&vmd->cfg_lock, flags);
425 	switch (len) {
426 	case 1:
427 		writeb(value, addr);
428 		readb(addr);
429 		break;
430 	case 2:
431 		writew(value, addr);
432 		readw(addr);
433 		break;
434 	case 4:
435 		writel(value, addr);
436 		readl(addr);
437 		break;
438 	default:
439 		ret = -EINVAL;
440 		break;
441 	}
442 	spin_unlock_irqrestore(&vmd->cfg_lock, flags);
443 	return ret;
444 }
445 
446 static struct pci_ops vmd_ops = {
447 	.read		= vmd_pci_read,
448 	.write		= vmd_pci_write,
449 };
450 
451 #ifdef CONFIG_ACPI
452 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
453 {
454 	struct pci_host_bridge *bridge;
455 	u32 busnr, addr;
456 
457 	if (pci_dev->bus->ops != &vmd_ops)
458 		return NULL;
459 
460 	bridge = pci_find_host_bridge(pci_dev->bus);
461 	busnr = pci_dev->bus->number - bridge->bus->number;
462 	/*
463 	 * The address computation below is only applicable to relative bus
464 	 * numbers below 32.
465 	 */
466 	if (busnr > 31)
467 		return NULL;
468 
469 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
470 
471 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
472 		addr);
473 
474 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
475 				      false);
476 }
477 
478 static bool hook_installed;
479 
480 static void vmd_acpi_begin(void)
481 {
482 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
483 		return;
484 
485 	hook_installed = true;
486 }
487 
488 static void vmd_acpi_end(void)
489 {
490 	if (!hook_installed)
491 		return;
492 
493 	pci_acpi_clear_companion_lookup_hook();
494 	hook_installed = false;
495 }
496 #else
497 static inline void vmd_acpi_begin(void) { }
498 static inline void vmd_acpi_end(void) { }
499 #endif /* CONFIG_ACPI */
500 
501 static void vmd_attach_resources(struct vmd_dev *vmd)
502 {
503 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
504 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
505 }
506 
507 static void vmd_detach_resources(struct vmd_dev *vmd)
508 {
509 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
510 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
511 }
512 
513 /*
514  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
515  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
516  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
517  * currently reserved.
518  */
519 static int vmd_find_free_domain(void)
520 {
521 	int domain = 0xffff;
522 	struct pci_bus *bus = NULL;
523 
524 	while ((bus = pci_find_next_bus(bus)) != NULL)
525 		domain = max_t(int, domain, pci_domain_nr(bus));
526 	return domain + 1;
527 }
528 
529 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
530 				resource_size_t *offset1,
531 				resource_size_t *offset2)
532 {
533 	struct pci_dev *dev = vmd->dev;
534 	u64 phys1, phys2;
535 
536 	if (native_hint) {
537 		u32 vmlock;
538 		int ret;
539 
540 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
541 		if (ret || vmlock == ~0)
542 			return -ENODEV;
543 
544 		if (MB2_SHADOW_EN(vmlock)) {
545 			void __iomem *membar2;
546 
547 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
548 			if (!membar2)
549 				return -ENOMEM;
550 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
551 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
552 			pci_iounmap(dev, membar2);
553 		} else
554 			return 0;
555 	} else {
556 		/* Hypervisor-Emulated Vendor-Specific Capability */
557 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
558 		u32 reg, regu;
559 
560 		pci_read_config_dword(dev, pos + 4, &reg);
561 
562 		/* "SHDW" */
563 		if (pos && reg == 0x53484457) {
564 			pci_read_config_dword(dev, pos + 8, &reg);
565 			pci_read_config_dword(dev, pos + 12, &regu);
566 			phys1 = (u64) regu << 32 | reg;
567 
568 			pci_read_config_dword(dev, pos + 16, &reg);
569 			pci_read_config_dword(dev, pos + 20, &regu);
570 			phys2 = (u64) regu << 32 | reg;
571 		} else
572 			return 0;
573 	}
574 
575 	*offset1 = dev->resource[VMD_MEMBAR1].start -
576 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
577 	*offset2 = dev->resource[VMD_MEMBAR2].start -
578 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
579 
580 	return 0;
581 }
582 
583 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
584 {
585 	struct pci_dev *dev = vmd->dev;
586 	u16 reg;
587 
588 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
589 	if (BUS_RESTRICT_CAP(reg)) {
590 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
591 
592 		switch (BUS_RESTRICT_CFG(reg)) {
593 		case 0:
594 			vmd->busn_start = 0;
595 			break;
596 		case 1:
597 			vmd->busn_start = 128;
598 			break;
599 		case 2:
600 			vmd->busn_start = 224;
601 			break;
602 		default:
603 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
604 				BUS_RESTRICT_CFG(reg));
605 			return -ENODEV;
606 		}
607 	}
608 
609 	return 0;
610 }
611 
612 static irqreturn_t vmd_irq(int irq, void *data)
613 {
614 	struct vmd_irq_list *irqs = data;
615 	struct vmd_irq *vmdirq;
616 	int idx;
617 
618 	idx = srcu_read_lock(&irqs->srcu);
619 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
620 		generic_handle_irq(vmdirq->virq);
621 	srcu_read_unlock(&irqs->srcu, idx);
622 
623 	return IRQ_HANDLED;
624 }
625 
626 static int vmd_alloc_irqs(struct vmd_dev *vmd)
627 {
628 	struct pci_dev *dev = vmd->dev;
629 	int i, err;
630 
631 	vmd->msix_count = pci_msix_vec_count(dev);
632 	if (vmd->msix_count < 0)
633 		return -ENODEV;
634 
635 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
636 						vmd->msix_count, PCI_IRQ_MSIX);
637 	if (vmd->msix_count < 0)
638 		return vmd->msix_count;
639 
640 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
641 				 GFP_KERNEL);
642 	if (!vmd->irqs)
643 		return -ENOMEM;
644 
645 	for (i = 0; i < vmd->msix_count; i++) {
646 		err = init_srcu_struct(&vmd->irqs[i].srcu);
647 		if (err)
648 			return err;
649 
650 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
651 		err = devm_request_irq(&dev->dev, pci_irq_vector(dev, i),
652 				       vmd_irq, IRQF_NO_THREAD,
653 				       "vmd", &vmd->irqs[i]);
654 		if (err)
655 			return err;
656 	}
657 
658 	return 0;
659 }
660 
661 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
662 {
663 	struct pci_sysdata *sd = &vmd->sysdata;
664 	struct resource *res;
665 	u32 upper_bits;
666 	unsigned long flags;
667 	LIST_HEAD(resources);
668 	resource_size_t offset[2] = {0};
669 	resource_size_t membar2_offset = 0x2000;
670 	struct pci_bus *child;
671 	int ret;
672 
673 	/*
674 	 * Shadow registers may exist in certain VMD device ids which allow
675 	 * guests to correctly assign host physical addresses to the root ports
676 	 * and child devices. These registers will either return the host value
677 	 * or 0, depending on an enable bit in the VMD device.
678 	 */
679 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
680 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
681 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
682 		if (ret)
683 			return ret;
684 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
685 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
686 		if (ret)
687 			return ret;
688 	}
689 
690 	/*
691 	 * Certain VMD devices may have a root port configuration option which
692 	 * limits the bus range to between 0-127, 128-255, or 224-255
693 	 */
694 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
695 		ret = vmd_get_bus_number_start(vmd);
696 		if (ret)
697 			return ret;
698 	}
699 
700 	res = &vmd->dev->resource[VMD_CFGBAR];
701 	vmd->resources[0] = (struct resource) {
702 		.name  = "VMD CFGBAR",
703 		.start = vmd->busn_start,
704 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
705 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
706 	};
707 
708 	/*
709 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
710 	 * put 32-bit resources in the window.
711 	 *
712 	 * There's no hardware reason why a 64-bit window *couldn't*
713 	 * contain a 32-bit resource, but pbus_size_mem() computes the
714 	 * bridge window size assuming a 64-bit window will contain no
715 	 * 32-bit resources.  __pci_assign_resource() enforces that
716 	 * artificial restriction to make sure everything will fit.
717 	 *
718 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
719 	 * if its address is <4GB so that we can convert it to a 32-bit
720 	 * resource.  To be visible to the host OS, all VMD endpoints must
721 	 * be initially configured by platform BIOS, which includes setting
722 	 * up these resources.  We can assume the device is configured
723 	 * according to the platform needs.
724 	 */
725 	res = &vmd->dev->resource[VMD_MEMBAR1];
726 	upper_bits = upper_32_bits(res->end);
727 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
728 	if (!upper_bits)
729 		flags &= ~IORESOURCE_MEM_64;
730 	vmd->resources[1] = (struct resource) {
731 		.name  = "VMD MEMBAR1",
732 		.start = res->start,
733 		.end   = res->end,
734 		.flags = flags,
735 		.parent = res,
736 	};
737 
738 	res = &vmd->dev->resource[VMD_MEMBAR2];
739 	upper_bits = upper_32_bits(res->end);
740 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
741 	if (!upper_bits)
742 		flags &= ~IORESOURCE_MEM_64;
743 	vmd->resources[2] = (struct resource) {
744 		.name  = "VMD MEMBAR2",
745 		.start = res->start + membar2_offset,
746 		.end   = res->end,
747 		.flags = flags,
748 		.parent = res,
749 	};
750 
751 	sd->vmd_dev = vmd->dev;
752 	sd->domain = vmd_find_free_domain();
753 	if (sd->domain < 0)
754 		return sd->domain;
755 
756 	sd->node = pcibus_to_node(vmd->dev->bus);
757 
758 	/*
759 	 * Currently MSI remapping must be enabled in guest passthrough mode
760 	 * due to some missing interrupt remapping plumbing. This is probably
761 	 * acceptable because the guest is usually CPU-limited and MSI
762 	 * remapping doesn't become a performance bottleneck.
763 	 */
764 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
765 	    offset[0] || offset[1]) {
766 		ret = vmd_alloc_irqs(vmd);
767 		if (ret)
768 			return ret;
769 
770 		vmd_set_msi_remapping(vmd, true);
771 
772 		ret = vmd_create_irq_domain(vmd);
773 		if (ret)
774 			return ret;
775 
776 		/*
777 		 * Override the IRQ domain bus token so the domain can be
778 		 * distinguished from a regular PCI/MSI domain.
779 		 */
780 		irq_domain_update_bus_token(vmd->irq_domain, DOMAIN_BUS_VMD_MSI);
781 	} else {
782 		vmd_set_msi_remapping(vmd, false);
783 	}
784 
785 	pci_add_resource(&resources, &vmd->resources[0]);
786 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
787 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
788 
789 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
790 				       &vmd_ops, sd, &resources);
791 	if (!vmd->bus) {
792 		pci_free_resource_list(&resources);
793 		vmd_remove_irq_domain(vmd);
794 		return -ENODEV;
795 	}
796 
797 	vmd_attach_resources(vmd);
798 	if (vmd->irq_domain)
799 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
800 
801 	vmd_acpi_begin();
802 
803 	pci_scan_child_bus(vmd->bus);
804 	pci_assign_unassigned_bus_resources(vmd->bus);
805 
806 	/*
807 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
808 	 * and will fail pcie_bus_configure_settings() early. It can instead be
809 	 * run on each of the real root ports.
810 	 */
811 	list_for_each_entry(child, &vmd->bus->children, node)
812 		pcie_bus_configure_settings(child);
813 
814 	pci_bus_add_devices(vmd->bus);
815 
816 	vmd_acpi_end();
817 
818 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
819 			       "domain"), "Can't create symlink to domain\n");
820 	return 0;
821 }
822 
823 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
824 {
825 	unsigned long features = (unsigned long) id->driver_data;
826 	struct vmd_dev *vmd;
827 	int err;
828 
829 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
830 		return -ENOMEM;
831 
832 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
833 	if (!vmd)
834 		return -ENOMEM;
835 
836 	vmd->dev = dev;
837 	err = pcim_enable_device(dev);
838 	if (err < 0)
839 		return err;
840 
841 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
842 	if (!vmd->cfgbar)
843 		return -ENOMEM;
844 
845 	pci_set_master(dev);
846 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
847 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32)))
848 		return -ENODEV;
849 
850 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
851 		vmd->first_vec = 1;
852 
853 	spin_lock_init(&vmd->cfg_lock);
854 	pci_set_drvdata(dev, vmd);
855 	err = vmd_enable_domain(vmd, features);
856 	if (err)
857 		return err;
858 
859 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
860 		 vmd->sysdata.domain);
861 	return 0;
862 }
863 
864 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
865 {
866 	int i;
867 
868 	for (i = 0; i < vmd->msix_count; i++)
869 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
870 }
871 
872 static void vmd_remove(struct pci_dev *dev)
873 {
874 	struct vmd_dev *vmd = pci_get_drvdata(dev);
875 
876 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
877 	pci_stop_root_bus(vmd->bus);
878 	pci_remove_root_bus(vmd->bus);
879 	vmd_cleanup_srcu(vmd);
880 	vmd_detach_resources(vmd);
881 	vmd_remove_irq_domain(vmd);
882 }
883 
884 #ifdef CONFIG_PM_SLEEP
885 static int vmd_suspend(struct device *dev)
886 {
887 	struct pci_dev *pdev = to_pci_dev(dev);
888 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
889 	int i;
890 
891 	for (i = 0; i < vmd->msix_count; i++)
892 		devm_free_irq(dev, pci_irq_vector(pdev, i), &vmd->irqs[i]);
893 
894 	return 0;
895 }
896 
897 static int vmd_resume(struct device *dev)
898 {
899 	struct pci_dev *pdev = to_pci_dev(dev);
900 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
901 	int err, i;
902 
903 	for (i = 0; i < vmd->msix_count; i++) {
904 		err = devm_request_irq(dev, pci_irq_vector(pdev, i),
905 				       vmd_irq, IRQF_NO_THREAD,
906 				       "vmd", &vmd->irqs[i]);
907 		if (err)
908 			return err;
909 	}
910 
911 	return 0;
912 }
913 #endif
914 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
915 
916 static const struct pci_device_id vmd_ids[] = {
917 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
918 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
919 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
920 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
921 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
922 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
923 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x467f),
924 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
925 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
926 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
927 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, 0x4c3d),
928 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
929 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
930 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
931 	{PCI_DEVICE(PCI_VENDOR_ID_INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
932 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |
933 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
934 				VMD_FEAT_OFFSET_FIRST_VECTOR,},
935 	{0,}
936 };
937 MODULE_DEVICE_TABLE(pci, vmd_ids);
938 
939 static struct pci_driver vmd_drv = {
940 	.name		= "vmd",
941 	.id_table	= vmd_ids,
942 	.probe		= vmd_probe,
943 	.remove		= vmd_remove,
944 	.driver		= {
945 		.pm	= &vmd_dev_pm_ops,
946 	},
947 };
948 module_pci_driver(vmd_drv);
949 
950 MODULE_AUTHOR("Intel Corporation");
951 MODULE_LICENSE("GPL v2");
952 MODULE_VERSION("0.6");
953