xref: /linux/drivers/pci/controller/vmd.c (revision e67bb0da332c6058b29a9c46cc4035647d049a0c)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Volume Management Device driver
4  * Copyright (c) 2015, Intel Corporation.
5  */
6 
7 #include <linux/device.h>
8 #include <linux/interrupt.h>
9 #include <linux/irq.h>
10 #include <linux/irqchip/irq-msi-lib.h>
11 #include <linux/kernel.h>
12 #include <linux/module.h>
13 #include <linux/msi.h>
14 #include <linux/pci.h>
15 #include <linux/pci-acpi.h>
16 #include <linux/pci-ecam.h>
17 #include <linux/srcu.h>
18 #include <linux/rculist.h>
19 #include <linux/rcupdate.h>
20 
21 #include <xen/xen.h>
22 
23 #include <asm/irqdomain.h>
24 
25 #define VMD_CFGBAR	0
26 #define VMD_MEMBAR1	2
27 #define VMD_MEMBAR2	4
28 
29 #define PCI_REG_VMCAP		0x40
30 #define BUS_RESTRICT_CAP(vmcap)	(vmcap & 0x1)
31 #define PCI_REG_VMCONFIG	0x44
32 #define BUS_RESTRICT_CFG(vmcfg)	((vmcfg >> 8) & 0x3)
33 #define VMCONFIG_MSI_REMAP	0x2
34 #define PCI_REG_VMLOCK		0x70
35 #define MB2_SHADOW_EN(vmlock)	(vmlock & 0x2)
36 
37 #define MB2_SHADOW_OFFSET	0x2000
38 #define MB2_SHADOW_SIZE		16
39 
40 enum vmd_features {
41 	/*
42 	 * Device may contain registers which hint the physical location of the
43 	 * membars, in order to allow proper address translation during
44 	 * resource assignment to enable guest virtualization
45 	 */
46 	VMD_FEAT_HAS_MEMBAR_SHADOW		= (1 << 0),
47 
48 	/*
49 	 * Device may provide root port configuration information which limits
50 	 * bus numbering
51 	 */
52 	VMD_FEAT_HAS_BUS_RESTRICTIONS		= (1 << 1),
53 
54 	/*
55 	 * Device contains physical location shadow registers in
56 	 * vendor-specific capability space
57 	 */
58 	VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP	= (1 << 2),
59 
60 	/*
61 	 * Device may use MSI-X vector 0 for software triggering and will not
62 	 * be used for MSI remapping
63 	 */
64 	VMD_FEAT_OFFSET_FIRST_VECTOR		= (1 << 3),
65 
66 	/*
67 	 * Device can bypass remapping MSI-X transactions into its MSI-X table,
68 	 * avoiding the requirement of a VMD MSI domain for child device
69 	 * interrupt handling.
70 	 */
71 	VMD_FEAT_CAN_BYPASS_MSI_REMAP		= (1 << 4),
72 
73 	/*
74 	 * Enable ASPM on the PCIE root ports and set the default LTR of the
75 	 * storage devices on platforms where these values are not configured by
76 	 * BIOS. This is needed for laptops, which require these settings for
77 	 * proper power management of the SoC.
78 	 */
79 	VMD_FEAT_BIOS_PM_QUIRK		= (1 << 5),
80 };
81 
82 #define VMD_BIOS_PM_QUIRK_LTR	0x1003	/* 3145728 ns */
83 
84 #define VMD_FEATS_CLIENT	(VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP |	\
85 				 VMD_FEAT_HAS_BUS_RESTRICTIONS |	\
86 				 VMD_FEAT_OFFSET_FIRST_VECTOR |		\
87 				 VMD_FEAT_BIOS_PM_QUIRK)
88 
89 static DEFINE_IDA(vmd_instance_ida);
90 
91 /*
92  * Lock for manipulating VMD IRQ lists.
93  */
94 static DEFINE_RAW_SPINLOCK(list_lock);
95 
96 /**
97  * struct vmd_irq - private data to map driver IRQ to the VMD shared vector
98  * @node:	list item for parent traversal.
99  * @irq:	back pointer to parent.
100  * @enabled:	true if driver enabled IRQ
101  * @virq:	the virtual IRQ value provided to the requesting driver.
102  *
103  * Every MSI/MSI-X IRQ requested for a device in a VMD domain will be mapped to
104  * a VMD IRQ using this structure.
105  */
106 struct vmd_irq {
107 	struct list_head	node;
108 	struct vmd_irq_list	*irq;
109 	bool			enabled;
110 	unsigned int		virq;
111 };
112 
113 /**
114  * struct vmd_irq_list - list of driver requested IRQs mapping to a VMD vector
115  * @irq_list:	the list of irq's the VMD one demuxes to.
116  * @srcu:	SRCU struct for local synchronization.
117  * @count:	number of child IRQs assigned to this vector; used to track
118  *		sharing.
119  * @virq:	The underlying VMD Linux interrupt number
120  */
121 struct vmd_irq_list {
122 	struct list_head	irq_list;
123 	struct srcu_struct	srcu;
124 	unsigned int		count;
125 	unsigned int		virq;
126 };
127 
128 struct vmd_dev {
129 	struct pci_dev		*dev;
130 
131 	raw_spinlock_t		cfg_lock;
132 	void __iomem		*cfgbar;
133 
134 	int msix_count;
135 	struct vmd_irq_list	*irqs;
136 
137 	struct pci_sysdata	sysdata;
138 	struct resource		resources[3];
139 	struct irq_domain	*irq_domain;
140 	struct pci_bus		*bus;
141 	u8			busn_start;
142 	u8			first_vec;
143 	char			*name;
144 	int			instance;
145 };
146 
vmd_from_bus(struct pci_bus * bus)147 static inline struct vmd_dev *vmd_from_bus(struct pci_bus *bus)
148 {
149 	return container_of(bus->sysdata, struct vmd_dev, sysdata);
150 }
151 
index_from_irqs(struct vmd_dev * vmd,struct vmd_irq_list * irqs)152 static inline unsigned int index_from_irqs(struct vmd_dev *vmd,
153 					   struct vmd_irq_list *irqs)
154 {
155 	return irqs - vmd->irqs;
156 }
157 
158 /*
159  * Drivers managing a device in a VMD domain allocate their own IRQs as before,
160  * but the MSI entry for the hardware it's driving will be programmed with a
161  * destination ID for the VMD MSI-X table.  The VMD muxes interrupts in its
162  * domain into one of its own, and the VMD driver de-muxes these for the
163  * handlers sharing that VMD IRQ.  The vmd irq_domain provides the operations
164  * and irq_chip to set this up.
165  */
vmd_compose_msi_msg(struct irq_data * data,struct msi_msg * msg)166 static void vmd_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
167 {
168 	struct vmd_irq *vmdirq = data->chip_data;
169 	struct vmd_irq_list *irq = vmdirq->irq;
170 	struct vmd_dev *vmd = irq_data_get_irq_handler_data(data);
171 
172 	memset(msg, 0, sizeof(*msg));
173 	msg->address_hi = X86_MSI_BASE_ADDRESS_HIGH;
174 	msg->arch_addr_lo.base_address = X86_MSI_BASE_ADDRESS_LOW;
175 	msg->arch_addr_lo.destid_0_7 = index_from_irqs(vmd, irq);
176 }
177 
vmd_irq_enable(struct irq_data * data)178 static void vmd_irq_enable(struct irq_data *data)
179 {
180 	struct vmd_irq *vmdirq = data->chip_data;
181 
182 	scoped_guard(raw_spinlock_irqsave, &list_lock) {
183 		WARN_ON(vmdirq->enabled);
184 		list_add_tail_rcu(&vmdirq->node, &vmdirq->irq->irq_list);
185 		vmdirq->enabled = true;
186 	}
187 }
188 
vmd_pci_msi_enable(struct irq_data * data)189 static void vmd_pci_msi_enable(struct irq_data *data)
190 {
191 	vmd_irq_enable(data->parent_data);
192 	data->chip->irq_unmask(data);
193 }
194 
vmd_pci_msi_startup(struct irq_data * data)195 static unsigned int vmd_pci_msi_startup(struct irq_data *data)
196 {
197 	vmd_pci_msi_enable(data);
198 	return 0;
199 }
200 
vmd_irq_disable(struct irq_data * data)201 static void vmd_irq_disable(struct irq_data *data)
202 {
203 	struct vmd_irq *vmdirq = data->chip_data;
204 
205 	scoped_guard(raw_spinlock_irqsave, &list_lock) {
206 		if (vmdirq->enabled) {
207 			list_del_rcu(&vmdirq->node);
208 			vmdirq->enabled = false;
209 		}
210 	}
211 }
212 
vmd_pci_msi_disable(struct irq_data * data)213 static void vmd_pci_msi_disable(struct irq_data *data)
214 {
215 	data->chip->irq_mask(data);
216 	vmd_irq_disable(data->parent_data);
217 }
218 
vmd_pci_msi_shutdown(struct irq_data * data)219 static void vmd_pci_msi_shutdown(struct irq_data *data)
220 {
221 	vmd_pci_msi_disable(data);
222 }
223 
224 static struct irq_chip vmd_msi_controller = {
225 	.name			= "VMD-MSI",
226 	.irq_compose_msi_msg	= vmd_compose_msi_msg,
227 };
228 
229 /*
230  * XXX: We can be even smarter selecting the best IRQ once we solve the
231  * affinity problem.
232  */
vmd_next_irq(struct vmd_dev * vmd,struct msi_desc * desc)233 static struct vmd_irq_list *vmd_next_irq(struct vmd_dev *vmd, struct msi_desc *desc)
234 {
235 	int i, best;
236 
237 	if (vmd->msix_count == 1 + vmd->first_vec)
238 		return &vmd->irqs[vmd->first_vec];
239 
240 	/*
241 	 * White list for fast-interrupt handlers. All others will share the
242 	 * "slow" interrupt vector.
243 	 */
244 	switch (msi_desc_to_pci_dev(desc)->class) {
245 	case PCI_CLASS_STORAGE_EXPRESS:
246 		break;
247 	default:
248 		return &vmd->irqs[vmd->first_vec];
249 	}
250 
251 	scoped_guard(raw_spinlock_irq, &list_lock) {
252 		best = vmd->first_vec + 1;
253 		for (i = best; i < vmd->msix_count; i++)
254 			if (vmd->irqs[i].count < vmd->irqs[best].count)
255 				best = i;
256 		vmd->irqs[best].count++;
257 	}
258 
259 	return &vmd->irqs[best];
260 }
261 
262 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
263 			 unsigned int nr_irqs);
264 
vmd_msi_alloc(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs,void * arg)265 static int vmd_msi_alloc(struct irq_domain *domain, unsigned int virq,
266 			 unsigned int nr_irqs, void *arg)
267 {
268 	struct msi_desc *desc = ((msi_alloc_info_t *)arg)->desc;
269 	struct vmd_dev *vmd = domain->host_data;
270 	struct vmd_irq *vmdirq;
271 
272 	for (int i = 0; i < nr_irqs; ++i) {
273 		vmdirq = kzalloc(sizeof(*vmdirq), GFP_KERNEL);
274 		if (!vmdirq) {
275 			vmd_msi_free(domain, virq, i);
276 			return -ENOMEM;
277 		}
278 
279 		INIT_LIST_HEAD(&vmdirq->node);
280 		vmdirq->irq = vmd_next_irq(vmd, desc);
281 		vmdirq->virq = virq + i;
282 
283 		irq_domain_set_info(domain, virq + i, vmdirq->irq->virq,
284 				    &vmd_msi_controller, vmdirq,
285 				    handle_untracked_irq, vmd, NULL);
286 	}
287 
288 	return 0;
289 }
290 
vmd_msi_free(struct irq_domain * domain,unsigned int virq,unsigned int nr_irqs)291 static void vmd_msi_free(struct irq_domain *domain, unsigned int virq,
292 			 unsigned int nr_irqs)
293 {
294 	struct irq_data *irq_data;
295 	struct vmd_irq *vmdirq;
296 
297 	for (int i = 0; i < nr_irqs; ++i) {
298 		irq_data = irq_domain_get_irq_data(domain, virq + i);
299 		vmdirq = irq_data->chip_data;
300 
301 		synchronize_srcu(&vmdirq->irq->srcu);
302 
303 		/* XXX: Potential optimization to rebalance */
304 		scoped_guard(raw_spinlock_irq, &list_lock)
305 			vmdirq->irq->count--;
306 
307 		kfree(vmdirq);
308 	}
309 }
310 
311 static const struct irq_domain_ops vmd_msi_domain_ops = {
312 	.alloc		= vmd_msi_alloc,
313 	.free		= vmd_msi_free,
314 };
315 
vmd_init_dev_msi_info(struct device * dev,struct irq_domain * domain,struct irq_domain * real_parent,struct msi_domain_info * info)316 static bool vmd_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
317 				  struct irq_domain *real_parent,
318 				  struct msi_domain_info *info)
319 {
320 	if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
321 		return false;
322 
323 	info->chip->irq_startup		= vmd_pci_msi_startup;
324 	info->chip->irq_shutdown	= vmd_pci_msi_shutdown;
325 	info->chip->irq_enable		= vmd_pci_msi_enable;
326 	info->chip->irq_disable		= vmd_pci_msi_disable;
327 	return true;
328 }
329 
330 #define VMD_MSI_FLAGS_SUPPORTED	(MSI_GENERIC_FLAGS_MASK | MSI_FLAG_PCI_MSIX)
331 #define VMD_MSI_FLAGS_REQUIRED	(MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_NO_AFFINITY)
332 
333 static const struct msi_parent_ops vmd_msi_parent_ops = {
334 	.supported_flags	= VMD_MSI_FLAGS_SUPPORTED,
335 	.required_flags		= VMD_MSI_FLAGS_REQUIRED,
336 	.bus_select_token	= DOMAIN_BUS_VMD_MSI,
337 	.bus_select_mask	= MATCH_PCI_MSI,
338 	.prefix			= "VMD-",
339 	.init_dev_msi_info	= vmd_init_dev_msi_info,
340 };
341 
vmd_create_irq_domain(struct vmd_dev * vmd)342 static int vmd_create_irq_domain(struct vmd_dev *vmd)
343 {
344 	struct irq_domain_info info = {
345 		.size		= vmd->msix_count,
346 		.ops		= &vmd_msi_domain_ops,
347 		.host_data	= vmd,
348 	};
349 
350 	info.fwnode = irq_domain_alloc_named_id_fwnode("VMD-MSI",
351 						       vmd->sysdata.domain);
352 	if (!info.fwnode)
353 		return -ENODEV;
354 
355 	vmd->irq_domain = msi_create_parent_irq_domain(&info,
356 						       &vmd_msi_parent_ops);
357 	if (!vmd->irq_domain) {
358 		irq_domain_free_fwnode(info.fwnode);
359 		return -ENODEV;
360 	}
361 
362 	return 0;
363 }
364 
vmd_set_msi_remapping(struct vmd_dev * vmd,bool enable)365 static void vmd_set_msi_remapping(struct vmd_dev *vmd, bool enable)
366 {
367 	u16 reg;
368 
369 	pci_read_config_word(vmd->dev, PCI_REG_VMCONFIG, &reg);
370 	reg = enable ? (reg & ~VMCONFIG_MSI_REMAP) :
371 		       (reg | VMCONFIG_MSI_REMAP);
372 	pci_write_config_word(vmd->dev, PCI_REG_VMCONFIG, reg);
373 }
374 
vmd_remove_irq_domain(struct vmd_dev * vmd)375 static void vmd_remove_irq_domain(struct vmd_dev *vmd)
376 {
377 	/*
378 	 * Some production BIOS won't enable remapping between soft reboots.
379 	 * Ensure remapping is restored before unloading the driver.
380 	 */
381 	if (!vmd->msix_count)
382 		vmd_set_msi_remapping(vmd, true);
383 
384 	if (vmd->irq_domain) {
385 		struct fwnode_handle *fn = vmd->irq_domain->fwnode;
386 
387 		irq_domain_remove(vmd->irq_domain);
388 		irq_domain_free_fwnode(fn);
389 	}
390 }
391 
vmd_cfg_addr(struct vmd_dev * vmd,struct pci_bus * bus,unsigned int devfn,int reg,int len)392 static void __iomem *vmd_cfg_addr(struct vmd_dev *vmd, struct pci_bus *bus,
393 				  unsigned int devfn, int reg, int len)
394 {
395 	unsigned int busnr_ecam = bus->number - vmd->busn_start;
396 	u32 offset = PCIE_ECAM_OFFSET(busnr_ecam, devfn, reg);
397 
398 	if (offset + len >= resource_size(&vmd->dev->resource[VMD_CFGBAR]))
399 		return NULL;
400 
401 	return vmd->cfgbar + offset;
402 }
403 
404 /*
405  * CPU may deadlock if config space is not serialized on some versions of this
406  * hardware, so all config space access is done under a spinlock.
407  */
vmd_pci_read(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 * value)408 static int vmd_pci_read(struct pci_bus *bus, unsigned int devfn, int reg,
409 			int len, u32 *value)
410 {
411 	struct vmd_dev *vmd = vmd_from_bus(bus);
412 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
413 
414 	if (!addr)
415 		return -EFAULT;
416 
417 	guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
418 	switch (len) {
419 	case 1:
420 		*value = readb(addr);
421 		return 0;
422 	case 2:
423 		*value = readw(addr);
424 		return 0;
425 	case 4:
426 		*value = readl(addr);
427 		return 0;
428 	default:
429 		return -EINVAL;
430 	}
431 }
432 
433 /*
434  * VMD h/w converts non-posted config writes to posted memory writes. The
435  * read-back in this function forces the completion so it returns only after
436  * the config space was written, as expected.
437  */
vmd_pci_write(struct pci_bus * bus,unsigned int devfn,int reg,int len,u32 value)438 static int vmd_pci_write(struct pci_bus *bus, unsigned int devfn, int reg,
439 			 int len, u32 value)
440 {
441 	struct vmd_dev *vmd = vmd_from_bus(bus);
442 	void __iomem *addr = vmd_cfg_addr(vmd, bus, devfn, reg, len);
443 
444 	if (!addr)
445 		return -EFAULT;
446 
447 	guard(raw_spinlock_irqsave)(&vmd->cfg_lock);
448 	switch (len) {
449 	case 1:
450 		writeb(value, addr);
451 		readb(addr);
452 		return 0;
453 	case 2:
454 		writew(value, addr);
455 		readw(addr);
456 		return 0;
457 	case 4:
458 		writel(value, addr);
459 		readl(addr);
460 		return 0;
461 	default:
462 		return -EINVAL;
463 	}
464 }
465 
466 static struct pci_ops vmd_ops = {
467 	.read		= vmd_pci_read,
468 	.write		= vmd_pci_write,
469 };
470 
471 #ifdef CONFIG_ACPI
vmd_acpi_find_companion(struct pci_dev * pci_dev)472 static struct acpi_device *vmd_acpi_find_companion(struct pci_dev *pci_dev)
473 {
474 	struct pci_host_bridge *bridge;
475 	u32 busnr, addr;
476 
477 	if (pci_dev->bus->ops != &vmd_ops)
478 		return NULL;
479 
480 	bridge = pci_find_host_bridge(pci_dev->bus);
481 	busnr = pci_dev->bus->number - bridge->bus->number;
482 	/*
483 	 * The address computation below is only applicable to relative bus
484 	 * numbers below 32.
485 	 */
486 	if (busnr > 31)
487 		return NULL;
488 
489 	addr = (busnr << 24) | ((u32)pci_dev->devfn << 16) | 0x8000FFFFU;
490 
491 	dev_dbg(&pci_dev->dev, "Looking for ACPI companion (address 0x%x)\n",
492 		addr);
493 
494 	return acpi_find_child_device(ACPI_COMPANION(bridge->dev.parent), addr,
495 				      false);
496 }
497 
498 static bool hook_installed;
499 
vmd_acpi_begin(void)500 static void vmd_acpi_begin(void)
501 {
502 	if (pci_acpi_set_companion_lookup_hook(vmd_acpi_find_companion))
503 		return;
504 
505 	hook_installed = true;
506 }
507 
vmd_acpi_end(void)508 static void vmd_acpi_end(void)
509 {
510 	if (!hook_installed)
511 		return;
512 
513 	pci_acpi_clear_companion_lookup_hook();
514 	hook_installed = false;
515 }
516 #else
vmd_acpi_begin(void)517 static inline void vmd_acpi_begin(void) { }
vmd_acpi_end(void)518 static inline void vmd_acpi_end(void) { }
519 #endif /* CONFIG_ACPI */
520 
vmd_domain_reset(struct vmd_dev * vmd)521 static void vmd_domain_reset(struct vmd_dev *vmd)
522 {
523 	u16 bus, max_buses = resource_size(&vmd->resources[0]);
524 	u8 dev, functions, fn, hdr_type;
525 	char __iomem *base;
526 
527 	for (bus = 0; bus < max_buses; bus++) {
528 		for (dev = 0; dev < 32; dev++) {
529 			base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
530 						PCI_DEVFN(dev, 0), 0);
531 
532 			hdr_type = readb(base + PCI_HEADER_TYPE);
533 
534 			functions = (hdr_type & PCI_HEADER_TYPE_MFD) ? 8 : 1;
535 			for (fn = 0; fn < functions; fn++) {
536 				base = vmd->cfgbar + PCIE_ECAM_OFFSET(bus,
537 						PCI_DEVFN(dev, fn), 0);
538 
539 				hdr_type = readb(base + PCI_HEADER_TYPE) &
540 						PCI_HEADER_TYPE_MASK;
541 
542 				if (hdr_type != PCI_HEADER_TYPE_BRIDGE ||
543 				    (readw(base + PCI_CLASS_DEVICE) !=
544 				     PCI_CLASS_BRIDGE_PCI))
545 					continue;
546 
547 				/*
548 				 * Temporarily disable the I/O range before updating
549 				 * PCI_IO_BASE.
550 				 */
551 				writel(0x0000ffff, base + PCI_IO_BASE_UPPER16);
552 				/* Update lower 16 bits of I/O base/limit */
553 				writew(0x00f0, base + PCI_IO_BASE);
554 				/* Update upper 16 bits of I/O base/limit */
555 				writel(0, base + PCI_IO_BASE_UPPER16);
556 
557 				/* MMIO Base/Limit */
558 				writel(0x0000fff0, base + PCI_MEMORY_BASE);
559 
560 				/* Prefetchable MMIO Base/Limit */
561 				writel(0, base + PCI_PREF_LIMIT_UPPER32);
562 				writel(0x0000fff0, base + PCI_PREF_MEMORY_BASE);
563 				writel(0xffffffff, base + PCI_PREF_BASE_UPPER32);
564 			}
565 		}
566 	}
567 }
568 
vmd_attach_resources(struct vmd_dev * vmd)569 static void vmd_attach_resources(struct vmd_dev *vmd)
570 {
571 	vmd->dev->resource[VMD_MEMBAR1].child = &vmd->resources[1];
572 	vmd->dev->resource[VMD_MEMBAR2].child = &vmd->resources[2];
573 }
574 
vmd_detach_resources(struct vmd_dev * vmd)575 static void vmd_detach_resources(struct vmd_dev *vmd)
576 {
577 	vmd->dev->resource[VMD_MEMBAR1].child = NULL;
578 	vmd->dev->resource[VMD_MEMBAR2].child = NULL;
579 }
580 
581 /*
582  * VMD domains start at 0x10000 to not clash with ACPI _SEG domains.
583  * Per ACPI r6.0, sec 6.5.6,  _SEG returns an integer, of which the lower
584  * 16 bits are the PCI Segment Group (domain) number.  Other bits are
585  * currently reserved.
586  */
vmd_find_free_domain(void)587 static int vmd_find_free_domain(void)
588 {
589 	int domain = 0xffff;
590 	struct pci_bus *bus = NULL;
591 
592 	while ((bus = pci_find_next_bus(bus)) != NULL)
593 		domain = max_t(int, domain, pci_domain_nr(bus));
594 	return domain + 1;
595 }
596 
vmd_get_phys_offsets(struct vmd_dev * vmd,bool native_hint,resource_size_t * offset1,resource_size_t * offset2)597 static int vmd_get_phys_offsets(struct vmd_dev *vmd, bool native_hint,
598 				resource_size_t *offset1,
599 				resource_size_t *offset2)
600 {
601 	struct pci_dev *dev = vmd->dev;
602 	u64 phys1, phys2;
603 
604 	if (native_hint) {
605 		u32 vmlock;
606 		int ret;
607 
608 		ret = pci_read_config_dword(dev, PCI_REG_VMLOCK, &vmlock);
609 		if (ret || PCI_POSSIBLE_ERROR(vmlock))
610 			return -ENODEV;
611 
612 		if (MB2_SHADOW_EN(vmlock)) {
613 			void __iomem *membar2;
614 
615 			membar2 = pci_iomap(dev, VMD_MEMBAR2, 0);
616 			if (!membar2)
617 				return -ENOMEM;
618 			phys1 = readq(membar2 + MB2_SHADOW_OFFSET);
619 			phys2 = readq(membar2 + MB2_SHADOW_OFFSET + 8);
620 			pci_iounmap(dev, membar2);
621 		} else
622 			return 0;
623 	} else {
624 		/* Hypervisor-Emulated Vendor-Specific Capability */
625 		int pos = pci_find_capability(dev, PCI_CAP_ID_VNDR);
626 		u32 reg, regu;
627 
628 		pci_read_config_dword(dev, pos + 4, &reg);
629 
630 		/* "SHDW" */
631 		if (pos && reg == 0x53484457) {
632 			pci_read_config_dword(dev, pos + 8, &reg);
633 			pci_read_config_dword(dev, pos + 12, &regu);
634 			phys1 = (u64) regu << 32 | reg;
635 
636 			pci_read_config_dword(dev, pos + 16, &reg);
637 			pci_read_config_dword(dev, pos + 20, &regu);
638 			phys2 = (u64) regu << 32 | reg;
639 		} else
640 			return 0;
641 	}
642 
643 	*offset1 = dev->resource[VMD_MEMBAR1].start -
644 			(phys1 & PCI_BASE_ADDRESS_MEM_MASK);
645 	*offset2 = dev->resource[VMD_MEMBAR2].start -
646 			(phys2 & PCI_BASE_ADDRESS_MEM_MASK);
647 
648 	return 0;
649 }
650 
vmd_get_bus_number_start(struct vmd_dev * vmd)651 static int vmd_get_bus_number_start(struct vmd_dev *vmd)
652 {
653 	struct pci_dev *dev = vmd->dev;
654 	u16 reg;
655 
656 	pci_read_config_word(dev, PCI_REG_VMCAP, &reg);
657 	if (BUS_RESTRICT_CAP(reg)) {
658 		pci_read_config_word(dev, PCI_REG_VMCONFIG, &reg);
659 
660 		switch (BUS_RESTRICT_CFG(reg)) {
661 		case 0:
662 			vmd->busn_start = 0;
663 			break;
664 		case 1:
665 			vmd->busn_start = 128;
666 			break;
667 		case 2:
668 			vmd->busn_start = 224;
669 			break;
670 		default:
671 			pci_err(dev, "Unknown Bus Offset Setting (%d)\n",
672 				BUS_RESTRICT_CFG(reg));
673 			return -ENODEV;
674 		}
675 	}
676 
677 	return 0;
678 }
679 
vmd_irq(int irq,void * data)680 static irqreturn_t vmd_irq(int irq, void *data)
681 {
682 	struct vmd_irq_list *irqs = data;
683 	struct vmd_irq *vmdirq;
684 	int idx;
685 
686 	idx = srcu_read_lock(&irqs->srcu);
687 	list_for_each_entry_rcu(vmdirq, &irqs->irq_list, node)
688 		generic_handle_irq(vmdirq->virq);
689 	srcu_read_unlock(&irqs->srcu, idx);
690 
691 	return IRQ_HANDLED;
692 }
693 
vmd_alloc_irqs(struct vmd_dev * vmd)694 static int vmd_alloc_irqs(struct vmd_dev *vmd)
695 {
696 	struct pci_dev *dev = vmd->dev;
697 	int i, err;
698 
699 	vmd->msix_count = pci_msix_vec_count(dev);
700 	if (vmd->msix_count < 0)
701 		return -ENODEV;
702 
703 	vmd->msix_count = pci_alloc_irq_vectors(dev, vmd->first_vec + 1,
704 						vmd->msix_count, PCI_IRQ_MSIX);
705 	if (vmd->msix_count < 0)
706 		return vmd->msix_count;
707 
708 	vmd->irqs = devm_kcalloc(&dev->dev, vmd->msix_count, sizeof(*vmd->irqs),
709 				 GFP_KERNEL);
710 	if (!vmd->irqs)
711 		return -ENOMEM;
712 
713 	for (i = 0; i < vmd->msix_count; i++) {
714 		err = init_srcu_struct(&vmd->irqs[i].srcu);
715 		if (err)
716 			return err;
717 
718 		INIT_LIST_HEAD(&vmd->irqs[i].irq_list);
719 		vmd->irqs[i].virq = pci_irq_vector(dev, i);
720 		err = devm_request_irq(&dev->dev, vmd->irqs[i].virq,
721 				       vmd_irq, IRQF_NO_THREAD,
722 				       vmd->name, &vmd->irqs[i]);
723 		if (err)
724 			return err;
725 	}
726 
727 	return 0;
728 }
729 
730 /*
731  * Since VMD is an aperture to regular PCIe root ports, only allow it to
732  * control features that the OS is allowed to control on the physical PCI bus.
733  */
vmd_copy_host_bridge_flags(struct pci_host_bridge * root_bridge,struct pci_host_bridge * vmd_bridge)734 static void vmd_copy_host_bridge_flags(struct pci_host_bridge *root_bridge,
735 				       struct pci_host_bridge *vmd_bridge)
736 {
737 	vmd_bridge->native_pcie_hotplug = root_bridge->native_pcie_hotplug;
738 	vmd_bridge->native_shpc_hotplug = root_bridge->native_shpc_hotplug;
739 	vmd_bridge->native_aer = root_bridge->native_aer;
740 	vmd_bridge->native_pme = root_bridge->native_pme;
741 	vmd_bridge->native_ltr = root_bridge->native_ltr;
742 	vmd_bridge->native_dpc = root_bridge->native_dpc;
743 }
744 
745 /*
746  * Enable ASPM and LTR settings on devices that aren't configured by BIOS.
747  */
vmd_pm_enable_quirk(struct pci_dev * pdev,void * userdata)748 static int vmd_pm_enable_quirk(struct pci_dev *pdev, void *userdata)
749 {
750 	unsigned long features = *(unsigned long *)userdata;
751 	u16 ltr = VMD_BIOS_PM_QUIRK_LTR;
752 	u32 ltr_reg;
753 	int pos;
754 
755 	if (!(features & VMD_FEAT_BIOS_PM_QUIRK))
756 		return 0;
757 
758 	pos = pci_find_ext_capability(pdev, PCI_EXT_CAP_ID_LTR);
759 	if (!pos)
760 		goto out_state_change;
761 
762 	/*
763 	 * Skip if the max snoop LTR is non-zero, indicating BIOS has set it
764 	 * so the LTR quirk is not needed.
765 	 */
766 	pci_read_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, &ltr_reg);
767 	if (!!(ltr_reg & (PCI_LTR_VALUE_MASK | PCI_LTR_SCALE_MASK)))
768 		goto out_state_change;
769 
770 	/*
771 	 * Set the default values to the maximum required by the platform to
772 	 * allow the deepest power management savings. Write as a DWORD where
773 	 * the lower word is the max snoop latency and the upper word is the
774 	 * max non-snoop latency.
775 	 */
776 	ltr_reg = (ltr << 16) | ltr;
777 	pci_write_config_dword(pdev, pos + PCI_LTR_MAX_SNOOP_LAT, ltr_reg);
778 	pci_info(pdev, "VMD: Default LTR value set by driver\n");
779 
780 out_state_change:
781 	/*
782 	 * Ensure devices are in D0 before enabling PCI-PM L1 PM Substates, per
783 	 * PCIe r6.0, sec 5.5.4.
784 	 */
785 	pci_set_power_state_locked(pdev, PCI_D0);
786 	pci_enable_link_state_locked(pdev, PCIE_LINK_STATE_ALL);
787 	return 0;
788 }
789 
vmd_enable_domain(struct vmd_dev * vmd,unsigned long features)790 static int vmd_enable_domain(struct vmd_dev *vmd, unsigned long features)
791 {
792 	struct pci_sysdata *sd = &vmd->sysdata;
793 	struct resource *res;
794 	u32 upper_bits;
795 	unsigned long flags;
796 	LIST_HEAD(resources);
797 	resource_size_t offset[2] = {0};
798 	resource_size_t membar2_offset = 0x2000;
799 	struct pci_bus *child;
800 	struct pci_dev *dev;
801 	int ret;
802 
803 	/*
804 	 * Shadow registers may exist in certain VMD device ids which allow
805 	 * guests to correctly assign host physical addresses to the root ports
806 	 * and child devices. These registers will either return the host value
807 	 * or 0, depending on an enable bit in the VMD device.
808 	 */
809 	if (features & VMD_FEAT_HAS_MEMBAR_SHADOW) {
810 		membar2_offset = MB2_SHADOW_OFFSET + MB2_SHADOW_SIZE;
811 		ret = vmd_get_phys_offsets(vmd, true, &offset[0], &offset[1]);
812 		if (ret)
813 			return ret;
814 	} else if (features & VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP) {
815 		ret = vmd_get_phys_offsets(vmd, false, &offset[0], &offset[1]);
816 		if (ret)
817 			return ret;
818 	}
819 
820 	/*
821 	 * Certain VMD devices may have a root port configuration option which
822 	 * limits the bus range to between 0-127, 128-255, or 224-255
823 	 */
824 	if (features & VMD_FEAT_HAS_BUS_RESTRICTIONS) {
825 		ret = vmd_get_bus_number_start(vmd);
826 		if (ret)
827 			return ret;
828 	}
829 
830 	res = &vmd->dev->resource[VMD_CFGBAR];
831 	vmd->resources[0] = (struct resource) {
832 		.name  = "VMD CFGBAR",
833 		.start = vmd->busn_start,
834 		.end   = vmd->busn_start + (resource_size(res) >> 20) - 1,
835 		.flags = IORESOURCE_BUS | IORESOURCE_PCI_FIXED,
836 	};
837 
838 	/*
839 	 * If the window is below 4GB, clear IORESOURCE_MEM_64 so we can
840 	 * put 32-bit resources in the window.
841 	 *
842 	 * There's no hardware reason why a 64-bit window *couldn't*
843 	 * contain a 32-bit resource, but pbus_size_mem() computes the
844 	 * bridge window size assuming a 64-bit window will contain no
845 	 * 32-bit resources.  __pci_assign_resource() enforces that
846 	 * artificial restriction to make sure everything will fit.
847 	 *
848 	 * The only way we could use a 64-bit non-prefetchable MEMBAR is
849 	 * if its address is <4GB so that we can convert it to a 32-bit
850 	 * resource.  To be visible to the host OS, all VMD endpoints must
851 	 * be initially configured by platform BIOS, which includes setting
852 	 * up these resources.  We can assume the device is configured
853 	 * according to the platform needs.
854 	 */
855 	res = &vmd->dev->resource[VMD_MEMBAR1];
856 	upper_bits = upper_32_bits(res->end);
857 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
858 	if (!upper_bits)
859 		flags &= ~IORESOURCE_MEM_64;
860 	vmd->resources[1] = (struct resource) {
861 		.name  = "VMD MEMBAR1",
862 		.start = res->start,
863 		.end   = res->end,
864 		.flags = flags,
865 		.parent = res,
866 	};
867 
868 	res = &vmd->dev->resource[VMD_MEMBAR2];
869 	upper_bits = upper_32_bits(res->end);
870 	flags = res->flags & ~IORESOURCE_SIZEALIGN;
871 	if (!upper_bits)
872 		flags &= ~IORESOURCE_MEM_64;
873 	vmd->resources[2] = (struct resource) {
874 		.name  = "VMD MEMBAR2",
875 		.start = res->start + membar2_offset,
876 		.end   = res->end,
877 		.flags = flags,
878 		.parent = res,
879 	};
880 
881 	sd->vmd_dev = vmd->dev;
882 	sd->domain = vmd_find_free_domain();
883 	if (sd->domain < 0)
884 		return sd->domain;
885 
886 	sd->node = pcibus_to_node(vmd->dev->bus);
887 
888 	/*
889 	 * Currently MSI remapping must be enabled in guest passthrough mode
890 	 * due to some missing interrupt remapping plumbing. This is probably
891 	 * acceptable because the guest is usually CPU-limited and MSI
892 	 * remapping doesn't become a performance bottleneck.
893 	 */
894 	if (!(features & VMD_FEAT_CAN_BYPASS_MSI_REMAP) ||
895 	    offset[0] || offset[1]) {
896 		ret = vmd_alloc_irqs(vmd);
897 		if (ret)
898 			return ret;
899 
900 		vmd_set_msi_remapping(vmd, true);
901 
902 		ret = vmd_create_irq_domain(vmd);
903 		if (ret)
904 			return ret;
905 	} else {
906 		vmd_set_msi_remapping(vmd, false);
907 	}
908 
909 	pci_add_resource(&resources, &vmd->resources[0]);
910 	pci_add_resource_offset(&resources, &vmd->resources[1], offset[0]);
911 	pci_add_resource_offset(&resources, &vmd->resources[2], offset[1]);
912 
913 	vmd->bus = pci_create_root_bus(&vmd->dev->dev, vmd->busn_start,
914 				       &vmd_ops, sd, &resources);
915 	if (!vmd->bus) {
916 		pci_free_resource_list(&resources);
917 		vmd_remove_irq_domain(vmd);
918 		return -ENODEV;
919 	}
920 
921 	vmd_copy_host_bridge_flags(pci_find_host_bridge(vmd->dev->bus),
922 				   to_pci_host_bridge(vmd->bus->bridge));
923 
924 	vmd_attach_resources(vmd);
925 	if (vmd->irq_domain)
926 		dev_set_msi_domain(&vmd->bus->dev, vmd->irq_domain);
927 	else
928 		dev_set_msi_domain(&vmd->bus->dev,
929 				   dev_get_msi_domain(&vmd->dev->dev));
930 
931 	WARN(sysfs_create_link(&vmd->dev->dev.kobj, &vmd->bus->dev.kobj,
932 			       "domain"), "Can't create symlink to domain\n");
933 
934 	vmd_acpi_begin();
935 
936 	pci_scan_child_bus(vmd->bus);
937 	vmd_domain_reset(vmd);
938 
939 	/* When Intel VMD is enabled, the OS does not discover the Root Ports
940 	 * owned by Intel VMD within the MMCFG space. pci_reset_bus() applies
941 	 * a reset to the parent of the PCI device supplied as argument. This
942 	 * is why we pass a child device, so the reset can be triggered at
943 	 * the Intel bridge level and propagated to all the children in the
944 	 * hierarchy.
945 	 */
946 	list_for_each_entry(child, &vmd->bus->children, node) {
947 		if (!list_empty(&child->devices)) {
948 			dev = list_first_entry(&child->devices,
949 					       struct pci_dev, bus_list);
950 			ret = pci_reset_bus(dev);
951 			if (ret)
952 				pci_warn(dev, "can't reset device: %d\n", ret);
953 
954 			break;
955 		}
956 	}
957 
958 	pci_assign_unassigned_bus_resources(vmd->bus);
959 
960 	pci_walk_bus(vmd->bus, vmd_pm_enable_quirk, &features);
961 
962 	/*
963 	 * VMD root buses are virtual and don't return true on pci_is_pcie()
964 	 * and will fail pcie_bus_configure_settings() early. It can instead be
965 	 * run on each of the real root ports.
966 	 */
967 	list_for_each_entry(child, &vmd->bus->children, node)
968 		pcie_bus_configure_settings(child);
969 
970 	pci_bus_add_devices(vmd->bus);
971 
972 	vmd_acpi_end();
973 	return 0;
974 }
975 
vmd_probe(struct pci_dev * dev,const struct pci_device_id * id)976 static int vmd_probe(struct pci_dev *dev, const struct pci_device_id *id)
977 {
978 	unsigned long features = (unsigned long) id->driver_data;
979 	struct vmd_dev *vmd;
980 	int err;
981 
982 	if (xen_domain()) {
983 		/*
984 		 * Xen doesn't have knowledge about devices in the VMD bus
985 		 * because the config space of devices behind the VMD bridge is
986 		 * not known to Xen, and hence Xen cannot discover or configure
987 		 * them in any way.
988 		 *
989 		 * Bypass of MSI remapping won't work in that case as direct
990 		 * write by Linux to the MSI entries won't result in functional
991 		 * interrupts, as Xen is the entity that manages the host
992 		 * interrupt controller and must configure interrupts.  However
993 		 * multiplexing of interrupts by the VMD bridge will work under
994 		 * Xen, so force the usage of that mode which must always be
995 		 * supported by VMD bridges.
996 		 */
997 		features &= ~VMD_FEAT_CAN_BYPASS_MSI_REMAP;
998 	}
999 
1000 	if (resource_size(&dev->resource[VMD_CFGBAR]) < (1 << 20))
1001 		return -ENOMEM;
1002 
1003 	vmd = devm_kzalloc(&dev->dev, sizeof(*vmd), GFP_KERNEL);
1004 	if (!vmd)
1005 		return -ENOMEM;
1006 
1007 	vmd->dev = dev;
1008 	vmd->instance = ida_alloc(&vmd_instance_ida, GFP_KERNEL);
1009 	if (vmd->instance < 0)
1010 		return vmd->instance;
1011 
1012 	vmd->name = devm_kasprintf(&dev->dev, GFP_KERNEL, "vmd%d",
1013 				   vmd->instance);
1014 	if (!vmd->name) {
1015 		err = -ENOMEM;
1016 		goto out_release_instance;
1017 	}
1018 
1019 	err = pcim_enable_device(dev);
1020 	if (err < 0)
1021 		goto out_release_instance;
1022 
1023 	vmd->cfgbar = pcim_iomap(dev, VMD_CFGBAR, 0);
1024 	if (!vmd->cfgbar) {
1025 		err = -ENOMEM;
1026 		goto out_release_instance;
1027 	}
1028 
1029 	pci_set_master(dev);
1030 	if (dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(64)) &&
1031 	    dma_set_mask_and_coherent(&dev->dev, DMA_BIT_MASK(32))) {
1032 		err = -ENODEV;
1033 		goto out_release_instance;
1034 	}
1035 
1036 	if (features & VMD_FEAT_OFFSET_FIRST_VECTOR)
1037 		vmd->first_vec = 1;
1038 
1039 	raw_spin_lock_init(&vmd->cfg_lock);
1040 	pci_set_drvdata(dev, vmd);
1041 	err = vmd_enable_domain(vmd, features);
1042 	if (err)
1043 		goto out_release_instance;
1044 
1045 	dev_info(&vmd->dev->dev, "Bound to PCI domain %04x\n",
1046 		 vmd->sysdata.domain);
1047 	return 0;
1048 
1049  out_release_instance:
1050 	ida_free(&vmd_instance_ida, vmd->instance);
1051 	return err;
1052 }
1053 
vmd_cleanup_srcu(struct vmd_dev * vmd)1054 static void vmd_cleanup_srcu(struct vmd_dev *vmd)
1055 {
1056 	int i;
1057 
1058 	for (i = 0; i < vmd->msix_count; i++)
1059 		cleanup_srcu_struct(&vmd->irqs[i].srcu);
1060 }
1061 
vmd_remove(struct pci_dev * dev)1062 static void vmd_remove(struct pci_dev *dev)
1063 {
1064 	struct vmd_dev *vmd = pci_get_drvdata(dev);
1065 
1066 	pci_stop_root_bus(vmd->bus);
1067 	sysfs_remove_link(&vmd->dev->dev.kobj, "domain");
1068 	pci_remove_root_bus(vmd->bus);
1069 	vmd_cleanup_srcu(vmd);
1070 	vmd_detach_resources(vmd);
1071 	vmd_remove_irq_domain(vmd);
1072 	ida_free(&vmd_instance_ida, vmd->instance);
1073 }
1074 
vmd_shutdown(struct pci_dev * dev)1075 static void vmd_shutdown(struct pci_dev *dev)
1076 {
1077 	struct vmd_dev *vmd = pci_get_drvdata(dev);
1078 
1079 	vmd_remove_irq_domain(vmd);
1080 }
1081 
1082 #ifdef CONFIG_PM_SLEEP
vmd_suspend(struct device * dev)1083 static int vmd_suspend(struct device *dev)
1084 {
1085 	struct pci_dev *pdev = to_pci_dev(dev);
1086 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1087 	int i;
1088 
1089 	for (i = 0; i < vmd->msix_count; i++)
1090 		devm_free_irq(dev, vmd->irqs[i].virq, &vmd->irqs[i]);
1091 
1092 	return 0;
1093 }
1094 
vmd_resume(struct device * dev)1095 static int vmd_resume(struct device *dev)
1096 {
1097 	struct pci_dev *pdev = to_pci_dev(dev);
1098 	struct vmd_dev *vmd = pci_get_drvdata(pdev);
1099 	int err, i;
1100 
1101 	vmd_set_msi_remapping(vmd, !!vmd->irq_domain);
1102 
1103 	for (i = 0; i < vmd->msix_count; i++) {
1104 		err = devm_request_irq(dev, vmd->irqs[i].virq,
1105 				       vmd_irq, IRQF_NO_THREAD,
1106 				       vmd->name, &vmd->irqs[i]);
1107 		if (err)
1108 			return err;
1109 	}
1110 
1111 	return 0;
1112 }
1113 #endif
1114 static SIMPLE_DEV_PM_OPS(vmd_dev_pm_ops, vmd_suspend, vmd_resume);
1115 
1116 static const struct pci_device_id vmd_ids[] = {
1117 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_201D),
1118 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW_VSCAP,},
1119 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_28C0),
1120 		.driver_data = VMD_FEAT_HAS_MEMBAR_SHADOW |
1121 				VMD_FEAT_HAS_BUS_RESTRICTIONS |
1122 				VMD_FEAT_CAN_BYPASS_MSI_REMAP,},
1123 	{PCI_VDEVICE(INTEL, 0x467f),
1124 		.driver_data = VMD_FEATS_CLIENT,},
1125 	{PCI_VDEVICE(INTEL, 0x4c3d),
1126 		.driver_data = VMD_FEATS_CLIENT,},
1127 	{PCI_VDEVICE(INTEL, 0xa77f),
1128 		.driver_data = VMD_FEATS_CLIENT,},
1129 	{PCI_VDEVICE(INTEL, 0x7d0b),
1130 		.driver_data = VMD_FEATS_CLIENT,},
1131 	{PCI_VDEVICE(INTEL, 0xad0b),
1132 		.driver_data = VMD_FEATS_CLIENT,},
1133 	{PCI_VDEVICE(INTEL, PCI_DEVICE_ID_INTEL_VMD_9A0B),
1134 		.driver_data = VMD_FEATS_CLIENT,},
1135 	{PCI_VDEVICE(INTEL, 0xb60b),
1136                 .driver_data = VMD_FEATS_CLIENT,},
1137 	{PCI_VDEVICE(INTEL, 0xb06f),
1138                 .driver_data = VMD_FEATS_CLIENT,},
1139 	{PCI_VDEVICE(INTEL, 0xb07f),
1140                 .driver_data = VMD_FEATS_CLIENT,},
1141 	{0,}
1142 };
1143 MODULE_DEVICE_TABLE(pci, vmd_ids);
1144 
1145 static struct pci_driver vmd_drv = {
1146 	.name		= "vmd",
1147 	.id_table	= vmd_ids,
1148 	.probe		= vmd_probe,
1149 	.remove		= vmd_remove,
1150 	.shutdown	= vmd_shutdown,
1151 	.driver		= {
1152 		.pm	= &vmd_dev_pm_ops,
1153 	},
1154 };
1155 module_pci_driver(vmd_drv);
1156 
1157 MODULE_AUTHOR("Intel Corporation");
1158 MODULE_DESCRIPTION("Volume Management Device driver");
1159 MODULE_LICENSE("GPL v2");
1160 MODULE_VERSION("0.6");
1161