1 // SPDX-License-Identifier: GPL-2.0+ 2 /* 3 * PCIe host controller driver for Tegra SoCs 4 * 5 * Copyright (c) 2010, CompuLab, Ltd. 6 * Author: Mike Rapoport <mike@compulab.co.il> 7 * 8 * Based on NVIDIA PCIe driver 9 * Copyright (c) 2008-2009, NVIDIA Corporation. 10 * 11 * Bits taken from arch/arm/mach-dove/pcie.c 12 * 13 * Author: Thierry Reding <treding@nvidia.com> 14 */ 15 16 #include <linux/clk.h> 17 #include <linux/debugfs.h> 18 #include <linux/delay.h> 19 #include <linux/export.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/interrupt.h> 22 #include <linux/iopoll.h> 23 #include <linux/irq.h> 24 #include <linux/irqchip/chained_irq.h> 25 #include <linux/irqdomain.h> 26 #include <linux/kernel.h> 27 #include <linux/init.h> 28 #include <linux/module.h> 29 #include <linux/msi.h> 30 #include <linux/of_address.h> 31 #include <linux/of_pci.h> 32 #include <linux/of_platform.h> 33 #include <linux/pci.h> 34 #include <linux/phy/phy.h> 35 #include <linux/pinctrl/consumer.h> 36 #include <linux/platform_device.h> 37 #include <linux/reset.h> 38 #include <linux/sizes.h> 39 #include <linux/slab.h> 40 #include <linux/vmalloc.h> 41 #include <linux/regulator/consumer.h> 42 43 #include <soc/tegra/cpuidle.h> 44 #include <soc/tegra/pmc.h> 45 46 #include "../pci.h" 47 48 #define INT_PCI_MSI_NR (8 * 32) 49 50 /* register definitions */ 51 52 #define AFI_AXI_BAR0_SZ 0x00 53 #define AFI_AXI_BAR1_SZ 0x04 54 #define AFI_AXI_BAR2_SZ 0x08 55 #define AFI_AXI_BAR3_SZ 0x0c 56 #define AFI_AXI_BAR4_SZ 0x10 57 #define AFI_AXI_BAR5_SZ 0x14 58 59 #define AFI_AXI_BAR0_START 0x18 60 #define AFI_AXI_BAR1_START 0x1c 61 #define AFI_AXI_BAR2_START 0x20 62 #define AFI_AXI_BAR3_START 0x24 63 #define AFI_AXI_BAR4_START 0x28 64 #define AFI_AXI_BAR5_START 0x2c 65 66 #define AFI_FPCI_BAR0 0x30 67 #define AFI_FPCI_BAR1 0x34 68 #define AFI_FPCI_BAR2 0x38 69 #define AFI_FPCI_BAR3 0x3c 70 #define AFI_FPCI_BAR4 0x40 71 #define AFI_FPCI_BAR5 0x44 72 73 #define AFI_CACHE_BAR0_SZ 0x48 74 #define AFI_CACHE_BAR0_ST 0x4c 75 #define AFI_CACHE_BAR1_SZ 0x50 76 #define AFI_CACHE_BAR1_ST 0x54 77 78 #define AFI_MSI_BAR_SZ 0x60 79 #define AFI_MSI_FPCI_BAR_ST 0x64 80 #define AFI_MSI_AXI_BAR_ST 0x68 81 82 #define AFI_MSI_VEC(x) (0x6c + ((x) * 4)) 83 #define AFI_MSI_EN_VEC(x) (0x8c + ((x) * 4)) 84 85 #define AFI_CONFIGURATION 0xac 86 #define AFI_CONFIGURATION_EN_FPCI (1 << 0) 87 #define AFI_CONFIGURATION_CLKEN_OVERRIDE (1 << 31) 88 89 #define AFI_FPCI_ERROR_MASKS 0xb0 90 91 #define AFI_INTR_MASK 0xb4 92 #define AFI_INTR_MASK_INT_MASK (1 << 0) 93 #define AFI_INTR_MASK_MSI_MASK (1 << 8) 94 95 #define AFI_INTR_CODE 0xb8 96 #define AFI_INTR_CODE_MASK 0xf 97 #define AFI_INTR_INI_SLAVE_ERROR 1 98 #define AFI_INTR_INI_DECODE_ERROR 2 99 #define AFI_INTR_TARGET_ABORT 3 100 #define AFI_INTR_MASTER_ABORT 4 101 #define AFI_INTR_INVALID_WRITE 5 102 #define AFI_INTR_LEGACY 6 103 #define AFI_INTR_FPCI_DECODE_ERROR 7 104 #define AFI_INTR_AXI_DECODE_ERROR 8 105 #define AFI_INTR_FPCI_TIMEOUT 9 106 #define AFI_INTR_PE_PRSNT_SENSE 10 107 #define AFI_INTR_PE_CLKREQ_SENSE 11 108 #define AFI_INTR_CLKCLAMP_SENSE 12 109 #define AFI_INTR_RDY4PD_SENSE 13 110 #define AFI_INTR_P2P_ERROR 14 111 112 #define AFI_INTR_SIGNATURE 0xbc 113 #define AFI_UPPER_FPCI_ADDRESS 0xc0 114 #define AFI_SM_INTR_ENABLE 0xc4 115 #define AFI_SM_INTR_INTA_ASSERT (1 << 0) 116 #define AFI_SM_INTR_INTB_ASSERT (1 << 1) 117 #define AFI_SM_INTR_INTC_ASSERT (1 << 2) 118 #define AFI_SM_INTR_INTD_ASSERT (1 << 3) 119 #define AFI_SM_INTR_INTA_DEASSERT (1 << 4) 120 #define AFI_SM_INTR_INTB_DEASSERT (1 << 5) 121 #define AFI_SM_INTR_INTC_DEASSERT (1 << 6) 122 #define AFI_SM_INTR_INTD_DEASSERT (1 << 7) 123 124 #define AFI_AFI_INTR_ENABLE 0xc8 125 #define AFI_INTR_EN_INI_SLVERR (1 << 0) 126 #define AFI_INTR_EN_INI_DECERR (1 << 1) 127 #define AFI_INTR_EN_TGT_SLVERR (1 << 2) 128 #define AFI_INTR_EN_TGT_DECERR (1 << 3) 129 #define AFI_INTR_EN_TGT_WRERR (1 << 4) 130 #define AFI_INTR_EN_DFPCI_DECERR (1 << 5) 131 #define AFI_INTR_EN_AXI_DECERR (1 << 6) 132 #define AFI_INTR_EN_FPCI_TIMEOUT (1 << 7) 133 #define AFI_INTR_EN_PRSNT_SENSE (1 << 8) 134 135 #define AFI_PCIE_PME 0xf0 136 137 #define AFI_PCIE_CONFIG 0x0f8 138 #define AFI_PCIE_CONFIG_PCIE_DISABLE(x) (1 << ((x) + 1)) 139 #define AFI_PCIE_CONFIG_PCIE_DISABLE_ALL 0xe 140 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK (0xf << 20) 141 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE (0x0 << 20) 142 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420 (0x0 << 20) 143 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1 (0x0 << 20) 144 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_401 (0x0 << 20) 145 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL (0x1 << 20) 146 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222 (0x1 << 20) 147 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1 (0x1 << 20) 148 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211 (0x1 << 20) 149 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411 (0x2 << 20) 150 #define AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_111 (0x2 << 20) 151 #define AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(x) (1 << ((x) + 29)) 152 #define AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO_ALL (0x7 << 29) 153 154 #define AFI_FUSE 0x104 155 #define AFI_FUSE_PCIE_T0_GEN2_DIS (1 << 2) 156 157 #define AFI_PEX0_CTRL 0x110 158 #define AFI_PEX1_CTRL 0x118 159 #define AFI_PEX_CTRL_RST (1 << 0) 160 #define AFI_PEX_CTRL_CLKREQ_EN (1 << 1) 161 #define AFI_PEX_CTRL_REFCLK_EN (1 << 3) 162 #define AFI_PEX_CTRL_OVERRIDE_EN (1 << 4) 163 164 #define AFI_PLLE_CONTROL 0x160 165 #define AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL (1 << 9) 166 #define AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN (1 << 1) 167 168 #define AFI_PEXBIAS_CTRL_0 0x168 169 170 #define RP_ECTL_2_R1 0x00000e84 171 #define RP_ECTL_2_R1_RX_CTLE_1C_MASK 0xffff 172 173 #define RP_ECTL_4_R1 0x00000e8c 174 #define RP_ECTL_4_R1_RX_CDR_CTRL_1C_MASK (0xffff << 16) 175 #define RP_ECTL_4_R1_RX_CDR_CTRL_1C_SHIFT 16 176 177 #define RP_ECTL_5_R1 0x00000e90 178 #define RP_ECTL_5_R1_RX_EQ_CTRL_L_1C_MASK 0xffffffff 179 180 #define RP_ECTL_6_R1 0x00000e94 181 #define RP_ECTL_6_R1_RX_EQ_CTRL_H_1C_MASK 0xffffffff 182 183 #define RP_ECTL_2_R2 0x00000ea4 184 #define RP_ECTL_2_R2_RX_CTLE_1C_MASK 0xffff 185 186 #define RP_ECTL_4_R2 0x00000eac 187 #define RP_ECTL_4_R2_RX_CDR_CTRL_1C_MASK (0xffff << 16) 188 #define RP_ECTL_4_R2_RX_CDR_CTRL_1C_SHIFT 16 189 190 #define RP_ECTL_5_R2 0x00000eb0 191 #define RP_ECTL_5_R2_RX_EQ_CTRL_L_1C_MASK 0xffffffff 192 193 #define RP_ECTL_6_R2 0x00000eb4 194 #define RP_ECTL_6_R2_RX_EQ_CTRL_H_1C_MASK 0xffffffff 195 196 #define RP_VEND_XP 0x00000f00 197 #define RP_VEND_XP_DL_UP (1 << 30) 198 #define RP_VEND_XP_OPPORTUNISTIC_ACK (1 << 27) 199 #define RP_VEND_XP_OPPORTUNISTIC_UPDATEFC (1 << 28) 200 #define RP_VEND_XP_UPDATE_FC_THRESHOLD_MASK (0xff << 18) 201 202 #define RP_VEND_CTL0 0x00000f44 203 #define RP_VEND_CTL0_DSK_RST_PULSE_WIDTH_MASK (0xf << 12) 204 #define RP_VEND_CTL0_DSK_RST_PULSE_WIDTH (0x9 << 12) 205 206 #define RP_VEND_CTL1 0x00000f48 207 #define RP_VEND_CTL1_ERPT (1 << 13) 208 209 #define RP_VEND_XP_BIST 0x00000f4c 210 #define RP_VEND_XP_BIST_GOTO_L1_L2_AFTER_DLLP_DONE (1 << 28) 211 212 #define RP_VEND_CTL2 0x00000fa8 213 #define RP_VEND_CTL2_PCA_ENABLE (1 << 7) 214 215 #define RP_PRIV_MISC 0x00000fe0 216 #define RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT (0xe << 0) 217 #define RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT (0xf << 0) 218 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD_MASK (0x7f << 16) 219 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD (0xf << 16) 220 #define RP_PRIV_MISC_CTLR_CLK_CLAMP_ENABLE (1 << 23) 221 #define RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD_MASK (0x7f << 24) 222 #define RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD (0xf << 24) 223 #define RP_PRIV_MISC_TMS_CLK_CLAMP_ENABLE (1 << 31) 224 225 #define RP_LINK_CONTROL_STATUS 0x00000090 226 #define RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE 0x20000000 227 #define RP_LINK_CONTROL_STATUS_LINKSTAT_MASK 0x3fff0000 228 229 #define RP_LINK_CONTROL_STATUS_2 0x000000b0 230 231 #define PADS_CTL_SEL 0x0000009c 232 233 #define PADS_CTL 0x000000a0 234 #define PADS_CTL_IDDQ_1L (1 << 0) 235 #define PADS_CTL_TX_DATA_EN_1L (1 << 6) 236 #define PADS_CTL_RX_DATA_EN_1L (1 << 10) 237 238 #define PADS_PLL_CTL_TEGRA20 0x000000b8 239 #define PADS_PLL_CTL_TEGRA30 0x000000b4 240 #define PADS_PLL_CTL_RST_B4SM (1 << 1) 241 #define PADS_PLL_CTL_LOCKDET (1 << 8) 242 #define PADS_PLL_CTL_REFCLK_MASK (0x3 << 16) 243 #define PADS_PLL_CTL_REFCLK_INTERNAL_CML (0 << 16) 244 #define PADS_PLL_CTL_REFCLK_INTERNAL_CMOS (1 << 16) 245 #define PADS_PLL_CTL_REFCLK_EXTERNAL (2 << 16) 246 #define PADS_PLL_CTL_TXCLKREF_MASK (0x1 << 20) 247 #define PADS_PLL_CTL_TXCLKREF_DIV10 (0 << 20) 248 #define PADS_PLL_CTL_TXCLKREF_DIV5 (1 << 20) 249 #define PADS_PLL_CTL_TXCLKREF_BUF_EN (1 << 22) 250 251 #define PADS_REFCLK_CFG0 0x000000c8 252 #define PADS_REFCLK_CFG1 0x000000cc 253 #define PADS_REFCLK_BIAS 0x000000d0 254 255 /* 256 * Fields in PADS_REFCLK_CFG*. Those registers form an array of 16-bit 257 * entries, one entry per PCIe port. These field definitions and desired 258 * values aren't in the TRM, but do come from NVIDIA. 259 */ 260 #define PADS_REFCLK_CFG_TERM_SHIFT 2 /* 6:2 */ 261 #define PADS_REFCLK_CFG_E_TERM_SHIFT 7 262 #define PADS_REFCLK_CFG_PREDI_SHIFT 8 /* 11:8 */ 263 #define PADS_REFCLK_CFG_DRVI_SHIFT 12 /* 15:12 */ 264 265 #define PME_ACK_TIMEOUT 10000 266 #define LINK_RETRAIN_TIMEOUT 100000 /* in usec */ 267 268 struct tegra_msi { 269 DECLARE_BITMAP(used, INT_PCI_MSI_NR); 270 struct irq_domain *domain; 271 struct mutex map_lock; 272 spinlock_t mask_lock; 273 void *virt; 274 dma_addr_t phys; 275 int irq; 276 }; 277 278 /* used to differentiate between Tegra SoC generations */ 279 struct tegra_pcie_port_soc { 280 struct { 281 u8 turnoff_bit; 282 u8 ack_bit; 283 } pme; 284 }; 285 286 struct tegra_pcie_soc { 287 unsigned int num_ports; 288 const struct tegra_pcie_port_soc *ports; 289 unsigned int msi_base_shift; 290 unsigned long afi_pex2_ctrl; 291 u32 pads_pll_ctl; 292 u32 tx_ref_sel; 293 u32 pads_refclk_cfg0; 294 u32 pads_refclk_cfg1; 295 u32 update_fc_threshold; 296 bool has_pex_clkreq_en; 297 bool has_pex_bias_ctrl; 298 bool has_intr_prsnt_sense; 299 bool has_cml_clk; 300 bool has_gen2; 301 bool force_pca_enable; 302 bool program_uphy; 303 bool update_clamp_threshold; 304 bool program_deskew_time; 305 bool update_fc_timer; 306 bool has_cache_bars; 307 struct { 308 struct { 309 u32 rp_ectl_2_r1; 310 u32 rp_ectl_4_r1; 311 u32 rp_ectl_5_r1; 312 u32 rp_ectl_6_r1; 313 u32 rp_ectl_2_r2; 314 u32 rp_ectl_4_r2; 315 u32 rp_ectl_5_r2; 316 u32 rp_ectl_6_r2; 317 } regs; 318 bool enable; 319 } ectl; 320 }; 321 322 struct tegra_pcie { 323 struct device *dev; 324 325 void __iomem *pads; 326 void __iomem *afi; 327 void __iomem *cfg; 328 int irq; 329 330 struct resource cs; 331 332 struct clk *pex_clk; 333 struct clk *afi_clk; 334 struct clk *pll_e; 335 struct clk *cml_clk; 336 337 struct reset_control *pex_rst; 338 struct reset_control *afi_rst; 339 struct reset_control *pcie_xrst; 340 341 bool legacy_phy; 342 struct phy *phy; 343 344 struct tegra_msi msi; 345 346 struct list_head ports; 347 u32 xbar_config; 348 349 struct regulator_bulk_data *supplies; 350 unsigned int num_supplies; 351 352 const struct tegra_pcie_soc *soc; 353 struct dentry *debugfs; 354 }; 355 356 static inline struct tegra_pcie *msi_to_pcie(struct tegra_msi *msi) 357 { 358 return container_of(msi, struct tegra_pcie, msi); 359 } 360 361 struct tegra_pcie_port { 362 struct tegra_pcie *pcie; 363 struct device_node *np; 364 struct list_head list; 365 struct resource regs; 366 void __iomem *base; 367 unsigned int index; 368 unsigned int lanes; 369 370 struct phy **phys; 371 372 struct gpio_desc *reset_gpio; 373 }; 374 375 struct tegra_pcie_bus { 376 struct list_head list; 377 unsigned int nr; 378 }; 379 380 static inline void afi_writel(struct tegra_pcie *pcie, u32 value, 381 unsigned long offset) 382 { 383 writel(value, pcie->afi + offset); 384 } 385 386 static inline u32 afi_readl(struct tegra_pcie *pcie, unsigned long offset) 387 { 388 return readl(pcie->afi + offset); 389 } 390 391 static inline void pads_writel(struct tegra_pcie *pcie, u32 value, 392 unsigned long offset) 393 { 394 writel(value, pcie->pads + offset); 395 } 396 397 static inline u32 pads_readl(struct tegra_pcie *pcie, unsigned long offset) 398 { 399 return readl(pcie->pads + offset); 400 } 401 402 /* 403 * The configuration space mapping on Tegra is somewhat similar to the ECAM 404 * defined by PCIe. However it deviates a bit in how the 4 bits for extended 405 * register accesses are mapped: 406 * 407 * [27:24] extended register number 408 * [23:16] bus number 409 * [15:11] device number 410 * [10: 8] function number 411 * [ 7: 0] register number 412 * 413 * Mapping the whole extended configuration space would require 256 MiB of 414 * virtual address space, only a small part of which will actually be used. 415 * 416 * To work around this, a 4 KiB region is used to generate the required 417 * configuration transaction with relevant B:D:F and register offset values. 418 * This is achieved by dynamically programming base address and size of 419 * AFI_AXI_BAR used for end point config space mapping to make sure that the 420 * address (access to which generates correct config transaction) falls in 421 * this 4 KiB region. 422 */ 423 static unsigned int tegra_pcie_conf_offset(u8 bus, unsigned int devfn, 424 unsigned int where) 425 { 426 return ((where & 0xf00) << 16) | (bus << 16) | (PCI_SLOT(devfn) << 11) | 427 (PCI_FUNC(devfn) << 8) | (where & 0xff); 428 } 429 430 static void __iomem *tegra_pcie_map_bus(struct pci_bus *bus, 431 unsigned int devfn, 432 int where) 433 { 434 struct tegra_pcie *pcie = bus->sysdata; 435 void __iomem *addr = NULL; 436 437 if (bus->number == 0) { 438 unsigned int slot = PCI_SLOT(devfn); 439 struct tegra_pcie_port *port; 440 441 list_for_each_entry(port, &pcie->ports, list) { 442 if (port->index + 1 == slot) { 443 addr = port->base + (where & ~3); 444 break; 445 } 446 } 447 } else { 448 unsigned int offset; 449 u32 base; 450 451 offset = tegra_pcie_conf_offset(bus->number, devfn, where); 452 453 /* move 4 KiB window to offset within the FPCI region */ 454 base = 0xfe100000 + ((offset & ~(SZ_4K - 1)) >> 8); 455 afi_writel(pcie, base, AFI_FPCI_BAR0); 456 457 /* move to correct offset within the 4 KiB page */ 458 addr = pcie->cfg + (offset & (SZ_4K - 1)); 459 } 460 461 return addr; 462 } 463 464 static int tegra_pcie_config_read(struct pci_bus *bus, unsigned int devfn, 465 int where, int size, u32 *value) 466 { 467 if (bus->number == 0) 468 return pci_generic_config_read32(bus, devfn, where, size, 469 value); 470 471 return pci_generic_config_read(bus, devfn, where, size, value); 472 } 473 474 static int tegra_pcie_config_write(struct pci_bus *bus, unsigned int devfn, 475 int where, int size, u32 value) 476 { 477 if (bus->number == 0) 478 return pci_generic_config_write32(bus, devfn, where, size, 479 value); 480 481 return pci_generic_config_write(bus, devfn, where, size, value); 482 } 483 484 static struct pci_ops tegra_pcie_ops = { 485 .map_bus = tegra_pcie_map_bus, 486 .read = tegra_pcie_config_read, 487 .write = tegra_pcie_config_write, 488 }; 489 490 static unsigned long tegra_pcie_port_get_pex_ctrl(struct tegra_pcie_port *port) 491 { 492 const struct tegra_pcie_soc *soc = port->pcie->soc; 493 unsigned long ret = 0; 494 495 switch (port->index) { 496 case 0: 497 ret = AFI_PEX0_CTRL; 498 break; 499 500 case 1: 501 ret = AFI_PEX1_CTRL; 502 break; 503 504 case 2: 505 ret = soc->afi_pex2_ctrl; 506 break; 507 } 508 509 return ret; 510 } 511 512 static void tegra_pcie_port_reset(struct tegra_pcie_port *port) 513 { 514 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port); 515 unsigned long value; 516 517 /* pulse reset signal */ 518 if (port->reset_gpio) { 519 gpiod_set_value(port->reset_gpio, 1); 520 } else { 521 value = afi_readl(port->pcie, ctrl); 522 value &= ~AFI_PEX_CTRL_RST; 523 afi_writel(port->pcie, value, ctrl); 524 } 525 526 usleep_range(1000, 2000); 527 528 if (port->reset_gpio) { 529 gpiod_set_value(port->reset_gpio, 0); 530 } else { 531 value = afi_readl(port->pcie, ctrl); 532 value |= AFI_PEX_CTRL_RST; 533 afi_writel(port->pcie, value, ctrl); 534 } 535 } 536 537 static void tegra_pcie_enable_rp_features(struct tegra_pcie_port *port) 538 { 539 const struct tegra_pcie_soc *soc = port->pcie->soc; 540 u32 value; 541 542 /* Enable AER capability */ 543 value = readl(port->base + RP_VEND_CTL1); 544 value |= RP_VEND_CTL1_ERPT; 545 writel(value, port->base + RP_VEND_CTL1); 546 547 /* Optimal settings to enhance bandwidth */ 548 value = readl(port->base + RP_VEND_XP); 549 value |= RP_VEND_XP_OPPORTUNISTIC_ACK; 550 value |= RP_VEND_XP_OPPORTUNISTIC_UPDATEFC; 551 writel(value, port->base + RP_VEND_XP); 552 553 /* 554 * LTSSM will wait for DLLP to finish before entering L1 or L2, 555 * to avoid truncation of PM messages which results in receiver errors 556 */ 557 value = readl(port->base + RP_VEND_XP_BIST); 558 value |= RP_VEND_XP_BIST_GOTO_L1_L2_AFTER_DLLP_DONE; 559 writel(value, port->base + RP_VEND_XP_BIST); 560 561 value = readl(port->base + RP_PRIV_MISC); 562 value |= RP_PRIV_MISC_CTLR_CLK_CLAMP_ENABLE; 563 value |= RP_PRIV_MISC_TMS_CLK_CLAMP_ENABLE; 564 565 if (soc->update_clamp_threshold) { 566 value &= ~(RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD_MASK | 567 RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD_MASK); 568 value |= RP_PRIV_MISC_CTLR_CLK_CLAMP_THRESHOLD | 569 RP_PRIV_MISC_TMS_CLK_CLAMP_THRESHOLD; 570 } 571 572 writel(value, port->base + RP_PRIV_MISC); 573 } 574 575 static void tegra_pcie_program_ectl_settings(struct tegra_pcie_port *port) 576 { 577 const struct tegra_pcie_soc *soc = port->pcie->soc; 578 u32 value; 579 580 value = readl(port->base + RP_ECTL_2_R1); 581 value &= ~RP_ECTL_2_R1_RX_CTLE_1C_MASK; 582 value |= soc->ectl.regs.rp_ectl_2_r1; 583 writel(value, port->base + RP_ECTL_2_R1); 584 585 value = readl(port->base + RP_ECTL_4_R1); 586 value &= ~RP_ECTL_4_R1_RX_CDR_CTRL_1C_MASK; 587 value |= soc->ectl.regs.rp_ectl_4_r1 << 588 RP_ECTL_4_R1_RX_CDR_CTRL_1C_SHIFT; 589 writel(value, port->base + RP_ECTL_4_R1); 590 591 value = readl(port->base + RP_ECTL_5_R1); 592 value &= ~RP_ECTL_5_R1_RX_EQ_CTRL_L_1C_MASK; 593 value |= soc->ectl.regs.rp_ectl_5_r1; 594 writel(value, port->base + RP_ECTL_5_R1); 595 596 value = readl(port->base + RP_ECTL_6_R1); 597 value &= ~RP_ECTL_6_R1_RX_EQ_CTRL_H_1C_MASK; 598 value |= soc->ectl.regs.rp_ectl_6_r1; 599 writel(value, port->base + RP_ECTL_6_R1); 600 601 value = readl(port->base + RP_ECTL_2_R2); 602 value &= ~RP_ECTL_2_R2_RX_CTLE_1C_MASK; 603 value |= soc->ectl.regs.rp_ectl_2_r2; 604 writel(value, port->base + RP_ECTL_2_R2); 605 606 value = readl(port->base + RP_ECTL_4_R2); 607 value &= ~RP_ECTL_4_R2_RX_CDR_CTRL_1C_MASK; 608 value |= soc->ectl.regs.rp_ectl_4_r2 << 609 RP_ECTL_4_R2_RX_CDR_CTRL_1C_SHIFT; 610 writel(value, port->base + RP_ECTL_4_R2); 611 612 value = readl(port->base + RP_ECTL_5_R2); 613 value &= ~RP_ECTL_5_R2_RX_EQ_CTRL_L_1C_MASK; 614 value |= soc->ectl.regs.rp_ectl_5_r2; 615 writel(value, port->base + RP_ECTL_5_R2); 616 617 value = readl(port->base + RP_ECTL_6_R2); 618 value &= ~RP_ECTL_6_R2_RX_EQ_CTRL_H_1C_MASK; 619 value |= soc->ectl.regs.rp_ectl_6_r2; 620 writel(value, port->base + RP_ECTL_6_R2); 621 } 622 623 static void tegra_pcie_apply_sw_fixup(struct tegra_pcie_port *port) 624 { 625 const struct tegra_pcie_soc *soc = port->pcie->soc; 626 u32 value; 627 628 /* 629 * Sometimes link speed change from Gen2 to Gen1 fails due to 630 * instability in deskew logic on lane-0. Increase the deskew 631 * retry time to resolve this issue. 632 */ 633 if (soc->program_deskew_time) { 634 value = readl(port->base + RP_VEND_CTL0); 635 value &= ~RP_VEND_CTL0_DSK_RST_PULSE_WIDTH_MASK; 636 value |= RP_VEND_CTL0_DSK_RST_PULSE_WIDTH; 637 writel(value, port->base + RP_VEND_CTL0); 638 } 639 640 if (soc->update_fc_timer) { 641 value = readl(port->base + RP_VEND_XP); 642 value &= ~RP_VEND_XP_UPDATE_FC_THRESHOLD_MASK; 643 value |= soc->update_fc_threshold; 644 writel(value, port->base + RP_VEND_XP); 645 } 646 647 /* 648 * PCIe link doesn't come up with few legacy PCIe endpoints if 649 * root port advertises both Gen-1 and Gen-2 speeds in Tegra. 650 * Hence, the strategy followed here is to initially advertise 651 * only Gen-1 and after link is up, retrain link to Gen-2 speed 652 */ 653 value = readl(port->base + RP_LINK_CONTROL_STATUS_2); 654 value &= ~PCI_EXP_LNKSTA_CLS; 655 value |= PCI_EXP_LNKSTA_CLS_2_5GB; 656 writel(value, port->base + RP_LINK_CONTROL_STATUS_2); 657 } 658 659 static void tegra_pcie_port_enable(struct tegra_pcie_port *port) 660 { 661 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port); 662 const struct tegra_pcie_soc *soc = port->pcie->soc; 663 unsigned long value; 664 665 /* enable reference clock */ 666 value = afi_readl(port->pcie, ctrl); 667 value |= AFI_PEX_CTRL_REFCLK_EN; 668 669 if (soc->has_pex_clkreq_en) 670 value |= AFI_PEX_CTRL_CLKREQ_EN; 671 672 value |= AFI_PEX_CTRL_OVERRIDE_EN; 673 674 afi_writel(port->pcie, value, ctrl); 675 676 tegra_pcie_port_reset(port); 677 678 if (soc->force_pca_enable) { 679 value = readl(port->base + RP_VEND_CTL2); 680 value |= RP_VEND_CTL2_PCA_ENABLE; 681 writel(value, port->base + RP_VEND_CTL2); 682 } 683 684 tegra_pcie_enable_rp_features(port); 685 686 if (soc->ectl.enable) 687 tegra_pcie_program_ectl_settings(port); 688 689 tegra_pcie_apply_sw_fixup(port); 690 } 691 692 static void tegra_pcie_port_disable(struct tegra_pcie_port *port) 693 { 694 unsigned long ctrl = tegra_pcie_port_get_pex_ctrl(port); 695 const struct tegra_pcie_soc *soc = port->pcie->soc; 696 unsigned long value; 697 698 /* assert port reset */ 699 value = afi_readl(port->pcie, ctrl); 700 value &= ~AFI_PEX_CTRL_RST; 701 afi_writel(port->pcie, value, ctrl); 702 703 /* disable reference clock */ 704 value = afi_readl(port->pcie, ctrl); 705 706 if (soc->has_pex_clkreq_en) 707 value &= ~AFI_PEX_CTRL_CLKREQ_EN; 708 709 value &= ~AFI_PEX_CTRL_REFCLK_EN; 710 afi_writel(port->pcie, value, ctrl); 711 712 /* disable PCIe port and set CLKREQ# as GPIO to allow PLLE power down */ 713 value = afi_readl(port->pcie, AFI_PCIE_CONFIG); 714 value |= AFI_PCIE_CONFIG_PCIE_DISABLE(port->index); 715 value |= AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(port->index); 716 afi_writel(port->pcie, value, AFI_PCIE_CONFIG); 717 } 718 719 static void tegra_pcie_port_free(struct tegra_pcie_port *port) 720 { 721 struct tegra_pcie *pcie = port->pcie; 722 struct device *dev = pcie->dev; 723 724 devm_iounmap(dev, port->base); 725 devm_release_mem_region(dev, port->regs.start, 726 resource_size(&port->regs)); 727 list_del(&port->list); 728 devm_kfree(dev, port); 729 } 730 731 /* Tegra PCIE root complex wrongly reports device class */ 732 static void tegra_pcie_fixup_class(struct pci_dev *dev) 733 { 734 dev->class = PCI_CLASS_BRIDGE_PCI << 8; 735 } 736 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_fixup_class); 737 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_fixup_class); 738 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_fixup_class); 739 DECLARE_PCI_FIXUP_EARLY(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_fixup_class); 740 741 /* Tegra20 and Tegra30 PCIE requires relaxed ordering */ 742 static void tegra_pcie_relax_enable(struct pci_dev *dev) 743 { 744 pcie_capability_set_word(dev, PCI_EXP_DEVCTL, PCI_EXP_DEVCTL_RELAX_EN); 745 } 746 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0bf0, tegra_pcie_relax_enable); 747 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0bf1, tegra_pcie_relax_enable); 748 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0e1c, tegra_pcie_relax_enable); 749 DECLARE_PCI_FIXUP_FINAL(PCI_VENDOR_ID_NVIDIA, 0x0e1d, tegra_pcie_relax_enable); 750 751 static int tegra_pcie_map_irq(const struct pci_dev *pdev, u8 slot, u8 pin) 752 { 753 struct tegra_pcie *pcie = pdev->bus->sysdata; 754 int irq; 755 756 tegra_cpuidle_pcie_irqs_in_use(); 757 758 irq = of_irq_parse_and_map_pci(pdev, slot, pin); 759 if (!irq) 760 irq = pcie->irq; 761 762 return irq; 763 } 764 765 static irqreturn_t tegra_pcie_isr(int irq, void *arg) 766 { 767 const char *err_msg[] = { 768 "Unknown", 769 "AXI slave error", 770 "AXI decode error", 771 "Target abort", 772 "Master abort", 773 "Invalid write", 774 "Legacy interrupt", 775 "Response decoding error", 776 "AXI response decoding error", 777 "Transaction timeout", 778 "Slot present pin change", 779 "Slot clock request change", 780 "TMS clock ramp change", 781 "TMS ready for power down", 782 "Peer2Peer error", 783 }; 784 struct tegra_pcie *pcie = arg; 785 struct device *dev = pcie->dev; 786 u32 code, signature; 787 788 code = afi_readl(pcie, AFI_INTR_CODE) & AFI_INTR_CODE_MASK; 789 signature = afi_readl(pcie, AFI_INTR_SIGNATURE); 790 afi_writel(pcie, 0, AFI_INTR_CODE); 791 792 if (code == AFI_INTR_LEGACY) 793 return IRQ_NONE; 794 795 if (code >= ARRAY_SIZE(err_msg)) 796 code = 0; 797 798 /* 799 * do not pollute kernel log with master abort reports since they 800 * happen a lot during enumeration 801 */ 802 if (code == AFI_INTR_MASTER_ABORT || code == AFI_INTR_PE_PRSNT_SENSE) 803 dev_dbg(dev, "%s, signature: %08x\n", err_msg[code], signature); 804 else 805 dev_err(dev, "%s, signature: %08x\n", err_msg[code], signature); 806 807 if (code == AFI_INTR_TARGET_ABORT || code == AFI_INTR_MASTER_ABORT || 808 code == AFI_INTR_FPCI_DECODE_ERROR) { 809 u32 fpci = afi_readl(pcie, AFI_UPPER_FPCI_ADDRESS) & 0xff; 810 u64 address = (u64)fpci << 32 | (signature & 0xfffffffc); 811 812 if (code == AFI_INTR_MASTER_ABORT) 813 dev_dbg(dev, " FPCI address: %10llx\n", address); 814 else 815 dev_err(dev, " FPCI address: %10llx\n", address); 816 } 817 818 return IRQ_HANDLED; 819 } 820 821 /* 822 * FPCI map is as follows: 823 * - 0xfdfc000000: I/O space 824 * - 0xfdfe000000: type 0 configuration space 825 * - 0xfdff000000: type 1 configuration space 826 * - 0xfe00000000: type 0 extended configuration space 827 * - 0xfe10000000: type 1 extended configuration space 828 */ 829 static void tegra_pcie_setup_translations(struct tegra_pcie *pcie) 830 { 831 u32 size; 832 struct resource_entry *entry; 833 struct pci_host_bridge *bridge = pci_host_bridge_from_priv(pcie); 834 835 /* Bar 0: type 1 extended configuration space */ 836 size = resource_size(&pcie->cs); 837 afi_writel(pcie, pcie->cs.start, AFI_AXI_BAR0_START); 838 afi_writel(pcie, size >> 12, AFI_AXI_BAR0_SZ); 839 840 resource_list_for_each_entry(entry, &bridge->windows) { 841 u32 fpci_bar, axi_address; 842 struct resource *res = entry->res; 843 844 size = resource_size(res); 845 846 switch (resource_type(res)) { 847 case IORESOURCE_IO: 848 /* Bar 1: downstream IO bar */ 849 fpci_bar = 0xfdfc0000; 850 axi_address = pci_pio_to_address(res->start); 851 afi_writel(pcie, axi_address, AFI_AXI_BAR1_START); 852 afi_writel(pcie, size >> 12, AFI_AXI_BAR1_SZ); 853 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR1); 854 break; 855 case IORESOURCE_MEM: 856 fpci_bar = (((res->start >> 12) & 0x0fffffff) << 4) | 0x1; 857 axi_address = res->start; 858 859 if (res->flags & IORESOURCE_PREFETCH) { 860 /* Bar 2: prefetchable memory BAR */ 861 afi_writel(pcie, axi_address, AFI_AXI_BAR2_START); 862 afi_writel(pcie, size >> 12, AFI_AXI_BAR2_SZ); 863 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR2); 864 865 } else { 866 /* Bar 3: non prefetchable memory BAR */ 867 afi_writel(pcie, axi_address, AFI_AXI_BAR3_START); 868 afi_writel(pcie, size >> 12, AFI_AXI_BAR3_SZ); 869 afi_writel(pcie, fpci_bar, AFI_FPCI_BAR3); 870 } 871 break; 872 } 873 } 874 875 /* NULL out the remaining BARs as they are not used */ 876 afi_writel(pcie, 0, AFI_AXI_BAR4_START); 877 afi_writel(pcie, 0, AFI_AXI_BAR4_SZ); 878 afi_writel(pcie, 0, AFI_FPCI_BAR4); 879 880 afi_writel(pcie, 0, AFI_AXI_BAR5_START); 881 afi_writel(pcie, 0, AFI_AXI_BAR5_SZ); 882 afi_writel(pcie, 0, AFI_FPCI_BAR5); 883 884 if (pcie->soc->has_cache_bars) { 885 /* map all upstream transactions as uncached */ 886 afi_writel(pcie, 0, AFI_CACHE_BAR0_ST); 887 afi_writel(pcie, 0, AFI_CACHE_BAR0_SZ); 888 afi_writel(pcie, 0, AFI_CACHE_BAR1_ST); 889 afi_writel(pcie, 0, AFI_CACHE_BAR1_SZ); 890 } 891 892 /* MSI translations are setup only when needed */ 893 afi_writel(pcie, 0, AFI_MSI_FPCI_BAR_ST); 894 afi_writel(pcie, 0, AFI_MSI_BAR_SZ); 895 afi_writel(pcie, 0, AFI_MSI_AXI_BAR_ST); 896 afi_writel(pcie, 0, AFI_MSI_BAR_SZ); 897 } 898 899 static int tegra_pcie_pll_wait(struct tegra_pcie *pcie, unsigned long timeout) 900 { 901 const struct tegra_pcie_soc *soc = pcie->soc; 902 u32 value; 903 904 timeout = jiffies + msecs_to_jiffies(timeout); 905 906 while (time_before(jiffies, timeout)) { 907 value = pads_readl(pcie, soc->pads_pll_ctl); 908 if (value & PADS_PLL_CTL_LOCKDET) 909 return 0; 910 } 911 912 return -ETIMEDOUT; 913 } 914 915 static int tegra_pcie_phy_enable(struct tegra_pcie *pcie) 916 { 917 struct device *dev = pcie->dev; 918 const struct tegra_pcie_soc *soc = pcie->soc; 919 u32 value; 920 int err; 921 922 /* initialize internal PHY, enable up to 16 PCIE lanes */ 923 pads_writel(pcie, 0x0, PADS_CTL_SEL); 924 925 /* override IDDQ to 1 on all 4 lanes */ 926 value = pads_readl(pcie, PADS_CTL); 927 value |= PADS_CTL_IDDQ_1L; 928 pads_writel(pcie, value, PADS_CTL); 929 930 /* 931 * Set up PHY PLL inputs select PLLE output as refclock, 932 * set TX ref sel to div10 (not div5). 933 */ 934 value = pads_readl(pcie, soc->pads_pll_ctl); 935 value &= ~(PADS_PLL_CTL_REFCLK_MASK | PADS_PLL_CTL_TXCLKREF_MASK); 936 value |= PADS_PLL_CTL_REFCLK_INTERNAL_CML | soc->tx_ref_sel; 937 pads_writel(pcie, value, soc->pads_pll_ctl); 938 939 /* reset PLL */ 940 value = pads_readl(pcie, soc->pads_pll_ctl); 941 value &= ~PADS_PLL_CTL_RST_B4SM; 942 pads_writel(pcie, value, soc->pads_pll_ctl); 943 944 usleep_range(20, 100); 945 946 /* take PLL out of reset */ 947 value = pads_readl(pcie, soc->pads_pll_ctl); 948 value |= PADS_PLL_CTL_RST_B4SM; 949 pads_writel(pcie, value, soc->pads_pll_ctl); 950 951 /* wait for the PLL to lock */ 952 err = tegra_pcie_pll_wait(pcie, 500); 953 if (err < 0) { 954 dev_err(dev, "PLL failed to lock: %d\n", err); 955 return err; 956 } 957 958 /* turn off IDDQ override */ 959 value = pads_readl(pcie, PADS_CTL); 960 value &= ~PADS_CTL_IDDQ_1L; 961 pads_writel(pcie, value, PADS_CTL); 962 963 /* enable TX/RX data */ 964 value = pads_readl(pcie, PADS_CTL); 965 value |= PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L; 966 pads_writel(pcie, value, PADS_CTL); 967 968 return 0; 969 } 970 971 static int tegra_pcie_phy_disable(struct tegra_pcie *pcie) 972 { 973 const struct tegra_pcie_soc *soc = pcie->soc; 974 u32 value; 975 976 /* disable TX/RX data */ 977 value = pads_readl(pcie, PADS_CTL); 978 value &= ~(PADS_CTL_TX_DATA_EN_1L | PADS_CTL_RX_DATA_EN_1L); 979 pads_writel(pcie, value, PADS_CTL); 980 981 /* override IDDQ */ 982 value = pads_readl(pcie, PADS_CTL); 983 value |= PADS_CTL_IDDQ_1L; 984 pads_writel(pcie, value, PADS_CTL); 985 986 /* reset PLL */ 987 value = pads_readl(pcie, soc->pads_pll_ctl); 988 value &= ~PADS_PLL_CTL_RST_B4SM; 989 pads_writel(pcie, value, soc->pads_pll_ctl); 990 991 usleep_range(20, 100); 992 993 return 0; 994 } 995 996 static int tegra_pcie_port_phy_power_on(struct tegra_pcie_port *port) 997 { 998 struct device *dev = port->pcie->dev; 999 unsigned int i; 1000 int err; 1001 1002 for (i = 0; i < port->lanes; i++) { 1003 err = phy_power_on(port->phys[i]); 1004 if (err < 0) { 1005 dev_err(dev, "failed to power on PHY#%u: %d\n", i, err); 1006 return err; 1007 } 1008 } 1009 1010 return 0; 1011 } 1012 1013 static int tegra_pcie_port_phy_power_off(struct tegra_pcie_port *port) 1014 { 1015 struct device *dev = port->pcie->dev; 1016 unsigned int i; 1017 int err; 1018 1019 for (i = 0; i < port->lanes; i++) { 1020 err = phy_power_off(port->phys[i]); 1021 if (err < 0) { 1022 dev_err(dev, "failed to power off PHY#%u: %d\n", i, 1023 err); 1024 return err; 1025 } 1026 } 1027 1028 return 0; 1029 } 1030 1031 static int tegra_pcie_phy_power_on(struct tegra_pcie *pcie) 1032 { 1033 struct device *dev = pcie->dev; 1034 struct tegra_pcie_port *port; 1035 int err; 1036 1037 if (pcie->legacy_phy) { 1038 if (pcie->phy) 1039 err = phy_power_on(pcie->phy); 1040 else 1041 err = tegra_pcie_phy_enable(pcie); 1042 1043 if (err < 0) 1044 dev_err(dev, "failed to power on PHY: %d\n", err); 1045 1046 return err; 1047 } 1048 1049 list_for_each_entry(port, &pcie->ports, list) { 1050 err = tegra_pcie_port_phy_power_on(port); 1051 if (err < 0) { 1052 dev_err(dev, 1053 "failed to power on PCIe port %u PHY: %d\n", 1054 port->index, err); 1055 return err; 1056 } 1057 } 1058 1059 return 0; 1060 } 1061 1062 static int tegra_pcie_phy_power_off(struct tegra_pcie *pcie) 1063 { 1064 struct device *dev = pcie->dev; 1065 struct tegra_pcie_port *port; 1066 int err; 1067 1068 if (pcie->legacy_phy) { 1069 if (pcie->phy) 1070 err = phy_power_off(pcie->phy); 1071 else 1072 err = tegra_pcie_phy_disable(pcie); 1073 1074 if (err < 0) 1075 dev_err(dev, "failed to power off PHY: %d\n", err); 1076 1077 return err; 1078 } 1079 1080 list_for_each_entry(port, &pcie->ports, list) { 1081 err = tegra_pcie_port_phy_power_off(port); 1082 if (err < 0) { 1083 dev_err(dev, 1084 "failed to power off PCIe port %u PHY: %d\n", 1085 port->index, err); 1086 return err; 1087 } 1088 } 1089 1090 return 0; 1091 } 1092 1093 static void tegra_pcie_enable_controller(struct tegra_pcie *pcie) 1094 { 1095 const struct tegra_pcie_soc *soc = pcie->soc; 1096 struct tegra_pcie_port *port; 1097 unsigned long value; 1098 1099 /* enable PLL power down */ 1100 if (pcie->phy) { 1101 value = afi_readl(pcie, AFI_PLLE_CONTROL); 1102 value &= ~AFI_PLLE_CONTROL_BYPASS_PADS2PLLE_CONTROL; 1103 value |= AFI_PLLE_CONTROL_PADS2PLLE_CONTROL_EN; 1104 afi_writel(pcie, value, AFI_PLLE_CONTROL); 1105 } 1106 1107 /* power down PCIe slot clock bias pad */ 1108 if (soc->has_pex_bias_ctrl) 1109 afi_writel(pcie, 0, AFI_PEXBIAS_CTRL_0); 1110 1111 /* configure mode and disable all ports */ 1112 value = afi_readl(pcie, AFI_PCIE_CONFIG); 1113 value &= ~AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_MASK; 1114 value |= AFI_PCIE_CONFIG_PCIE_DISABLE_ALL | pcie->xbar_config; 1115 value |= AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO_ALL; 1116 1117 list_for_each_entry(port, &pcie->ports, list) { 1118 value &= ~AFI_PCIE_CONFIG_PCIE_DISABLE(port->index); 1119 value &= ~AFI_PCIE_CONFIG_PCIE_CLKREQ_GPIO(port->index); 1120 } 1121 1122 afi_writel(pcie, value, AFI_PCIE_CONFIG); 1123 1124 if (soc->has_gen2) { 1125 value = afi_readl(pcie, AFI_FUSE); 1126 value &= ~AFI_FUSE_PCIE_T0_GEN2_DIS; 1127 afi_writel(pcie, value, AFI_FUSE); 1128 } else { 1129 value = afi_readl(pcie, AFI_FUSE); 1130 value |= AFI_FUSE_PCIE_T0_GEN2_DIS; 1131 afi_writel(pcie, value, AFI_FUSE); 1132 } 1133 1134 /* Disable AFI dynamic clock gating and enable PCIe */ 1135 value = afi_readl(pcie, AFI_CONFIGURATION); 1136 value |= AFI_CONFIGURATION_EN_FPCI; 1137 value |= AFI_CONFIGURATION_CLKEN_OVERRIDE; 1138 afi_writel(pcie, value, AFI_CONFIGURATION); 1139 1140 value = AFI_INTR_EN_INI_SLVERR | AFI_INTR_EN_INI_DECERR | 1141 AFI_INTR_EN_TGT_SLVERR | AFI_INTR_EN_TGT_DECERR | 1142 AFI_INTR_EN_TGT_WRERR | AFI_INTR_EN_DFPCI_DECERR; 1143 1144 if (soc->has_intr_prsnt_sense) 1145 value |= AFI_INTR_EN_PRSNT_SENSE; 1146 1147 afi_writel(pcie, value, AFI_AFI_INTR_ENABLE); 1148 afi_writel(pcie, 0xffffffff, AFI_SM_INTR_ENABLE); 1149 1150 /* don't enable MSI for now, only when needed */ 1151 afi_writel(pcie, AFI_INTR_MASK_INT_MASK, AFI_INTR_MASK); 1152 1153 /* disable all exceptions */ 1154 afi_writel(pcie, 0, AFI_FPCI_ERROR_MASKS); 1155 } 1156 1157 static void tegra_pcie_power_off(struct tegra_pcie *pcie) 1158 { 1159 struct device *dev = pcie->dev; 1160 const struct tegra_pcie_soc *soc = pcie->soc; 1161 int err; 1162 1163 reset_control_assert(pcie->afi_rst); 1164 1165 clk_disable_unprepare(pcie->pll_e); 1166 if (soc->has_cml_clk) 1167 clk_disable_unprepare(pcie->cml_clk); 1168 clk_disable_unprepare(pcie->afi_clk); 1169 1170 if (!dev->pm_domain) 1171 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE); 1172 1173 err = regulator_bulk_disable(pcie->num_supplies, pcie->supplies); 1174 if (err < 0) 1175 dev_warn(dev, "failed to disable regulators: %d\n", err); 1176 } 1177 1178 static int tegra_pcie_power_on(struct tegra_pcie *pcie) 1179 { 1180 struct device *dev = pcie->dev; 1181 const struct tegra_pcie_soc *soc = pcie->soc; 1182 int err; 1183 1184 reset_control_assert(pcie->pcie_xrst); 1185 reset_control_assert(pcie->afi_rst); 1186 reset_control_assert(pcie->pex_rst); 1187 1188 if (!dev->pm_domain) 1189 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE); 1190 1191 /* enable regulators */ 1192 err = regulator_bulk_enable(pcie->num_supplies, pcie->supplies); 1193 if (err < 0) 1194 dev_err(dev, "failed to enable regulators: %d\n", err); 1195 1196 if (!dev->pm_domain) { 1197 err = tegra_powergate_power_on(TEGRA_POWERGATE_PCIE); 1198 if (err) { 1199 dev_err(dev, "failed to power ungate: %d\n", err); 1200 goto regulator_disable; 1201 } 1202 err = tegra_powergate_remove_clamping(TEGRA_POWERGATE_PCIE); 1203 if (err) { 1204 dev_err(dev, "failed to remove clamp: %d\n", err); 1205 goto powergate; 1206 } 1207 } 1208 1209 err = clk_prepare_enable(pcie->afi_clk); 1210 if (err < 0) { 1211 dev_err(dev, "failed to enable AFI clock: %d\n", err); 1212 goto powergate; 1213 } 1214 1215 if (soc->has_cml_clk) { 1216 err = clk_prepare_enable(pcie->cml_clk); 1217 if (err < 0) { 1218 dev_err(dev, "failed to enable CML clock: %d\n", err); 1219 goto disable_afi_clk; 1220 } 1221 } 1222 1223 err = clk_prepare_enable(pcie->pll_e); 1224 if (err < 0) { 1225 dev_err(dev, "failed to enable PLLE clock: %d\n", err); 1226 goto disable_cml_clk; 1227 } 1228 1229 reset_control_deassert(pcie->afi_rst); 1230 1231 return 0; 1232 1233 disable_cml_clk: 1234 if (soc->has_cml_clk) 1235 clk_disable_unprepare(pcie->cml_clk); 1236 disable_afi_clk: 1237 clk_disable_unprepare(pcie->afi_clk); 1238 powergate: 1239 if (!dev->pm_domain) 1240 tegra_powergate_power_off(TEGRA_POWERGATE_PCIE); 1241 regulator_disable: 1242 regulator_bulk_disable(pcie->num_supplies, pcie->supplies); 1243 1244 return err; 1245 } 1246 1247 static void tegra_pcie_apply_pad_settings(struct tegra_pcie *pcie) 1248 { 1249 const struct tegra_pcie_soc *soc = pcie->soc; 1250 1251 /* Configure the reference clock driver */ 1252 pads_writel(pcie, soc->pads_refclk_cfg0, PADS_REFCLK_CFG0); 1253 1254 if (soc->num_ports > 2) 1255 pads_writel(pcie, soc->pads_refclk_cfg1, PADS_REFCLK_CFG1); 1256 } 1257 1258 static int tegra_pcie_clocks_get(struct tegra_pcie *pcie) 1259 { 1260 struct device *dev = pcie->dev; 1261 const struct tegra_pcie_soc *soc = pcie->soc; 1262 1263 pcie->pex_clk = devm_clk_get(dev, "pex"); 1264 if (IS_ERR(pcie->pex_clk)) 1265 return PTR_ERR(pcie->pex_clk); 1266 1267 pcie->afi_clk = devm_clk_get(dev, "afi"); 1268 if (IS_ERR(pcie->afi_clk)) 1269 return PTR_ERR(pcie->afi_clk); 1270 1271 pcie->pll_e = devm_clk_get(dev, "pll_e"); 1272 if (IS_ERR(pcie->pll_e)) 1273 return PTR_ERR(pcie->pll_e); 1274 1275 if (soc->has_cml_clk) { 1276 pcie->cml_clk = devm_clk_get(dev, "cml"); 1277 if (IS_ERR(pcie->cml_clk)) 1278 return PTR_ERR(pcie->cml_clk); 1279 } 1280 1281 return 0; 1282 } 1283 1284 static int tegra_pcie_resets_get(struct tegra_pcie *pcie) 1285 { 1286 struct device *dev = pcie->dev; 1287 1288 pcie->pex_rst = devm_reset_control_get_exclusive(dev, "pex"); 1289 if (IS_ERR(pcie->pex_rst)) 1290 return PTR_ERR(pcie->pex_rst); 1291 1292 pcie->afi_rst = devm_reset_control_get_exclusive(dev, "afi"); 1293 if (IS_ERR(pcie->afi_rst)) 1294 return PTR_ERR(pcie->afi_rst); 1295 1296 pcie->pcie_xrst = devm_reset_control_get_exclusive(dev, "pcie_x"); 1297 if (IS_ERR(pcie->pcie_xrst)) 1298 return PTR_ERR(pcie->pcie_xrst); 1299 1300 return 0; 1301 } 1302 1303 static int tegra_pcie_phys_get_legacy(struct tegra_pcie *pcie) 1304 { 1305 struct device *dev = pcie->dev; 1306 int err; 1307 1308 pcie->phy = devm_phy_optional_get(dev, "pcie"); 1309 if (IS_ERR(pcie->phy)) { 1310 err = PTR_ERR(pcie->phy); 1311 dev_err(dev, "failed to get PHY: %d\n", err); 1312 return err; 1313 } 1314 1315 err = phy_init(pcie->phy); 1316 if (err < 0) { 1317 dev_err(dev, "failed to initialize PHY: %d\n", err); 1318 return err; 1319 } 1320 1321 pcie->legacy_phy = true; 1322 1323 return 0; 1324 } 1325 1326 static struct phy *devm_of_phy_optional_get_index(struct device *dev, 1327 struct device_node *np, 1328 const char *consumer, 1329 unsigned int index) 1330 { 1331 struct phy *phy; 1332 char *name; 1333 1334 name = kasprintf(GFP_KERNEL, "%s-%u", consumer, index); 1335 if (!name) 1336 return ERR_PTR(-ENOMEM); 1337 1338 phy = devm_of_phy_get(dev, np, name); 1339 kfree(name); 1340 1341 if (PTR_ERR(phy) == -ENODEV) 1342 phy = NULL; 1343 1344 return phy; 1345 } 1346 1347 static int tegra_pcie_port_get_phys(struct tegra_pcie_port *port) 1348 { 1349 struct device *dev = port->pcie->dev; 1350 struct phy *phy; 1351 unsigned int i; 1352 int err; 1353 1354 port->phys = devm_kcalloc(dev, sizeof(phy), port->lanes, GFP_KERNEL); 1355 if (!port->phys) 1356 return -ENOMEM; 1357 1358 for (i = 0; i < port->lanes; i++) { 1359 phy = devm_of_phy_optional_get_index(dev, port->np, "pcie", i); 1360 if (IS_ERR(phy)) { 1361 dev_err(dev, "failed to get PHY#%u: %ld\n", i, 1362 PTR_ERR(phy)); 1363 return PTR_ERR(phy); 1364 } 1365 1366 err = phy_init(phy); 1367 if (err < 0) { 1368 dev_err(dev, "failed to initialize PHY#%u: %d\n", i, 1369 err); 1370 return err; 1371 } 1372 1373 port->phys[i] = phy; 1374 } 1375 1376 return 0; 1377 } 1378 1379 static int tegra_pcie_phys_get(struct tegra_pcie *pcie) 1380 { 1381 const struct tegra_pcie_soc *soc = pcie->soc; 1382 struct device_node *np = pcie->dev->of_node; 1383 struct tegra_pcie_port *port; 1384 int err; 1385 1386 if (!soc->has_gen2 || of_find_property(np, "phys", NULL) != NULL) 1387 return tegra_pcie_phys_get_legacy(pcie); 1388 1389 list_for_each_entry(port, &pcie->ports, list) { 1390 err = tegra_pcie_port_get_phys(port); 1391 if (err < 0) 1392 return err; 1393 } 1394 1395 return 0; 1396 } 1397 1398 static void tegra_pcie_phys_put(struct tegra_pcie *pcie) 1399 { 1400 struct tegra_pcie_port *port; 1401 struct device *dev = pcie->dev; 1402 int err, i; 1403 1404 if (pcie->legacy_phy) { 1405 err = phy_exit(pcie->phy); 1406 if (err < 0) 1407 dev_err(dev, "failed to teardown PHY: %d\n", err); 1408 return; 1409 } 1410 1411 list_for_each_entry(port, &pcie->ports, list) { 1412 for (i = 0; i < port->lanes; i++) { 1413 err = phy_exit(port->phys[i]); 1414 if (err < 0) 1415 dev_err(dev, "failed to teardown PHY#%u: %d\n", 1416 i, err); 1417 } 1418 } 1419 } 1420 1421 static int tegra_pcie_get_resources(struct tegra_pcie *pcie) 1422 { 1423 struct device *dev = pcie->dev; 1424 struct platform_device *pdev = to_platform_device(dev); 1425 struct resource *res; 1426 const struct tegra_pcie_soc *soc = pcie->soc; 1427 int err; 1428 1429 err = tegra_pcie_clocks_get(pcie); 1430 if (err) { 1431 dev_err(dev, "failed to get clocks: %d\n", err); 1432 return err; 1433 } 1434 1435 err = tegra_pcie_resets_get(pcie); 1436 if (err) { 1437 dev_err(dev, "failed to get resets: %d\n", err); 1438 return err; 1439 } 1440 1441 if (soc->program_uphy) { 1442 err = tegra_pcie_phys_get(pcie); 1443 if (err < 0) { 1444 dev_err(dev, "failed to get PHYs: %d\n", err); 1445 return err; 1446 } 1447 } 1448 1449 pcie->pads = devm_platform_ioremap_resource_byname(pdev, "pads"); 1450 if (IS_ERR(pcie->pads)) { 1451 err = PTR_ERR(pcie->pads); 1452 goto phys_put; 1453 } 1454 1455 pcie->afi = devm_platform_ioremap_resource_byname(pdev, "afi"); 1456 if (IS_ERR(pcie->afi)) { 1457 err = PTR_ERR(pcie->afi); 1458 goto phys_put; 1459 } 1460 1461 /* request configuration space, but remap later, on demand */ 1462 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "cs"); 1463 if (!res) { 1464 err = -EADDRNOTAVAIL; 1465 goto phys_put; 1466 } 1467 1468 pcie->cs = *res; 1469 1470 /* constrain configuration space to 4 KiB */ 1471 pcie->cs.end = pcie->cs.start + SZ_4K - 1; 1472 1473 pcie->cfg = devm_ioremap_resource(dev, &pcie->cs); 1474 if (IS_ERR(pcie->cfg)) { 1475 err = PTR_ERR(pcie->cfg); 1476 goto phys_put; 1477 } 1478 1479 /* request interrupt */ 1480 err = platform_get_irq_byname(pdev, "intr"); 1481 if (err < 0) 1482 goto phys_put; 1483 1484 pcie->irq = err; 1485 1486 err = request_irq(pcie->irq, tegra_pcie_isr, IRQF_SHARED, "PCIE", pcie); 1487 if (err) { 1488 dev_err(dev, "failed to register IRQ: %d\n", err); 1489 goto phys_put; 1490 } 1491 1492 return 0; 1493 1494 phys_put: 1495 if (soc->program_uphy) 1496 tegra_pcie_phys_put(pcie); 1497 1498 return err; 1499 } 1500 1501 static int tegra_pcie_put_resources(struct tegra_pcie *pcie) 1502 { 1503 const struct tegra_pcie_soc *soc = pcie->soc; 1504 1505 if (pcie->irq > 0) 1506 free_irq(pcie->irq, pcie); 1507 1508 if (soc->program_uphy) 1509 tegra_pcie_phys_put(pcie); 1510 1511 return 0; 1512 } 1513 1514 static void tegra_pcie_pme_turnoff(struct tegra_pcie_port *port) 1515 { 1516 struct tegra_pcie *pcie = port->pcie; 1517 const struct tegra_pcie_soc *soc = pcie->soc; 1518 int err; 1519 u32 val; 1520 u8 ack_bit; 1521 1522 val = afi_readl(pcie, AFI_PCIE_PME); 1523 val |= (0x1 << soc->ports[port->index].pme.turnoff_bit); 1524 afi_writel(pcie, val, AFI_PCIE_PME); 1525 1526 ack_bit = soc->ports[port->index].pme.ack_bit; 1527 err = readl_poll_timeout(pcie->afi + AFI_PCIE_PME, val, 1528 val & (0x1 << ack_bit), 1, PME_ACK_TIMEOUT); 1529 if (err) 1530 dev_err(pcie->dev, "PME Ack is not received on port: %d\n", 1531 port->index); 1532 1533 usleep_range(10000, 11000); 1534 1535 val = afi_readl(pcie, AFI_PCIE_PME); 1536 val &= ~(0x1 << soc->ports[port->index].pme.turnoff_bit); 1537 afi_writel(pcie, val, AFI_PCIE_PME); 1538 } 1539 1540 static void tegra_pcie_msi_irq(struct irq_desc *desc) 1541 { 1542 struct tegra_pcie *pcie = irq_desc_get_handler_data(desc); 1543 struct irq_chip *chip = irq_desc_get_chip(desc); 1544 struct tegra_msi *msi = &pcie->msi; 1545 struct device *dev = pcie->dev; 1546 unsigned int i; 1547 1548 chained_irq_enter(chip, desc); 1549 1550 for (i = 0; i < 8; i++) { 1551 unsigned long reg = afi_readl(pcie, AFI_MSI_VEC(i)); 1552 1553 while (reg) { 1554 unsigned int offset = find_first_bit(®, 32); 1555 unsigned int index = i * 32 + offset; 1556 unsigned int irq; 1557 1558 irq = irq_find_mapping(msi->domain->parent, index); 1559 if (irq) { 1560 generic_handle_irq(irq); 1561 } else { 1562 /* 1563 * that's weird who triggered this? 1564 * just clear it 1565 */ 1566 dev_info(dev, "unexpected MSI\n"); 1567 afi_writel(pcie, BIT(index % 32), AFI_MSI_VEC(index)); 1568 } 1569 1570 /* see if there's any more pending in this vector */ 1571 reg = afi_readl(pcie, AFI_MSI_VEC(i)); 1572 } 1573 } 1574 1575 chained_irq_exit(chip, desc); 1576 } 1577 1578 static void tegra_msi_top_irq_ack(struct irq_data *d) 1579 { 1580 irq_chip_ack_parent(d); 1581 } 1582 1583 static void tegra_msi_top_irq_mask(struct irq_data *d) 1584 { 1585 pci_msi_mask_irq(d); 1586 irq_chip_mask_parent(d); 1587 } 1588 1589 static void tegra_msi_top_irq_unmask(struct irq_data *d) 1590 { 1591 pci_msi_unmask_irq(d); 1592 irq_chip_unmask_parent(d); 1593 } 1594 1595 static struct irq_chip tegra_msi_top_chip = { 1596 .name = "Tegra PCIe MSI", 1597 .irq_ack = tegra_msi_top_irq_ack, 1598 .irq_mask = tegra_msi_top_irq_mask, 1599 .irq_unmask = tegra_msi_top_irq_unmask, 1600 }; 1601 1602 static void tegra_msi_irq_ack(struct irq_data *d) 1603 { 1604 struct tegra_msi *msi = irq_data_get_irq_chip_data(d); 1605 struct tegra_pcie *pcie = msi_to_pcie(msi); 1606 unsigned int index = d->hwirq / 32; 1607 1608 /* clear the interrupt */ 1609 afi_writel(pcie, BIT(d->hwirq % 32), AFI_MSI_VEC(index)); 1610 } 1611 1612 static void tegra_msi_irq_mask(struct irq_data *d) 1613 { 1614 struct tegra_msi *msi = irq_data_get_irq_chip_data(d); 1615 struct tegra_pcie *pcie = msi_to_pcie(msi); 1616 unsigned int index = d->hwirq / 32; 1617 unsigned long flags; 1618 u32 value; 1619 1620 spin_lock_irqsave(&msi->mask_lock, flags); 1621 value = afi_readl(pcie, AFI_MSI_EN_VEC(index)); 1622 value &= ~BIT(d->hwirq % 32); 1623 afi_writel(pcie, value, AFI_MSI_EN_VEC(index)); 1624 spin_unlock_irqrestore(&msi->mask_lock, flags); 1625 } 1626 1627 static void tegra_msi_irq_unmask(struct irq_data *d) 1628 { 1629 struct tegra_msi *msi = irq_data_get_irq_chip_data(d); 1630 struct tegra_pcie *pcie = msi_to_pcie(msi); 1631 unsigned int index = d->hwirq / 32; 1632 unsigned long flags; 1633 u32 value; 1634 1635 spin_lock_irqsave(&msi->mask_lock, flags); 1636 value = afi_readl(pcie, AFI_MSI_EN_VEC(index)); 1637 value |= BIT(d->hwirq % 32); 1638 afi_writel(pcie, value, AFI_MSI_EN_VEC(index)); 1639 spin_unlock_irqrestore(&msi->mask_lock, flags); 1640 } 1641 1642 static int tegra_msi_set_affinity(struct irq_data *d, const struct cpumask *mask, bool force) 1643 { 1644 return -EINVAL; 1645 } 1646 1647 static void tegra_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1648 { 1649 struct tegra_msi *msi = irq_data_get_irq_chip_data(data); 1650 1651 msg->address_lo = lower_32_bits(msi->phys); 1652 msg->address_hi = upper_32_bits(msi->phys); 1653 msg->data = data->hwirq; 1654 } 1655 1656 static struct irq_chip tegra_msi_bottom_chip = { 1657 .name = "Tegra MSI", 1658 .irq_ack = tegra_msi_irq_ack, 1659 .irq_mask = tegra_msi_irq_mask, 1660 .irq_unmask = tegra_msi_irq_unmask, 1661 .irq_set_affinity = tegra_msi_set_affinity, 1662 .irq_compose_msi_msg = tegra_compose_msi_msg, 1663 }; 1664 1665 static int tegra_msi_domain_alloc(struct irq_domain *domain, unsigned int virq, 1666 unsigned int nr_irqs, void *args) 1667 { 1668 struct tegra_msi *msi = domain->host_data; 1669 unsigned int i; 1670 int hwirq; 1671 1672 mutex_lock(&msi->map_lock); 1673 1674 hwirq = bitmap_find_free_region(msi->used, INT_PCI_MSI_NR, order_base_2(nr_irqs)); 1675 1676 mutex_unlock(&msi->map_lock); 1677 1678 if (hwirq < 0) 1679 return -ENOSPC; 1680 1681 for (i = 0; i < nr_irqs; i++) 1682 irq_domain_set_info(domain, virq + i, hwirq + i, 1683 &tegra_msi_bottom_chip, domain->host_data, 1684 handle_edge_irq, NULL, NULL); 1685 1686 tegra_cpuidle_pcie_irqs_in_use(); 1687 1688 return 0; 1689 } 1690 1691 static void tegra_msi_domain_free(struct irq_domain *domain, unsigned int virq, 1692 unsigned int nr_irqs) 1693 { 1694 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 1695 struct tegra_msi *msi = domain->host_data; 1696 1697 mutex_lock(&msi->map_lock); 1698 1699 bitmap_release_region(msi->used, d->hwirq, order_base_2(nr_irqs)); 1700 1701 mutex_unlock(&msi->map_lock); 1702 } 1703 1704 static const struct irq_domain_ops tegra_msi_domain_ops = { 1705 .alloc = tegra_msi_domain_alloc, 1706 .free = tegra_msi_domain_free, 1707 }; 1708 1709 static struct msi_domain_info tegra_msi_info = { 1710 .flags = (MSI_FLAG_USE_DEF_DOM_OPS | MSI_FLAG_USE_DEF_CHIP_OPS | 1711 MSI_FLAG_PCI_MSIX), 1712 .chip = &tegra_msi_top_chip, 1713 }; 1714 1715 static int tegra_allocate_domains(struct tegra_msi *msi) 1716 { 1717 struct tegra_pcie *pcie = msi_to_pcie(msi); 1718 struct fwnode_handle *fwnode = dev_fwnode(pcie->dev); 1719 struct irq_domain *parent; 1720 1721 parent = irq_domain_create_linear(fwnode, INT_PCI_MSI_NR, 1722 &tegra_msi_domain_ops, msi); 1723 if (!parent) { 1724 dev_err(pcie->dev, "failed to create IRQ domain\n"); 1725 return -ENOMEM; 1726 } 1727 irq_domain_update_bus_token(parent, DOMAIN_BUS_NEXUS); 1728 1729 msi->domain = pci_msi_create_irq_domain(fwnode, &tegra_msi_info, parent); 1730 if (!msi->domain) { 1731 dev_err(pcie->dev, "failed to create MSI domain\n"); 1732 irq_domain_remove(parent); 1733 return -ENOMEM; 1734 } 1735 1736 return 0; 1737 } 1738 1739 static void tegra_free_domains(struct tegra_msi *msi) 1740 { 1741 struct irq_domain *parent = msi->domain->parent; 1742 1743 irq_domain_remove(msi->domain); 1744 irq_domain_remove(parent); 1745 } 1746 1747 static int tegra_pcie_msi_setup(struct tegra_pcie *pcie) 1748 { 1749 struct platform_device *pdev = to_platform_device(pcie->dev); 1750 struct tegra_msi *msi = &pcie->msi; 1751 struct device *dev = pcie->dev; 1752 int err; 1753 1754 mutex_init(&msi->map_lock); 1755 spin_lock_init(&msi->mask_lock); 1756 1757 if (IS_ENABLED(CONFIG_PCI_MSI)) { 1758 err = tegra_allocate_domains(msi); 1759 if (err) 1760 return err; 1761 } 1762 1763 err = platform_get_irq_byname(pdev, "msi"); 1764 if (err < 0) 1765 goto free_irq_domain; 1766 1767 msi->irq = err; 1768 1769 irq_set_chained_handler_and_data(msi->irq, tegra_pcie_msi_irq, pcie); 1770 1771 /* Though the PCIe controller can address >32-bit address space, to 1772 * facilitate endpoints that support only 32-bit MSI target address, 1773 * the mask is set to 32-bit to make sure that MSI target address is 1774 * always a 32-bit address 1775 */ 1776 err = dma_set_coherent_mask(dev, DMA_BIT_MASK(32)); 1777 if (err < 0) { 1778 dev_err(dev, "failed to set DMA coherent mask: %d\n", err); 1779 goto free_irq; 1780 } 1781 1782 msi->virt = dma_alloc_attrs(dev, PAGE_SIZE, &msi->phys, GFP_KERNEL, 1783 DMA_ATTR_NO_KERNEL_MAPPING); 1784 if (!msi->virt) { 1785 dev_err(dev, "failed to allocate DMA memory for MSI\n"); 1786 err = -ENOMEM; 1787 goto free_irq; 1788 } 1789 1790 return 0; 1791 1792 free_irq: 1793 irq_set_chained_handler_and_data(msi->irq, NULL, NULL); 1794 free_irq_domain: 1795 if (IS_ENABLED(CONFIG_PCI_MSI)) 1796 tegra_free_domains(msi); 1797 1798 return err; 1799 } 1800 1801 static void tegra_pcie_enable_msi(struct tegra_pcie *pcie) 1802 { 1803 const struct tegra_pcie_soc *soc = pcie->soc; 1804 struct tegra_msi *msi = &pcie->msi; 1805 u32 reg, msi_state[INT_PCI_MSI_NR / 32]; 1806 int i; 1807 1808 afi_writel(pcie, msi->phys >> soc->msi_base_shift, AFI_MSI_FPCI_BAR_ST); 1809 afi_writel(pcie, msi->phys, AFI_MSI_AXI_BAR_ST); 1810 /* this register is in 4K increments */ 1811 afi_writel(pcie, 1, AFI_MSI_BAR_SZ); 1812 1813 /* Restore the MSI allocation state */ 1814 bitmap_to_arr32(msi_state, msi->used, INT_PCI_MSI_NR); 1815 for (i = 0; i < ARRAY_SIZE(msi_state); i++) 1816 afi_writel(pcie, msi_state[i], AFI_MSI_EN_VEC(i)); 1817 1818 /* and unmask the MSI interrupt */ 1819 reg = afi_readl(pcie, AFI_INTR_MASK); 1820 reg |= AFI_INTR_MASK_MSI_MASK; 1821 afi_writel(pcie, reg, AFI_INTR_MASK); 1822 } 1823 1824 static void tegra_pcie_msi_teardown(struct tegra_pcie *pcie) 1825 { 1826 struct tegra_msi *msi = &pcie->msi; 1827 unsigned int i, irq; 1828 1829 dma_free_attrs(pcie->dev, PAGE_SIZE, msi->virt, msi->phys, 1830 DMA_ATTR_NO_KERNEL_MAPPING); 1831 1832 for (i = 0; i < INT_PCI_MSI_NR; i++) { 1833 irq = irq_find_mapping(msi->domain, i); 1834 if (irq > 0) 1835 irq_domain_free_irqs(irq, 1); 1836 } 1837 1838 irq_set_chained_handler_and_data(msi->irq, NULL, NULL); 1839 1840 if (IS_ENABLED(CONFIG_PCI_MSI)) 1841 tegra_free_domains(msi); 1842 } 1843 1844 static int tegra_pcie_disable_msi(struct tegra_pcie *pcie) 1845 { 1846 u32 value; 1847 1848 /* mask the MSI interrupt */ 1849 value = afi_readl(pcie, AFI_INTR_MASK); 1850 value &= ~AFI_INTR_MASK_MSI_MASK; 1851 afi_writel(pcie, value, AFI_INTR_MASK); 1852 1853 return 0; 1854 } 1855 1856 static void tegra_pcie_disable_interrupts(struct tegra_pcie *pcie) 1857 { 1858 u32 value; 1859 1860 value = afi_readl(pcie, AFI_INTR_MASK); 1861 value &= ~AFI_INTR_MASK_INT_MASK; 1862 afi_writel(pcie, value, AFI_INTR_MASK); 1863 } 1864 1865 static int tegra_pcie_get_xbar_config(struct tegra_pcie *pcie, u32 lanes, 1866 u32 *xbar) 1867 { 1868 struct device *dev = pcie->dev; 1869 struct device_node *np = dev->of_node; 1870 1871 if (of_device_is_compatible(np, "nvidia,tegra186-pcie")) { 1872 switch (lanes) { 1873 case 0x010004: 1874 dev_info(dev, "4x1, 1x1 configuration\n"); 1875 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_401; 1876 return 0; 1877 1878 case 0x010102: 1879 dev_info(dev, "2x1, 1X1, 1x1 configuration\n"); 1880 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211; 1881 return 0; 1882 1883 case 0x010101: 1884 dev_info(dev, "1x1, 1x1, 1x1 configuration\n"); 1885 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_111; 1886 return 0; 1887 1888 default: 1889 dev_info(dev, "wrong configuration updated in DT, " 1890 "switching to default 2x1, 1x1, 1x1 " 1891 "configuration\n"); 1892 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_211; 1893 return 0; 1894 } 1895 } else if (of_device_is_compatible(np, "nvidia,tegra124-pcie") || 1896 of_device_is_compatible(np, "nvidia,tegra210-pcie")) { 1897 switch (lanes) { 1898 case 0x0000104: 1899 dev_info(dev, "4x1, 1x1 configuration\n"); 1900 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X4_X1; 1901 return 0; 1902 1903 case 0x0000102: 1904 dev_info(dev, "2x1, 1x1 configuration\n"); 1905 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_X2_X1; 1906 return 0; 1907 } 1908 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) { 1909 switch (lanes) { 1910 case 0x00000204: 1911 dev_info(dev, "4x1, 2x1 configuration\n"); 1912 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_420; 1913 return 0; 1914 1915 case 0x00020202: 1916 dev_info(dev, "2x3 configuration\n"); 1917 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_222; 1918 return 0; 1919 1920 case 0x00010104: 1921 dev_info(dev, "4x1, 1x2 configuration\n"); 1922 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_411; 1923 return 0; 1924 } 1925 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) { 1926 switch (lanes) { 1927 case 0x00000004: 1928 dev_info(dev, "single-mode configuration\n"); 1929 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_SINGLE; 1930 return 0; 1931 1932 case 0x00000202: 1933 dev_info(dev, "dual-mode configuration\n"); 1934 *xbar = AFI_PCIE_CONFIG_SM2TMS0_XBAR_CONFIG_DUAL; 1935 return 0; 1936 } 1937 } 1938 1939 return -EINVAL; 1940 } 1941 1942 /* 1943 * Check whether a given set of supplies is available in a device tree node. 1944 * This is used to check whether the new or the legacy device tree bindings 1945 * should be used. 1946 */ 1947 static bool of_regulator_bulk_available(struct device_node *np, 1948 struct regulator_bulk_data *supplies, 1949 unsigned int num_supplies) 1950 { 1951 char property[32]; 1952 unsigned int i; 1953 1954 for (i = 0; i < num_supplies; i++) { 1955 snprintf(property, 32, "%s-supply", supplies[i].supply); 1956 1957 if (of_find_property(np, property, NULL) == NULL) 1958 return false; 1959 } 1960 1961 return true; 1962 } 1963 1964 /* 1965 * Old versions of the device tree binding for this device used a set of power 1966 * supplies that didn't match the hardware inputs. This happened to work for a 1967 * number of cases but is not future proof. However to preserve backwards- 1968 * compatibility with old device trees, this function will try to use the old 1969 * set of supplies. 1970 */ 1971 static int tegra_pcie_get_legacy_regulators(struct tegra_pcie *pcie) 1972 { 1973 struct device *dev = pcie->dev; 1974 struct device_node *np = dev->of_node; 1975 1976 if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) 1977 pcie->num_supplies = 3; 1978 else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) 1979 pcie->num_supplies = 2; 1980 1981 if (pcie->num_supplies == 0) { 1982 dev_err(dev, "device %pOF not supported in legacy mode\n", np); 1983 return -ENODEV; 1984 } 1985 1986 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 1987 sizeof(*pcie->supplies), 1988 GFP_KERNEL); 1989 if (!pcie->supplies) 1990 return -ENOMEM; 1991 1992 pcie->supplies[0].supply = "pex-clk"; 1993 pcie->supplies[1].supply = "vdd"; 1994 1995 if (pcie->num_supplies > 2) 1996 pcie->supplies[2].supply = "avdd"; 1997 1998 return devm_regulator_bulk_get(dev, pcie->num_supplies, pcie->supplies); 1999 } 2000 2001 /* 2002 * Obtains the list of regulators required for a particular generation of the 2003 * IP block. 2004 * 2005 * This would've been nice to do simply by providing static tables for use 2006 * with the regulator_bulk_*() API, but unfortunately Tegra30 is a bit quirky 2007 * in that it has two pairs or AVDD_PEX and VDD_PEX supplies (PEXA and PEXB) 2008 * and either seems to be optional depending on which ports are being used. 2009 */ 2010 static int tegra_pcie_get_regulators(struct tegra_pcie *pcie, u32 lane_mask) 2011 { 2012 struct device *dev = pcie->dev; 2013 struct device_node *np = dev->of_node; 2014 unsigned int i = 0; 2015 2016 if (of_device_is_compatible(np, "nvidia,tegra186-pcie")) { 2017 pcie->num_supplies = 4; 2018 2019 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies, 2020 sizeof(*pcie->supplies), 2021 GFP_KERNEL); 2022 if (!pcie->supplies) 2023 return -ENOMEM; 2024 2025 pcie->supplies[i++].supply = "dvdd-pex"; 2026 pcie->supplies[i++].supply = "hvdd-pex-pll"; 2027 pcie->supplies[i++].supply = "hvdd-pex"; 2028 pcie->supplies[i++].supply = "vddio-pexctl-aud"; 2029 } else if (of_device_is_compatible(np, "nvidia,tegra210-pcie")) { 2030 pcie->num_supplies = 3; 2031 2032 pcie->supplies = devm_kcalloc(pcie->dev, pcie->num_supplies, 2033 sizeof(*pcie->supplies), 2034 GFP_KERNEL); 2035 if (!pcie->supplies) 2036 return -ENOMEM; 2037 2038 pcie->supplies[i++].supply = "hvddio-pex"; 2039 pcie->supplies[i++].supply = "dvddio-pex"; 2040 pcie->supplies[i++].supply = "vddio-pex-ctl"; 2041 } else if (of_device_is_compatible(np, "nvidia,tegra124-pcie")) { 2042 pcie->num_supplies = 4; 2043 2044 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 2045 sizeof(*pcie->supplies), 2046 GFP_KERNEL); 2047 if (!pcie->supplies) 2048 return -ENOMEM; 2049 2050 pcie->supplies[i++].supply = "avddio-pex"; 2051 pcie->supplies[i++].supply = "dvddio-pex"; 2052 pcie->supplies[i++].supply = "hvdd-pex"; 2053 pcie->supplies[i++].supply = "vddio-pex-ctl"; 2054 } else if (of_device_is_compatible(np, "nvidia,tegra30-pcie")) { 2055 bool need_pexa = false, need_pexb = false; 2056 2057 /* VDD_PEXA and AVDD_PEXA supply lanes 0 to 3 */ 2058 if (lane_mask & 0x0f) 2059 need_pexa = true; 2060 2061 /* VDD_PEXB and AVDD_PEXB supply lanes 4 to 5 */ 2062 if (lane_mask & 0x30) 2063 need_pexb = true; 2064 2065 pcie->num_supplies = 4 + (need_pexa ? 2 : 0) + 2066 (need_pexb ? 2 : 0); 2067 2068 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 2069 sizeof(*pcie->supplies), 2070 GFP_KERNEL); 2071 if (!pcie->supplies) 2072 return -ENOMEM; 2073 2074 pcie->supplies[i++].supply = "avdd-pex-pll"; 2075 pcie->supplies[i++].supply = "hvdd-pex"; 2076 pcie->supplies[i++].supply = "vddio-pex-ctl"; 2077 pcie->supplies[i++].supply = "avdd-plle"; 2078 2079 if (need_pexa) { 2080 pcie->supplies[i++].supply = "avdd-pexa"; 2081 pcie->supplies[i++].supply = "vdd-pexa"; 2082 } 2083 2084 if (need_pexb) { 2085 pcie->supplies[i++].supply = "avdd-pexb"; 2086 pcie->supplies[i++].supply = "vdd-pexb"; 2087 } 2088 } else if (of_device_is_compatible(np, "nvidia,tegra20-pcie")) { 2089 pcie->num_supplies = 5; 2090 2091 pcie->supplies = devm_kcalloc(dev, pcie->num_supplies, 2092 sizeof(*pcie->supplies), 2093 GFP_KERNEL); 2094 if (!pcie->supplies) 2095 return -ENOMEM; 2096 2097 pcie->supplies[0].supply = "avdd-pex"; 2098 pcie->supplies[1].supply = "vdd-pex"; 2099 pcie->supplies[2].supply = "avdd-pex-pll"; 2100 pcie->supplies[3].supply = "avdd-plle"; 2101 pcie->supplies[4].supply = "vddio-pex-clk"; 2102 } 2103 2104 if (of_regulator_bulk_available(dev->of_node, pcie->supplies, 2105 pcie->num_supplies)) 2106 return devm_regulator_bulk_get(dev, pcie->num_supplies, 2107 pcie->supplies); 2108 2109 /* 2110 * If not all regulators are available for this new scheme, assume 2111 * that the device tree complies with an older version of the device 2112 * tree binding. 2113 */ 2114 dev_info(dev, "using legacy DT binding for power supplies\n"); 2115 2116 devm_kfree(dev, pcie->supplies); 2117 pcie->num_supplies = 0; 2118 2119 return tegra_pcie_get_legacy_regulators(pcie); 2120 } 2121 2122 static int tegra_pcie_parse_dt(struct tegra_pcie *pcie) 2123 { 2124 struct device *dev = pcie->dev; 2125 struct device_node *np = dev->of_node, *port; 2126 const struct tegra_pcie_soc *soc = pcie->soc; 2127 u32 lanes = 0, mask = 0; 2128 unsigned int lane = 0; 2129 int err; 2130 2131 /* parse root ports */ 2132 for_each_child_of_node(np, port) { 2133 struct tegra_pcie_port *rp; 2134 unsigned int index; 2135 u32 value; 2136 char *label; 2137 2138 err = of_pci_get_devfn(port); 2139 if (err < 0) { 2140 dev_err(dev, "failed to parse address: %d\n", err); 2141 goto err_node_put; 2142 } 2143 2144 index = PCI_SLOT(err); 2145 2146 if (index < 1 || index > soc->num_ports) { 2147 dev_err(dev, "invalid port number: %d\n", index); 2148 err = -EINVAL; 2149 goto err_node_put; 2150 } 2151 2152 index--; 2153 2154 err = of_property_read_u32(port, "nvidia,num-lanes", &value); 2155 if (err < 0) { 2156 dev_err(dev, "failed to parse # of lanes: %d\n", 2157 err); 2158 goto err_node_put; 2159 } 2160 2161 if (value > 16) { 2162 dev_err(dev, "invalid # of lanes: %u\n", value); 2163 err = -EINVAL; 2164 goto err_node_put; 2165 } 2166 2167 lanes |= value << (index << 3); 2168 2169 if (!of_device_is_available(port)) { 2170 lane += value; 2171 continue; 2172 } 2173 2174 mask |= ((1 << value) - 1) << lane; 2175 lane += value; 2176 2177 rp = devm_kzalloc(dev, sizeof(*rp), GFP_KERNEL); 2178 if (!rp) { 2179 err = -ENOMEM; 2180 goto err_node_put; 2181 } 2182 2183 err = of_address_to_resource(port, 0, &rp->regs); 2184 if (err < 0) { 2185 dev_err(dev, "failed to parse address: %d\n", err); 2186 goto err_node_put; 2187 } 2188 2189 INIT_LIST_HEAD(&rp->list); 2190 rp->index = index; 2191 rp->lanes = value; 2192 rp->pcie = pcie; 2193 rp->np = port; 2194 2195 rp->base = devm_pci_remap_cfg_resource(dev, &rp->regs); 2196 if (IS_ERR(rp->base)) 2197 return PTR_ERR(rp->base); 2198 2199 label = devm_kasprintf(dev, GFP_KERNEL, "pex-reset-%u", index); 2200 if (!label) { 2201 dev_err(dev, "failed to create reset GPIO label\n"); 2202 return -ENOMEM; 2203 } 2204 2205 /* 2206 * Returns -ENOENT if reset-gpios property is not populated 2207 * and in this case fall back to using AFI per port register 2208 * to toggle PERST# SFIO line. 2209 */ 2210 rp->reset_gpio = devm_gpiod_get_from_of_node(dev, port, 2211 "reset-gpios", 0, 2212 GPIOD_OUT_LOW, 2213 label); 2214 if (IS_ERR(rp->reset_gpio)) { 2215 if (PTR_ERR(rp->reset_gpio) == -ENOENT) { 2216 rp->reset_gpio = NULL; 2217 } else { 2218 dev_err(dev, "failed to get reset GPIO: %ld\n", 2219 PTR_ERR(rp->reset_gpio)); 2220 return PTR_ERR(rp->reset_gpio); 2221 } 2222 } 2223 2224 list_add_tail(&rp->list, &pcie->ports); 2225 } 2226 2227 err = tegra_pcie_get_xbar_config(pcie, lanes, &pcie->xbar_config); 2228 if (err < 0) { 2229 dev_err(dev, "invalid lane configuration\n"); 2230 return err; 2231 } 2232 2233 err = tegra_pcie_get_regulators(pcie, mask); 2234 if (err < 0) 2235 return err; 2236 2237 return 0; 2238 2239 err_node_put: 2240 of_node_put(port); 2241 return err; 2242 } 2243 2244 /* 2245 * FIXME: If there are no PCIe cards attached, then calling this function 2246 * can result in the increase of the bootup time as there are big timeout 2247 * loops. 2248 */ 2249 #define TEGRA_PCIE_LINKUP_TIMEOUT 200 /* up to 1.2 seconds */ 2250 static bool tegra_pcie_port_check_link(struct tegra_pcie_port *port) 2251 { 2252 struct device *dev = port->pcie->dev; 2253 unsigned int retries = 3; 2254 unsigned long value; 2255 2256 /* override presence detection */ 2257 value = readl(port->base + RP_PRIV_MISC); 2258 value &= ~RP_PRIV_MISC_PRSNT_MAP_EP_ABSNT; 2259 value |= RP_PRIV_MISC_PRSNT_MAP_EP_PRSNT; 2260 writel(value, port->base + RP_PRIV_MISC); 2261 2262 do { 2263 unsigned int timeout = TEGRA_PCIE_LINKUP_TIMEOUT; 2264 2265 do { 2266 value = readl(port->base + RP_VEND_XP); 2267 2268 if (value & RP_VEND_XP_DL_UP) 2269 break; 2270 2271 usleep_range(1000, 2000); 2272 } while (--timeout); 2273 2274 if (!timeout) { 2275 dev_dbg(dev, "link %u down, retrying\n", port->index); 2276 goto retry; 2277 } 2278 2279 timeout = TEGRA_PCIE_LINKUP_TIMEOUT; 2280 2281 do { 2282 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2283 2284 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE) 2285 return true; 2286 2287 usleep_range(1000, 2000); 2288 } while (--timeout); 2289 2290 retry: 2291 tegra_pcie_port_reset(port); 2292 } while (--retries); 2293 2294 return false; 2295 } 2296 2297 static void tegra_pcie_change_link_speed(struct tegra_pcie *pcie) 2298 { 2299 struct device *dev = pcie->dev; 2300 struct tegra_pcie_port *port; 2301 ktime_t deadline; 2302 u32 value; 2303 2304 list_for_each_entry(port, &pcie->ports, list) { 2305 /* 2306 * "Supported Link Speeds Vector" in "Link Capabilities 2" 2307 * is not supported by Tegra. tegra_pcie_change_link_speed() 2308 * is called only for Tegra chips which support Gen2. 2309 * So there no harm if supported link speed is not verified. 2310 */ 2311 value = readl(port->base + RP_LINK_CONTROL_STATUS_2); 2312 value &= ~PCI_EXP_LNKSTA_CLS; 2313 value |= PCI_EXP_LNKSTA_CLS_5_0GB; 2314 writel(value, port->base + RP_LINK_CONTROL_STATUS_2); 2315 2316 /* 2317 * Poll until link comes back from recovery to avoid race 2318 * condition. 2319 */ 2320 deadline = ktime_add_us(ktime_get(), LINK_RETRAIN_TIMEOUT); 2321 2322 while (ktime_before(ktime_get(), deadline)) { 2323 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2324 if ((value & PCI_EXP_LNKSTA_LT) == 0) 2325 break; 2326 2327 usleep_range(2000, 3000); 2328 } 2329 2330 if (value & PCI_EXP_LNKSTA_LT) 2331 dev_warn(dev, "PCIe port %u link is in recovery\n", 2332 port->index); 2333 2334 /* Retrain the link */ 2335 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2336 value |= PCI_EXP_LNKCTL_RL; 2337 writel(value, port->base + RP_LINK_CONTROL_STATUS); 2338 2339 deadline = ktime_add_us(ktime_get(), LINK_RETRAIN_TIMEOUT); 2340 2341 while (ktime_before(ktime_get(), deadline)) { 2342 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2343 if ((value & PCI_EXP_LNKSTA_LT) == 0) 2344 break; 2345 2346 usleep_range(2000, 3000); 2347 } 2348 2349 if (value & PCI_EXP_LNKSTA_LT) 2350 dev_err(dev, "failed to retrain link of port %u\n", 2351 port->index); 2352 } 2353 } 2354 2355 static void tegra_pcie_enable_ports(struct tegra_pcie *pcie) 2356 { 2357 struct device *dev = pcie->dev; 2358 struct tegra_pcie_port *port, *tmp; 2359 2360 list_for_each_entry_safe(port, tmp, &pcie->ports, list) { 2361 dev_info(dev, "probing port %u, using %u lanes\n", 2362 port->index, port->lanes); 2363 2364 tegra_pcie_port_enable(port); 2365 } 2366 2367 /* Start LTSSM from Tegra side */ 2368 reset_control_deassert(pcie->pcie_xrst); 2369 2370 list_for_each_entry_safe(port, tmp, &pcie->ports, list) { 2371 if (tegra_pcie_port_check_link(port)) 2372 continue; 2373 2374 dev_info(dev, "link %u down, ignoring\n", port->index); 2375 2376 tegra_pcie_port_disable(port); 2377 tegra_pcie_port_free(port); 2378 } 2379 2380 if (pcie->soc->has_gen2) 2381 tegra_pcie_change_link_speed(pcie); 2382 } 2383 2384 static void tegra_pcie_disable_ports(struct tegra_pcie *pcie) 2385 { 2386 struct tegra_pcie_port *port, *tmp; 2387 2388 reset_control_assert(pcie->pcie_xrst); 2389 2390 list_for_each_entry_safe(port, tmp, &pcie->ports, list) 2391 tegra_pcie_port_disable(port); 2392 } 2393 2394 static const struct tegra_pcie_port_soc tegra20_pcie_ports[] = { 2395 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 }, 2396 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 }, 2397 }; 2398 2399 static const struct tegra_pcie_soc tegra20_pcie = { 2400 .num_ports = 2, 2401 .ports = tegra20_pcie_ports, 2402 .msi_base_shift = 0, 2403 .pads_pll_ctl = PADS_PLL_CTL_TEGRA20, 2404 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_DIV10, 2405 .pads_refclk_cfg0 = 0xfa5cfa5c, 2406 .has_pex_clkreq_en = false, 2407 .has_pex_bias_ctrl = false, 2408 .has_intr_prsnt_sense = false, 2409 .has_cml_clk = false, 2410 .has_gen2 = false, 2411 .force_pca_enable = false, 2412 .program_uphy = true, 2413 .update_clamp_threshold = false, 2414 .program_deskew_time = false, 2415 .update_fc_timer = false, 2416 .has_cache_bars = true, 2417 .ectl.enable = false, 2418 }; 2419 2420 static const struct tegra_pcie_port_soc tegra30_pcie_ports[] = { 2421 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 }, 2422 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 }, 2423 { .pme.turnoff_bit = 16, .pme.ack_bit = 18 }, 2424 }; 2425 2426 static const struct tegra_pcie_soc tegra30_pcie = { 2427 .num_ports = 3, 2428 .ports = tegra30_pcie_ports, 2429 .msi_base_shift = 8, 2430 .afi_pex2_ctrl = 0x128, 2431 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2432 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2433 .pads_refclk_cfg0 = 0xfa5cfa5c, 2434 .pads_refclk_cfg1 = 0xfa5cfa5c, 2435 .has_pex_clkreq_en = true, 2436 .has_pex_bias_ctrl = true, 2437 .has_intr_prsnt_sense = true, 2438 .has_cml_clk = true, 2439 .has_gen2 = false, 2440 .force_pca_enable = false, 2441 .program_uphy = true, 2442 .update_clamp_threshold = false, 2443 .program_deskew_time = false, 2444 .update_fc_timer = false, 2445 .has_cache_bars = false, 2446 .ectl.enable = false, 2447 }; 2448 2449 static const struct tegra_pcie_soc tegra124_pcie = { 2450 .num_ports = 2, 2451 .ports = tegra20_pcie_ports, 2452 .msi_base_shift = 8, 2453 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2454 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2455 .pads_refclk_cfg0 = 0x44ac44ac, 2456 .has_pex_clkreq_en = true, 2457 .has_pex_bias_ctrl = true, 2458 .has_intr_prsnt_sense = true, 2459 .has_cml_clk = true, 2460 .has_gen2 = true, 2461 .force_pca_enable = false, 2462 .program_uphy = true, 2463 .update_clamp_threshold = true, 2464 .program_deskew_time = false, 2465 .update_fc_timer = false, 2466 .has_cache_bars = false, 2467 .ectl.enable = false, 2468 }; 2469 2470 static const struct tegra_pcie_soc tegra210_pcie = { 2471 .num_ports = 2, 2472 .ports = tegra20_pcie_ports, 2473 .msi_base_shift = 8, 2474 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2475 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2476 .pads_refclk_cfg0 = 0x90b890b8, 2477 /* FC threshold is bit[25:18] */ 2478 .update_fc_threshold = 0x01800000, 2479 .has_pex_clkreq_en = true, 2480 .has_pex_bias_ctrl = true, 2481 .has_intr_prsnt_sense = true, 2482 .has_cml_clk = true, 2483 .has_gen2 = true, 2484 .force_pca_enable = true, 2485 .program_uphy = true, 2486 .update_clamp_threshold = true, 2487 .program_deskew_time = true, 2488 .update_fc_timer = true, 2489 .has_cache_bars = false, 2490 .ectl = { 2491 .regs = { 2492 .rp_ectl_2_r1 = 0x0000000f, 2493 .rp_ectl_4_r1 = 0x00000067, 2494 .rp_ectl_5_r1 = 0x55010000, 2495 .rp_ectl_6_r1 = 0x00000001, 2496 .rp_ectl_2_r2 = 0x0000008f, 2497 .rp_ectl_4_r2 = 0x000000c7, 2498 .rp_ectl_5_r2 = 0x55010000, 2499 .rp_ectl_6_r2 = 0x00000001, 2500 }, 2501 .enable = true, 2502 }, 2503 }; 2504 2505 static const struct tegra_pcie_port_soc tegra186_pcie_ports[] = { 2506 { .pme.turnoff_bit = 0, .pme.ack_bit = 5 }, 2507 { .pme.turnoff_bit = 8, .pme.ack_bit = 10 }, 2508 { .pme.turnoff_bit = 12, .pme.ack_bit = 14 }, 2509 }; 2510 2511 static const struct tegra_pcie_soc tegra186_pcie = { 2512 .num_ports = 3, 2513 .ports = tegra186_pcie_ports, 2514 .msi_base_shift = 8, 2515 .afi_pex2_ctrl = 0x19c, 2516 .pads_pll_ctl = PADS_PLL_CTL_TEGRA30, 2517 .tx_ref_sel = PADS_PLL_CTL_TXCLKREF_BUF_EN, 2518 .pads_refclk_cfg0 = 0x80b880b8, 2519 .pads_refclk_cfg1 = 0x000480b8, 2520 .has_pex_clkreq_en = true, 2521 .has_pex_bias_ctrl = true, 2522 .has_intr_prsnt_sense = true, 2523 .has_cml_clk = false, 2524 .has_gen2 = true, 2525 .force_pca_enable = false, 2526 .program_uphy = false, 2527 .update_clamp_threshold = false, 2528 .program_deskew_time = false, 2529 .update_fc_timer = false, 2530 .has_cache_bars = false, 2531 .ectl.enable = false, 2532 }; 2533 2534 static const struct of_device_id tegra_pcie_of_match[] = { 2535 { .compatible = "nvidia,tegra186-pcie", .data = &tegra186_pcie }, 2536 { .compatible = "nvidia,tegra210-pcie", .data = &tegra210_pcie }, 2537 { .compatible = "nvidia,tegra124-pcie", .data = &tegra124_pcie }, 2538 { .compatible = "nvidia,tegra30-pcie", .data = &tegra30_pcie }, 2539 { .compatible = "nvidia,tegra20-pcie", .data = &tegra20_pcie }, 2540 { }, 2541 }; 2542 2543 static void *tegra_pcie_ports_seq_start(struct seq_file *s, loff_t *pos) 2544 { 2545 struct tegra_pcie *pcie = s->private; 2546 2547 if (list_empty(&pcie->ports)) 2548 return NULL; 2549 2550 seq_printf(s, "Index Status\n"); 2551 2552 return seq_list_start(&pcie->ports, *pos); 2553 } 2554 2555 static void *tegra_pcie_ports_seq_next(struct seq_file *s, void *v, loff_t *pos) 2556 { 2557 struct tegra_pcie *pcie = s->private; 2558 2559 return seq_list_next(v, &pcie->ports, pos); 2560 } 2561 2562 static void tegra_pcie_ports_seq_stop(struct seq_file *s, void *v) 2563 { 2564 } 2565 2566 static int tegra_pcie_ports_seq_show(struct seq_file *s, void *v) 2567 { 2568 bool up = false, active = false; 2569 struct tegra_pcie_port *port; 2570 unsigned int value; 2571 2572 port = list_entry(v, struct tegra_pcie_port, list); 2573 2574 value = readl(port->base + RP_VEND_XP); 2575 2576 if (value & RP_VEND_XP_DL_UP) 2577 up = true; 2578 2579 value = readl(port->base + RP_LINK_CONTROL_STATUS); 2580 2581 if (value & RP_LINK_CONTROL_STATUS_DL_LINK_ACTIVE) 2582 active = true; 2583 2584 seq_printf(s, "%2u ", port->index); 2585 2586 if (up) 2587 seq_printf(s, "up"); 2588 2589 if (active) { 2590 if (up) 2591 seq_printf(s, ", "); 2592 2593 seq_printf(s, "active"); 2594 } 2595 2596 seq_printf(s, "\n"); 2597 return 0; 2598 } 2599 2600 static const struct seq_operations tegra_pcie_ports_sops = { 2601 .start = tegra_pcie_ports_seq_start, 2602 .next = tegra_pcie_ports_seq_next, 2603 .stop = tegra_pcie_ports_seq_stop, 2604 .show = tegra_pcie_ports_seq_show, 2605 }; 2606 2607 DEFINE_SEQ_ATTRIBUTE(tegra_pcie_ports); 2608 2609 static void tegra_pcie_debugfs_exit(struct tegra_pcie *pcie) 2610 { 2611 debugfs_remove_recursive(pcie->debugfs); 2612 pcie->debugfs = NULL; 2613 } 2614 2615 static void tegra_pcie_debugfs_init(struct tegra_pcie *pcie) 2616 { 2617 pcie->debugfs = debugfs_create_dir("pcie", NULL); 2618 2619 debugfs_create_file("ports", S_IFREG | S_IRUGO, pcie->debugfs, pcie, 2620 &tegra_pcie_ports_fops); 2621 } 2622 2623 static int tegra_pcie_probe(struct platform_device *pdev) 2624 { 2625 struct device *dev = &pdev->dev; 2626 struct pci_host_bridge *host; 2627 struct tegra_pcie *pcie; 2628 int err; 2629 2630 host = devm_pci_alloc_host_bridge(dev, sizeof(*pcie)); 2631 if (!host) 2632 return -ENOMEM; 2633 2634 pcie = pci_host_bridge_priv(host); 2635 host->sysdata = pcie; 2636 platform_set_drvdata(pdev, pcie); 2637 2638 pcie->soc = of_device_get_match_data(dev); 2639 INIT_LIST_HEAD(&pcie->ports); 2640 pcie->dev = dev; 2641 2642 err = tegra_pcie_parse_dt(pcie); 2643 if (err < 0) 2644 return err; 2645 2646 err = tegra_pcie_get_resources(pcie); 2647 if (err < 0) { 2648 dev_err(dev, "failed to request resources: %d\n", err); 2649 return err; 2650 } 2651 2652 err = tegra_pcie_msi_setup(pcie); 2653 if (err < 0) { 2654 dev_err(dev, "failed to enable MSI support: %d\n", err); 2655 goto put_resources; 2656 } 2657 2658 pm_runtime_enable(pcie->dev); 2659 err = pm_runtime_get_sync(pcie->dev); 2660 if (err < 0) { 2661 dev_err(dev, "fail to enable pcie controller: %d\n", err); 2662 goto pm_runtime_put; 2663 } 2664 2665 host->ops = &tegra_pcie_ops; 2666 host->map_irq = tegra_pcie_map_irq; 2667 2668 err = pci_host_probe(host); 2669 if (err < 0) { 2670 dev_err(dev, "failed to register host: %d\n", err); 2671 goto pm_runtime_put; 2672 } 2673 2674 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2675 tegra_pcie_debugfs_init(pcie); 2676 2677 return 0; 2678 2679 pm_runtime_put: 2680 pm_runtime_put_sync(pcie->dev); 2681 pm_runtime_disable(pcie->dev); 2682 tegra_pcie_msi_teardown(pcie); 2683 put_resources: 2684 tegra_pcie_put_resources(pcie); 2685 return err; 2686 } 2687 2688 static int tegra_pcie_remove(struct platform_device *pdev) 2689 { 2690 struct tegra_pcie *pcie = platform_get_drvdata(pdev); 2691 struct pci_host_bridge *host = pci_host_bridge_from_priv(pcie); 2692 struct tegra_pcie_port *port, *tmp; 2693 2694 if (IS_ENABLED(CONFIG_DEBUG_FS)) 2695 tegra_pcie_debugfs_exit(pcie); 2696 2697 pci_stop_root_bus(host->bus); 2698 pci_remove_root_bus(host->bus); 2699 pm_runtime_put_sync(pcie->dev); 2700 pm_runtime_disable(pcie->dev); 2701 2702 if (IS_ENABLED(CONFIG_PCI_MSI)) 2703 tegra_pcie_msi_teardown(pcie); 2704 2705 tegra_pcie_put_resources(pcie); 2706 2707 list_for_each_entry_safe(port, tmp, &pcie->ports, list) 2708 tegra_pcie_port_free(port); 2709 2710 return 0; 2711 } 2712 2713 static int __maybe_unused tegra_pcie_pm_suspend(struct device *dev) 2714 { 2715 struct tegra_pcie *pcie = dev_get_drvdata(dev); 2716 struct tegra_pcie_port *port; 2717 int err; 2718 2719 list_for_each_entry(port, &pcie->ports, list) 2720 tegra_pcie_pme_turnoff(port); 2721 2722 tegra_pcie_disable_ports(pcie); 2723 2724 /* 2725 * AFI_INTR is unmasked in tegra_pcie_enable_controller(), mask it to 2726 * avoid unwanted interrupts raised by AFI after pex_rst is asserted. 2727 */ 2728 tegra_pcie_disable_interrupts(pcie); 2729 2730 if (pcie->soc->program_uphy) { 2731 err = tegra_pcie_phy_power_off(pcie); 2732 if (err < 0) 2733 dev_err(dev, "failed to power off PHY(s): %d\n", err); 2734 } 2735 2736 reset_control_assert(pcie->pex_rst); 2737 clk_disable_unprepare(pcie->pex_clk); 2738 2739 if (IS_ENABLED(CONFIG_PCI_MSI)) 2740 tegra_pcie_disable_msi(pcie); 2741 2742 pinctrl_pm_select_idle_state(dev); 2743 tegra_pcie_power_off(pcie); 2744 2745 return 0; 2746 } 2747 2748 static int __maybe_unused tegra_pcie_pm_resume(struct device *dev) 2749 { 2750 struct tegra_pcie *pcie = dev_get_drvdata(dev); 2751 int err; 2752 2753 err = tegra_pcie_power_on(pcie); 2754 if (err) { 2755 dev_err(dev, "tegra pcie power on fail: %d\n", err); 2756 return err; 2757 } 2758 2759 err = pinctrl_pm_select_default_state(dev); 2760 if (err < 0) { 2761 dev_err(dev, "failed to disable PCIe IO DPD: %d\n", err); 2762 goto poweroff; 2763 } 2764 2765 tegra_pcie_enable_controller(pcie); 2766 tegra_pcie_setup_translations(pcie); 2767 2768 if (IS_ENABLED(CONFIG_PCI_MSI)) 2769 tegra_pcie_enable_msi(pcie); 2770 2771 err = clk_prepare_enable(pcie->pex_clk); 2772 if (err) { 2773 dev_err(dev, "failed to enable PEX clock: %d\n", err); 2774 goto pex_dpd_enable; 2775 } 2776 2777 reset_control_deassert(pcie->pex_rst); 2778 2779 if (pcie->soc->program_uphy) { 2780 err = tegra_pcie_phy_power_on(pcie); 2781 if (err < 0) { 2782 dev_err(dev, "failed to power on PHY(s): %d\n", err); 2783 goto disable_pex_clk; 2784 } 2785 } 2786 2787 tegra_pcie_apply_pad_settings(pcie); 2788 tegra_pcie_enable_ports(pcie); 2789 2790 return 0; 2791 2792 disable_pex_clk: 2793 reset_control_assert(pcie->pex_rst); 2794 clk_disable_unprepare(pcie->pex_clk); 2795 pex_dpd_enable: 2796 pinctrl_pm_select_idle_state(dev); 2797 poweroff: 2798 tegra_pcie_power_off(pcie); 2799 2800 return err; 2801 } 2802 2803 static const struct dev_pm_ops tegra_pcie_pm_ops = { 2804 SET_RUNTIME_PM_OPS(tegra_pcie_pm_suspend, tegra_pcie_pm_resume, NULL) 2805 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(tegra_pcie_pm_suspend, 2806 tegra_pcie_pm_resume) 2807 }; 2808 2809 static struct platform_driver tegra_pcie_driver = { 2810 .driver = { 2811 .name = "tegra-pcie", 2812 .of_match_table = tegra_pcie_of_match, 2813 .suppress_bind_attrs = true, 2814 .pm = &tegra_pcie_pm_ops, 2815 }, 2816 .probe = tegra_pcie_probe, 2817 .remove = tegra_pcie_remove, 2818 }; 2819 module_platform_driver(tegra_pcie_driver); 2820 MODULE_LICENSE("GPL"); 2821