xref: /linux/drivers/pci/controller/pci-hyperv.c (revision f96a974170b749e3a56844e25b31d46a7233b6f6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irq.h>
47 #include <linux/msi.h>
48 #include <linux/hyperv.h>
49 #include <linux/refcount.h>
50 #include <linux/irqdomain.h>
51 #include <linux/acpi.h>
52 #include <linux/sizes.h>
53 #include <asm/mshyperv.h>
54 
55 /*
56  * Protocol versions. The low word is the minor version, the high word the
57  * major version.
58  */
59 
60 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
61 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
62 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
63 
64 enum pci_protocol_version_t {
65 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
66 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
67 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
68 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
69 };
70 
71 #define CPU_AFFINITY_ALL	-1ULL
72 
73 /*
74  * Supported protocol versions in the order of probing - highest go
75  * first.
76  */
77 static enum pci_protocol_version_t pci_protocol_versions[] = {
78 	PCI_PROTOCOL_VERSION_1_4,
79 	PCI_PROTOCOL_VERSION_1_3,
80 	PCI_PROTOCOL_VERSION_1_2,
81 	PCI_PROTOCOL_VERSION_1_1,
82 };
83 
84 #define PCI_CONFIG_MMIO_LENGTH	0x2000
85 #define CFG_PAGE_OFFSET 0x1000
86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
87 
88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
89 
90 #define STATUS_REVISION_MISMATCH 0xC0000059
91 
92 /* space for 32bit serial number as string */
93 #define SLOT_NAME_SIZE 11
94 
95 /*
96  * Size of requestor for VMbus; the value is based on the observation
97  * that having more than one request outstanding is 'rare', and so 64
98  * should be generous in ensuring that we don't ever run out.
99  */
100 #define HV_PCI_RQSTOR_SIZE 64
101 
102 /*
103  * Message Types
104  */
105 
106 enum pci_message_type {
107 	/*
108 	 * Version 1.1
109 	 */
110 	PCI_MESSAGE_BASE                = 0x42490000,
111 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
112 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
113 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
114 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
115 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
116 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
117 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
118 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
119 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
120 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
121 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
122 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
123 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
124 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
125 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
126 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
127 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
128 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
129 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
130 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
131 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
132 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
133 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
134 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
135 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
136 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
137 	PCI_MESSAGE_MAXIMUM
138 };
139 
140 /*
141  * Structures defining the virtual PCI Express protocol.
142  */
143 
144 union pci_version {
145 	struct {
146 		u16 minor_version;
147 		u16 major_version;
148 	} parts;
149 	u32 version;
150 } __packed;
151 
152 /*
153  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
154  * which is all this driver does.  This representation is the one used in
155  * Windows, which is what is expected when sending this back and forth with
156  * the Hyper-V parent partition.
157  */
158 union win_slot_encoding {
159 	struct {
160 		u32	dev:5;
161 		u32	func:3;
162 		u32	reserved:24;
163 	} bits;
164 	u32 slot;
165 } __packed;
166 
167 /*
168  * Pretty much as defined in the PCI Specifications.
169  */
170 struct pci_function_description {
171 	u16	v_id;	/* vendor ID */
172 	u16	d_id;	/* device ID */
173 	u8	rev;
174 	u8	prog_intf;
175 	u8	subclass;
176 	u8	base_class;
177 	u32	subsystem_id;
178 	union win_slot_encoding win_slot;
179 	u32	ser;	/* serial number */
180 } __packed;
181 
182 enum pci_device_description_flags {
183 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
184 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
185 };
186 
187 struct pci_function_description2 {
188 	u16	v_id;	/* vendor ID */
189 	u16	d_id;	/* device ID */
190 	u8	rev;
191 	u8	prog_intf;
192 	u8	subclass;
193 	u8	base_class;
194 	u32	subsystem_id;
195 	union	win_slot_encoding win_slot;
196 	u32	ser;	/* serial number */
197 	u32	flags;
198 	u16	virtual_numa_node;
199 	u16	reserved;
200 } __packed;
201 
202 /**
203  * struct hv_msi_desc
204  * @vector:		IDT entry
205  * @delivery_mode:	As defined in Intel's Programmer's
206  *			Reference Manual, Volume 3, Chapter 8.
207  * @vector_count:	Number of contiguous entries in the
208  *			Interrupt Descriptor Table that are
209  *			occupied by this Message-Signaled
210  *			Interrupt. For "MSI", as first defined
211  *			in PCI 2.2, this can be between 1 and
212  *			32. For "MSI-X," as first defined in PCI
213  *			3.0, this must be 1, as each MSI-X table
214  *			entry would have its own descriptor.
215  * @reserved:		Empty space
216  * @cpu_mask:		All the target virtual processors.
217  */
218 struct hv_msi_desc {
219 	u8	vector;
220 	u8	delivery_mode;
221 	u16	vector_count;
222 	u32	reserved;
223 	u64	cpu_mask;
224 } __packed;
225 
226 /**
227  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
228  * @vector:		IDT entry
229  * @delivery_mode:	As defined in Intel's Programmer's
230  *			Reference Manual, Volume 3, Chapter 8.
231  * @vector_count:	Number of contiguous entries in the
232  *			Interrupt Descriptor Table that are
233  *			occupied by this Message-Signaled
234  *			Interrupt. For "MSI", as first defined
235  *			in PCI 2.2, this can be between 1 and
236  *			32. For "MSI-X," as first defined in PCI
237  *			3.0, this must be 1, as each MSI-X table
238  *			entry would have its own descriptor.
239  * @processor_count:	number of bits enabled in array.
240  * @processor_array:	All the target virtual processors.
241  */
242 struct hv_msi_desc2 {
243 	u8	vector;
244 	u8	delivery_mode;
245 	u16	vector_count;
246 	u16	processor_count;
247 	u16	processor_array[32];
248 } __packed;
249 
250 /*
251  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
252  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
253  *	'vector' field is larger to support bigger vector values. For ex: LPI
254  *	vectors on ARM.
255  */
256 struct hv_msi_desc3 {
257 	u32	vector;
258 	u8	delivery_mode;
259 	u8	reserved;
260 	u16	vector_count;
261 	u16	processor_count;
262 	u16	processor_array[32];
263 } __packed;
264 
265 /**
266  * struct tran_int_desc
267  * @reserved:		unused, padding
268  * @vector_count:	same as in hv_msi_desc
269  * @data:		This is the "data payload" value that is
270  *			written by the device when it generates
271  *			a message-signaled interrupt, either MSI
272  *			or MSI-X.
273  * @address:		This is the address to which the data
274  *			payload is written on interrupt
275  *			generation.
276  */
277 struct tran_int_desc {
278 	u16	reserved;
279 	u16	vector_count;
280 	u32	data;
281 	u64	address;
282 } __packed;
283 
284 /*
285  * A generic message format for virtual PCI.
286  * Specific message formats are defined later in the file.
287  */
288 
289 struct pci_message {
290 	u32 type;
291 } __packed;
292 
293 struct pci_child_message {
294 	struct pci_message message_type;
295 	union win_slot_encoding wslot;
296 } __packed;
297 
298 struct pci_incoming_message {
299 	struct vmpacket_descriptor hdr;
300 	struct pci_message message_type;
301 } __packed;
302 
303 struct pci_response {
304 	struct vmpacket_descriptor hdr;
305 	s32 status;			/* negative values are failures */
306 } __packed;
307 
308 struct pci_packet {
309 	void (*completion_func)(void *context, struct pci_response *resp,
310 				int resp_packet_size);
311 	void *compl_ctxt;
312 
313 	struct pci_message message[];
314 };
315 
316 /*
317  * Specific message types supporting the PCI protocol.
318  */
319 
320 /*
321  * Version negotiation message. Sent from the guest to the host.
322  * The guest is free to try different versions until the host
323  * accepts the version.
324  *
325  * pci_version: The protocol version requested.
326  * is_last_attempt: If TRUE, this is the last version guest will request.
327  * reservedz: Reserved field, set to zero.
328  */
329 
330 struct pci_version_request {
331 	struct pci_message message_type;
332 	u32 protocol_version;
333 } __packed;
334 
335 /*
336  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
337  * bus (PCI Express port) is ready for action.
338  */
339 
340 struct pci_bus_d0_entry {
341 	struct pci_message message_type;
342 	u32 reserved;
343 	u64 mmio_base;
344 } __packed;
345 
346 struct pci_bus_relations {
347 	struct pci_incoming_message incoming;
348 	u32 device_count;
349 	struct pci_function_description func[];
350 } __packed;
351 
352 struct pci_bus_relations2 {
353 	struct pci_incoming_message incoming;
354 	u32 device_count;
355 	struct pci_function_description2 func[];
356 } __packed;
357 
358 struct pci_q_res_req_response {
359 	struct vmpacket_descriptor hdr;
360 	s32 status;			/* negative values are failures */
361 	u32 probed_bar[PCI_STD_NUM_BARS];
362 } __packed;
363 
364 struct pci_set_power {
365 	struct pci_message message_type;
366 	union win_slot_encoding wslot;
367 	u32 power_state;		/* In Windows terms */
368 	u32 reserved;
369 } __packed;
370 
371 struct pci_set_power_response {
372 	struct vmpacket_descriptor hdr;
373 	s32 status;			/* negative values are failures */
374 	union win_slot_encoding wslot;
375 	u32 resultant_state;		/* In Windows terms */
376 	u32 reserved;
377 } __packed;
378 
379 struct pci_resources_assigned {
380 	struct pci_message message_type;
381 	union win_slot_encoding wslot;
382 	u8 memory_range[0x14][6];	/* not used here */
383 	u32 msi_descriptors;
384 	u32 reserved[4];
385 } __packed;
386 
387 struct pci_resources_assigned2 {
388 	struct pci_message message_type;
389 	union win_slot_encoding wslot;
390 	u8 memory_range[0x14][6];	/* not used here */
391 	u32 msi_descriptor_count;
392 	u8 reserved[70];
393 } __packed;
394 
395 struct pci_create_interrupt {
396 	struct pci_message message_type;
397 	union win_slot_encoding wslot;
398 	struct hv_msi_desc int_desc;
399 } __packed;
400 
401 struct pci_create_int_response {
402 	struct pci_response response;
403 	u32 reserved;
404 	struct tran_int_desc int_desc;
405 } __packed;
406 
407 struct pci_create_interrupt2 {
408 	struct pci_message message_type;
409 	union win_slot_encoding wslot;
410 	struct hv_msi_desc2 int_desc;
411 } __packed;
412 
413 struct pci_create_interrupt3 {
414 	struct pci_message message_type;
415 	union win_slot_encoding wslot;
416 	struct hv_msi_desc3 int_desc;
417 } __packed;
418 
419 struct pci_delete_interrupt {
420 	struct pci_message message_type;
421 	union win_slot_encoding wslot;
422 	struct tran_int_desc int_desc;
423 } __packed;
424 
425 /*
426  * Note: the VM must pass a valid block id, wslot and bytes_requested.
427  */
428 struct pci_read_block {
429 	struct pci_message message_type;
430 	u32 block_id;
431 	union win_slot_encoding wslot;
432 	u32 bytes_requested;
433 } __packed;
434 
435 struct pci_read_block_response {
436 	struct vmpacket_descriptor hdr;
437 	u32 status;
438 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
439 } __packed;
440 
441 /*
442  * Note: the VM must pass a valid block id, wslot and byte_count.
443  */
444 struct pci_write_block {
445 	struct pci_message message_type;
446 	u32 block_id;
447 	union win_slot_encoding wslot;
448 	u32 byte_count;
449 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
450 } __packed;
451 
452 struct pci_dev_inval_block {
453 	struct pci_incoming_message incoming;
454 	union win_slot_encoding wslot;
455 	u64 block_mask;
456 } __packed;
457 
458 struct pci_dev_incoming {
459 	struct pci_incoming_message incoming;
460 	union win_slot_encoding wslot;
461 } __packed;
462 
463 struct pci_eject_response {
464 	struct pci_message message_type;
465 	union win_slot_encoding wslot;
466 	u32 status;
467 } __packed;
468 
469 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
470 
471 /*
472  * Driver specific state.
473  */
474 
475 enum hv_pcibus_state {
476 	hv_pcibus_init = 0,
477 	hv_pcibus_probed,
478 	hv_pcibus_installed,
479 	hv_pcibus_removing,
480 	hv_pcibus_maximum
481 };
482 
483 struct hv_pcibus_device {
484 #ifdef CONFIG_X86
485 	struct pci_sysdata sysdata;
486 #elif defined(CONFIG_ARM64)
487 	struct pci_config_window sysdata;
488 #endif
489 	struct pci_host_bridge *bridge;
490 	struct fwnode_handle *fwnode;
491 	/* Protocol version negotiated with the host */
492 	enum pci_protocol_version_t protocol_version;
493 
494 	struct mutex state_lock;
495 	enum hv_pcibus_state state;
496 
497 	struct hv_device *hdev;
498 	resource_size_t low_mmio_space;
499 	resource_size_t high_mmio_space;
500 	struct resource *mem_config;
501 	struct resource *low_mmio_res;
502 	struct resource *high_mmio_res;
503 	struct completion *survey_event;
504 	struct pci_bus *pci_bus;
505 	spinlock_t config_lock;	/* Avoid two threads writing index page */
506 	spinlock_t device_list_lock;	/* Protect lists below */
507 	void __iomem *cfg_addr;
508 
509 	struct list_head children;
510 	struct list_head dr_list;
511 
512 	struct msi_domain_info msi_info;
513 	struct irq_domain *irq_domain;
514 
515 	struct workqueue_struct *wq;
516 
517 	/* Highest slot of child device with resources allocated */
518 	int wslot_res_allocated;
519 	bool use_calls; /* Use hypercalls to access mmio cfg space */
520 };
521 
522 /*
523  * Tracks "Device Relations" messages from the host, which must be both
524  * processed in order and deferred so that they don't run in the context
525  * of the incoming packet callback.
526  */
527 struct hv_dr_work {
528 	struct work_struct wrk;
529 	struct hv_pcibus_device *bus;
530 };
531 
532 struct hv_pcidev_description {
533 	u16	v_id;	/* vendor ID */
534 	u16	d_id;	/* device ID */
535 	u8	rev;
536 	u8	prog_intf;
537 	u8	subclass;
538 	u8	base_class;
539 	u32	subsystem_id;
540 	union	win_slot_encoding win_slot;
541 	u32	ser;	/* serial number */
542 	u32	flags;
543 	u16	virtual_numa_node;
544 };
545 
546 struct hv_dr_state {
547 	struct list_head list_entry;
548 	u32 device_count;
549 	struct hv_pcidev_description func[] __counted_by(device_count);
550 };
551 
552 struct hv_pci_dev {
553 	/* List protected by pci_rescan_remove_lock */
554 	struct list_head list_entry;
555 	refcount_t refs;
556 	struct pci_slot *pci_slot;
557 	struct hv_pcidev_description desc;
558 	bool reported_missing;
559 	struct hv_pcibus_device *hbus;
560 	struct work_struct wrk;
561 
562 	void (*block_invalidate)(void *context, u64 block_mask);
563 	void *invalidate_context;
564 
565 	/*
566 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
567 	 * read it back, for each of the BAR offsets within config space.
568 	 */
569 	u32 probed_bar[PCI_STD_NUM_BARS];
570 };
571 
572 struct hv_pci_compl {
573 	struct completion host_event;
574 	s32 completion_status;
575 };
576 
577 static void hv_pci_onchannelcallback(void *context);
578 
579 #ifdef CONFIG_X86
580 #define DELIVERY_MODE	APIC_DELIVERY_MODE_FIXED
581 #define FLOW_HANDLER	handle_edge_irq
582 #define FLOW_NAME	"edge"
583 
584 static int hv_pci_irqchip_init(void)
585 {
586 	return 0;
587 }
588 
589 static struct irq_domain *hv_pci_get_root_domain(void)
590 {
591 	return x86_vector_domain;
592 }
593 
594 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
595 {
596 	struct irq_cfg *cfg = irqd_cfg(data);
597 
598 	return cfg->vector;
599 }
600 
601 #define hv_msi_prepare		pci_msi_prepare
602 
603 /**
604  * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
605  * affinity.
606  * @data:	Describes the IRQ
607  *
608  * Build new a destination for the MSI and make a hypercall to
609  * update the Interrupt Redirection Table. "Device Logical ID"
610  * is built out of this PCI bus's instance GUID and the function
611  * number of the device.
612  */
613 static void hv_arch_irq_unmask(struct irq_data *data)
614 {
615 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
616 	struct hv_retarget_device_interrupt *params;
617 	struct tran_int_desc *int_desc;
618 	struct hv_pcibus_device *hbus;
619 	const struct cpumask *dest;
620 	cpumask_var_t tmp;
621 	struct pci_bus *pbus;
622 	struct pci_dev *pdev;
623 	unsigned long flags;
624 	u32 var_size = 0;
625 	int cpu, nr_bank;
626 	u64 res;
627 
628 	dest = irq_data_get_effective_affinity_mask(data);
629 	pdev = msi_desc_to_pci_dev(msi_desc);
630 	pbus = pdev->bus;
631 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
632 	int_desc = data->chip_data;
633 	if (!int_desc) {
634 		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
635 			 __func__, data->irq);
636 		return;
637 	}
638 
639 	local_irq_save(flags);
640 
641 	params = *this_cpu_ptr(hyperv_pcpu_input_arg);
642 	memset(params, 0, sizeof(*params));
643 	params->partition_id = HV_PARTITION_ID_SELF;
644 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
645 	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
646 	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
647 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
648 			   (hbus->hdev->dev_instance.b[4] << 16) |
649 			   (hbus->hdev->dev_instance.b[7] << 8) |
650 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
651 			   PCI_FUNC(pdev->devfn);
652 	params->int_target.vector = hv_msi_get_int_vector(data);
653 
654 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
655 		/*
656 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
657 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
658 		 * with >64 VP support.
659 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
660 		 * is not sufficient for this hypercall.
661 		 */
662 		params->int_target.flags |=
663 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
664 
665 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
666 			res = 1;
667 			goto out;
668 		}
669 
670 		cpumask_and(tmp, dest, cpu_online_mask);
671 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
672 		free_cpumask_var(tmp);
673 
674 		if (nr_bank <= 0) {
675 			res = 1;
676 			goto out;
677 		}
678 
679 		/*
680 		 * var-sized hypercall, var-size starts after vp_mask (thus
681 		 * vp_set.format does not count, but vp_set.valid_bank_mask
682 		 * does).
683 		 */
684 		var_size = 1 + nr_bank;
685 	} else {
686 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
687 			params->int_target.vp_mask |=
688 				(1ULL << hv_cpu_number_to_vp_number(cpu));
689 		}
690 	}
691 
692 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
693 			      params, NULL);
694 
695 out:
696 	local_irq_restore(flags);
697 
698 	/*
699 	 * During hibernation, when a CPU is offlined, the kernel tries
700 	 * to move the interrupt to the remaining CPUs that haven't
701 	 * been offlined yet. In this case, the below hv_do_hypercall()
702 	 * always fails since the vmbus channel has been closed:
703 	 * refer to cpu_disable_common() -> fixup_irqs() ->
704 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
705 	 *
706 	 * Suppress the error message for hibernation because the failure
707 	 * during hibernation does not matter (at this time all the devices
708 	 * have been frozen). Note: the correct affinity info is still updated
709 	 * into the irqdata data structure in migrate_one_irq() ->
710 	 * irq_do_set_affinity(), so later when the VM resumes,
711 	 * hv_pci_restore_msi_state() is able to correctly restore the
712 	 * interrupt with the correct affinity.
713 	 */
714 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
715 		dev_err(&hbus->hdev->device,
716 			"%s() failed: %#llx", __func__, res);
717 }
718 #elif defined(CONFIG_ARM64)
719 /*
720  * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
721  * of room at the start to allow for SPIs to be specified through ACPI and
722  * starting with a power of two to satisfy power of 2 multi-MSI requirement.
723  */
724 #define HV_PCI_MSI_SPI_START	64
725 #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
726 #define DELIVERY_MODE		0
727 #define FLOW_HANDLER		NULL
728 #define FLOW_NAME		NULL
729 #define hv_msi_prepare		NULL
730 
731 struct hv_pci_chip_data {
732 	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
733 	struct mutex	map_lock;
734 };
735 
736 /* Hyper-V vPCI MSI GIC IRQ domain */
737 static struct irq_domain *hv_msi_gic_irq_domain;
738 
739 /* Hyper-V PCI MSI IRQ chip */
740 static struct irq_chip hv_arm64_msi_irq_chip = {
741 	.name = "MSI",
742 	.irq_set_affinity = irq_chip_set_affinity_parent,
743 	.irq_eoi = irq_chip_eoi_parent,
744 	.irq_mask = irq_chip_mask_parent,
745 	.irq_unmask = irq_chip_unmask_parent
746 };
747 
748 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
749 {
750 	return irqd->parent_data->hwirq;
751 }
752 
753 /*
754  * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
755  *			the bitmap.
756  * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
757  *			the parent domain.
758  */
759 static void hv_pci_vec_irq_free(struct irq_domain *domain,
760 				unsigned int virq,
761 				unsigned int nr_bm_irqs,
762 				unsigned int nr_dom_irqs)
763 {
764 	struct hv_pci_chip_data *chip_data = domain->host_data;
765 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
766 	int first = d->hwirq - HV_PCI_MSI_SPI_START;
767 	int i;
768 
769 	mutex_lock(&chip_data->map_lock);
770 	bitmap_release_region(chip_data->spi_map,
771 			      first,
772 			      get_count_order(nr_bm_irqs));
773 	mutex_unlock(&chip_data->map_lock);
774 	for (i = 0; i < nr_dom_irqs; i++) {
775 		if (i)
776 			d = irq_domain_get_irq_data(domain, virq + i);
777 		irq_domain_reset_irq_data(d);
778 	}
779 
780 	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
781 }
782 
783 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
784 				       unsigned int virq,
785 				       unsigned int nr_irqs)
786 {
787 	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
788 }
789 
790 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
791 				       unsigned int nr_irqs,
792 				       irq_hw_number_t *hwirq)
793 {
794 	struct hv_pci_chip_data *chip_data = domain->host_data;
795 	int index;
796 
797 	/* Find and allocate region from the SPI bitmap */
798 	mutex_lock(&chip_data->map_lock);
799 	index = bitmap_find_free_region(chip_data->spi_map,
800 					HV_PCI_MSI_SPI_NR,
801 					get_count_order(nr_irqs));
802 	mutex_unlock(&chip_data->map_lock);
803 	if (index < 0)
804 		return -ENOSPC;
805 
806 	*hwirq = index + HV_PCI_MSI_SPI_START;
807 
808 	return 0;
809 }
810 
811 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
812 					   unsigned int virq,
813 					   irq_hw_number_t hwirq)
814 {
815 	struct irq_fwspec fwspec;
816 	struct irq_data *d;
817 	int ret;
818 
819 	fwspec.fwnode = domain->parent->fwnode;
820 	fwspec.param_count = 2;
821 	fwspec.param[0] = hwirq;
822 	fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
823 
824 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
825 	if (ret)
826 		return ret;
827 
828 	/*
829 	 * Since the interrupt specifier is not coming from ACPI or DT, the
830 	 * trigger type will need to be set explicitly. Otherwise, it will be
831 	 * set to whatever is in the GIC configuration.
832 	 */
833 	d = irq_domain_get_irq_data(domain->parent, virq);
834 
835 	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
836 }
837 
838 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
839 				       unsigned int virq, unsigned int nr_irqs,
840 				       void *args)
841 {
842 	irq_hw_number_t hwirq;
843 	unsigned int i;
844 	int ret;
845 
846 	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
847 	if (ret)
848 		return ret;
849 
850 	for (i = 0; i < nr_irqs; i++) {
851 		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
852 						      hwirq + i);
853 		if (ret) {
854 			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
855 			return ret;
856 		}
857 
858 		irq_domain_set_hwirq_and_chip(domain, virq + i,
859 					      hwirq + i,
860 					      &hv_arm64_msi_irq_chip,
861 					      domain->host_data);
862 		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
863 	}
864 
865 	return 0;
866 }
867 
868 /*
869  * Pick the first cpu as the irq affinity that can be temporarily used for
870  * composing MSI from the hypervisor. GIC will eventually set the right
871  * affinity for the irq and the 'unmask' will retarget the interrupt to that
872  * cpu.
873  */
874 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
875 					  struct irq_data *irqd, bool reserve)
876 {
877 	int cpu = cpumask_first(cpu_present_mask);
878 
879 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
880 
881 	return 0;
882 }
883 
884 static const struct irq_domain_ops hv_pci_domain_ops = {
885 	.alloc	= hv_pci_vec_irq_domain_alloc,
886 	.free	= hv_pci_vec_irq_domain_free,
887 	.activate = hv_pci_vec_irq_domain_activate,
888 };
889 
890 static int hv_pci_irqchip_init(void)
891 {
892 	static struct hv_pci_chip_data *chip_data;
893 	struct fwnode_handle *fn = NULL;
894 	int ret = -ENOMEM;
895 
896 	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
897 	if (!chip_data)
898 		return ret;
899 
900 	mutex_init(&chip_data->map_lock);
901 	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
902 	if (!fn)
903 		goto free_chip;
904 
905 	/*
906 	 * IRQ domain once enabled, should not be removed since there is no
907 	 * way to ensure that all the corresponding devices are also gone and
908 	 * no interrupts will be generated.
909 	 */
910 	hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR,
911 							  fn, &hv_pci_domain_ops,
912 							  chip_data);
913 
914 	if (!hv_msi_gic_irq_domain) {
915 		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
916 		goto free_chip;
917 	}
918 
919 	return 0;
920 
921 free_chip:
922 	kfree(chip_data);
923 	if (fn)
924 		irq_domain_free_fwnode(fn);
925 
926 	return ret;
927 }
928 
929 static struct irq_domain *hv_pci_get_root_domain(void)
930 {
931 	return hv_msi_gic_irq_domain;
932 }
933 
934 /*
935  * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
936  * registers which Hyper-V already supports, so no hypercall needed.
937  */
938 static void hv_arch_irq_unmask(struct irq_data *data) { }
939 #endif /* CONFIG_ARM64 */
940 
941 /**
942  * hv_pci_generic_compl() - Invoked for a completion packet
943  * @context:		Set up by the sender of the packet.
944  * @resp:		The response packet
945  * @resp_packet_size:	Size in bytes of the packet
946  *
947  * This function is used to trigger an event and report status
948  * for any message for which the completion packet contains a
949  * status and nothing else.
950  */
951 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
952 				 int resp_packet_size)
953 {
954 	struct hv_pci_compl *comp_pkt = context;
955 
956 	comp_pkt->completion_status = resp->status;
957 	complete(&comp_pkt->host_event);
958 }
959 
960 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
961 						u32 wslot);
962 
963 static void get_pcichild(struct hv_pci_dev *hpdev)
964 {
965 	refcount_inc(&hpdev->refs);
966 }
967 
968 static void put_pcichild(struct hv_pci_dev *hpdev)
969 {
970 	if (refcount_dec_and_test(&hpdev->refs))
971 		kfree(hpdev);
972 }
973 
974 /*
975  * There is no good way to get notified from vmbus_onoffer_rescind(),
976  * so let's use polling here, since this is not a hot path.
977  */
978 static int wait_for_response(struct hv_device *hdev,
979 			     struct completion *comp)
980 {
981 	while (true) {
982 		if (hdev->channel->rescind) {
983 			dev_warn_once(&hdev->device, "The device is gone.\n");
984 			return -ENODEV;
985 		}
986 
987 		if (wait_for_completion_timeout(comp, HZ / 10))
988 			break;
989 	}
990 
991 	return 0;
992 }
993 
994 /**
995  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
996  * @devfn:	The Linux representation of PCI slot
997  *
998  * Windows uses a slightly different representation of PCI slot.
999  *
1000  * Return: The Windows representation
1001  */
1002 static u32 devfn_to_wslot(int devfn)
1003 {
1004 	union win_slot_encoding wslot;
1005 
1006 	wslot.slot = 0;
1007 	wslot.bits.dev = PCI_SLOT(devfn);
1008 	wslot.bits.func = PCI_FUNC(devfn);
1009 
1010 	return wslot.slot;
1011 }
1012 
1013 /**
1014  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1015  * @wslot:	The Windows representation of PCI slot
1016  *
1017  * Windows uses a slightly different representation of PCI slot.
1018  *
1019  * Return: The Linux representation
1020  */
1021 static int wslot_to_devfn(u32 wslot)
1022 {
1023 	union win_slot_encoding slot_no;
1024 
1025 	slot_no.slot = wslot;
1026 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1027 }
1028 
1029 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1030 {
1031 	struct hv_mmio_read_input *in;
1032 	struct hv_mmio_read_output *out;
1033 	u64 ret;
1034 
1035 	/*
1036 	 * Must be called with interrupts disabled so it is safe
1037 	 * to use the per-cpu input argument page.  Use it for
1038 	 * both input and output.
1039 	 */
1040 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1041 	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1042 	in->gpa = gpa;
1043 	in->size = size;
1044 
1045 	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1046 	if (hv_result_success(ret)) {
1047 		switch (size) {
1048 		case 1:
1049 			*val = *(u8 *)(out->data);
1050 			break;
1051 		case 2:
1052 			*val = *(u16 *)(out->data);
1053 			break;
1054 		default:
1055 			*val = *(u32 *)(out->data);
1056 			break;
1057 		}
1058 	} else
1059 		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1060 				ret, gpa, size);
1061 }
1062 
1063 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1064 {
1065 	struct hv_mmio_write_input *in;
1066 	u64 ret;
1067 
1068 	/*
1069 	 * Must be called with interrupts disabled so it is safe
1070 	 * to use the per-cpu input argument memory.
1071 	 */
1072 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1073 	in->gpa = gpa;
1074 	in->size = size;
1075 	switch (size) {
1076 	case 1:
1077 		*(u8 *)(in->data) = val;
1078 		break;
1079 	case 2:
1080 		*(u16 *)(in->data) = val;
1081 		break;
1082 	default:
1083 		*(u32 *)(in->data) = val;
1084 		break;
1085 	}
1086 
1087 	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1088 	if (!hv_result_success(ret))
1089 		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1090 				ret, gpa, size);
1091 }
1092 
1093 /*
1094  * PCI Configuration Space for these root PCI buses is implemented as a pair
1095  * of pages in memory-mapped I/O space.  Writing to the first page chooses
1096  * the PCI function being written or read.  Once the first page has been
1097  * written to, the following page maps in the entire configuration space of
1098  * the function.
1099  */
1100 
1101 /**
1102  * _hv_pcifront_read_config() - Internal PCI config read
1103  * @hpdev:	The PCI driver's representation of the device
1104  * @where:	Offset within config space
1105  * @size:	Size of the transfer
1106  * @val:	Pointer to the buffer receiving the data
1107  */
1108 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1109 				     int size, u32 *val)
1110 {
1111 	struct hv_pcibus_device *hbus = hpdev->hbus;
1112 	struct device *dev = &hbus->hdev->device;
1113 	int offset = where + CFG_PAGE_OFFSET;
1114 	unsigned long flags;
1115 
1116 	/*
1117 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1118 	 */
1119 	if (where + size <= PCI_COMMAND) {
1120 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1121 	} else if (where >= PCI_CLASS_REVISION && where + size <=
1122 		   PCI_CACHE_LINE_SIZE) {
1123 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1124 		       PCI_CLASS_REVISION, size);
1125 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1126 		   PCI_ROM_ADDRESS) {
1127 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1128 		       PCI_SUBSYSTEM_VENDOR_ID, size);
1129 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1130 		   PCI_CAPABILITY_LIST) {
1131 		/* ROM BARs are unimplemented */
1132 		*val = 0;
1133 	} else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
1134 		   (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
1135 		/*
1136 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1137 		 * because this front-end only supports message-signaled
1138 		 * interrupts.
1139 		 */
1140 		*val = 0;
1141 	} else if (where + size <= CFG_PAGE_SIZE) {
1142 
1143 		spin_lock_irqsave(&hbus->config_lock, flags);
1144 		if (hbus->use_calls) {
1145 			phys_addr_t addr = hbus->mem_config->start + offset;
1146 
1147 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1148 						hpdev->desc.win_slot.slot);
1149 			hv_pci_read_mmio(dev, addr, size, val);
1150 		} else {
1151 			void __iomem *addr = hbus->cfg_addr + offset;
1152 
1153 			/* Choose the function to be read. (See comment above) */
1154 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1155 			/* Make sure the function was chosen before reading. */
1156 			mb();
1157 			/* Read from that function's config space. */
1158 			switch (size) {
1159 			case 1:
1160 				*val = readb(addr);
1161 				break;
1162 			case 2:
1163 				*val = readw(addr);
1164 				break;
1165 			default:
1166 				*val = readl(addr);
1167 				break;
1168 			}
1169 			/*
1170 			 * Make sure the read was done before we release the
1171 			 * spinlock allowing consecutive reads/writes.
1172 			 */
1173 			mb();
1174 		}
1175 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1176 	} else {
1177 		dev_err(dev, "Attempt to read beyond a function's config space.\n");
1178 	}
1179 }
1180 
1181 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1182 {
1183 	struct hv_pcibus_device *hbus = hpdev->hbus;
1184 	struct device *dev = &hbus->hdev->device;
1185 	u32 val;
1186 	u16 ret;
1187 	unsigned long flags;
1188 
1189 	spin_lock_irqsave(&hbus->config_lock, flags);
1190 
1191 	if (hbus->use_calls) {
1192 		phys_addr_t addr = hbus->mem_config->start +
1193 					 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1194 
1195 		hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1196 					hpdev->desc.win_slot.slot);
1197 		hv_pci_read_mmio(dev, addr, 2, &val);
1198 		ret = val;  /* Truncates to 16 bits */
1199 	} else {
1200 		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1201 					     PCI_VENDOR_ID;
1202 		/* Choose the function to be read. (See comment above) */
1203 		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1204 		/* Make sure the function was chosen before we start reading. */
1205 		mb();
1206 		/* Read from that function's config space. */
1207 		ret = readw(addr);
1208 		/*
1209 		 * mb() is not required here, because the
1210 		 * spin_unlock_irqrestore() is a barrier.
1211 		 */
1212 	}
1213 
1214 	spin_unlock_irqrestore(&hbus->config_lock, flags);
1215 
1216 	return ret;
1217 }
1218 
1219 /**
1220  * _hv_pcifront_write_config() - Internal PCI config write
1221  * @hpdev:	The PCI driver's representation of the device
1222  * @where:	Offset within config space
1223  * @size:	Size of the transfer
1224  * @val:	The data being transferred
1225  */
1226 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1227 				      int size, u32 val)
1228 {
1229 	struct hv_pcibus_device *hbus = hpdev->hbus;
1230 	struct device *dev = &hbus->hdev->device;
1231 	int offset = where + CFG_PAGE_OFFSET;
1232 	unsigned long flags;
1233 
1234 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1235 	    where + size <= PCI_CAPABILITY_LIST) {
1236 		/* SSIDs and ROM BARs are read-only */
1237 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1238 		spin_lock_irqsave(&hbus->config_lock, flags);
1239 
1240 		if (hbus->use_calls) {
1241 			phys_addr_t addr = hbus->mem_config->start + offset;
1242 
1243 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1244 						hpdev->desc.win_slot.slot);
1245 			hv_pci_write_mmio(dev, addr, size, val);
1246 		} else {
1247 			void __iomem *addr = hbus->cfg_addr + offset;
1248 
1249 			/* Choose the function to write. (See comment above) */
1250 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1251 			/* Make sure the function was chosen before writing. */
1252 			wmb();
1253 			/* Write to that function's config space. */
1254 			switch (size) {
1255 			case 1:
1256 				writeb(val, addr);
1257 				break;
1258 			case 2:
1259 				writew(val, addr);
1260 				break;
1261 			default:
1262 				writel(val, addr);
1263 				break;
1264 			}
1265 			/*
1266 			 * Make sure the write was done before we release the
1267 			 * spinlock allowing consecutive reads/writes.
1268 			 */
1269 			mb();
1270 		}
1271 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1272 	} else {
1273 		dev_err(dev, "Attempt to write beyond a function's config space.\n");
1274 	}
1275 }
1276 
1277 /**
1278  * hv_pcifront_read_config() - Read configuration space
1279  * @bus: PCI Bus structure
1280  * @devfn: Device/function
1281  * @where: Offset from base
1282  * @size: Byte/word/dword
1283  * @val: Value to be read
1284  *
1285  * Return: PCIBIOS_SUCCESSFUL on success
1286  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1287  */
1288 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1289 				   int where, int size, u32 *val)
1290 {
1291 	struct hv_pcibus_device *hbus =
1292 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1293 	struct hv_pci_dev *hpdev;
1294 
1295 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1296 	if (!hpdev)
1297 		return PCIBIOS_DEVICE_NOT_FOUND;
1298 
1299 	_hv_pcifront_read_config(hpdev, where, size, val);
1300 
1301 	put_pcichild(hpdev);
1302 	return PCIBIOS_SUCCESSFUL;
1303 }
1304 
1305 /**
1306  * hv_pcifront_write_config() - Write configuration space
1307  * @bus: PCI Bus structure
1308  * @devfn: Device/function
1309  * @where: Offset from base
1310  * @size: Byte/word/dword
1311  * @val: Value to be written to device
1312  *
1313  * Return: PCIBIOS_SUCCESSFUL on success
1314  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1315  */
1316 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1317 				    int where, int size, u32 val)
1318 {
1319 	struct hv_pcibus_device *hbus =
1320 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1321 	struct hv_pci_dev *hpdev;
1322 
1323 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1324 	if (!hpdev)
1325 		return PCIBIOS_DEVICE_NOT_FOUND;
1326 
1327 	_hv_pcifront_write_config(hpdev, where, size, val);
1328 
1329 	put_pcichild(hpdev);
1330 	return PCIBIOS_SUCCESSFUL;
1331 }
1332 
1333 /* PCIe operations */
1334 static struct pci_ops hv_pcifront_ops = {
1335 	.read  = hv_pcifront_read_config,
1336 	.write = hv_pcifront_write_config,
1337 };
1338 
1339 /*
1340  * Paravirtual backchannel
1341  *
1342  * Hyper-V SR-IOV provides a backchannel mechanism in software for
1343  * communication between a VF driver and a PF driver.  These
1344  * "configuration blocks" are similar in concept to PCI configuration space,
1345  * but instead of doing reads and writes in 32-bit chunks through a very slow
1346  * path, packets of up to 128 bytes can be sent or received asynchronously.
1347  *
1348  * Nearly every SR-IOV device contains just such a communications channel in
1349  * hardware, so using this one in software is usually optional.  Using the
1350  * software channel, however, allows driver implementers to leverage software
1351  * tools that fuzz the communications channel looking for vulnerabilities.
1352  *
1353  * The usage model for these packets puts the responsibility for reading or
1354  * writing on the VF driver.  The VF driver sends a read or a write packet,
1355  * indicating which "block" is being referred to by number.
1356  *
1357  * If the PF driver wishes to initiate communication, it can "invalidate" one or
1358  * more of the first 64 blocks.  This invalidation is delivered via a callback
1359  * supplied by the VF driver by this driver.
1360  *
1361  * No protocol is implied, except that supplied by the PF and VF drivers.
1362  */
1363 
1364 struct hv_read_config_compl {
1365 	struct hv_pci_compl comp_pkt;
1366 	void *buf;
1367 	unsigned int len;
1368 	unsigned int bytes_returned;
1369 };
1370 
1371 /**
1372  * hv_pci_read_config_compl() - Invoked when a response packet
1373  * for a read config block operation arrives.
1374  * @context:		Identifies the read config operation
1375  * @resp:		The response packet itself
1376  * @resp_packet_size:	Size in bytes of the response packet
1377  */
1378 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1379 				     int resp_packet_size)
1380 {
1381 	struct hv_read_config_compl *comp = context;
1382 	struct pci_read_block_response *read_resp =
1383 		(struct pci_read_block_response *)resp;
1384 	unsigned int data_len, hdr_len;
1385 
1386 	hdr_len = offsetof(struct pci_read_block_response, bytes);
1387 	if (resp_packet_size < hdr_len) {
1388 		comp->comp_pkt.completion_status = -1;
1389 		goto out;
1390 	}
1391 
1392 	data_len = resp_packet_size - hdr_len;
1393 	if (data_len > 0 && read_resp->status == 0) {
1394 		comp->bytes_returned = min(comp->len, data_len);
1395 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1396 	} else {
1397 		comp->bytes_returned = 0;
1398 	}
1399 
1400 	comp->comp_pkt.completion_status = read_resp->status;
1401 out:
1402 	complete(&comp->comp_pkt.host_event);
1403 }
1404 
1405 /**
1406  * hv_read_config_block() - Sends a read config block request to
1407  * the back-end driver running in the Hyper-V parent partition.
1408  * @pdev:		The PCI driver's representation for this device.
1409  * @buf:		Buffer into which the config block will be copied.
1410  * @len:		Size in bytes of buf.
1411  * @block_id:		Identifies the config block which has been requested.
1412  * @bytes_returned:	Size which came back from the back-end driver.
1413  *
1414  * Return: 0 on success, -errno on failure
1415  */
1416 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1417 				unsigned int len, unsigned int block_id,
1418 				unsigned int *bytes_returned)
1419 {
1420 	struct hv_pcibus_device *hbus =
1421 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1422 			     sysdata);
1423 	struct {
1424 		struct pci_packet pkt;
1425 		char buf[sizeof(struct pci_read_block)];
1426 	} pkt;
1427 	struct hv_read_config_compl comp_pkt;
1428 	struct pci_read_block *read_blk;
1429 	int ret;
1430 
1431 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1432 		return -EINVAL;
1433 
1434 	init_completion(&comp_pkt.comp_pkt.host_event);
1435 	comp_pkt.buf = buf;
1436 	comp_pkt.len = len;
1437 
1438 	memset(&pkt, 0, sizeof(pkt));
1439 	pkt.pkt.completion_func = hv_pci_read_config_compl;
1440 	pkt.pkt.compl_ctxt = &comp_pkt;
1441 	read_blk = (struct pci_read_block *)&pkt.pkt.message;
1442 	read_blk->message_type.type = PCI_READ_BLOCK;
1443 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1444 	read_blk->block_id = block_id;
1445 	read_blk->bytes_requested = len;
1446 
1447 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1448 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1449 			       VM_PKT_DATA_INBAND,
1450 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1451 	if (ret)
1452 		return ret;
1453 
1454 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1455 	if (ret)
1456 		return ret;
1457 
1458 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1459 	    comp_pkt.bytes_returned == 0) {
1460 		dev_err(&hbus->hdev->device,
1461 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1462 			comp_pkt.comp_pkt.completion_status,
1463 			comp_pkt.bytes_returned);
1464 		return -EIO;
1465 	}
1466 
1467 	*bytes_returned = comp_pkt.bytes_returned;
1468 	return 0;
1469 }
1470 
1471 /**
1472  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1473  * config block operation arrives.
1474  * @context:		Identifies the write config operation
1475  * @resp:		The response packet itself
1476  * @resp_packet_size:	Size in bytes of the response packet
1477  */
1478 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1479 				      int resp_packet_size)
1480 {
1481 	struct hv_pci_compl *comp_pkt = context;
1482 
1483 	comp_pkt->completion_status = resp->status;
1484 	complete(&comp_pkt->host_event);
1485 }
1486 
1487 /**
1488  * hv_write_config_block() - Sends a write config block request to the
1489  * back-end driver running in the Hyper-V parent partition.
1490  * @pdev:		The PCI driver's representation for this device.
1491  * @buf:		Buffer from which the config block will	be copied.
1492  * @len:		Size in bytes of buf.
1493  * @block_id:		Identifies the config block which is being written.
1494  *
1495  * Return: 0 on success, -errno on failure
1496  */
1497 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1498 				unsigned int len, unsigned int block_id)
1499 {
1500 	struct hv_pcibus_device *hbus =
1501 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1502 			     sysdata);
1503 	struct {
1504 		struct pci_packet pkt;
1505 		char buf[sizeof(struct pci_write_block)];
1506 		u32 reserved;
1507 	} pkt;
1508 	struct hv_pci_compl comp_pkt;
1509 	struct pci_write_block *write_blk;
1510 	u32 pkt_size;
1511 	int ret;
1512 
1513 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1514 		return -EINVAL;
1515 
1516 	init_completion(&comp_pkt.host_event);
1517 
1518 	memset(&pkt, 0, sizeof(pkt));
1519 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1520 	pkt.pkt.compl_ctxt = &comp_pkt;
1521 	write_blk = (struct pci_write_block *)&pkt.pkt.message;
1522 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1523 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1524 	write_blk->block_id = block_id;
1525 	write_blk->byte_count = len;
1526 	memcpy(write_blk->bytes, buf, len);
1527 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1528 	/*
1529 	 * This quirk is required on some hosts shipped around 2018, because
1530 	 * these hosts don't check the pkt_size correctly (new hosts have been
1531 	 * fixed since early 2019). The quirk is also safe on very old hosts
1532 	 * and new hosts, because, on them, what really matters is the length
1533 	 * specified in write_blk->byte_count.
1534 	 */
1535 	pkt_size += sizeof(pkt.reserved);
1536 
1537 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1538 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1539 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1540 	if (ret)
1541 		return ret;
1542 
1543 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1544 	if (ret)
1545 		return ret;
1546 
1547 	if (comp_pkt.completion_status != 0) {
1548 		dev_err(&hbus->hdev->device,
1549 			"Write Config Block failed: 0x%x\n",
1550 			comp_pkt.completion_status);
1551 		return -EIO;
1552 	}
1553 
1554 	return 0;
1555 }
1556 
1557 /**
1558  * hv_register_block_invalidate() - Invoked when a config block invalidation
1559  * arrives from the back-end driver.
1560  * @pdev:		The PCI driver's representation for this device.
1561  * @context:		Identifies the device.
1562  * @block_invalidate:	Identifies all of the blocks being invalidated.
1563  *
1564  * Return: 0 on success, -errno on failure
1565  */
1566 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1567 					void (*block_invalidate)(void *context,
1568 								 u64 block_mask))
1569 {
1570 	struct hv_pcibus_device *hbus =
1571 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1572 			     sysdata);
1573 	struct hv_pci_dev *hpdev;
1574 
1575 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1576 	if (!hpdev)
1577 		return -ENODEV;
1578 
1579 	hpdev->block_invalidate = block_invalidate;
1580 	hpdev->invalidate_context = context;
1581 
1582 	put_pcichild(hpdev);
1583 	return 0;
1584 
1585 }
1586 
1587 /* Interrupt management hooks */
1588 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1589 			     struct tran_int_desc *int_desc)
1590 {
1591 	struct pci_delete_interrupt *int_pkt;
1592 	struct {
1593 		struct pci_packet pkt;
1594 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1595 	} ctxt;
1596 
1597 	if (!int_desc->vector_count) {
1598 		kfree(int_desc);
1599 		return;
1600 	}
1601 	memset(&ctxt, 0, sizeof(ctxt));
1602 	int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message;
1603 	int_pkt->message_type.type =
1604 		PCI_DELETE_INTERRUPT_MESSAGE;
1605 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1606 	int_pkt->int_desc = *int_desc;
1607 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1608 			 0, VM_PKT_DATA_INBAND, 0);
1609 	kfree(int_desc);
1610 }
1611 
1612 /**
1613  * hv_msi_free() - Free the MSI.
1614  * @domain:	The interrupt domain pointer
1615  * @info:	Extra MSI-related context
1616  * @irq:	Identifies the IRQ.
1617  *
1618  * The Hyper-V parent partition and hypervisor are tracking the
1619  * messages that are in use, keeping the interrupt redirection
1620  * table up to date.  This callback sends a message that frees
1621  * the IRT entry and related tracking nonsense.
1622  */
1623 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1624 			unsigned int irq)
1625 {
1626 	struct hv_pcibus_device *hbus;
1627 	struct hv_pci_dev *hpdev;
1628 	struct pci_dev *pdev;
1629 	struct tran_int_desc *int_desc;
1630 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1631 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1632 
1633 	pdev = msi_desc_to_pci_dev(msi);
1634 	hbus = info->data;
1635 	int_desc = irq_data_get_irq_chip_data(irq_data);
1636 	if (!int_desc)
1637 		return;
1638 
1639 	irq_data->chip_data = NULL;
1640 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1641 	if (!hpdev) {
1642 		kfree(int_desc);
1643 		return;
1644 	}
1645 
1646 	hv_int_desc_free(hpdev, int_desc);
1647 	put_pcichild(hpdev);
1648 }
1649 
1650 static void hv_irq_mask(struct irq_data *data)
1651 {
1652 	pci_msi_mask_irq(data);
1653 	if (data->parent_data->chip->irq_mask)
1654 		irq_chip_mask_parent(data);
1655 }
1656 
1657 static void hv_irq_unmask(struct irq_data *data)
1658 {
1659 	hv_arch_irq_unmask(data);
1660 
1661 	if (data->parent_data->chip->irq_unmask)
1662 		irq_chip_unmask_parent(data);
1663 	pci_msi_unmask_irq(data);
1664 }
1665 
1666 struct compose_comp_ctxt {
1667 	struct hv_pci_compl comp_pkt;
1668 	struct tran_int_desc int_desc;
1669 };
1670 
1671 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1672 				 int resp_packet_size)
1673 {
1674 	struct compose_comp_ctxt *comp_pkt = context;
1675 	struct pci_create_int_response *int_resp =
1676 		(struct pci_create_int_response *)resp;
1677 
1678 	if (resp_packet_size < sizeof(*int_resp)) {
1679 		comp_pkt->comp_pkt.completion_status = -1;
1680 		goto out;
1681 	}
1682 	comp_pkt->comp_pkt.completion_status = resp->status;
1683 	comp_pkt->int_desc = int_resp->int_desc;
1684 out:
1685 	complete(&comp_pkt->comp_pkt.host_event);
1686 }
1687 
1688 static u32 hv_compose_msi_req_v1(
1689 	struct pci_create_interrupt *int_pkt,
1690 	u32 slot, u8 vector, u16 vector_count)
1691 {
1692 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1693 	int_pkt->wslot.slot = slot;
1694 	int_pkt->int_desc.vector = vector;
1695 	int_pkt->int_desc.vector_count = vector_count;
1696 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1697 
1698 	/*
1699 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1700 	 * hv_irq_unmask().
1701 	 */
1702 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1703 
1704 	return sizeof(*int_pkt);
1705 }
1706 
1707 /*
1708  * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1709  * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1710  * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1711  * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1712  * not irrelevant because Hyper-V chooses the physical CPU to handle the
1713  * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1714  * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1715  * but assigning too many vPCI device interrupts to the same pCPU can cause a
1716  * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1717  * to spread out the pCPUs that it selects.
1718  *
1719  * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1720  * to always return the same dummy vCPU, because a second call to
1721  * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1722  * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1723  * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1724  * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1725  * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1726  * the same pCPU, even though the vCPUs will be spread out by later calls
1727  * to hv_irq_unmask(), but that is the best we can do now.
1728  *
1729  * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1730  * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1731  * enhancement is planned for a future version. With that enhancement, the
1732  * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1733  * device will be spread across multiple pCPUs.
1734  */
1735 
1736 /*
1737  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1738  * by subsequent retarget in hv_irq_unmask().
1739  */
1740 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1741 {
1742 	return cpumask_first_and(affinity, cpu_online_mask);
1743 }
1744 
1745 /*
1746  * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1747  */
1748 static int hv_compose_multi_msi_req_get_cpu(void)
1749 {
1750 	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1751 
1752 	/* -1 means starting with CPU 0 */
1753 	static int cpu_next = -1;
1754 
1755 	unsigned long flags;
1756 	int cpu;
1757 
1758 	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1759 
1760 	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids,
1761 				     false);
1762 	cpu = cpu_next;
1763 
1764 	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1765 
1766 	return cpu;
1767 }
1768 
1769 static u32 hv_compose_msi_req_v2(
1770 	struct pci_create_interrupt2 *int_pkt, int cpu,
1771 	u32 slot, u8 vector, u16 vector_count)
1772 {
1773 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1774 	int_pkt->wslot.slot = slot;
1775 	int_pkt->int_desc.vector = vector;
1776 	int_pkt->int_desc.vector_count = vector_count;
1777 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1778 	int_pkt->int_desc.processor_array[0] =
1779 		hv_cpu_number_to_vp_number(cpu);
1780 	int_pkt->int_desc.processor_count = 1;
1781 
1782 	return sizeof(*int_pkt);
1783 }
1784 
1785 static u32 hv_compose_msi_req_v3(
1786 	struct pci_create_interrupt3 *int_pkt, int cpu,
1787 	u32 slot, u32 vector, u16 vector_count)
1788 {
1789 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1790 	int_pkt->wslot.slot = slot;
1791 	int_pkt->int_desc.vector = vector;
1792 	int_pkt->int_desc.reserved = 0;
1793 	int_pkt->int_desc.vector_count = vector_count;
1794 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1795 	int_pkt->int_desc.processor_array[0] =
1796 		hv_cpu_number_to_vp_number(cpu);
1797 	int_pkt->int_desc.processor_count = 1;
1798 
1799 	return sizeof(*int_pkt);
1800 }
1801 
1802 /**
1803  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1804  * @data:	Everything about this MSI
1805  * @msg:	Buffer that is filled in by this function
1806  *
1807  * This function unpacks the IRQ looking for target CPU set, IDT
1808  * vector and mode and sends a message to the parent partition
1809  * asking for a mapping for that tuple in this partition.  The
1810  * response supplies a data value and address to which that data
1811  * should be written to trigger that interrupt.
1812  */
1813 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1814 {
1815 	struct hv_pcibus_device *hbus;
1816 	struct vmbus_channel *channel;
1817 	struct hv_pci_dev *hpdev;
1818 	struct pci_bus *pbus;
1819 	struct pci_dev *pdev;
1820 	const struct cpumask *dest;
1821 	struct compose_comp_ctxt comp;
1822 	struct tran_int_desc *int_desc;
1823 	struct msi_desc *msi_desc;
1824 	/*
1825 	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1826 	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1827 	 */
1828 	u16 vector_count;
1829 	u32 vector;
1830 	struct {
1831 		struct pci_packet pci_pkt;
1832 		union {
1833 			struct pci_create_interrupt v1;
1834 			struct pci_create_interrupt2 v2;
1835 			struct pci_create_interrupt3 v3;
1836 		} int_pkts;
1837 	} __packed ctxt;
1838 	bool multi_msi;
1839 	u64 trans_id;
1840 	u32 size;
1841 	int ret;
1842 	int cpu;
1843 
1844 	msi_desc  = irq_data_get_msi_desc(data);
1845 	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1846 		    msi_desc->nvec_used > 1;
1847 
1848 	/* Reuse the previous allocation */
1849 	if (data->chip_data && multi_msi) {
1850 		int_desc = data->chip_data;
1851 		msg->address_hi = int_desc->address >> 32;
1852 		msg->address_lo = int_desc->address & 0xffffffff;
1853 		msg->data = int_desc->data;
1854 		return;
1855 	}
1856 
1857 	pdev = msi_desc_to_pci_dev(msi_desc);
1858 	dest = irq_data_get_effective_affinity_mask(data);
1859 	pbus = pdev->bus;
1860 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1861 	channel = hbus->hdev->channel;
1862 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1863 	if (!hpdev)
1864 		goto return_null_message;
1865 
1866 	/* Free any previous message that might have already been composed. */
1867 	if (data->chip_data && !multi_msi) {
1868 		int_desc = data->chip_data;
1869 		data->chip_data = NULL;
1870 		hv_int_desc_free(hpdev, int_desc);
1871 	}
1872 
1873 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1874 	if (!int_desc)
1875 		goto drop_reference;
1876 
1877 	if (multi_msi) {
1878 		/*
1879 		 * If this is not the first MSI of Multi MSI, we already have
1880 		 * a mapping.  Can exit early.
1881 		 */
1882 		if (msi_desc->irq != data->irq) {
1883 			data->chip_data = int_desc;
1884 			int_desc->address = msi_desc->msg.address_lo |
1885 					    (u64)msi_desc->msg.address_hi << 32;
1886 			int_desc->data = msi_desc->msg.data +
1887 					 (data->irq - msi_desc->irq);
1888 			msg->address_hi = msi_desc->msg.address_hi;
1889 			msg->address_lo = msi_desc->msg.address_lo;
1890 			msg->data = int_desc->data;
1891 			put_pcichild(hpdev);
1892 			return;
1893 		}
1894 		/*
1895 		 * The vector we select here is a dummy value.  The correct
1896 		 * value gets sent to the hypervisor in unmask().  This needs
1897 		 * to be aligned with the count, and also not zero.  Multi-msi
1898 		 * is powers of 2 up to 32, so 32 will always work here.
1899 		 */
1900 		vector = 32;
1901 		vector_count = msi_desc->nvec_used;
1902 		cpu = hv_compose_multi_msi_req_get_cpu();
1903 	} else {
1904 		vector = hv_msi_get_int_vector(data);
1905 		vector_count = 1;
1906 		cpu = hv_compose_msi_req_get_cpu(dest);
1907 	}
1908 
1909 	/*
1910 	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1911 	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1912 	 * for better readability.
1913 	 */
1914 	memset(&ctxt, 0, sizeof(ctxt));
1915 	init_completion(&comp.comp_pkt.host_event);
1916 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1917 	ctxt.pci_pkt.compl_ctxt = &comp;
1918 
1919 	switch (hbus->protocol_version) {
1920 	case PCI_PROTOCOL_VERSION_1_1:
1921 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1922 					hpdev->desc.win_slot.slot,
1923 					(u8)vector,
1924 					vector_count);
1925 		break;
1926 
1927 	case PCI_PROTOCOL_VERSION_1_2:
1928 	case PCI_PROTOCOL_VERSION_1_3:
1929 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1930 					cpu,
1931 					hpdev->desc.win_slot.slot,
1932 					(u8)vector,
1933 					vector_count);
1934 		break;
1935 
1936 	case PCI_PROTOCOL_VERSION_1_4:
1937 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1938 					cpu,
1939 					hpdev->desc.win_slot.slot,
1940 					vector,
1941 					vector_count);
1942 		break;
1943 
1944 	default:
1945 		/* As we only negotiate protocol versions known to this driver,
1946 		 * this path should never hit. However, this is it not a hot
1947 		 * path so we print a message to aid future updates.
1948 		 */
1949 		dev_err(&hbus->hdev->device,
1950 			"Unexpected vPCI protocol, update driver.");
1951 		goto free_int_desc;
1952 	}
1953 
1954 	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
1955 				     size, (unsigned long)&ctxt.pci_pkt,
1956 				     &trans_id, VM_PKT_DATA_INBAND,
1957 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1958 	if (ret) {
1959 		dev_err(&hbus->hdev->device,
1960 			"Sending request for interrupt failed: 0x%x",
1961 			comp.comp_pkt.completion_status);
1962 		goto free_int_desc;
1963 	}
1964 
1965 	/*
1966 	 * Prevents hv_pci_onchannelcallback() from running concurrently
1967 	 * in the tasklet.
1968 	 */
1969 	tasklet_disable_in_atomic(&channel->callback_event);
1970 
1971 	/*
1972 	 * Since this function is called with IRQ locks held, can't
1973 	 * do normal wait for completion; instead poll.
1974 	 */
1975 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
1976 		unsigned long flags;
1977 
1978 		/* 0xFFFF means an invalid PCI VENDOR ID. */
1979 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
1980 			dev_err_once(&hbus->hdev->device,
1981 				     "the device has gone\n");
1982 			goto enable_tasklet;
1983 		}
1984 
1985 		/*
1986 		 * Make sure that the ring buffer data structure doesn't get
1987 		 * freed while we dereference the ring buffer pointer.  Test
1988 		 * for the channel's onchannel_callback being NULL within a
1989 		 * sched_lock critical section.  See also the inline comments
1990 		 * in vmbus_reset_channel_cb().
1991 		 */
1992 		spin_lock_irqsave(&channel->sched_lock, flags);
1993 		if (unlikely(channel->onchannel_callback == NULL)) {
1994 			spin_unlock_irqrestore(&channel->sched_lock, flags);
1995 			goto enable_tasklet;
1996 		}
1997 		hv_pci_onchannelcallback(hbus);
1998 		spin_unlock_irqrestore(&channel->sched_lock, flags);
1999 
2000 		udelay(100);
2001 	}
2002 
2003 	tasklet_enable(&channel->callback_event);
2004 
2005 	if (comp.comp_pkt.completion_status < 0) {
2006 		dev_err(&hbus->hdev->device,
2007 			"Request for interrupt failed: 0x%x",
2008 			comp.comp_pkt.completion_status);
2009 		goto free_int_desc;
2010 	}
2011 
2012 	/*
2013 	 * Record the assignment so that this can be unwound later. Using
2014 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
2015 	 * is already held.
2016 	 */
2017 	*int_desc = comp.int_desc;
2018 	data->chip_data = int_desc;
2019 
2020 	/* Pass up the result. */
2021 	msg->address_hi = comp.int_desc.address >> 32;
2022 	msg->address_lo = comp.int_desc.address & 0xffffffff;
2023 	msg->data = comp.int_desc.data;
2024 
2025 	put_pcichild(hpdev);
2026 	return;
2027 
2028 enable_tasklet:
2029 	tasklet_enable(&channel->callback_event);
2030 	/*
2031 	 * The completion packet on the stack becomes invalid after 'return';
2032 	 * remove the ID from the VMbus requestor if the identifier is still
2033 	 * mapped to/associated with the packet.  (The identifier could have
2034 	 * been 're-used', i.e., already removed and (re-)mapped.)
2035 	 *
2036 	 * Cf. hv_pci_onchannelcallback().
2037 	 */
2038 	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2039 free_int_desc:
2040 	kfree(int_desc);
2041 drop_reference:
2042 	put_pcichild(hpdev);
2043 return_null_message:
2044 	msg->address_hi = 0;
2045 	msg->address_lo = 0;
2046 	msg->data = 0;
2047 }
2048 
2049 /* HW Interrupt Chip Descriptor */
2050 static struct irq_chip hv_msi_irq_chip = {
2051 	.name			= "Hyper-V PCIe MSI",
2052 	.irq_compose_msi_msg	= hv_compose_msi_msg,
2053 	.irq_set_affinity	= irq_chip_set_affinity_parent,
2054 #ifdef CONFIG_X86
2055 	.irq_ack		= irq_chip_ack_parent,
2056 	.flags			= IRQCHIP_MOVE_DEFERRED,
2057 #elif defined(CONFIG_ARM64)
2058 	.irq_eoi		= irq_chip_eoi_parent,
2059 #endif
2060 	.irq_mask		= hv_irq_mask,
2061 	.irq_unmask		= hv_irq_unmask,
2062 };
2063 
2064 static struct msi_domain_ops hv_msi_ops = {
2065 	.msi_prepare	= hv_msi_prepare,
2066 	.msi_free	= hv_msi_free,
2067 };
2068 
2069 /**
2070  * hv_pcie_init_irq_domain() - Initialize IRQ domain
2071  * @hbus:	The root PCI bus
2072  *
2073  * This function creates an IRQ domain which will be used for
2074  * interrupts from devices that have been passed through.  These
2075  * devices only support MSI and MSI-X, not line-based interrupts
2076  * or simulations of line-based interrupts through PCIe's
2077  * fabric-layer messages.  Because interrupts are remapped, we
2078  * can support multi-message MSI here.
2079  *
2080  * Return: '0' on success and error value on failure
2081  */
2082 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2083 {
2084 	hbus->msi_info.chip = &hv_msi_irq_chip;
2085 	hbus->msi_info.ops = &hv_msi_ops;
2086 	hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS |
2087 		MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI |
2088 		MSI_FLAG_PCI_MSIX);
2089 	hbus->msi_info.handler = FLOW_HANDLER;
2090 	hbus->msi_info.handler_name = FLOW_NAME;
2091 	hbus->msi_info.data = hbus;
2092 	hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode,
2093 						     &hbus->msi_info,
2094 						     hv_pci_get_root_domain());
2095 	if (!hbus->irq_domain) {
2096 		dev_err(&hbus->hdev->device,
2097 			"Failed to build an MSI IRQ domain\n");
2098 		return -ENODEV;
2099 	}
2100 
2101 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2102 
2103 	return 0;
2104 }
2105 
2106 /**
2107  * get_bar_size() - Get the address space consumed by a BAR
2108  * @bar_val:	Value that a BAR returned after -1 was written
2109  *              to it.
2110  *
2111  * This function returns the size of the BAR, rounded up to 1
2112  * page.  It has to be rounded up because the hypervisor's page
2113  * table entry that maps the BAR into the VM can't specify an
2114  * offset within a page.  The invariant is that the hypervisor
2115  * must place any BARs of smaller than page length at the
2116  * beginning of a page.
2117  *
2118  * Return:	Size in bytes of the consumed MMIO space.
2119  */
2120 static u64 get_bar_size(u64 bar_val)
2121 {
2122 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2123 			PAGE_SIZE);
2124 }
2125 
2126 /**
2127  * survey_child_resources() - Total all MMIO requirements
2128  * @hbus:	Root PCI bus, as understood by this driver
2129  */
2130 static void survey_child_resources(struct hv_pcibus_device *hbus)
2131 {
2132 	struct hv_pci_dev *hpdev;
2133 	resource_size_t bar_size = 0;
2134 	unsigned long flags;
2135 	struct completion *event;
2136 	u64 bar_val;
2137 	int i;
2138 
2139 	/* If nobody is waiting on the answer, don't compute it. */
2140 	event = xchg(&hbus->survey_event, NULL);
2141 	if (!event)
2142 		return;
2143 
2144 	/* If the answer has already been computed, go with it. */
2145 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2146 		complete(event);
2147 		return;
2148 	}
2149 
2150 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2151 
2152 	/*
2153 	 * Due to an interesting quirk of the PCI spec, all memory regions
2154 	 * for a child device are a power of 2 in size and aligned in memory,
2155 	 * so it's sufficient to just add them up without tracking alignment.
2156 	 */
2157 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2158 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2159 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2160 				dev_err(&hbus->hdev->device,
2161 					"There's an I/O BAR in this list!\n");
2162 
2163 			if (hpdev->probed_bar[i] != 0) {
2164 				/*
2165 				 * A probed BAR has all the upper bits set that
2166 				 * can be changed.
2167 				 */
2168 
2169 				bar_val = hpdev->probed_bar[i];
2170 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2171 					bar_val |=
2172 					((u64)hpdev->probed_bar[++i] << 32);
2173 				else
2174 					bar_val |= 0xffffffff00000000ULL;
2175 
2176 				bar_size = get_bar_size(bar_val);
2177 
2178 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2179 					hbus->high_mmio_space += bar_size;
2180 				else
2181 					hbus->low_mmio_space += bar_size;
2182 			}
2183 		}
2184 	}
2185 
2186 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2187 	complete(event);
2188 }
2189 
2190 /**
2191  * prepopulate_bars() - Fill in BARs with defaults
2192  * @hbus:	Root PCI bus, as understood by this driver
2193  *
2194  * The core PCI driver code seems much, much happier if the BARs
2195  * for a device have values upon first scan. So fill them in.
2196  * The algorithm below works down from large sizes to small,
2197  * attempting to pack the assignments optimally. The assumption,
2198  * enforced in other parts of the code, is that the beginning of
2199  * the memory-mapped I/O space will be aligned on the largest
2200  * BAR size.
2201  */
2202 static void prepopulate_bars(struct hv_pcibus_device *hbus)
2203 {
2204 	resource_size_t high_size = 0;
2205 	resource_size_t low_size = 0;
2206 	resource_size_t high_base = 0;
2207 	resource_size_t low_base = 0;
2208 	resource_size_t bar_size;
2209 	struct hv_pci_dev *hpdev;
2210 	unsigned long flags;
2211 	u64 bar_val;
2212 	u32 command;
2213 	bool high;
2214 	int i;
2215 
2216 	if (hbus->low_mmio_space) {
2217 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2218 		low_base = hbus->low_mmio_res->start;
2219 	}
2220 
2221 	if (hbus->high_mmio_space) {
2222 		high_size = 1ULL <<
2223 			(63 - __builtin_clzll(hbus->high_mmio_space));
2224 		high_base = hbus->high_mmio_res->start;
2225 	}
2226 
2227 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2228 
2229 	/*
2230 	 * Clear the memory enable bit, in case it's already set. This occurs
2231 	 * in the suspend path of hibernation, where the device is suspended,
2232 	 * resumed and suspended again: see hibernation_snapshot() and
2233 	 * hibernation_platform_enter().
2234 	 *
2235 	 * If the memory enable bit is already set, Hyper-V silently ignores
2236 	 * the below BAR updates, and the related PCI device driver can not
2237 	 * work, because reading from the device register(s) always returns
2238 	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2239 	 */
2240 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2241 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2242 		command &= ~PCI_COMMAND_MEMORY;
2243 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2244 	}
2245 
2246 	/* Pick addresses for the BARs. */
2247 	do {
2248 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2249 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2250 				bar_val = hpdev->probed_bar[i];
2251 				if (bar_val == 0)
2252 					continue;
2253 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2254 				if (high) {
2255 					bar_val |=
2256 						((u64)hpdev->probed_bar[i + 1]
2257 						 << 32);
2258 				} else {
2259 					bar_val |= 0xffffffffULL << 32;
2260 				}
2261 				bar_size = get_bar_size(bar_val);
2262 				if (high) {
2263 					if (high_size != bar_size) {
2264 						i++;
2265 						continue;
2266 					}
2267 					_hv_pcifront_write_config(hpdev,
2268 						PCI_BASE_ADDRESS_0 + (4 * i),
2269 						4,
2270 						(u32)(high_base & 0xffffff00));
2271 					i++;
2272 					_hv_pcifront_write_config(hpdev,
2273 						PCI_BASE_ADDRESS_0 + (4 * i),
2274 						4, (u32)(high_base >> 32));
2275 					high_base += bar_size;
2276 				} else {
2277 					if (low_size != bar_size)
2278 						continue;
2279 					_hv_pcifront_write_config(hpdev,
2280 						PCI_BASE_ADDRESS_0 + (4 * i),
2281 						4,
2282 						(u32)(low_base & 0xffffff00));
2283 					low_base += bar_size;
2284 				}
2285 			}
2286 			if (high_size <= 1 && low_size <= 1) {
2287 				/*
2288 				 * No need to set the PCI_COMMAND_MEMORY bit as
2289 				 * the core PCI driver doesn't require the bit
2290 				 * to be pre-set. Actually here we intentionally
2291 				 * keep the bit off so that the PCI BAR probing
2292 				 * in the core PCI driver doesn't cause Hyper-V
2293 				 * to unnecessarily unmap/map the virtual BARs
2294 				 * from/to the physical BARs multiple times.
2295 				 * This reduces the VM boot time significantly
2296 				 * if the BAR sizes are huge.
2297 				 */
2298 				break;
2299 			}
2300 		}
2301 
2302 		high_size >>= 1;
2303 		low_size >>= 1;
2304 	}  while (high_size || low_size);
2305 
2306 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2307 }
2308 
2309 /*
2310  * Assign entries in sysfs pci slot directory.
2311  *
2312  * Note that this function does not need to lock the children list
2313  * because it is called from pci_devices_present_work which
2314  * is serialized with hv_eject_device_work because they are on the
2315  * same ordered workqueue. Therefore hbus->children list will not change
2316  * even when pci_create_slot sleeps.
2317  */
2318 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2319 {
2320 	struct hv_pci_dev *hpdev;
2321 	char name[SLOT_NAME_SIZE];
2322 	int slot_nr;
2323 
2324 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2325 		if (hpdev->pci_slot)
2326 			continue;
2327 
2328 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2329 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2330 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2331 					  name, NULL);
2332 		if (IS_ERR(hpdev->pci_slot)) {
2333 			pr_warn("pci_create slot %s failed\n", name);
2334 			hpdev->pci_slot = NULL;
2335 		}
2336 	}
2337 }
2338 
2339 /*
2340  * Remove entries in sysfs pci slot directory.
2341  */
2342 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2343 {
2344 	struct hv_pci_dev *hpdev;
2345 
2346 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2347 		if (!hpdev->pci_slot)
2348 			continue;
2349 		pci_destroy_slot(hpdev->pci_slot);
2350 		hpdev->pci_slot = NULL;
2351 	}
2352 }
2353 
2354 /*
2355  * Set NUMA node for the devices on the bus
2356  */
2357 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2358 {
2359 	struct pci_dev *dev;
2360 	struct pci_bus *bus = hbus->bridge->bus;
2361 	struct hv_pci_dev *hv_dev;
2362 
2363 	list_for_each_entry(dev, &bus->devices, bus_list) {
2364 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2365 		if (!hv_dev)
2366 			continue;
2367 
2368 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2369 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2370 			/*
2371 			 * The kernel may boot with some NUMA nodes offline
2372 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2373 			 * "numa=off". In those cases, adjust the host provided
2374 			 * NUMA node to a valid NUMA node used by the kernel.
2375 			 */
2376 			set_dev_node(&dev->dev,
2377 				     numa_map_to_online_node(
2378 					     hv_dev->desc.virtual_numa_node));
2379 
2380 		put_pcichild(hv_dev);
2381 	}
2382 }
2383 
2384 /**
2385  * create_root_hv_pci_bus() - Expose a new root PCI bus
2386  * @hbus:	Root PCI bus, as understood by this driver
2387  *
2388  * Return: 0 on success, -errno on failure
2389  */
2390 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2391 {
2392 	int error;
2393 	struct pci_host_bridge *bridge = hbus->bridge;
2394 
2395 	bridge->dev.parent = &hbus->hdev->device;
2396 	bridge->sysdata = &hbus->sysdata;
2397 	bridge->ops = &hv_pcifront_ops;
2398 
2399 	error = pci_scan_root_bus_bridge(bridge);
2400 	if (error)
2401 		return error;
2402 
2403 	pci_lock_rescan_remove();
2404 	hv_pci_assign_numa_node(hbus);
2405 	pci_bus_assign_resources(bridge->bus);
2406 	hv_pci_assign_slots(hbus);
2407 	pci_bus_add_devices(bridge->bus);
2408 	pci_unlock_rescan_remove();
2409 	hbus->state = hv_pcibus_installed;
2410 	return 0;
2411 }
2412 
2413 struct q_res_req_compl {
2414 	struct completion host_event;
2415 	struct hv_pci_dev *hpdev;
2416 };
2417 
2418 /**
2419  * q_resource_requirements() - Query Resource Requirements
2420  * @context:		The completion context.
2421  * @resp:		The response that came from the host.
2422  * @resp_packet_size:	The size in bytes of resp.
2423  *
2424  * This function is invoked on completion of a Query Resource
2425  * Requirements packet.
2426  */
2427 static void q_resource_requirements(void *context, struct pci_response *resp,
2428 				    int resp_packet_size)
2429 {
2430 	struct q_res_req_compl *completion = context;
2431 	struct pci_q_res_req_response *q_res_req =
2432 		(struct pci_q_res_req_response *)resp;
2433 	s32 status;
2434 	int i;
2435 
2436 	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2437 	if (status < 0) {
2438 		dev_err(&completion->hpdev->hbus->hdev->device,
2439 			"query resource requirements failed: %x\n",
2440 			status);
2441 	} else {
2442 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2443 			completion->hpdev->probed_bar[i] =
2444 				q_res_req->probed_bar[i];
2445 		}
2446 	}
2447 
2448 	complete(&completion->host_event);
2449 }
2450 
2451 /**
2452  * new_pcichild_device() - Create a new child device
2453  * @hbus:	The internal struct tracking this root PCI bus.
2454  * @desc:	The information supplied so far from the host
2455  *              about the device.
2456  *
2457  * This function creates the tracking structure for a new child
2458  * device and kicks off the process of figuring out what it is.
2459  *
2460  * Return: Pointer to the new tracking struct
2461  */
2462 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2463 		struct hv_pcidev_description *desc)
2464 {
2465 	struct hv_pci_dev *hpdev;
2466 	struct pci_child_message *res_req;
2467 	struct q_res_req_compl comp_pkt;
2468 	struct {
2469 		struct pci_packet init_packet;
2470 		u8 buffer[sizeof(struct pci_child_message)];
2471 	} pkt;
2472 	unsigned long flags;
2473 	int ret;
2474 
2475 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2476 	if (!hpdev)
2477 		return NULL;
2478 
2479 	hpdev->hbus = hbus;
2480 
2481 	memset(&pkt, 0, sizeof(pkt));
2482 	init_completion(&comp_pkt.host_event);
2483 	comp_pkt.hpdev = hpdev;
2484 	pkt.init_packet.compl_ctxt = &comp_pkt;
2485 	pkt.init_packet.completion_func = q_resource_requirements;
2486 	res_req = (struct pci_child_message *)&pkt.init_packet.message;
2487 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2488 	res_req->wslot.slot = desc->win_slot.slot;
2489 
2490 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2491 			       sizeof(struct pci_child_message),
2492 			       (unsigned long)&pkt.init_packet,
2493 			       VM_PKT_DATA_INBAND,
2494 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2495 	if (ret)
2496 		goto error;
2497 
2498 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2499 		goto error;
2500 
2501 	hpdev->desc = *desc;
2502 	refcount_set(&hpdev->refs, 1);
2503 	get_pcichild(hpdev);
2504 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2505 
2506 	list_add_tail(&hpdev->list_entry, &hbus->children);
2507 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2508 	return hpdev;
2509 
2510 error:
2511 	kfree(hpdev);
2512 	return NULL;
2513 }
2514 
2515 /**
2516  * get_pcichild_wslot() - Find device from slot
2517  * @hbus:	Root PCI bus, as understood by this driver
2518  * @wslot:	Location on the bus
2519  *
2520  * This function looks up a PCI device and returns the internal
2521  * representation of it.  It acquires a reference on it, so that
2522  * the device won't be deleted while somebody is using it.  The
2523  * caller is responsible for calling put_pcichild() to release
2524  * this reference.
2525  *
2526  * Return:	Internal representation of a PCI device
2527  */
2528 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2529 					     u32 wslot)
2530 {
2531 	unsigned long flags;
2532 	struct hv_pci_dev *iter, *hpdev = NULL;
2533 
2534 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2535 	list_for_each_entry(iter, &hbus->children, list_entry) {
2536 		if (iter->desc.win_slot.slot == wslot) {
2537 			hpdev = iter;
2538 			get_pcichild(hpdev);
2539 			break;
2540 		}
2541 	}
2542 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2543 
2544 	return hpdev;
2545 }
2546 
2547 /**
2548  * pci_devices_present_work() - Handle new list of child devices
2549  * @work:	Work struct embedded in struct hv_dr_work
2550  *
2551  * "Bus Relations" is the Windows term for "children of this
2552  * bus."  The terminology is preserved here for people trying to
2553  * debug the interaction between Hyper-V and Linux.  This
2554  * function is called when the parent partition reports a list
2555  * of functions that should be observed under this PCI Express
2556  * port (bus).
2557  *
2558  * This function updates the list, and must tolerate being
2559  * called multiple times with the same information.  The typical
2560  * number of child devices is one, with very atypical cases
2561  * involving three or four, so the algorithms used here can be
2562  * simple and inefficient.
2563  *
2564  * It must also treat the omission of a previously observed device as
2565  * notification that the device no longer exists.
2566  *
2567  * Note that this function is serialized with hv_eject_device_work(),
2568  * because both are pushed to the ordered workqueue hbus->wq.
2569  */
2570 static void pci_devices_present_work(struct work_struct *work)
2571 {
2572 	u32 child_no;
2573 	bool found;
2574 	struct hv_pcidev_description *new_desc;
2575 	struct hv_pci_dev *hpdev;
2576 	struct hv_pcibus_device *hbus;
2577 	struct list_head removed;
2578 	struct hv_dr_work *dr_wrk;
2579 	struct hv_dr_state *dr = NULL;
2580 	unsigned long flags;
2581 
2582 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2583 	hbus = dr_wrk->bus;
2584 	kfree(dr_wrk);
2585 
2586 	INIT_LIST_HEAD(&removed);
2587 
2588 	/* Pull this off the queue and process it if it was the last one. */
2589 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2590 	while (!list_empty(&hbus->dr_list)) {
2591 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2592 				      list_entry);
2593 		list_del(&dr->list_entry);
2594 
2595 		/* Throw this away if the list still has stuff in it. */
2596 		if (!list_empty(&hbus->dr_list)) {
2597 			kfree(dr);
2598 			continue;
2599 		}
2600 	}
2601 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2602 
2603 	if (!dr)
2604 		return;
2605 
2606 	mutex_lock(&hbus->state_lock);
2607 
2608 	/* First, mark all existing children as reported missing. */
2609 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2610 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2611 		hpdev->reported_missing = true;
2612 	}
2613 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2614 
2615 	/* Next, add back any reported devices. */
2616 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2617 		found = false;
2618 		new_desc = &dr->func[child_no];
2619 
2620 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2621 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2622 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2623 			    (hpdev->desc.v_id == new_desc->v_id) &&
2624 			    (hpdev->desc.d_id == new_desc->d_id) &&
2625 			    (hpdev->desc.ser == new_desc->ser)) {
2626 				hpdev->reported_missing = false;
2627 				found = true;
2628 			}
2629 		}
2630 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2631 
2632 		if (!found) {
2633 			hpdev = new_pcichild_device(hbus, new_desc);
2634 			if (!hpdev)
2635 				dev_err(&hbus->hdev->device,
2636 					"couldn't record a child device.\n");
2637 		}
2638 	}
2639 
2640 	/* Move missing children to a list on the stack. */
2641 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2642 	do {
2643 		found = false;
2644 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2645 			if (hpdev->reported_missing) {
2646 				found = true;
2647 				put_pcichild(hpdev);
2648 				list_move_tail(&hpdev->list_entry, &removed);
2649 				break;
2650 			}
2651 		}
2652 	} while (found);
2653 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2654 
2655 	/* Delete everything that should no longer exist. */
2656 	while (!list_empty(&removed)) {
2657 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2658 					 list_entry);
2659 		list_del(&hpdev->list_entry);
2660 
2661 		if (hpdev->pci_slot)
2662 			pci_destroy_slot(hpdev->pci_slot);
2663 
2664 		put_pcichild(hpdev);
2665 	}
2666 
2667 	switch (hbus->state) {
2668 	case hv_pcibus_installed:
2669 		/*
2670 		 * Tell the core to rescan bus
2671 		 * because there may have been changes.
2672 		 */
2673 		pci_lock_rescan_remove();
2674 		pci_scan_child_bus(hbus->bridge->bus);
2675 		hv_pci_assign_numa_node(hbus);
2676 		hv_pci_assign_slots(hbus);
2677 		pci_unlock_rescan_remove();
2678 		break;
2679 
2680 	case hv_pcibus_init:
2681 	case hv_pcibus_probed:
2682 		survey_child_resources(hbus);
2683 		break;
2684 
2685 	default:
2686 		break;
2687 	}
2688 
2689 	mutex_unlock(&hbus->state_lock);
2690 
2691 	kfree(dr);
2692 }
2693 
2694 /**
2695  * hv_pci_start_relations_work() - Queue work to start device discovery
2696  * @hbus:	Root PCI bus, as understood by this driver
2697  * @dr:		The list of children returned from host
2698  *
2699  * Return:  0 on success, -errno on failure
2700  */
2701 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2702 				       struct hv_dr_state *dr)
2703 {
2704 	struct hv_dr_work *dr_wrk;
2705 	unsigned long flags;
2706 	bool pending_dr;
2707 
2708 	if (hbus->state == hv_pcibus_removing) {
2709 		dev_info(&hbus->hdev->device,
2710 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2711 		return -ENOENT;
2712 	}
2713 
2714 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2715 	if (!dr_wrk)
2716 		return -ENOMEM;
2717 
2718 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2719 	dr_wrk->bus = hbus;
2720 
2721 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2722 	/*
2723 	 * If pending_dr is true, we have already queued a work,
2724 	 * which will see the new dr. Otherwise, we need to
2725 	 * queue a new work.
2726 	 */
2727 	pending_dr = !list_empty(&hbus->dr_list);
2728 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2729 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2730 
2731 	if (pending_dr)
2732 		kfree(dr_wrk);
2733 	else
2734 		queue_work(hbus->wq, &dr_wrk->wrk);
2735 
2736 	return 0;
2737 }
2738 
2739 /**
2740  * hv_pci_devices_present() - Handle list of new children
2741  * @hbus:      Root PCI bus, as understood by this driver
2742  * @relations: Packet from host listing children
2743  *
2744  * Process a new list of devices on the bus. The list of devices is
2745  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2746  * whenever a new list of devices for this bus appears.
2747  */
2748 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2749 				   struct pci_bus_relations *relations)
2750 {
2751 	struct hv_dr_state *dr;
2752 	int i;
2753 
2754 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2755 		     GFP_NOWAIT);
2756 	if (!dr)
2757 		return;
2758 
2759 	dr->device_count = relations->device_count;
2760 	for (i = 0; i < dr->device_count; i++) {
2761 		dr->func[i].v_id = relations->func[i].v_id;
2762 		dr->func[i].d_id = relations->func[i].d_id;
2763 		dr->func[i].rev = relations->func[i].rev;
2764 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2765 		dr->func[i].subclass = relations->func[i].subclass;
2766 		dr->func[i].base_class = relations->func[i].base_class;
2767 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2768 		dr->func[i].win_slot = relations->func[i].win_slot;
2769 		dr->func[i].ser = relations->func[i].ser;
2770 	}
2771 
2772 	if (hv_pci_start_relations_work(hbus, dr))
2773 		kfree(dr);
2774 }
2775 
2776 /**
2777  * hv_pci_devices_present2() - Handle list of new children
2778  * @hbus:	Root PCI bus, as understood by this driver
2779  * @relations:	Packet from host listing children
2780  *
2781  * This function is the v2 version of hv_pci_devices_present()
2782  */
2783 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2784 				    struct pci_bus_relations2 *relations)
2785 {
2786 	struct hv_dr_state *dr;
2787 	int i;
2788 
2789 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2790 		     GFP_NOWAIT);
2791 	if (!dr)
2792 		return;
2793 
2794 	dr->device_count = relations->device_count;
2795 	for (i = 0; i < dr->device_count; i++) {
2796 		dr->func[i].v_id = relations->func[i].v_id;
2797 		dr->func[i].d_id = relations->func[i].d_id;
2798 		dr->func[i].rev = relations->func[i].rev;
2799 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2800 		dr->func[i].subclass = relations->func[i].subclass;
2801 		dr->func[i].base_class = relations->func[i].base_class;
2802 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2803 		dr->func[i].win_slot = relations->func[i].win_slot;
2804 		dr->func[i].ser = relations->func[i].ser;
2805 		dr->func[i].flags = relations->func[i].flags;
2806 		dr->func[i].virtual_numa_node =
2807 			relations->func[i].virtual_numa_node;
2808 	}
2809 
2810 	if (hv_pci_start_relations_work(hbus, dr))
2811 		kfree(dr);
2812 }
2813 
2814 /**
2815  * hv_eject_device_work() - Asynchronously handles ejection
2816  * @work:	Work struct embedded in internal device struct
2817  *
2818  * This function handles ejecting a device.  Windows will
2819  * attempt to gracefully eject a device, waiting 60 seconds to
2820  * hear back from the guest OS that this completed successfully.
2821  * If this timer expires, the device will be forcibly removed.
2822  */
2823 static void hv_eject_device_work(struct work_struct *work)
2824 {
2825 	struct pci_eject_response *ejct_pkt;
2826 	struct hv_pcibus_device *hbus;
2827 	struct hv_pci_dev *hpdev;
2828 	struct pci_dev *pdev;
2829 	unsigned long flags;
2830 	int wslot;
2831 	struct {
2832 		struct pci_packet pkt;
2833 		u8 buffer[sizeof(struct pci_eject_response)];
2834 	} ctxt;
2835 
2836 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2837 	hbus = hpdev->hbus;
2838 
2839 	mutex_lock(&hbus->state_lock);
2840 
2841 	/*
2842 	 * Ejection can come before or after the PCI bus has been set up, so
2843 	 * attempt to find it and tear down the bus state, if it exists.  This
2844 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2845 	 * because hbus->bridge->bus may not exist yet.
2846 	 */
2847 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2848 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2849 	if (pdev) {
2850 		pci_lock_rescan_remove();
2851 		pci_stop_and_remove_bus_device(pdev);
2852 		pci_dev_put(pdev);
2853 		pci_unlock_rescan_remove();
2854 	}
2855 
2856 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2857 	list_del(&hpdev->list_entry);
2858 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2859 
2860 	if (hpdev->pci_slot)
2861 		pci_destroy_slot(hpdev->pci_slot);
2862 
2863 	memset(&ctxt, 0, sizeof(ctxt));
2864 	ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message;
2865 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2866 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2867 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2868 			 sizeof(*ejct_pkt), 0,
2869 			 VM_PKT_DATA_INBAND, 0);
2870 
2871 	/* For the get_pcichild() in hv_pci_eject_device() */
2872 	put_pcichild(hpdev);
2873 	/* For the two refs got in new_pcichild_device() */
2874 	put_pcichild(hpdev);
2875 	put_pcichild(hpdev);
2876 	/* hpdev has been freed. Do not use it any more. */
2877 
2878 	mutex_unlock(&hbus->state_lock);
2879 }
2880 
2881 /**
2882  * hv_pci_eject_device() - Handles device ejection
2883  * @hpdev:	Internal device tracking struct
2884  *
2885  * This function is invoked when an ejection packet arrives.  It
2886  * just schedules work so that we don't re-enter the packet
2887  * delivery code handling the ejection.
2888  */
2889 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
2890 {
2891 	struct hv_pcibus_device *hbus = hpdev->hbus;
2892 	struct hv_device *hdev = hbus->hdev;
2893 
2894 	if (hbus->state == hv_pcibus_removing) {
2895 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
2896 		return;
2897 	}
2898 
2899 	get_pcichild(hpdev);
2900 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
2901 	queue_work(hbus->wq, &hpdev->wrk);
2902 }
2903 
2904 /**
2905  * hv_pci_onchannelcallback() - Handles incoming packets
2906  * @context:	Internal bus tracking struct
2907  *
2908  * This function is invoked whenever the host sends a packet to
2909  * this channel (which is private to this root PCI bus).
2910  */
2911 static void hv_pci_onchannelcallback(void *context)
2912 {
2913 	const int packet_size = 0x100;
2914 	int ret;
2915 	struct hv_pcibus_device *hbus = context;
2916 	struct vmbus_channel *chan = hbus->hdev->channel;
2917 	u32 bytes_recvd;
2918 	u64 req_id, req_addr;
2919 	struct vmpacket_descriptor *desc;
2920 	unsigned char *buffer;
2921 	int bufferlen = packet_size;
2922 	struct pci_packet *comp_packet;
2923 	struct pci_response *response;
2924 	struct pci_incoming_message *new_message;
2925 	struct pci_bus_relations *bus_rel;
2926 	struct pci_bus_relations2 *bus_rel2;
2927 	struct pci_dev_inval_block *inval;
2928 	struct pci_dev_incoming *dev_message;
2929 	struct hv_pci_dev *hpdev;
2930 	unsigned long flags;
2931 
2932 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
2933 	if (!buffer)
2934 		return;
2935 
2936 	while (1) {
2937 		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
2938 					   &bytes_recvd, &req_id);
2939 
2940 		if (ret == -ENOBUFS) {
2941 			kfree(buffer);
2942 			/* Handle large packet */
2943 			bufferlen = bytes_recvd;
2944 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
2945 			if (!buffer)
2946 				return;
2947 			continue;
2948 		}
2949 
2950 		/* Zero length indicates there are no more packets. */
2951 		if (ret || !bytes_recvd)
2952 			break;
2953 
2954 		/*
2955 		 * All incoming packets must be at least as large as a
2956 		 * response.
2957 		 */
2958 		if (bytes_recvd <= sizeof(struct pci_response))
2959 			continue;
2960 		desc = (struct vmpacket_descriptor *)buffer;
2961 
2962 		switch (desc->type) {
2963 		case VM_PKT_COMP:
2964 
2965 			lock_requestor(chan, flags);
2966 			req_addr = __vmbus_request_addr_match(chan, req_id,
2967 							      VMBUS_RQST_ADDR_ANY);
2968 			if (req_addr == VMBUS_RQST_ERROR) {
2969 				unlock_requestor(chan, flags);
2970 				dev_err(&hbus->hdev->device,
2971 					"Invalid transaction ID %llx\n",
2972 					req_id);
2973 				break;
2974 			}
2975 			comp_packet = (struct pci_packet *)req_addr;
2976 			response = (struct pci_response *)buffer;
2977 			/*
2978 			 * Call ->completion_func() within the critical section to make
2979 			 * sure that the packet pointer is still valid during the call:
2980 			 * here 'valid' means that there's a task still waiting for the
2981 			 * completion, and that the packet data is still on the waiting
2982 			 * task's stack.  Cf. hv_compose_msi_msg().
2983 			 */
2984 			comp_packet->completion_func(comp_packet->compl_ctxt,
2985 						     response,
2986 						     bytes_recvd);
2987 			unlock_requestor(chan, flags);
2988 			break;
2989 
2990 		case VM_PKT_DATA_INBAND:
2991 
2992 			new_message = (struct pci_incoming_message *)buffer;
2993 			switch (new_message->message_type.type) {
2994 			case PCI_BUS_RELATIONS:
2995 
2996 				bus_rel = (struct pci_bus_relations *)buffer;
2997 				if (bytes_recvd < sizeof(*bus_rel) ||
2998 				    bytes_recvd <
2999 					struct_size(bus_rel, func,
3000 						    bus_rel->device_count)) {
3001 					dev_err(&hbus->hdev->device,
3002 						"bus relations too small\n");
3003 					break;
3004 				}
3005 
3006 				hv_pci_devices_present(hbus, bus_rel);
3007 				break;
3008 
3009 			case PCI_BUS_RELATIONS2:
3010 
3011 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
3012 				if (bytes_recvd < sizeof(*bus_rel2) ||
3013 				    bytes_recvd <
3014 					struct_size(bus_rel2, func,
3015 						    bus_rel2->device_count)) {
3016 					dev_err(&hbus->hdev->device,
3017 						"bus relations v2 too small\n");
3018 					break;
3019 				}
3020 
3021 				hv_pci_devices_present2(hbus, bus_rel2);
3022 				break;
3023 
3024 			case PCI_EJECT:
3025 
3026 				dev_message = (struct pci_dev_incoming *)buffer;
3027 				if (bytes_recvd < sizeof(*dev_message)) {
3028 					dev_err(&hbus->hdev->device,
3029 						"eject message too small\n");
3030 					break;
3031 				}
3032 				hpdev = get_pcichild_wslot(hbus,
3033 						      dev_message->wslot.slot);
3034 				if (hpdev) {
3035 					hv_pci_eject_device(hpdev);
3036 					put_pcichild(hpdev);
3037 				}
3038 				break;
3039 
3040 			case PCI_INVALIDATE_BLOCK:
3041 
3042 				inval = (struct pci_dev_inval_block *)buffer;
3043 				if (bytes_recvd < sizeof(*inval)) {
3044 					dev_err(&hbus->hdev->device,
3045 						"invalidate message too small\n");
3046 					break;
3047 				}
3048 				hpdev = get_pcichild_wslot(hbus,
3049 							   inval->wslot.slot);
3050 				if (hpdev) {
3051 					if (hpdev->block_invalidate) {
3052 						hpdev->block_invalidate(
3053 						    hpdev->invalidate_context,
3054 						    inval->block_mask);
3055 					}
3056 					put_pcichild(hpdev);
3057 				}
3058 				break;
3059 
3060 			default:
3061 				dev_warn(&hbus->hdev->device,
3062 					"Unimplemented protocol message %x\n",
3063 					new_message->message_type.type);
3064 				break;
3065 			}
3066 			break;
3067 
3068 		default:
3069 			dev_err(&hbus->hdev->device,
3070 				"unhandled packet type %d, tid %llx len %d\n",
3071 				desc->type, req_id, bytes_recvd);
3072 			break;
3073 		}
3074 	}
3075 
3076 	kfree(buffer);
3077 }
3078 
3079 /**
3080  * hv_pci_protocol_negotiation() - Set up protocol
3081  * @hdev:		VMBus's tracking struct for this root PCI bus.
3082  * @version:		Array of supported channel protocol versions in
3083  *			the order of probing - highest go first.
3084  * @num_version:	Number of elements in the version array.
3085  *
3086  * This driver is intended to support running on Windows 10
3087  * (server) and later versions. It will not run on earlier
3088  * versions, as they assume that many of the operations which
3089  * Linux needs accomplished with a spinlock held were done via
3090  * asynchronous messaging via VMBus.  Windows 10 increases the
3091  * surface area of PCI emulation so that these actions can take
3092  * place by suspending a virtual processor for their duration.
3093  *
3094  * This function negotiates the channel protocol version,
3095  * failing if the host doesn't support the necessary protocol
3096  * level.
3097  */
3098 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3099 				       enum pci_protocol_version_t version[],
3100 				       int num_version)
3101 {
3102 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3103 	struct pci_version_request *version_req;
3104 	struct hv_pci_compl comp_pkt;
3105 	struct pci_packet *pkt;
3106 	int ret;
3107 	int i;
3108 
3109 	/*
3110 	 * Initiate the handshake with the host and negotiate
3111 	 * a version that the host can support. We start with the
3112 	 * highest version number and go down if the host cannot
3113 	 * support it.
3114 	 */
3115 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3116 	if (!pkt)
3117 		return -ENOMEM;
3118 
3119 	init_completion(&comp_pkt.host_event);
3120 	pkt->completion_func = hv_pci_generic_compl;
3121 	pkt->compl_ctxt = &comp_pkt;
3122 	version_req = (struct pci_version_request *)&pkt->message;
3123 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3124 
3125 	for (i = 0; i < num_version; i++) {
3126 		version_req->protocol_version = version[i];
3127 		ret = vmbus_sendpacket(hdev->channel, version_req,
3128 				sizeof(struct pci_version_request),
3129 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3130 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3131 		if (!ret)
3132 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3133 
3134 		if (ret) {
3135 			dev_err(&hdev->device,
3136 				"PCI Pass-through VSP failed to request version: %d",
3137 				ret);
3138 			goto exit;
3139 		}
3140 
3141 		if (comp_pkt.completion_status >= 0) {
3142 			hbus->protocol_version = version[i];
3143 			dev_info(&hdev->device,
3144 				"PCI VMBus probing: Using version %#x\n",
3145 				hbus->protocol_version);
3146 			goto exit;
3147 		}
3148 
3149 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3150 			dev_err(&hdev->device,
3151 				"PCI Pass-through VSP failed version request: %#x",
3152 				comp_pkt.completion_status);
3153 			ret = -EPROTO;
3154 			goto exit;
3155 		}
3156 
3157 		reinit_completion(&comp_pkt.host_event);
3158 	}
3159 
3160 	dev_err(&hdev->device,
3161 		"PCI pass-through VSP failed to find supported version");
3162 	ret = -EPROTO;
3163 
3164 exit:
3165 	kfree(pkt);
3166 	return ret;
3167 }
3168 
3169 /**
3170  * hv_pci_free_bridge_windows() - Release memory regions for the
3171  * bus
3172  * @hbus:	Root PCI bus, as understood by this driver
3173  */
3174 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3175 {
3176 	/*
3177 	 * Set the resources back to the way they looked when they
3178 	 * were allocated by setting IORESOURCE_BUSY again.
3179 	 */
3180 
3181 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3182 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3183 		vmbus_free_mmio(hbus->low_mmio_res->start,
3184 				resource_size(hbus->low_mmio_res));
3185 	}
3186 
3187 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3188 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3189 		vmbus_free_mmio(hbus->high_mmio_res->start,
3190 				resource_size(hbus->high_mmio_res));
3191 	}
3192 }
3193 
3194 /**
3195  * hv_pci_allocate_bridge_windows() - Allocate memory regions
3196  * for the bus
3197  * @hbus:	Root PCI bus, as understood by this driver
3198  *
3199  * This function calls vmbus_allocate_mmio(), which is itself a
3200  * bit of a compromise.  Ideally, we might change the pnp layer
3201  * in the kernel such that it comprehends either PCI devices
3202  * which are "grandchildren of ACPI," with some intermediate bus
3203  * node (in this case, VMBus) or change it such that it
3204  * understands VMBus.  The pnp layer, however, has been declared
3205  * deprecated, and not subject to change.
3206  *
3207  * The workaround, implemented here, is to ask VMBus to allocate
3208  * MMIO space for this bus.  VMBus itself knows which ranges are
3209  * appropriate by looking at its own ACPI objects.  Then, after
3210  * these ranges are claimed, they're modified to look like they
3211  * would have looked if the ACPI and pnp code had allocated
3212  * bridge windows.  These descriptors have to exist in this form
3213  * in order to satisfy the code which will get invoked when the
3214  * endpoint PCI function driver calls request_mem_region() or
3215  * request_mem_region_exclusive().
3216  *
3217  * Return: 0 on success, -errno on failure
3218  */
3219 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3220 {
3221 	resource_size_t align;
3222 	int ret;
3223 
3224 	if (hbus->low_mmio_space) {
3225 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3226 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3227 					  (u64)(u32)0xffffffff,
3228 					  hbus->low_mmio_space,
3229 					  align, false);
3230 		if (ret) {
3231 			dev_err(&hbus->hdev->device,
3232 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3233 				hbus->low_mmio_space);
3234 			return ret;
3235 		}
3236 
3237 		/* Modify this resource to become a bridge window. */
3238 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3239 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3240 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3241 	}
3242 
3243 	if (hbus->high_mmio_space) {
3244 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3245 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3246 					  0x100000000, -1,
3247 					  hbus->high_mmio_space, align,
3248 					  false);
3249 		if (ret) {
3250 			dev_err(&hbus->hdev->device,
3251 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3252 				hbus->high_mmio_space);
3253 			goto release_low_mmio;
3254 		}
3255 
3256 		/* Modify this resource to become a bridge window. */
3257 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3258 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3259 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3260 	}
3261 
3262 	return 0;
3263 
3264 release_low_mmio:
3265 	if (hbus->low_mmio_res) {
3266 		vmbus_free_mmio(hbus->low_mmio_res->start,
3267 				resource_size(hbus->low_mmio_res));
3268 	}
3269 
3270 	return ret;
3271 }
3272 
3273 /**
3274  * hv_allocate_config_window() - Find MMIO space for PCI Config
3275  * @hbus:	Root PCI bus, as understood by this driver
3276  *
3277  * This function claims memory-mapped I/O space for accessing
3278  * configuration space for the functions on this bus.
3279  *
3280  * Return: 0 on success, -errno on failure
3281  */
3282 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3283 {
3284 	int ret;
3285 
3286 	/*
3287 	 * Set up a region of MMIO space to use for accessing configuration
3288 	 * space.
3289 	 */
3290 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3291 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3292 	if (ret)
3293 		return ret;
3294 
3295 	/*
3296 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3297 	 * resource claims (those which cannot be overlapped) and the ranges
3298 	 * which are valid for the children of this bus, which are intended
3299 	 * to be overlapped by those children.  Set the flag on this claim
3300 	 * meaning that this region can't be overlapped.
3301 	 */
3302 
3303 	hbus->mem_config->flags |= IORESOURCE_BUSY;
3304 
3305 	return 0;
3306 }
3307 
3308 static void hv_free_config_window(struct hv_pcibus_device *hbus)
3309 {
3310 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3311 }
3312 
3313 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3314 
3315 /**
3316  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3317  * @hdev:	VMBus's tracking struct for this root PCI bus
3318  *
3319  * Return: 0 on success, -errno on failure
3320  */
3321 static int hv_pci_enter_d0(struct hv_device *hdev)
3322 {
3323 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3324 	struct pci_bus_d0_entry *d0_entry;
3325 	struct hv_pci_compl comp_pkt;
3326 	struct pci_packet *pkt;
3327 	bool retry = true;
3328 	int ret;
3329 
3330 enter_d0_retry:
3331 	/*
3332 	 * Tell the host that the bus is ready to use, and moved into the
3333 	 * powered-on state.  This includes telling the host which region
3334 	 * of memory-mapped I/O space has been chosen for configuration space
3335 	 * access.
3336 	 */
3337 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3338 	if (!pkt)
3339 		return -ENOMEM;
3340 
3341 	init_completion(&comp_pkt.host_event);
3342 	pkt->completion_func = hv_pci_generic_compl;
3343 	pkt->compl_ctxt = &comp_pkt;
3344 	d0_entry = (struct pci_bus_d0_entry *)&pkt->message;
3345 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3346 	d0_entry->mmio_base = hbus->mem_config->start;
3347 
3348 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3349 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3350 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3351 	if (!ret)
3352 		ret = wait_for_response(hdev, &comp_pkt.host_event);
3353 
3354 	if (ret)
3355 		goto exit;
3356 
3357 	/*
3358 	 * In certain case (Kdump) the pci device of interest was
3359 	 * not cleanly shut down and resource is still held on host
3360 	 * side, the host could return invalid device status.
3361 	 * We need to explicitly request host to release the resource
3362 	 * and try to enter D0 again.
3363 	 */
3364 	if (comp_pkt.completion_status < 0 && retry) {
3365 		retry = false;
3366 
3367 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3368 
3369 		/*
3370 		 * Hv_pci_bus_exit() calls hv_send_resource_released()
3371 		 * to free up resources of its child devices.
3372 		 * In the kdump kernel we need to set the
3373 		 * wslot_res_allocated to 255 so it scans all child
3374 		 * devices to release resources allocated in the
3375 		 * normal kernel before panic happened.
3376 		 */
3377 		hbus->wslot_res_allocated = 255;
3378 
3379 		ret = hv_pci_bus_exit(hdev, true);
3380 
3381 		if (ret == 0) {
3382 			kfree(pkt);
3383 			goto enter_d0_retry;
3384 		}
3385 		dev_err(&hdev->device,
3386 			"Retrying D0 failed with ret %d\n", ret);
3387 	}
3388 
3389 	if (comp_pkt.completion_status < 0) {
3390 		dev_err(&hdev->device,
3391 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3392 			comp_pkt.completion_status);
3393 		ret = -EPROTO;
3394 		goto exit;
3395 	}
3396 
3397 	ret = 0;
3398 
3399 exit:
3400 	kfree(pkt);
3401 	return ret;
3402 }
3403 
3404 /**
3405  * hv_pci_query_relations() - Ask host to send list of child
3406  * devices
3407  * @hdev:	VMBus's tracking struct for this root PCI bus
3408  *
3409  * Return: 0 on success, -errno on failure
3410  */
3411 static int hv_pci_query_relations(struct hv_device *hdev)
3412 {
3413 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3414 	struct pci_message message;
3415 	struct completion comp;
3416 	int ret;
3417 
3418 	/* Ask the host to send along the list of child devices */
3419 	init_completion(&comp);
3420 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3421 		return -ENOTEMPTY;
3422 
3423 	memset(&message, 0, sizeof(message));
3424 	message.type = PCI_QUERY_BUS_RELATIONS;
3425 
3426 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3427 			       0, VM_PKT_DATA_INBAND, 0);
3428 	if (!ret)
3429 		ret = wait_for_response(hdev, &comp);
3430 
3431 	/*
3432 	 * In the case of fast device addition/removal, it's possible that
3433 	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3434 	 * already got a PCI_BUS_RELATIONS* message from the host and the
3435 	 * channel callback already scheduled a work to hbus->wq, which can be
3436 	 * running pci_devices_present_work() -> survey_child_resources() ->
3437 	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3438 	 * exits and the stack variable 'comp' is no longer valid; as a result,
3439 	 * a hang or a page fault may happen when the complete() calls
3440 	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3441 	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3442 	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3443 	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3444 	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3445 	 * channel->rescind = true.
3446 	 */
3447 	flush_workqueue(hbus->wq);
3448 
3449 	return ret;
3450 }
3451 
3452 /**
3453  * hv_send_resources_allocated() - Report local resource choices
3454  * @hdev:	VMBus's tracking struct for this root PCI bus
3455  *
3456  * The host OS is expecting to be sent a request as a message
3457  * which contains all the resources that the device will use.
3458  * The response contains those same resources, "translated"
3459  * which is to say, the values which should be used by the
3460  * hardware, when it delivers an interrupt.  (MMIO resources are
3461  * used in local terms.)  This is nice for Windows, and lines up
3462  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3463  * is deeply expecting to scan an emulated PCI configuration
3464  * space.  So this message is sent here only to drive the state
3465  * machine on the host forward.
3466  *
3467  * Return: 0 on success, -errno on failure
3468  */
3469 static int hv_send_resources_allocated(struct hv_device *hdev)
3470 {
3471 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3472 	struct pci_resources_assigned *res_assigned;
3473 	struct pci_resources_assigned2 *res_assigned2;
3474 	struct hv_pci_compl comp_pkt;
3475 	struct hv_pci_dev *hpdev;
3476 	struct pci_packet *pkt;
3477 	size_t size_res;
3478 	int wslot;
3479 	int ret;
3480 
3481 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3482 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3483 
3484 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3485 	if (!pkt)
3486 		return -ENOMEM;
3487 
3488 	ret = 0;
3489 
3490 	for (wslot = 0; wslot < 256; wslot++) {
3491 		hpdev = get_pcichild_wslot(hbus, wslot);
3492 		if (!hpdev)
3493 			continue;
3494 
3495 		memset(pkt, 0, sizeof(*pkt) + size_res);
3496 		init_completion(&comp_pkt.host_event);
3497 		pkt->completion_func = hv_pci_generic_compl;
3498 		pkt->compl_ctxt = &comp_pkt;
3499 
3500 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3501 			res_assigned =
3502 				(struct pci_resources_assigned *)&pkt->message;
3503 			res_assigned->message_type.type =
3504 				PCI_RESOURCES_ASSIGNED;
3505 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3506 		} else {
3507 			res_assigned2 =
3508 				(struct pci_resources_assigned2 *)&pkt->message;
3509 			res_assigned2->message_type.type =
3510 				PCI_RESOURCES_ASSIGNED2;
3511 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3512 		}
3513 		put_pcichild(hpdev);
3514 
3515 		ret = vmbus_sendpacket(hdev->channel, &pkt->message,
3516 				size_res, (unsigned long)pkt,
3517 				VM_PKT_DATA_INBAND,
3518 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3519 		if (!ret)
3520 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3521 		if (ret)
3522 			break;
3523 
3524 		if (comp_pkt.completion_status < 0) {
3525 			ret = -EPROTO;
3526 			dev_err(&hdev->device,
3527 				"resource allocated returned 0x%x",
3528 				comp_pkt.completion_status);
3529 			break;
3530 		}
3531 
3532 		hbus->wslot_res_allocated = wslot;
3533 	}
3534 
3535 	kfree(pkt);
3536 	return ret;
3537 }
3538 
3539 /**
3540  * hv_send_resources_released() - Report local resources
3541  * released
3542  * @hdev:	VMBus's tracking struct for this root PCI bus
3543  *
3544  * Return: 0 on success, -errno on failure
3545  */
3546 static int hv_send_resources_released(struct hv_device *hdev)
3547 {
3548 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3549 	struct pci_child_message pkt;
3550 	struct hv_pci_dev *hpdev;
3551 	int wslot;
3552 	int ret;
3553 
3554 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3555 		hpdev = get_pcichild_wslot(hbus, wslot);
3556 		if (!hpdev)
3557 			continue;
3558 
3559 		memset(&pkt, 0, sizeof(pkt));
3560 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3561 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3562 
3563 		put_pcichild(hpdev);
3564 
3565 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3566 				       VM_PKT_DATA_INBAND, 0);
3567 		if (ret)
3568 			return ret;
3569 
3570 		hbus->wslot_res_allocated = wslot - 1;
3571 	}
3572 
3573 	hbus->wslot_res_allocated = -1;
3574 
3575 	return 0;
3576 }
3577 
3578 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3579 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3580 
3581 /*
3582  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3583  * as invalid for passthrough PCI devices of this driver.
3584  */
3585 #define HVPCI_DOM_INVALID 0
3586 
3587 /**
3588  * hv_get_dom_num() - Get a valid PCI domain number
3589  * Check if the PCI domain number is in use, and return another number if
3590  * it is in use.
3591  *
3592  * @dom: Requested domain number
3593  *
3594  * return: domain number on success, HVPCI_DOM_INVALID on failure
3595  */
3596 static u16 hv_get_dom_num(u16 dom)
3597 {
3598 	unsigned int i;
3599 
3600 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3601 		return dom;
3602 
3603 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3604 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3605 			return i;
3606 	}
3607 
3608 	return HVPCI_DOM_INVALID;
3609 }
3610 
3611 /**
3612  * hv_put_dom_num() - Mark the PCI domain number as free
3613  * @dom: Domain number to be freed
3614  */
3615 static void hv_put_dom_num(u16 dom)
3616 {
3617 	clear_bit(dom, hvpci_dom_map);
3618 }
3619 
3620 /**
3621  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3622  * @hdev:	VMBus's tracking struct for this root PCI bus
3623  * @dev_id:	Identifies the device itself
3624  *
3625  * Return: 0 on success, -errno on failure
3626  */
3627 static int hv_pci_probe(struct hv_device *hdev,
3628 			const struct hv_vmbus_device_id *dev_id)
3629 {
3630 	struct pci_host_bridge *bridge;
3631 	struct hv_pcibus_device *hbus;
3632 	u16 dom_req, dom;
3633 	char *name;
3634 	int ret;
3635 
3636 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3637 	if (!bridge)
3638 		return -ENOMEM;
3639 
3640 	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3641 	if (!hbus)
3642 		return -ENOMEM;
3643 
3644 	hbus->bridge = bridge;
3645 	mutex_init(&hbus->state_lock);
3646 	hbus->state = hv_pcibus_init;
3647 	hbus->wslot_res_allocated = -1;
3648 
3649 	/*
3650 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3651 	 * specs. Pull it from the instance ID, to get something usually
3652 	 * unique. In rare cases of collision, we will find out another number
3653 	 * not in use.
3654 	 *
3655 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3656 	 * together with this guest driver can guarantee that (1) The only
3657 	 * domain used by Gen1 VMs for something that looks like a physical
3658 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3659 	 * (2) There will be no overlap between domains (after fixing possible
3660 	 * collisions) in the same VM.
3661 	 */
3662 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3663 	dom = hv_get_dom_num(dom_req);
3664 
3665 	if (dom == HVPCI_DOM_INVALID) {
3666 		dev_err(&hdev->device,
3667 			"Unable to use dom# 0x%x or other numbers", dom_req);
3668 		ret = -EINVAL;
3669 		goto free_bus;
3670 	}
3671 
3672 	if (dom != dom_req)
3673 		dev_info(&hdev->device,
3674 			 "PCI dom# 0x%x has collision, using 0x%x",
3675 			 dom_req, dom);
3676 
3677 	hbus->bridge->domain_nr = dom;
3678 #ifdef CONFIG_X86
3679 	hbus->sysdata.domain = dom;
3680 	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3681 #elif defined(CONFIG_ARM64)
3682 	/*
3683 	 * Set the PCI bus parent to be the corresponding VMbus
3684 	 * device. Then the VMbus device will be assigned as the
3685 	 * ACPI companion in pcibios_root_bridge_prepare() and
3686 	 * pci_dma_configure() will propagate device coherence
3687 	 * information to devices created on the bus.
3688 	 */
3689 	hbus->sysdata.parent = hdev->device.parent;
3690 	hbus->use_calls = false;
3691 #endif
3692 
3693 	hbus->hdev = hdev;
3694 	INIT_LIST_HEAD(&hbus->children);
3695 	INIT_LIST_HEAD(&hbus->dr_list);
3696 	spin_lock_init(&hbus->config_lock);
3697 	spin_lock_init(&hbus->device_list_lock);
3698 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3699 					   hbus->bridge->domain_nr);
3700 	if (!hbus->wq) {
3701 		ret = -ENOMEM;
3702 		goto free_dom;
3703 	}
3704 
3705 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3706 	hdev->channel->request_addr_callback = vmbus_request_addr;
3707 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3708 
3709 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3710 			 hv_pci_onchannelcallback, hbus);
3711 	if (ret)
3712 		goto destroy_wq;
3713 
3714 	hv_set_drvdata(hdev, hbus);
3715 
3716 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3717 					  ARRAY_SIZE(pci_protocol_versions));
3718 	if (ret)
3719 		goto close;
3720 
3721 	ret = hv_allocate_config_window(hbus);
3722 	if (ret)
3723 		goto close;
3724 
3725 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3726 				 PCI_CONFIG_MMIO_LENGTH);
3727 	if (!hbus->cfg_addr) {
3728 		dev_err(&hdev->device,
3729 			"Unable to map a virtual address for config space\n");
3730 		ret = -ENOMEM;
3731 		goto free_config;
3732 	}
3733 
3734 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3735 	if (!name) {
3736 		ret = -ENOMEM;
3737 		goto unmap;
3738 	}
3739 
3740 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3741 	kfree(name);
3742 	if (!hbus->fwnode) {
3743 		ret = -ENOMEM;
3744 		goto unmap;
3745 	}
3746 
3747 	ret = hv_pcie_init_irq_domain(hbus);
3748 	if (ret)
3749 		goto free_fwnode;
3750 
3751 	ret = hv_pci_query_relations(hdev);
3752 	if (ret)
3753 		goto free_irq_domain;
3754 
3755 	mutex_lock(&hbus->state_lock);
3756 
3757 	ret = hv_pci_enter_d0(hdev);
3758 	if (ret)
3759 		goto release_state_lock;
3760 
3761 	ret = hv_pci_allocate_bridge_windows(hbus);
3762 	if (ret)
3763 		goto exit_d0;
3764 
3765 	ret = hv_send_resources_allocated(hdev);
3766 	if (ret)
3767 		goto free_windows;
3768 
3769 	prepopulate_bars(hbus);
3770 
3771 	hbus->state = hv_pcibus_probed;
3772 
3773 	ret = create_root_hv_pci_bus(hbus);
3774 	if (ret)
3775 		goto free_windows;
3776 
3777 	mutex_unlock(&hbus->state_lock);
3778 	return 0;
3779 
3780 free_windows:
3781 	hv_pci_free_bridge_windows(hbus);
3782 exit_d0:
3783 	(void) hv_pci_bus_exit(hdev, true);
3784 release_state_lock:
3785 	mutex_unlock(&hbus->state_lock);
3786 free_irq_domain:
3787 	irq_domain_remove(hbus->irq_domain);
3788 free_fwnode:
3789 	irq_domain_free_fwnode(hbus->fwnode);
3790 unmap:
3791 	iounmap(hbus->cfg_addr);
3792 free_config:
3793 	hv_free_config_window(hbus);
3794 close:
3795 	vmbus_close(hdev->channel);
3796 destroy_wq:
3797 	destroy_workqueue(hbus->wq);
3798 free_dom:
3799 	hv_put_dom_num(hbus->bridge->domain_nr);
3800 free_bus:
3801 	kfree(hbus);
3802 	return ret;
3803 }
3804 
3805 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3806 {
3807 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3808 	struct vmbus_channel *chan = hdev->channel;
3809 	struct {
3810 		struct pci_packet teardown_packet;
3811 		u8 buffer[sizeof(struct pci_message)];
3812 	} pkt;
3813 	struct hv_pci_compl comp_pkt;
3814 	struct hv_pci_dev *hpdev, *tmp;
3815 	unsigned long flags;
3816 	u64 trans_id;
3817 	int ret;
3818 
3819 	/*
3820 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3821 	 * access the per-channel ringbuffer any longer.
3822 	 */
3823 	if (chan->rescind)
3824 		return 0;
3825 
3826 	if (!keep_devs) {
3827 		struct list_head removed;
3828 
3829 		/* Move all present children to the list on stack */
3830 		INIT_LIST_HEAD(&removed);
3831 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3832 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3833 			list_move_tail(&hpdev->list_entry, &removed);
3834 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3835 
3836 		/* Remove all children in the list */
3837 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3838 			list_del(&hpdev->list_entry);
3839 			if (hpdev->pci_slot)
3840 				pci_destroy_slot(hpdev->pci_slot);
3841 			/* For the two refs got in new_pcichild_device() */
3842 			put_pcichild(hpdev);
3843 			put_pcichild(hpdev);
3844 		}
3845 	}
3846 
3847 	ret = hv_send_resources_released(hdev);
3848 	if (ret) {
3849 		dev_err(&hdev->device,
3850 			"Couldn't send resources released packet(s)\n");
3851 		return ret;
3852 	}
3853 
3854 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3855 	init_completion(&comp_pkt.host_event);
3856 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3857 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3858 	pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT;
3859 
3860 	ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message,
3861 				     sizeof(struct pci_message),
3862 				     (unsigned long)&pkt.teardown_packet,
3863 				     &trans_id, VM_PKT_DATA_INBAND,
3864 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3865 	if (ret)
3866 		return ret;
3867 
3868 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3869 		/*
3870 		 * The completion packet on the stack becomes invalid after
3871 		 * 'return'; remove the ID from the VMbus requestor if the
3872 		 * identifier is still mapped to/associated with the packet.
3873 		 *
3874 		 * Cf. hv_pci_onchannelcallback().
3875 		 */
3876 		vmbus_request_addr_match(chan, trans_id,
3877 					 (unsigned long)&pkt.teardown_packet);
3878 		return -ETIMEDOUT;
3879 	}
3880 
3881 	return 0;
3882 }
3883 
3884 /**
3885  * hv_pci_remove() - Remove routine for this VMBus channel
3886  * @hdev:	VMBus's tracking struct for this root PCI bus
3887  */
3888 static void hv_pci_remove(struct hv_device *hdev)
3889 {
3890 	struct hv_pcibus_device *hbus;
3891 
3892 	hbus = hv_get_drvdata(hdev);
3893 	if (hbus->state == hv_pcibus_installed) {
3894 		tasklet_disable(&hdev->channel->callback_event);
3895 		hbus->state = hv_pcibus_removing;
3896 		tasklet_enable(&hdev->channel->callback_event);
3897 		destroy_workqueue(hbus->wq);
3898 		hbus->wq = NULL;
3899 		/*
3900 		 * At this point, no work is running or can be scheduled
3901 		 * on hbus-wq. We can't race with hv_pci_devices_present()
3902 		 * or hv_pci_eject_device(), it's safe to proceed.
3903 		 */
3904 
3905 		/* Remove the bus from PCI's point of view. */
3906 		pci_lock_rescan_remove();
3907 		pci_stop_root_bus(hbus->bridge->bus);
3908 		hv_pci_remove_slots(hbus);
3909 		pci_remove_root_bus(hbus->bridge->bus);
3910 		pci_unlock_rescan_remove();
3911 	}
3912 
3913 	hv_pci_bus_exit(hdev, false);
3914 
3915 	vmbus_close(hdev->channel);
3916 
3917 	iounmap(hbus->cfg_addr);
3918 	hv_free_config_window(hbus);
3919 	hv_pci_free_bridge_windows(hbus);
3920 	irq_domain_remove(hbus->irq_domain);
3921 	irq_domain_free_fwnode(hbus->fwnode);
3922 
3923 	hv_put_dom_num(hbus->bridge->domain_nr);
3924 
3925 	kfree(hbus);
3926 }
3927 
3928 static int hv_pci_suspend(struct hv_device *hdev)
3929 {
3930 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3931 	enum hv_pcibus_state old_state;
3932 	int ret;
3933 
3934 	/*
3935 	 * hv_pci_suspend() must make sure there are no pending work items
3936 	 * before calling vmbus_close(), since it runs in a process context
3937 	 * as a callback in dpm_suspend().  When it starts to run, the channel
3938 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
3939 	 * context, can be still running concurrently and scheduling new work
3940 	 * items onto hbus->wq in hv_pci_devices_present() and
3941 	 * hv_pci_eject_device(), and the work item handlers can access the
3942 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
3943 	 * the work item handler pci_devices_present_work() ->
3944 	 * new_pcichild_device() writes to the vmbus channel.
3945 	 *
3946 	 * To eliminate the race, hv_pci_suspend() disables the channel
3947 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
3948 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
3949 	 * it knows that no new work item can be scheduled, and then it flushes
3950 	 * hbus->wq and safely closes the vmbus channel.
3951 	 */
3952 	tasklet_disable(&hdev->channel->callback_event);
3953 
3954 	/* Change the hbus state to prevent new work items. */
3955 	old_state = hbus->state;
3956 	if (hbus->state == hv_pcibus_installed)
3957 		hbus->state = hv_pcibus_removing;
3958 
3959 	tasklet_enable(&hdev->channel->callback_event);
3960 
3961 	if (old_state != hv_pcibus_installed)
3962 		return -EINVAL;
3963 
3964 	flush_workqueue(hbus->wq);
3965 
3966 	ret = hv_pci_bus_exit(hdev, true);
3967 	if (ret)
3968 		return ret;
3969 
3970 	vmbus_close(hdev->channel);
3971 
3972 	return 0;
3973 }
3974 
3975 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
3976 {
3977 	struct irq_data *irq_data;
3978 	struct msi_desc *entry;
3979 	int ret = 0;
3980 
3981 	if (!pdev->msi_enabled && !pdev->msix_enabled)
3982 		return 0;
3983 
3984 	msi_lock_descs(&pdev->dev);
3985 	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
3986 		irq_data = irq_get_irq_data(entry->irq);
3987 		if (WARN_ON_ONCE(!irq_data)) {
3988 			ret = -EINVAL;
3989 			break;
3990 		}
3991 
3992 		hv_compose_msi_msg(irq_data, &entry->msg);
3993 	}
3994 	msi_unlock_descs(&pdev->dev);
3995 
3996 	return ret;
3997 }
3998 
3999 /*
4000  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
4001  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4002  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4003  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4004  * Table entries.
4005  */
4006 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4007 {
4008 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4009 }
4010 
4011 static int hv_pci_resume(struct hv_device *hdev)
4012 {
4013 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4014 	enum pci_protocol_version_t version[1];
4015 	int ret;
4016 
4017 	hbus->state = hv_pcibus_init;
4018 
4019 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
4020 	hdev->channel->request_addr_callback = vmbus_request_addr;
4021 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4022 
4023 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4024 			 hv_pci_onchannelcallback, hbus);
4025 	if (ret)
4026 		return ret;
4027 
4028 	/* Only use the version that was in use before hibernation. */
4029 	version[0] = hbus->protocol_version;
4030 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
4031 	if (ret)
4032 		goto out;
4033 
4034 	ret = hv_pci_query_relations(hdev);
4035 	if (ret)
4036 		goto out;
4037 
4038 	mutex_lock(&hbus->state_lock);
4039 
4040 	ret = hv_pci_enter_d0(hdev);
4041 	if (ret)
4042 		goto release_state_lock;
4043 
4044 	ret = hv_send_resources_allocated(hdev);
4045 	if (ret)
4046 		goto release_state_lock;
4047 
4048 	prepopulate_bars(hbus);
4049 
4050 	hv_pci_restore_msi_state(hbus);
4051 
4052 	hbus->state = hv_pcibus_installed;
4053 	mutex_unlock(&hbus->state_lock);
4054 	return 0;
4055 
4056 release_state_lock:
4057 	mutex_unlock(&hbus->state_lock);
4058 out:
4059 	vmbus_close(hdev->channel);
4060 	return ret;
4061 }
4062 
4063 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4064 	/* PCI Pass-through Class ID */
4065 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4066 	{ HV_PCIE_GUID, },
4067 	{ },
4068 };
4069 
4070 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4071 
4072 static struct hv_driver hv_pci_drv = {
4073 	.name		= "hv_pci",
4074 	.id_table	= hv_pci_id_table,
4075 	.probe		= hv_pci_probe,
4076 	.remove		= hv_pci_remove,
4077 	.suspend	= hv_pci_suspend,
4078 	.resume		= hv_pci_resume,
4079 };
4080 
4081 static void __exit exit_hv_pci_drv(void)
4082 {
4083 	vmbus_driver_unregister(&hv_pci_drv);
4084 
4085 	hvpci_block_ops.read_block = NULL;
4086 	hvpci_block_ops.write_block = NULL;
4087 	hvpci_block_ops.reg_blk_invalidate = NULL;
4088 }
4089 
4090 static int __init init_hv_pci_drv(void)
4091 {
4092 	int ret;
4093 
4094 	if (!hv_is_hyperv_initialized())
4095 		return -ENODEV;
4096 
4097 	ret = hv_pci_irqchip_init();
4098 	if (ret)
4099 		return ret;
4100 
4101 	/* Set the invalid domain number's bit, so it will not be used */
4102 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4103 
4104 	/* Initialize PCI block r/w interface */
4105 	hvpci_block_ops.read_block = hv_read_config_block;
4106 	hvpci_block_ops.write_block = hv_write_config_block;
4107 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4108 
4109 	return vmbus_driver_register(&hv_pci_drv);
4110 }
4111 
4112 module_init(init_hv_pci_drv);
4113 module_exit(exit_hv_pci_drv);
4114 
4115 MODULE_DESCRIPTION("Hyper-V PCI");
4116 MODULE_LICENSE("GPL v2");
4117