1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2015 Broadcom Corporation 4 */ 5 6 #include <linux/interrupt.h> 7 #include <linux/irqchip/chained_irq.h> 8 #include <linux/irqdomain.h> 9 #include <linux/msi.h> 10 #include <linux/of_irq.h> 11 #include <linux/of_pci.h> 12 #include <linux/pci.h> 13 14 #include "pcie-iproc.h" 15 16 #define IPROC_MSI_INTR_EN_SHIFT 11 17 #define IPROC_MSI_INTR_EN BIT(IPROC_MSI_INTR_EN_SHIFT) 18 #define IPROC_MSI_INT_N_EVENT_SHIFT 1 19 #define IPROC_MSI_INT_N_EVENT BIT(IPROC_MSI_INT_N_EVENT_SHIFT) 20 #define IPROC_MSI_EQ_EN_SHIFT 0 21 #define IPROC_MSI_EQ_EN BIT(IPROC_MSI_EQ_EN_SHIFT) 22 23 #define IPROC_MSI_EQ_MASK 0x3f 24 25 /* Max number of GIC interrupts */ 26 #define NR_HW_IRQS 6 27 28 /* Number of entries in each event queue */ 29 #define EQ_LEN 64 30 31 /* Size of each event queue memory region */ 32 #define EQ_MEM_REGION_SIZE SZ_4K 33 34 /* Size of each MSI address region */ 35 #define MSI_MEM_REGION_SIZE SZ_4K 36 37 enum iproc_msi_reg { 38 IPROC_MSI_EQ_PAGE = 0, 39 IPROC_MSI_EQ_PAGE_UPPER, 40 IPROC_MSI_PAGE, 41 IPROC_MSI_PAGE_UPPER, 42 IPROC_MSI_CTRL, 43 IPROC_MSI_EQ_HEAD, 44 IPROC_MSI_EQ_TAIL, 45 IPROC_MSI_INTS_EN, 46 IPROC_MSI_REG_SIZE, 47 }; 48 49 struct iproc_msi; 50 51 /** 52 * struct iproc_msi_grp - iProc MSI group 53 * 54 * One MSI group is allocated per GIC interrupt, serviced by one iProc MSI 55 * event queue. 56 * 57 * @msi: pointer to iProc MSI data 58 * @gic_irq: GIC interrupt 59 * @eq: Event queue number 60 */ 61 struct iproc_msi_grp { 62 struct iproc_msi *msi; 63 int gic_irq; 64 unsigned int eq; 65 }; 66 67 /** 68 * struct iproc_msi - iProc event queue based MSI 69 * 70 * Only meant to be used on platforms without MSI support integrated into the 71 * GIC. 72 * 73 * @pcie: pointer to iProc PCIe data 74 * @reg_offsets: MSI register offsets 75 * @grps: MSI groups 76 * @nr_irqs: number of total interrupts connected to GIC 77 * @nr_cpus: number of toal CPUs 78 * @has_inten_reg: indicates the MSI interrupt enable register needs to be 79 * set explicitly (required for some legacy platforms) 80 * @bitmap: MSI vector bitmap 81 * @bitmap_lock: lock to protect access to the MSI bitmap 82 * @nr_msi_vecs: total number of MSI vectors 83 * @inner_domain: inner IRQ domain 84 * @msi_domain: MSI IRQ domain 85 * @nr_eq_region: required number of 4K aligned memory region for MSI event 86 * queues 87 * @nr_msi_region: required number of 4K aligned address region for MSI posted 88 * writes 89 * @eq_cpu: pointer to allocated memory region for MSI event queues 90 * @eq_dma: DMA address of MSI event queues 91 * @msi_addr: MSI address 92 */ 93 struct iproc_msi { 94 struct iproc_pcie *pcie; 95 const u16 (*reg_offsets)[IPROC_MSI_REG_SIZE]; 96 struct iproc_msi_grp *grps; 97 int nr_irqs; 98 int nr_cpus; 99 bool has_inten_reg; 100 unsigned long *bitmap; 101 struct mutex bitmap_lock; 102 unsigned int nr_msi_vecs; 103 struct irq_domain *inner_domain; 104 struct irq_domain *msi_domain; 105 unsigned int nr_eq_region; 106 unsigned int nr_msi_region; 107 void *eq_cpu; 108 dma_addr_t eq_dma; 109 phys_addr_t msi_addr; 110 }; 111 112 static const u16 iproc_msi_reg_paxb[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { 113 { 0x200, 0x2c0, 0x204, 0x2c4, 0x210, 0x250, 0x254, 0x208 }, 114 { 0x200, 0x2c0, 0x204, 0x2c4, 0x214, 0x258, 0x25c, 0x208 }, 115 { 0x200, 0x2c0, 0x204, 0x2c4, 0x218, 0x260, 0x264, 0x208 }, 116 { 0x200, 0x2c0, 0x204, 0x2c4, 0x21c, 0x268, 0x26c, 0x208 }, 117 { 0x200, 0x2c0, 0x204, 0x2c4, 0x220, 0x270, 0x274, 0x208 }, 118 { 0x200, 0x2c0, 0x204, 0x2c4, 0x224, 0x278, 0x27c, 0x208 }, 119 }; 120 121 static const u16 iproc_msi_reg_paxc[NR_HW_IRQS][IPROC_MSI_REG_SIZE] = { 122 { 0xc00, 0xc04, 0xc08, 0xc0c, 0xc40, 0xc50, 0xc60 }, 123 { 0xc10, 0xc14, 0xc18, 0xc1c, 0xc44, 0xc54, 0xc64 }, 124 { 0xc20, 0xc24, 0xc28, 0xc2c, 0xc48, 0xc58, 0xc68 }, 125 { 0xc30, 0xc34, 0xc38, 0xc3c, 0xc4c, 0xc5c, 0xc6c }, 126 }; 127 128 static inline u32 iproc_msi_read_reg(struct iproc_msi *msi, 129 enum iproc_msi_reg reg, 130 unsigned int eq) 131 { 132 struct iproc_pcie *pcie = msi->pcie; 133 134 return readl_relaxed(pcie->base + msi->reg_offsets[eq][reg]); 135 } 136 137 static inline void iproc_msi_write_reg(struct iproc_msi *msi, 138 enum iproc_msi_reg reg, 139 int eq, u32 val) 140 { 141 struct iproc_pcie *pcie = msi->pcie; 142 143 writel_relaxed(val, pcie->base + msi->reg_offsets[eq][reg]); 144 } 145 146 static inline u32 hwirq_to_group(struct iproc_msi *msi, unsigned long hwirq) 147 { 148 return (hwirq % msi->nr_irqs); 149 } 150 151 static inline unsigned int iproc_msi_addr_offset(struct iproc_msi *msi, 152 unsigned long hwirq) 153 { 154 if (msi->nr_msi_region > 1) 155 return hwirq_to_group(msi, hwirq) * MSI_MEM_REGION_SIZE; 156 else 157 return hwirq_to_group(msi, hwirq) * sizeof(u32); 158 } 159 160 static inline unsigned int iproc_msi_eq_offset(struct iproc_msi *msi, u32 eq) 161 { 162 if (msi->nr_eq_region > 1) 163 return eq * EQ_MEM_REGION_SIZE; 164 else 165 return eq * EQ_LEN * sizeof(u32); 166 } 167 168 static struct irq_chip iproc_msi_irq_chip = { 169 .name = "iProc-MSI", 170 }; 171 172 static struct msi_domain_info iproc_msi_domain_info = { 173 .flags = MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 174 MSI_FLAG_PCI_MSIX, 175 .chip = &iproc_msi_irq_chip, 176 }; 177 178 /* 179 * In iProc PCIe core, each MSI group is serviced by a GIC interrupt and a 180 * dedicated event queue. Each MSI group can support up to 64 MSI vectors. 181 * 182 * The number of MSI groups varies between different iProc SoCs. The total 183 * number of CPU cores also varies. To support MSI IRQ affinity, we 184 * distribute GIC interrupts across all available CPUs. MSI vector is moved 185 * from one GIC interrupt to another to steer to the target CPU. 186 * 187 * Assuming: 188 * - the number of MSI groups is M 189 * - the number of CPU cores is N 190 * - M is always a multiple of N 191 * 192 * Total number of raw MSI vectors = M * 64 193 * Total number of supported MSI vectors = (M * 64) / N 194 */ 195 static inline int hwirq_to_cpu(struct iproc_msi *msi, unsigned long hwirq) 196 { 197 return (hwirq % msi->nr_cpus); 198 } 199 200 static inline unsigned long hwirq_to_canonical_hwirq(struct iproc_msi *msi, 201 unsigned long hwirq) 202 { 203 return (hwirq - hwirq_to_cpu(msi, hwirq)); 204 } 205 206 static int iproc_msi_irq_set_affinity(struct irq_data *data, 207 const struct cpumask *mask, bool force) 208 { 209 struct iproc_msi *msi = irq_data_get_irq_chip_data(data); 210 int target_cpu = cpumask_first(mask); 211 int curr_cpu; 212 int ret; 213 214 curr_cpu = hwirq_to_cpu(msi, data->hwirq); 215 if (curr_cpu == target_cpu) 216 ret = IRQ_SET_MASK_OK_DONE; 217 else { 218 /* steer MSI to the target CPU */ 219 data->hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq) + target_cpu; 220 ret = IRQ_SET_MASK_OK; 221 } 222 223 irq_data_update_effective_affinity(data, cpumask_of(target_cpu)); 224 225 return ret; 226 } 227 228 static void iproc_msi_irq_compose_msi_msg(struct irq_data *data, 229 struct msi_msg *msg) 230 { 231 struct iproc_msi *msi = irq_data_get_irq_chip_data(data); 232 dma_addr_t addr; 233 234 addr = msi->msi_addr + iproc_msi_addr_offset(msi, data->hwirq); 235 msg->address_lo = lower_32_bits(addr); 236 msg->address_hi = upper_32_bits(addr); 237 msg->data = data->hwirq << 5; 238 } 239 240 static struct irq_chip iproc_msi_bottom_irq_chip = { 241 .name = "MSI", 242 .irq_set_affinity = iproc_msi_irq_set_affinity, 243 .irq_compose_msi_msg = iproc_msi_irq_compose_msi_msg, 244 }; 245 246 static int iproc_msi_irq_domain_alloc(struct irq_domain *domain, 247 unsigned int virq, unsigned int nr_irqs, 248 void *args) 249 { 250 struct iproc_msi *msi = domain->host_data; 251 int hwirq, i; 252 253 if (msi->nr_cpus > 1 && nr_irqs > 1) 254 return -EINVAL; 255 256 mutex_lock(&msi->bitmap_lock); 257 258 /* 259 * Allocate 'nr_irqs' multiplied by 'nr_cpus' number of MSI vectors 260 * each time 261 */ 262 hwirq = bitmap_find_free_region(msi->bitmap, msi->nr_msi_vecs, 263 order_base_2(msi->nr_cpus * nr_irqs)); 264 265 mutex_unlock(&msi->bitmap_lock); 266 267 if (hwirq < 0) 268 return -ENOSPC; 269 270 for (i = 0; i < nr_irqs; i++) { 271 irq_domain_set_info(domain, virq + i, hwirq + i, 272 &iproc_msi_bottom_irq_chip, 273 domain->host_data, handle_simple_irq, 274 NULL, NULL); 275 } 276 277 return 0; 278 } 279 280 static void iproc_msi_irq_domain_free(struct irq_domain *domain, 281 unsigned int virq, unsigned int nr_irqs) 282 { 283 struct irq_data *data = irq_domain_get_irq_data(domain, virq); 284 struct iproc_msi *msi = irq_data_get_irq_chip_data(data); 285 unsigned int hwirq; 286 287 mutex_lock(&msi->bitmap_lock); 288 289 hwirq = hwirq_to_canonical_hwirq(msi, data->hwirq); 290 bitmap_release_region(msi->bitmap, hwirq, 291 order_base_2(msi->nr_cpus * nr_irqs)); 292 293 mutex_unlock(&msi->bitmap_lock); 294 295 irq_domain_free_irqs_parent(domain, virq, nr_irqs); 296 } 297 298 static const struct irq_domain_ops msi_domain_ops = { 299 .alloc = iproc_msi_irq_domain_alloc, 300 .free = iproc_msi_irq_domain_free, 301 }; 302 303 static inline u32 decode_msi_hwirq(struct iproc_msi *msi, u32 eq, u32 head) 304 { 305 u32 __iomem *msg; 306 u32 hwirq; 307 unsigned int offs; 308 309 offs = iproc_msi_eq_offset(msi, eq) + head * sizeof(u32); 310 msg = (u32 __iomem *)(msi->eq_cpu + offs); 311 hwirq = readl(msg); 312 hwirq = (hwirq >> 5) + (hwirq & 0x1f); 313 314 /* 315 * Since we have multiple hwirq mapped to a single MSI vector, 316 * now we need to derive the hwirq at CPU0. It can then be used to 317 * mapped back to virq. 318 */ 319 return hwirq_to_canonical_hwirq(msi, hwirq); 320 } 321 322 static void iproc_msi_handler(struct irq_desc *desc) 323 { 324 struct irq_chip *chip = irq_desc_get_chip(desc); 325 struct iproc_msi_grp *grp; 326 struct iproc_msi *msi; 327 u32 eq, head, tail, nr_events; 328 unsigned long hwirq; 329 330 chained_irq_enter(chip, desc); 331 332 grp = irq_desc_get_handler_data(desc); 333 msi = grp->msi; 334 eq = grp->eq; 335 336 /* 337 * iProc MSI event queue is tracked by head and tail pointers. Head 338 * pointer indicates the next entry (MSI data) to be consumed by SW in 339 * the queue and needs to be updated by SW. iProc MSI core uses the 340 * tail pointer as the next data insertion point. 341 * 342 * Entries between head and tail pointers contain valid MSI data. MSI 343 * data is guaranteed to be in the event queue memory before the tail 344 * pointer is updated by the iProc MSI core. 345 */ 346 head = iproc_msi_read_reg(msi, IPROC_MSI_EQ_HEAD, 347 eq) & IPROC_MSI_EQ_MASK; 348 do { 349 tail = iproc_msi_read_reg(msi, IPROC_MSI_EQ_TAIL, 350 eq) & IPROC_MSI_EQ_MASK; 351 352 /* 353 * Figure out total number of events (MSI data) to be 354 * processed. 355 */ 356 nr_events = (tail < head) ? 357 (EQ_LEN - (head - tail)) : (tail - head); 358 if (!nr_events) 359 break; 360 361 /* process all outstanding events */ 362 while (nr_events--) { 363 hwirq = decode_msi_hwirq(msi, eq, head); 364 generic_handle_domain_irq(msi->inner_domain, hwirq); 365 366 head++; 367 head %= EQ_LEN; 368 } 369 370 /* 371 * Now all outstanding events have been processed. Update the 372 * head pointer. 373 */ 374 iproc_msi_write_reg(msi, IPROC_MSI_EQ_HEAD, eq, head); 375 376 /* 377 * Now go read the tail pointer again to see if there are new 378 * outstanding events that came in during the above window. 379 */ 380 } while (true); 381 382 chained_irq_exit(chip, desc); 383 } 384 385 static void iproc_msi_enable(struct iproc_msi *msi) 386 { 387 int i, eq; 388 u32 val; 389 390 /* Program memory region for each event queue */ 391 for (i = 0; i < msi->nr_eq_region; i++) { 392 dma_addr_t addr = msi->eq_dma + (i * EQ_MEM_REGION_SIZE); 393 394 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE, i, 395 lower_32_bits(addr)); 396 iproc_msi_write_reg(msi, IPROC_MSI_EQ_PAGE_UPPER, i, 397 upper_32_bits(addr)); 398 } 399 400 /* Program address region for MSI posted writes */ 401 for (i = 0; i < msi->nr_msi_region; i++) { 402 phys_addr_t addr = msi->msi_addr + (i * MSI_MEM_REGION_SIZE); 403 404 iproc_msi_write_reg(msi, IPROC_MSI_PAGE, i, 405 lower_32_bits(addr)); 406 iproc_msi_write_reg(msi, IPROC_MSI_PAGE_UPPER, i, 407 upper_32_bits(addr)); 408 } 409 410 for (eq = 0; eq < msi->nr_irqs; eq++) { 411 /* Enable MSI event queue */ 412 val = IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | 413 IPROC_MSI_EQ_EN; 414 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); 415 416 /* 417 * Some legacy platforms require the MSI interrupt enable 418 * register to be set explicitly. 419 */ 420 if (msi->has_inten_reg) { 421 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); 422 val |= BIT(eq); 423 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); 424 } 425 } 426 } 427 428 static void iproc_msi_disable(struct iproc_msi *msi) 429 { 430 u32 eq, val; 431 432 for (eq = 0; eq < msi->nr_irqs; eq++) { 433 if (msi->has_inten_reg) { 434 val = iproc_msi_read_reg(msi, IPROC_MSI_INTS_EN, eq); 435 val &= ~BIT(eq); 436 iproc_msi_write_reg(msi, IPROC_MSI_INTS_EN, eq, val); 437 } 438 439 val = iproc_msi_read_reg(msi, IPROC_MSI_CTRL, eq); 440 val &= ~(IPROC_MSI_INTR_EN | IPROC_MSI_INT_N_EVENT | 441 IPROC_MSI_EQ_EN); 442 iproc_msi_write_reg(msi, IPROC_MSI_CTRL, eq, val); 443 } 444 } 445 446 static int iproc_msi_alloc_domains(struct device_node *node, 447 struct iproc_msi *msi) 448 { 449 msi->inner_domain = irq_domain_add_linear(NULL, msi->nr_msi_vecs, 450 &msi_domain_ops, msi); 451 if (!msi->inner_domain) 452 return -ENOMEM; 453 454 msi->msi_domain = pci_msi_create_irq_domain(of_node_to_fwnode(node), 455 &iproc_msi_domain_info, 456 msi->inner_domain); 457 if (!msi->msi_domain) { 458 irq_domain_remove(msi->inner_domain); 459 return -ENOMEM; 460 } 461 462 return 0; 463 } 464 465 static void iproc_msi_free_domains(struct iproc_msi *msi) 466 { 467 if (msi->msi_domain) 468 irq_domain_remove(msi->msi_domain); 469 470 if (msi->inner_domain) 471 irq_domain_remove(msi->inner_domain); 472 } 473 474 static void iproc_msi_irq_free(struct iproc_msi *msi, unsigned int cpu) 475 { 476 int i; 477 478 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { 479 irq_set_chained_handler_and_data(msi->grps[i].gic_irq, 480 NULL, NULL); 481 } 482 } 483 484 static int iproc_msi_irq_setup(struct iproc_msi *msi, unsigned int cpu) 485 { 486 int i, ret; 487 cpumask_var_t mask; 488 struct iproc_pcie *pcie = msi->pcie; 489 490 for (i = cpu; i < msi->nr_irqs; i += msi->nr_cpus) { 491 irq_set_chained_handler_and_data(msi->grps[i].gic_irq, 492 iproc_msi_handler, 493 &msi->grps[i]); 494 /* Dedicate GIC interrupt to each CPU core */ 495 if (alloc_cpumask_var(&mask, GFP_KERNEL)) { 496 cpumask_clear(mask); 497 cpumask_set_cpu(cpu, mask); 498 ret = irq_set_affinity(msi->grps[i].gic_irq, mask); 499 if (ret) 500 dev_err(pcie->dev, 501 "failed to set affinity for IRQ%d\n", 502 msi->grps[i].gic_irq); 503 free_cpumask_var(mask); 504 } else { 505 dev_err(pcie->dev, "failed to alloc CPU mask\n"); 506 ret = -EINVAL; 507 } 508 509 if (ret) { 510 /* Free all configured/unconfigured IRQs */ 511 iproc_msi_irq_free(msi, cpu); 512 return ret; 513 } 514 } 515 516 return 0; 517 } 518 519 int iproc_msi_init(struct iproc_pcie *pcie, struct device_node *node) 520 { 521 struct iproc_msi *msi; 522 int i, ret; 523 unsigned int cpu; 524 525 if (!of_device_is_compatible(node, "brcm,iproc-msi")) 526 return -ENODEV; 527 528 if (!of_property_read_bool(node, "msi-controller")) 529 return -ENODEV; 530 531 if (pcie->msi) 532 return -EBUSY; 533 534 msi = devm_kzalloc(pcie->dev, sizeof(*msi), GFP_KERNEL); 535 if (!msi) 536 return -ENOMEM; 537 538 msi->pcie = pcie; 539 pcie->msi = msi; 540 msi->msi_addr = pcie->base_addr; 541 mutex_init(&msi->bitmap_lock); 542 msi->nr_cpus = num_possible_cpus(); 543 544 if (msi->nr_cpus == 1) 545 iproc_msi_domain_info.flags |= MSI_FLAG_MULTI_PCI_MSI; 546 547 msi->nr_irqs = of_irq_count(node); 548 if (!msi->nr_irqs) { 549 dev_err(pcie->dev, "found no MSI GIC interrupt\n"); 550 return -ENODEV; 551 } 552 553 if (msi->nr_irqs > NR_HW_IRQS) { 554 dev_warn(pcie->dev, "too many MSI GIC interrupts defined %d\n", 555 msi->nr_irqs); 556 msi->nr_irqs = NR_HW_IRQS; 557 } 558 559 if (msi->nr_irqs < msi->nr_cpus) { 560 dev_err(pcie->dev, 561 "not enough GIC interrupts for MSI affinity\n"); 562 return -EINVAL; 563 } 564 565 if (msi->nr_irqs % msi->nr_cpus != 0) { 566 msi->nr_irqs -= msi->nr_irqs % msi->nr_cpus; 567 dev_warn(pcie->dev, "Reducing number of interrupts to %d\n", 568 msi->nr_irqs); 569 } 570 571 switch (pcie->type) { 572 case IPROC_PCIE_PAXB_BCMA: 573 case IPROC_PCIE_PAXB: 574 msi->reg_offsets = iproc_msi_reg_paxb; 575 msi->nr_eq_region = 1; 576 msi->nr_msi_region = 1; 577 break; 578 case IPROC_PCIE_PAXC: 579 msi->reg_offsets = iproc_msi_reg_paxc; 580 msi->nr_eq_region = msi->nr_irqs; 581 msi->nr_msi_region = msi->nr_irqs; 582 break; 583 default: 584 dev_err(pcie->dev, "incompatible iProc PCIe interface\n"); 585 return -EINVAL; 586 } 587 588 msi->has_inten_reg = of_property_read_bool(node, "brcm,pcie-msi-inten"); 589 590 msi->nr_msi_vecs = msi->nr_irqs * EQ_LEN; 591 msi->bitmap = devm_bitmap_zalloc(pcie->dev, msi->nr_msi_vecs, 592 GFP_KERNEL); 593 if (!msi->bitmap) 594 return -ENOMEM; 595 596 msi->grps = devm_kcalloc(pcie->dev, msi->nr_irqs, sizeof(*msi->grps), 597 GFP_KERNEL); 598 if (!msi->grps) 599 return -ENOMEM; 600 601 for (i = 0; i < msi->nr_irqs; i++) { 602 unsigned int irq = irq_of_parse_and_map(node, i); 603 604 if (!irq) { 605 dev_err(pcie->dev, "unable to parse/map interrupt\n"); 606 ret = -ENODEV; 607 goto free_irqs; 608 } 609 msi->grps[i].gic_irq = irq; 610 msi->grps[i].msi = msi; 611 msi->grps[i].eq = i; 612 } 613 614 /* Reserve memory for event queue and make sure memories are zeroed */ 615 msi->eq_cpu = dma_alloc_coherent(pcie->dev, 616 msi->nr_eq_region * EQ_MEM_REGION_SIZE, 617 &msi->eq_dma, GFP_KERNEL); 618 if (!msi->eq_cpu) { 619 ret = -ENOMEM; 620 goto free_irqs; 621 } 622 623 ret = iproc_msi_alloc_domains(node, msi); 624 if (ret) { 625 dev_err(pcie->dev, "failed to create MSI domains\n"); 626 goto free_eq_dma; 627 } 628 629 for_each_online_cpu(cpu) { 630 ret = iproc_msi_irq_setup(msi, cpu); 631 if (ret) 632 goto free_msi_irq; 633 } 634 635 iproc_msi_enable(msi); 636 637 return 0; 638 639 free_msi_irq: 640 for_each_online_cpu(cpu) 641 iproc_msi_irq_free(msi, cpu); 642 iproc_msi_free_domains(msi); 643 644 free_eq_dma: 645 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, 646 msi->eq_cpu, msi->eq_dma); 647 648 free_irqs: 649 for (i = 0; i < msi->nr_irqs; i++) { 650 if (msi->grps[i].gic_irq) 651 irq_dispose_mapping(msi->grps[i].gic_irq); 652 } 653 pcie->msi = NULL; 654 return ret; 655 } 656 EXPORT_SYMBOL(iproc_msi_init); 657 658 void iproc_msi_exit(struct iproc_pcie *pcie) 659 { 660 struct iproc_msi *msi = pcie->msi; 661 unsigned int i, cpu; 662 663 if (!msi) 664 return; 665 666 iproc_msi_disable(msi); 667 668 for_each_online_cpu(cpu) 669 iproc_msi_irq_free(msi, cpu); 670 671 iproc_msi_free_domains(msi); 672 673 dma_free_coherent(pcie->dev, msi->nr_eq_region * EQ_MEM_REGION_SIZE, 674 msi->eq_cpu, msi->eq_dma); 675 676 for (i = 0; i < msi->nr_irqs; i++) { 677 if (msi->grps[i].gic_irq) 678 irq_dispose_mapping(msi->grps[i].gic_irq); 679 } 680 } 681 EXPORT_SYMBOL(iproc_msi_exit); 682