1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 68 }; 69 70 #define CPU_AFFINITY_ALL -1ULL 71 72 /* 73 * Supported protocol versions in the order of probing - highest go 74 * first. 75 */ 76 static enum pci_protocol_version_t pci_protocol_versions[] = { 77 PCI_PROTOCOL_VERSION_1_4, 78 PCI_PROTOCOL_VERSION_1_3, 79 PCI_PROTOCOL_VERSION_1_2, 80 PCI_PROTOCOL_VERSION_1_1, 81 }; 82 83 #define PCI_CONFIG_MMIO_LENGTH 0x2000 84 #define CFG_PAGE_OFFSET 0x1000 85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 86 87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 88 89 #define STATUS_REVISION_MISMATCH 0xC0000059 90 91 /* space for 32bit serial number as string */ 92 #define SLOT_NAME_SIZE 11 93 94 /* 95 * Size of requestor for VMbus; the value is based on the observation 96 * that having more than one request outstanding is 'rare', and so 64 97 * should be generous in ensuring that we don't ever run out. 98 */ 99 #define HV_PCI_RQSTOR_SIZE 64 100 101 /* 102 * Message Types 103 */ 104 105 enum pci_message_type { 106 /* 107 * Version 1.1 108 */ 109 PCI_MESSAGE_BASE = 0x42490000, 110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 136 PCI_MESSAGE_MAXIMUM 137 }; 138 139 /* 140 * Structures defining the virtual PCI Express protocol. 141 */ 142 143 union pci_version { 144 struct { 145 u16 minor_version; 146 u16 major_version; 147 } parts; 148 u32 version; 149 } __packed; 150 151 /* 152 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 153 * which is all this driver does. This representation is the one used in 154 * Windows, which is what is expected when sending this back and forth with 155 * the Hyper-V parent partition. 156 */ 157 union win_slot_encoding { 158 struct { 159 u32 dev:5; 160 u32 func:3; 161 u32 reserved:24; 162 } bits; 163 u32 slot; 164 } __packed; 165 166 /* 167 * Pretty much as defined in the PCI Specifications. 168 */ 169 struct pci_function_description { 170 u16 v_id; /* vendor ID */ 171 u16 d_id; /* device ID */ 172 u8 rev; 173 u8 prog_intf; 174 u8 subclass; 175 u8 base_class; 176 u32 subsystem_id; 177 union win_slot_encoding win_slot; 178 u32 ser; /* serial number */ 179 } __packed; 180 181 enum pci_device_description_flags { 182 HV_PCI_DEVICE_FLAG_NONE = 0x0, 183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 184 }; 185 186 struct pci_function_description2 { 187 u16 v_id; /* vendor ID */ 188 u16 d_id; /* device ID */ 189 u8 rev; 190 u8 prog_intf; 191 u8 subclass; 192 u8 base_class; 193 u32 subsystem_id; 194 union win_slot_encoding win_slot; 195 u32 ser; /* serial number */ 196 u32 flags; 197 u16 virtual_numa_node; 198 u16 reserved; 199 } __packed; 200 201 /** 202 * struct hv_msi_desc 203 * @vector: IDT entry 204 * @delivery_mode: As defined in Intel's Programmer's 205 * Reference Manual, Volume 3, Chapter 8. 206 * @vector_count: Number of contiguous entries in the 207 * Interrupt Descriptor Table that are 208 * occupied by this Message-Signaled 209 * Interrupt. For "MSI", as first defined 210 * in PCI 2.2, this can be between 1 and 211 * 32. For "MSI-X," as first defined in PCI 212 * 3.0, this must be 1, as each MSI-X table 213 * entry would have its own descriptor. 214 * @reserved: Empty space 215 * @cpu_mask: All the target virtual processors. 216 */ 217 struct hv_msi_desc { 218 u8 vector; 219 u8 delivery_mode; 220 u16 vector_count; 221 u32 reserved; 222 u64 cpu_mask; 223 } __packed; 224 225 /** 226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 227 * @vector: IDT entry 228 * @delivery_mode: As defined in Intel's Programmer's 229 * Reference Manual, Volume 3, Chapter 8. 230 * @vector_count: Number of contiguous entries in the 231 * Interrupt Descriptor Table that are 232 * occupied by this Message-Signaled 233 * Interrupt. For "MSI", as first defined 234 * in PCI 2.2, this can be between 1 and 235 * 32. For "MSI-X," as first defined in PCI 236 * 3.0, this must be 1, as each MSI-X table 237 * entry would have its own descriptor. 238 * @processor_count: number of bits enabled in array. 239 * @processor_array: All the target virtual processors. 240 */ 241 struct hv_msi_desc2 { 242 u8 vector; 243 u8 delivery_mode; 244 u16 vector_count; 245 u16 processor_count; 246 u16 processor_array[32]; 247 } __packed; 248 249 /* 250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 251 * Everything is the same as in 'hv_msi_desc2' except that the size of the 252 * 'vector' field is larger to support bigger vector values. For ex: LPI 253 * vectors on ARM. 254 */ 255 struct hv_msi_desc3 { 256 u32 vector; 257 u8 delivery_mode; 258 u8 reserved; 259 u16 vector_count; 260 u16 processor_count; 261 u16 processor_array[32]; 262 } __packed; 263 264 /** 265 * struct tran_int_desc 266 * @reserved: unused, padding 267 * @vector_count: same as in hv_msi_desc 268 * @data: This is the "data payload" value that is 269 * written by the device when it generates 270 * a message-signaled interrupt, either MSI 271 * or MSI-X. 272 * @address: This is the address to which the data 273 * payload is written on interrupt 274 * generation. 275 */ 276 struct tran_int_desc { 277 u16 reserved; 278 u16 vector_count; 279 u32 data; 280 u64 address; 281 } __packed; 282 283 /* 284 * A generic message format for virtual PCI. 285 * Specific message formats are defined later in the file. 286 */ 287 288 struct pci_message { 289 u32 type; 290 } __packed; 291 292 struct pci_child_message { 293 struct pci_message message_type; 294 union win_slot_encoding wslot; 295 } __packed; 296 297 struct pci_incoming_message { 298 struct vmpacket_descriptor hdr; 299 struct pci_message message_type; 300 } __packed; 301 302 struct pci_response { 303 struct vmpacket_descriptor hdr; 304 s32 status; /* negative values are failures */ 305 } __packed; 306 307 struct pci_packet { 308 void (*completion_func)(void *context, struct pci_response *resp, 309 int resp_packet_size); 310 void *compl_ctxt; 311 312 struct pci_message message[]; 313 }; 314 315 /* 316 * Specific message types supporting the PCI protocol. 317 */ 318 319 /* 320 * Version negotiation message. Sent from the guest to the host. 321 * The guest is free to try different versions until the host 322 * accepts the version. 323 * 324 * pci_version: The protocol version requested. 325 * is_last_attempt: If TRUE, this is the last version guest will request. 326 * reservedz: Reserved field, set to zero. 327 */ 328 329 struct pci_version_request { 330 struct pci_message message_type; 331 u32 protocol_version; 332 } __packed; 333 334 /* 335 * Bus D0 Entry. This is sent from the guest to the host when the virtual 336 * bus (PCI Express port) is ready for action. 337 */ 338 339 struct pci_bus_d0_entry { 340 struct pci_message message_type; 341 u32 reserved; 342 u64 mmio_base; 343 } __packed; 344 345 struct pci_bus_relations { 346 struct pci_incoming_message incoming; 347 u32 device_count; 348 struct pci_function_description func[]; 349 } __packed; 350 351 struct pci_bus_relations2 { 352 struct pci_incoming_message incoming; 353 u32 device_count; 354 struct pci_function_description2 func[]; 355 } __packed; 356 357 struct pci_q_res_req_response { 358 struct vmpacket_descriptor hdr; 359 s32 status; /* negative values are failures */ 360 u32 probed_bar[PCI_STD_NUM_BARS]; 361 } __packed; 362 363 struct pci_set_power { 364 struct pci_message message_type; 365 union win_slot_encoding wslot; 366 u32 power_state; /* In Windows terms */ 367 u32 reserved; 368 } __packed; 369 370 struct pci_set_power_response { 371 struct vmpacket_descriptor hdr; 372 s32 status; /* negative values are failures */ 373 union win_slot_encoding wslot; 374 u32 resultant_state; /* In Windows terms */ 375 u32 reserved; 376 } __packed; 377 378 struct pci_resources_assigned { 379 struct pci_message message_type; 380 union win_slot_encoding wslot; 381 u8 memory_range[0x14][6]; /* not used here */ 382 u32 msi_descriptors; 383 u32 reserved[4]; 384 } __packed; 385 386 struct pci_resources_assigned2 { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 u8 memory_range[0x14][6]; /* not used here */ 390 u32 msi_descriptor_count; 391 u8 reserved[70]; 392 } __packed; 393 394 struct pci_create_interrupt { 395 struct pci_message message_type; 396 union win_slot_encoding wslot; 397 struct hv_msi_desc int_desc; 398 } __packed; 399 400 struct pci_create_int_response { 401 struct pci_response response; 402 u32 reserved; 403 struct tran_int_desc int_desc; 404 } __packed; 405 406 struct pci_create_interrupt2 { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 struct hv_msi_desc2 int_desc; 410 } __packed; 411 412 struct pci_create_interrupt3 { 413 struct pci_message message_type; 414 union win_slot_encoding wslot; 415 struct hv_msi_desc3 int_desc; 416 } __packed; 417 418 struct pci_delete_interrupt { 419 struct pci_message message_type; 420 union win_slot_encoding wslot; 421 struct tran_int_desc int_desc; 422 } __packed; 423 424 /* 425 * Note: the VM must pass a valid block id, wslot and bytes_requested. 426 */ 427 struct pci_read_block { 428 struct pci_message message_type; 429 u32 block_id; 430 union win_slot_encoding wslot; 431 u32 bytes_requested; 432 } __packed; 433 434 struct pci_read_block_response { 435 struct vmpacket_descriptor hdr; 436 u32 status; 437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 438 } __packed; 439 440 /* 441 * Note: the VM must pass a valid block id, wslot and byte_count. 442 */ 443 struct pci_write_block { 444 struct pci_message message_type; 445 u32 block_id; 446 union win_slot_encoding wslot; 447 u32 byte_count; 448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 449 } __packed; 450 451 struct pci_dev_inval_block { 452 struct pci_incoming_message incoming; 453 union win_slot_encoding wslot; 454 u64 block_mask; 455 } __packed; 456 457 struct pci_dev_incoming { 458 struct pci_incoming_message incoming; 459 union win_slot_encoding wslot; 460 } __packed; 461 462 struct pci_eject_response { 463 struct pci_message message_type; 464 union win_slot_encoding wslot; 465 u32 status; 466 } __packed; 467 468 static int pci_ring_size = (4 * PAGE_SIZE); 469 470 /* 471 * Driver specific state. 472 */ 473 474 enum hv_pcibus_state { 475 hv_pcibus_init = 0, 476 hv_pcibus_probed, 477 hv_pcibus_installed, 478 hv_pcibus_removing, 479 hv_pcibus_maximum 480 }; 481 482 struct hv_pcibus_device { 483 #ifdef CONFIG_X86 484 struct pci_sysdata sysdata; 485 #elif defined(CONFIG_ARM64) 486 struct pci_config_window sysdata; 487 #endif 488 struct pci_host_bridge *bridge; 489 struct fwnode_handle *fwnode; 490 /* Protocol version negotiated with the host */ 491 enum pci_protocol_version_t protocol_version; 492 493 struct mutex state_lock; 494 enum hv_pcibus_state state; 495 496 struct hv_device *hdev; 497 resource_size_t low_mmio_space; 498 resource_size_t high_mmio_space; 499 struct resource *mem_config; 500 struct resource *low_mmio_res; 501 struct resource *high_mmio_res; 502 struct completion *survey_event; 503 struct pci_bus *pci_bus; 504 spinlock_t config_lock; /* Avoid two threads writing index page */ 505 spinlock_t device_list_lock; /* Protect lists below */ 506 void __iomem *cfg_addr; 507 508 struct list_head children; 509 struct list_head dr_list; 510 511 struct msi_domain_info msi_info; 512 struct irq_domain *irq_domain; 513 514 struct workqueue_struct *wq; 515 516 /* Highest slot of child device with resources allocated */ 517 int wslot_res_allocated; 518 bool use_calls; /* Use hypercalls to access mmio cfg space */ 519 }; 520 521 /* 522 * Tracks "Device Relations" messages from the host, which must be both 523 * processed in order and deferred so that they don't run in the context 524 * of the incoming packet callback. 525 */ 526 struct hv_dr_work { 527 struct work_struct wrk; 528 struct hv_pcibus_device *bus; 529 }; 530 531 struct hv_pcidev_description { 532 u16 v_id; /* vendor ID */ 533 u16 d_id; /* device ID */ 534 u8 rev; 535 u8 prog_intf; 536 u8 subclass; 537 u8 base_class; 538 u32 subsystem_id; 539 union win_slot_encoding win_slot; 540 u32 ser; /* serial number */ 541 u32 flags; 542 u16 virtual_numa_node; 543 }; 544 545 struct hv_dr_state { 546 struct list_head list_entry; 547 u32 device_count; 548 struct hv_pcidev_description func[] __counted_by(device_count); 549 }; 550 551 struct hv_pci_dev { 552 /* List protected by pci_rescan_remove_lock */ 553 struct list_head list_entry; 554 refcount_t refs; 555 struct pci_slot *pci_slot; 556 struct hv_pcidev_description desc; 557 bool reported_missing; 558 struct hv_pcibus_device *hbus; 559 struct work_struct wrk; 560 561 void (*block_invalidate)(void *context, u64 block_mask); 562 void *invalidate_context; 563 564 /* 565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 566 * read it back, for each of the BAR offsets within config space. 567 */ 568 u32 probed_bar[PCI_STD_NUM_BARS]; 569 }; 570 571 struct hv_pci_compl { 572 struct completion host_event; 573 s32 completion_status; 574 }; 575 576 static void hv_pci_onchannelcallback(void *context); 577 578 #ifdef CONFIG_X86 579 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 580 #define FLOW_HANDLER handle_edge_irq 581 #define FLOW_NAME "edge" 582 583 static int hv_pci_irqchip_init(void) 584 { 585 return 0; 586 } 587 588 static struct irq_domain *hv_pci_get_root_domain(void) 589 { 590 return x86_vector_domain; 591 } 592 593 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 594 { 595 struct irq_cfg *cfg = irqd_cfg(data); 596 597 return cfg->vector; 598 } 599 600 #define hv_msi_prepare pci_msi_prepare 601 602 /** 603 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current 604 * affinity. 605 * @data: Describes the IRQ 606 * 607 * Build new a destination for the MSI and make a hypercall to 608 * update the Interrupt Redirection Table. "Device Logical ID" 609 * is built out of this PCI bus's instance GUID and the function 610 * number of the device. 611 */ 612 static void hv_arch_irq_unmask(struct irq_data *data) 613 { 614 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 615 struct hv_retarget_device_interrupt *params; 616 struct tran_int_desc *int_desc; 617 struct hv_pcibus_device *hbus; 618 const struct cpumask *dest; 619 cpumask_var_t tmp; 620 struct pci_bus *pbus; 621 struct pci_dev *pdev; 622 unsigned long flags; 623 u32 var_size = 0; 624 int cpu, nr_bank; 625 u64 res; 626 627 dest = irq_data_get_effective_affinity_mask(data); 628 pdev = msi_desc_to_pci_dev(msi_desc); 629 pbus = pdev->bus; 630 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 631 int_desc = data->chip_data; 632 if (!int_desc) { 633 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", 634 __func__, data->irq); 635 return; 636 } 637 638 local_irq_save(flags); 639 640 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 641 memset(params, 0, sizeof(*params)); 642 params->partition_id = HV_PARTITION_ID_SELF; 643 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 644 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 645 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 646 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 647 (hbus->hdev->dev_instance.b[4] << 16) | 648 (hbus->hdev->dev_instance.b[7] << 8) | 649 (hbus->hdev->dev_instance.b[6] & 0xf8) | 650 PCI_FUNC(pdev->devfn); 651 params->int_target.vector = hv_msi_get_int_vector(data); 652 653 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 654 /* 655 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 656 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 657 * with >64 VP support. 658 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 659 * is not sufficient for this hypercall. 660 */ 661 params->int_target.flags |= 662 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 663 664 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 665 res = 1; 666 goto out; 667 } 668 669 cpumask_and(tmp, dest, cpu_online_mask); 670 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 671 free_cpumask_var(tmp); 672 673 if (nr_bank <= 0) { 674 res = 1; 675 goto out; 676 } 677 678 /* 679 * var-sized hypercall, var-size starts after vp_mask (thus 680 * vp_set.format does not count, but vp_set.valid_bank_mask 681 * does). 682 */ 683 var_size = 1 + nr_bank; 684 } else { 685 for_each_cpu_and(cpu, dest, cpu_online_mask) { 686 params->int_target.vp_mask |= 687 (1ULL << hv_cpu_number_to_vp_number(cpu)); 688 } 689 } 690 691 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 692 params, NULL); 693 694 out: 695 local_irq_restore(flags); 696 697 /* 698 * During hibernation, when a CPU is offlined, the kernel tries 699 * to move the interrupt to the remaining CPUs that haven't 700 * been offlined yet. In this case, the below hv_do_hypercall() 701 * always fails since the vmbus channel has been closed: 702 * refer to cpu_disable_common() -> fixup_irqs() -> 703 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 704 * 705 * Suppress the error message for hibernation because the failure 706 * during hibernation does not matter (at this time all the devices 707 * have been frozen). Note: the correct affinity info is still updated 708 * into the irqdata data structure in migrate_one_irq() -> 709 * irq_do_set_affinity(), so later when the VM resumes, 710 * hv_pci_restore_msi_state() is able to correctly restore the 711 * interrupt with the correct affinity. 712 */ 713 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 714 dev_err(&hbus->hdev->device, 715 "%s() failed: %#llx", __func__, res); 716 } 717 #elif defined(CONFIG_ARM64) 718 /* 719 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 720 * of room at the start to allow for SPIs to be specified through ACPI and 721 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 722 */ 723 #define HV_PCI_MSI_SPI_START 64 724 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 725 #define DELIVERY_MODE 0 726 #define FLOW_HANDLER NULL 727 #define FLOW_NAME NULL 728 #define hv_msi_prepare NULL 729 730 struct hv_pci_chip_data { 731 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 732 struct mutex map_lock; 733 }; 734 735 /* Hyper-V vPCI MSI GIC IRQ domain */ 736 static struct irq_domain *hv_msi_gic_irq_domain; 737 738 /* Hyper-V PCI MSI IRQ chip */ 739 static struct irq_chip hv_arm64_msi_irq_chip = { 740 .name = "MSI", 741 .irq_set_affinity = irq_chip_set_affinity_parent, 742 .irq_eoi = irq_chip_eoi_parent, 743 .irq_mask = irq_chip_mask_parent, 744 .irq_unmask = irq_chip_unmask_parent 745 }; 746 747 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 748 { 749 return irqd->parent_data->hwirq; 750 } 751 752 /* 753 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 754 * the bitmap. 755 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 756 * the parent domain. 757 */ 758 static void hv_pci_vec_irq_free(struct irq_domain *domain, 759 unsigned int virq, 760 unsigned int nr_bm_irqs, 761 unsigned int nr_dom_irqs) 762 { 763 struct hv_pci_chip_data *chip_data = domain->host_data; 764 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 765 int first = d->hwirq - HV_PCI_MSI_SPI_START; 766 int i; 767 768 mutex_lock(&chip_data->map_lock); 769 bitmap_release_region(chip_data->spi_map, 770 first, 771 get_count_order(nr_bm_irqs)); 772 mutex_unlock(&chip_data->map_lock); 773 for (i = 0; i < nr_dom_irqs; i++) { 774 if (i) 775 d = irq_domain_get_irq_data(domain, virq + i); 776 irq_domain_reset_irq_data(d); 777 } 778 779 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 780 } 781 782 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 783 unsigned int virq, 784 unsigned int nr_irqs) 785 { 786 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 787 } 788 789 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 790 unsigned int nr_irqs, 791 irq_hw_number_t *hwirq) 792 { 793 struct hv_pci_chip_data *chip_data = domain->host_data; 794 int index; 795 796 /* Find and allocate region from the SPI bitmap */ 797 mutex_lock(&chip_data->map_lock); 798 index = bitmap_find_free_region(chip_data->spi_map, 799 HV_PCI_MSI_SPI_NR, 800 get_count_order(nr_irqs)); 801 mutex_unlock(&chip_data->map_lock); 802 if (index < 0) 803 return -ENOSPC; 804 805 *hwirq = index + HV_PCI_MSI_SPI_START; 806 807 return 0; 808 } 809 810 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 811 unsigned int virq, 812 irq_hw_number_t hwirq) 813 { 814 struct irq_fwspec fwspec; 815 struct irq_data *d; 816 int ret; 817 818 fwspec.fwnode = domain->parent->fwnode; 819 fwspec.param_count = 2; 820 fwspec.param[0] = hwirq; 821 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 822 823 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 824 if (ret) 825 return ret; 826 827 /* 828 * Since the interrupt specifier is not coming from ACPI or DT, the 829 * trigger type will need to be set explicitly. Otherwise, it will be 830 * set to whatever is in the GIC configuration. 831 */ 832 d = irq_domain_get_irq_data(domain->parent, virq); 833 834 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 835 } 836 837 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 838 unsigned int virq, unsigned int nr_irqs, 839 void *args) 840 { 841 irq_hw_number_t hwirq; 842 unsigned int i; 843 int ret; 844 845 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 846 if (ret) 847 return ret; 848 849 for (i = 0; i < nr_irqs; i++) { 850 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 851 hwirq + i); 852 if (ret) { 853 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 854 return ret; 855 } 856 857 irq_domain_set_hwirq_and_chip(domain, virq + i, 858 hwirq + i, 859 &hv_arm64_msi_irq_chip, 860 domain->host_data); 861 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 862 } 863 864 return 0; 865 } 866 867 /* 868 * Pick the first cpu as the irq affinity that can be temporarily used for 869 * composing MSI from the hypervisor. GIC will eventually set the right 870 * affinity for the irq and the 'unmask' will retarget the interrupt to that 871 * cpu. 872 */ 873 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 874 struct irq_data *irqd, bool reserve) 875 { 876 int cpu = cpumask_first(cpu_present_mask); 877 878 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 879 880 return 0; 881 } 882 883 static const struct irq_domain_ops hv_pci_domain_ops = { 884 .alloc = hv_pci_vec_irq_domain_alloc, 885 .free = hv_pci_vec_irq_domain_free, 886 .activate = hv_pci_vec_irq_domain_activate, 887 }; 888 889 static int hv_pci_irqchip_init(void) 890 { 891 static struct hv_pci_chip_data *chip_data; 892 struct fwnode_handle *fn = NULL; 893 int ret = -ENOMEM; 894 895 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 896 if (!chip_data) 897 return ret; 898 899 mutex_init(&chip_data->map_lock); 900 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 901 if (!fn) 902 goto free_chip; 903 904 /* 905 * IRQ domain once enabled, should not be removed since there is no 906 * way to ensure that all the corresponding devices are also gone and 907 * no interrupts will be generated. 908 */ 909 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, 910 fn, &hv_pci_domain_ops, 911 chip_data); 912 913 if (!hv_msi_gic_irq_domain) { 914 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 915 goto free_chip; 916 } 917 918 return 0; 919 920 free_chip: 921 kfree(chip_data); 922 if (fn) 923 irq_domain_free_fwnode(fn); 924 925 return ret; 926 } 927 928 static struct irq_domain *hv_pci_get_root_domain(void) 929 { 930 return hv_msi_gic_irq_domain; 931 } 932 933 /* 934 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 935 * registers which Hyper-V already supports, so no hypercall needed. 936 */ 937 static void hv_arch_irq_unmask(struct irq_data *data) { } 938 #endif /* CONFIG_ARM64 */ 939 940 /** 941 * hv_pci_generic_compl() - Invoked for a completion packet 942 * @context: Set up by the sender of the packet. 943 * @resp: The response packet 944 * @resp_packet_size: Size in bytes of the packet 945 * 946 * This function is used to trigger an event and report status 947 * for any message for which the completion packet contains a 948 * status and nothing else. 949 */ 950 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 951 int resp_packet_size) 952 { 953 struct hv_pci_compl *comp_pkt = context; 954 955 comp_pkt->completion_status = resp->status; 956 complete(&comp_pkt->host_event); 957 } 958 959 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 960 u32 wslot); 961 962 static void get_pcichild(struct hv_pci_dev *hpdev) 963 { 964 refcount_inc(&hpdev->refs); 965 } 966 967 static void put_pcichild(struct hv_pci_dev *hpdev) 968 { 969 if (refcount_dec_and_test(&hpdev->refs)) 970 kfree(hpdev); 971 } 972 973 /* 974 * There is no good way to get notified from vmbus_onoffer_rescind(), 975 * so let's use polling here, since this is not a hot path. 976 */ 977 static int wait_for_response(struct hv_device *hdev, 978 struct completion *comp) 979 { 980 while (true) { 981 if (hdev->channel->rescind) { 982 dev_warn_once(&hdev->device, "The device is gone.\n"); 983 return -ENODEV; 984 } 985 986 if (wait_for_completion_timeout(comp, HZ / 10)) 987 break; 988 } 989 990 return 0; 991 } 992 993 /** 994 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 995 * @devfn: The Linux representation of PCI slot 996 * 997 * Windows uses a slightly different representation of PCI slot. 998 * 999 * Return: The Windows representation 1000 */ 1001 static u32 devfn_to_wslot(int devfn) 1002 { 1003 union win_slot_encoding wslot; 1004 1005 wslot.slot = 0; 1006 wslot.bits.dev = PCI_SLOT(devfn); 1007 wslot.bits.func = PCI_FUNC(devfn); 1008 1009 return wslot.slot; 1010 } 1011 1012 /** 1013 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1014 * @wslot: The Windows representation of PCI slot 1015 * 1016 * Windows uses a slightly different representation of PCI slot. 1017 * 1018 * Return: The Linux representation 1019 */ 1020 static int wslot_to_devfn(u32 wslot) 1021 { 1022 union win_slot_encoding slot_no; 1023 1024 slot_no.slot = wslot; 1025 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1026 } 1027 1028 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1029 { 1030 struct hv_mmio_read_input *in; 1031 struct hv_mmio_read_output *out; 1032 u64 ret; 1033 1034 /* 1035 * Must be called with interrupts disabled so it is safe 1036 * to use the per-cpu input argument page. Use it for 1037 * both input and output. 1038 */ 1039 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1040 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1041 in->gpa = gpa; 1042 in->size = size; 1043 1044 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1045 if (hv_result_success(ret)) { 1046 switch (size) { 1047 case 1: 1048 *val = *(u8 *)(out->data); 1049 break; 1050 case 2: 1051 *val = *(u16 *)(out->data); 1052 break; 1053 default: 1054 *val = *(u32 *)(out->data); 1055 break; 1056 } 1057 } else 1058 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1059 ret, gpa, size); 1060 } 1061 1062 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1063 { 1064 struct hv_mmio_write_input *in; 1065 u64 ret; 1066 1067 /* 1068 * Must be called with interrupts disabled so it is safe 1069 * to use the per-cpu input argument memory. 1070 */ 1071 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1072 in->gpa = gpa; 1073 in->size = size; 1074 switch (size) { 1075 case 1: 1076 *(u8 *)(in->data) = val; 1077 break; 1078 case 2: 1079 *(u16 *)(in->data) = val; 1080 break; 1081 default: 1082 *(u32 *)(in->data) = val; 1083 break; 1084 } 1085 1086 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1087 if (!hv_result_success(ret)) 1088 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1089 ret, gpa, size); 1090 } 1091 1092 /* 1093 * PCI Configuration Space for these root PCI buses is implemented as a pair 1094 * of pages in memory-mapped I/O space. Writing to the first page chooses 1095 * the PCI function being written or read. Once the first page has been 1096 * written to, the following page maps in the entire configuration space of 1097 * the function. 1098 */ 1099 1100 /** 1101 * _hv_pcifront_read_config() - Internal PCI config read 1102 * @hpdev: The PCI driver's representation of the device 1103 * @where: Offset within config space 1104 * @size: Size of the transfer 1105 * @val: Pointer to the buffer receiving the data 1106 */ 1107 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1108 int size, u32 *val) 1109 { 1110 struct hv_pcibus_device *hbus = hpdev->hbus; 1111 struct device *dev = &hbus->hdev->device; 1112 int offset = where + CFG_PAGE_OFFSET; 1113 unsigned long flags; 1114 1115 /* 1116 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1117 */ 1118 if (where + size <= PCI_COMMAND) { 1119 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1120 } else if (where >= PCI_CLASS_REVISION && where + size <= 1121 PCI_CACHE_LINE_SIZE) { 1122 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1123 PCI_CLASS_REVISION, size); 1124 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1125 PCI_ROM_ADDRESS) { 1126 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1127 PCI_SUBSYSTEM_VENDOR_ID, size); 1128 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1129 PCI_CAPABILITY_LIST) { 1130 /* ROM BARs are unimplemented */ 1131 *val = 0; 1132 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 1133 PCI_INTERRUPT_PIN) { 1134 /* 1135 * Interrupt Line and Interrupt PIN are hard-wired to zero 1136 * because this front-end only supports message-signaled 1137 * interrupts. 1138 */ 1139 *val = 0; 1140 } else if (where + size <= CFG_PAGE_SIZE) { 1141 1142 spin_lock_irqsave(&hbus->config_lock, flags); 1143 if (hbus->use_calls) { 1144 phys_addr_t addr = hbus->mem_config->start + offset; 1145 1146 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1147 hpdev->desc.win_slot.slot); 1148 hv_pci_read_mmio(dev, addr, size, val); 1149 } else { 1150 void __iomem *addr = hbus->cfg_addr + offset; 1151 1152 /* Choose the function to be read. (See comment above) */ 1153 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1154 /* Make sure the function was chosen before reading. */ 1155 mb(); 1156 /* Read from that function's config space. */ 1157 switch (size) { 1158 case 1: 1159 *val = readb(addr); 1160 break; 1161 case 2: 1162 *val = readw(addr); 1163 break; 1164 default: 1165 *val = readl(addr); 1166 break; 1167 } 1168 /* 1169 * Make sure the read was done before we release the 1170 * spinlock allowing consecutive reads/writes. 1171 */ 1172 mb(); 1173 } 1174 spin_unlock_irqrestore(&hbus->config_lock, flags); 1175 } else { 1176 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1177 } 1178 } 1179 1180 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1181 { 1182 struct hv_pcibus_device *hbus = hpdev->hbus; 1183 struct device *dev = &hbus->hdev->device; 1184 u32 val; 1185 u16 ret; 1186 unsigned long flags; 1187 1188 spin_lock_irqsave(&hbus->config_lock, flags); 1189 1190 if (hbus->use_calls) { 1191 phys_addr_t addr = hbus->mem_config->start + 1192 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1193 1194 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1195 hpdev->desc.win_slot.slot); 1196 hv_pci_read_mmio(dev, addr, 2, &val); 1197 ret = val; /* Truncates to 16 bits */ 1198 } else { 1199 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1200 PCI_VENDOR_ID; 1201 /* Choose the function to be read. (See comment above) */ 1202 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1203 /* Make sure the function was chosen before we start reading. */ 1204 mb(); 1205 /* Read from that function's config space. */ 1206 ret = readw(addr); 1207 /* 1208 * mb() is not required here, because the 1209 * spin_unlock_irqrestore() is a barrier. 1210 */ 1211 } 1212 1213 spin_unlock_irqrestore(&hbus->config_lock, flags); 1214 1215 return ret; 1216 } 1217 1218 /** 1219 * _hv_pcifront_write_config() - Internal PCI config write 1220 * @hpdev: The PCI driver's representation of the device 1221 * @where: Offset within config space 1222 * @size: Size of the transfer 1223 * @val: The data being transferred 1224 */ 1225 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1226 int size, u32 val) 1227 { 1228 struct hv_pcibus_device *hbus = hpdev->hbus; 1229 struct device *dev = &hbus->hdev->device; 1230 int offset = where + CFG_PAGE_OFFSET; 1231 unsigned long flags; 1232 1233 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1234 where + size <= PCI_CAPABILITY_LIST) { 1235 /* SSIDs and ROM BARs are read-only */ 1236 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1237 spin_lock_irqsave(&hbus->config_lock, flags); 1238 1239 if (hbus->use_calls) { 1240 phys_addr_t addr = hbus->mem_config->start + offset; 1241 1242 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1243 hpdev->desc.win_slot.slot); 1244 hv_pci_write_mmio(dev, addr, size, val); 1245 } else { 1246 void __iomem *addr = hbus->cfg_addr + offset; 1247 1248 /* Choose the function to write. (See comment above) */ 1249 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1250 /* Make sure the function was chosen before writing. */ 1251 wmb(); 1252 /* Write to that function's config space. */ 1253 switch (size) { 1254 case 1: 1255 writeb(val, addr); 1256 break; 1257 case 2: 1258 writew(val, addr); 1259 break; 1260 default: 1261 writel(val, addr); 1262 break; 1263 } 1264 /* 1265 * Make sure the write was done before we release the 1266 * spinlock allowing consecutive reads/writes. 1267 */ 1268 mb(); 1269 } 1270 spin_unlock_irqrestore(&hbus->config_lock, flags); 1271 } else { 1272 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1273 } 1274 } 1275 1276 /** 1277 * hv_pcifront_read_config() - Read configuration space 1278 * @bus: PCI Bus structure 1279 * @devfn: Device/function 1280 * @where: Offset from base 1281 * @size: Byte/word/dword 1282 * @val: Value to be read 1283 * 1284 * Return: PCIBIOS_SUCCESSFUL on success 1285 * PCIBIOS_DEVICE_NOT_FOUND on failure 1286 */ 1287 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1288 int where, int size, u32 *val) 1289 { 1290 struct hv_pcibus_device *hbus = 1291 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1292 struct hv_pci_dev *hpdev; 1293 1294 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1295 if (!hpdev) 1296 return PCIBIOS_DEVICE_NOT_FOUND; 1297 1298 _hv_pcifront_read_config(hpdev, where, size, val); 1299 1300 put_pcichild(hpdev); 1301 return PCIBIOS_SUCCESSFUL; 1302 } 1303 1304 /** 1305 * hv_pcifront_write_config() - Write configuration space 1306 * @bus: PCI Bus structure 1307 * @devfn: Device/function 1308 * @where: Offset from base 1309 * @size: Byte/word/dword 1310 * @val: Value to be written to device 1311 * 1312 * Return: PCIBIOS_SUCCESSFUL on success 1313 * PCIBIOS_DEVICE_NOT_FOUND on failure 1314 */ 1315 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1316 int where, int size, u32 val) 1317 { 1318 struct hv_pcibus_device *hbus = 1319 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1320 struct hv_pci_dev *hpdev; 1321 1322 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1323 if (!hpdev) 1324 return PCIBIOS_DEVICE_NOT_FOUND; 1325 1326 _hv_pcifront_write_config(hpdev, where, size, val); 1327 1328 put_pcichild(hpdev); 1329 return PCIBIOS_SUCCESSFUL; 1330 } 1331 1332 /* PCIe operations */ 1333 static struct pci_ops hv_pcifront_ops = { 1334 .read = hv_pcifront_read_config, 1335 .write = hv_pcifront_write_config, 1336 }; 1337 1338 /* 1339 * Paravirtual backchannel 1340 * 1341 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1342 * communication between a VF driver and a PF driver. These 1343 * "configuration blocks" are similar in concept to PCI configuration space, 1344 * but instead of doing reads and writes in 32-bit chunks through a very slow 1345 * path, packets of up to 128 bytes can be sent or received asynchronously. 1346 * 1347 * Nearly every SR-IOV device contains just such a communications channel in 1348 * hardware, so using this one in software is usually optional. Using the 1349 * software channel, however, allows driver implementers to leverage software 1350 * tools that fuzz the communications channel looking for vulnerabilities. 1351 * 1352 * The usage model for these packets puts the responsibility for reading or 1353 * writing on the VF driver. The VF driver sends a read or a write packet, 1354 * indicating which "block" is being referred to by number. 1355 * 1356 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1357 * more of the first 64 blocks. This invalidation is delivered via a callback 1358 * supplied by the VF driver by this driver. 1359 * 1360 * No protocol is implied, except that supplied by the PF and VF drivers. 1361 */ 1362 1363 struct hv_read_config_compl { 1364 struct hv_pci_compl comp_pkt; 1365 void *buf; 1366 unsigned int len; 1367 unsigned int bytes_returned; 1368 }; 1369 1370 /** 1371 * hv_pci_read_config_compl() - Invoked when a response packet 1372 * for a read config block operation arrives. 1373 * @context: Identifies the read config operation 1374 * @resp: The response packet itself 1375 * @resp_packet_size: Size in bytes of the response packet 1376 */ 1377 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1378 int resp_packet_size) 1379 { 1380 struct hv_read_config_compl *comp = context; 1381 struct pci_read_block_response *read_resp = 1382 (struct pci_read_block_response *)resp; 1383 unsigned int data_len, hdr_len; 1384 1385 hdr_len = offsetof(struct pci_read_block_response, bytes); 1386 if (resp_packet_size < hdr_len) { 1387 comp->comp_pkt.completion_status = -1; 1388 goto out; 1389 } 1390 1391 data_len = resp_packet_size - hdr_len; 1392 if (data_len > 0 && read_resp->status == 0) { 1393 comp->bytes_returned = min(comp->len, data_len); 1394 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1395 } else { 1396 comp->bytes_returned = 0; 1397 } 1398 1399 comp->comp_pkt.completion_status = read_resp->status; 1400 out: 1401 complete(&comp->comp_pkt.host_event); 1402 } 1403 1404 /** 1405 * hv_read_config_block() - Sends a read config block request to 1406 * the back-end driver running in the Hyper-V parent partition. 1407 * @pdev: The PCI driver's representation for this device. 1408 * @buf: Buffer into which the config block will be copied. 1409 * @len: Size in bytes of buf. 1410 * @block_id: Identifies the config block which has been requested. 1411 * @bytes_returned: Size which came back from the back-end driver. 1412 * 1413 * Return: 0 on success, -errno on failure 1414 */ 1415 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1416 unsigned int len, unsigned int block_id, 1417 unsigned int *bytes_returned) 1418 { 1419 struct hv_pcibus_device *hbus = 1420 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1421 sysdata); 1422 struct { 1423 struct pci_packet pkt; 1424 char buf[sizeof(struct pci_read_block)]; 1425 } pkt; 1426 struct hv_read_config_compl comp_pkt; 1427 struct pci_read_block *read_blk; 1428 int ret; 1429 1430 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1431 return -EINVAL; 1432 1433 init_completion(&comp_pkt.comp_pkt.host_event); 1434 comp_pkt.buf = buf; 1435 comp_pkt.len = len; 1436 1437 memset(&pkt, 0, sizeof(pkt)); 1438 pkt.pkt.completion_func = hv_pci_read_config_compl; 1439 pkt.pkt.compl_ctxt = &comp_pkt; 1440 read_blk = (struct pci_read_block *)&pkt.pkt.message; 1441 read_blk->message_type.type = PCI_READ_BLOCK; 1442 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1443 read_blk->block_id = block_id; 1444 read_blk->bytes_requested = len; 1445 1446 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1447 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1448 VM_PKT_DATA_INBAND, 1449 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1450 if (ret) 1451 return ret; 1452 1453 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1454 if (ret) 1455 return ret; 1456 1457 if (comp_pkt.comp_pkt.completion_status != 0 || 1458 comp_pkt.bytes_returned == 0) { 1459 dev_err(&hbus->hdev->device, 1460 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1461 comp_pkt.comp_pkt.completion_status, 1462 comp_pkt.bytes_returned); 1463 return -EIO; 1464 } 1465 1466 *bytes_returned = comp_pkt.bytes_returned; 1467 return 0; 1468 } 1469 1470 /** 1471 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1472 * config block operation arrives. 1473 * @context: Identifies the write config operation 1474 * @resp: The response packet itself 1475 * @resp_packet_size: Size in bytes of the response packet 1476 */ 1477 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1478 int resp_packet_size) 1479 { 1480 struct hv_pci_compl *comp_pkt = context; 1481 1482 comp_pkt->completion_status = resp->status; 1483 complete(&comp_pkt->host_event); 1484 } 1485 1486 /** 1487 * hv_write_config_block() - Sends a write config block request to the 1488 * back-end driver running in the Hyper-V parent partition. 1489 * @pdev: The PCI driver's representation for this device. 1490 * @buf: Buffer from which the config block will be copied. 1491 * @len: Size in bytes of buf. 1492 * @block_id: Identifies the config block which is being written. 1493 * 1494 * Return: 0 on success, -errno on failure 1495 */ 1496 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1497 unsigned int len, unsigned int block_id) 1498 { 1499 struct hv_pcibus_device *hbus = 1500 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1501 sysdata); 1502 struct { 1503 struct pci_packet pkt; 1504 char buf[sizeof(struct pci_write_block)]; 1505 u32 reserved; 1506 } pkt; 1507 struct hv_pci_compl comp_pkt; 1508 struct pci_write_block *write_blk; 1509 u32 pkt_size; 1510 int ret; 1511 1512 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1513 return -EINVAL; 1514 1515 init_completion(&comp_pkt.host_event); 1516 1517 memset(&pkt, 0, sizeof(pkt)); 1518 pkt.pkt.completion_func = hv_pci_write_config_compl; 1519 pkt.pkt.compl_ctxt = &comp_pkt; 1520 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1521 write_blk->message_type.type = PCI_WRITE_BLOCK; 1522 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1523 write_blk->block_id = block_id; 1524 write_blk->byte_count = len; 1525 memcpy(write_blk->bytes, buf, len); 1526 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1527 /* 1528 * This quirk is required on some hosts shipped around 2018, because 1529 * these hosts don't check the pkt_size correctly (new hosts have been 1530 * fixed since early 2019). The quirk is also safe on very old hosts 1531 * and new hosts, because, on them, what really matters is the length 1532 * specified in write_blk->byte_count. 1533 */ 1534 pkt_size += sizeof(pkt.reserved); 1535 1536 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1537 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1538 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1539 if (ret) 1540 return ret; 1541 1542 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1543 if (ret) 1544 return ret; 1545 1546 if (comp_pkt.completion_status != 0) { 1547 dev_err(&hbus->hdev->device, 1548 "Write Config Block failed: 0x%x\n", 1549 comp_pkt.completion_status); 1550 return -EIO; 1551 } 1552 1553 return 0; 1554 } 1555 1556 /** 1557 * hv_register_block_invalidate() - Invoked when a config block invalidation 1558 * arrives from the back-end driver. 1559 * @pdev: The PCI driver's representation for this device. 1560 * @context: Identifies the device. 1561 * @block_invalidate: Identifies all of the blocks being invalidated. 1562 * 1563 * Return: 0 on success, -errno on failure 1564 */ 1565 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1566 void (*block_invalidate)(void *context, 1567 u64 block_mask)) 1568 { 1569 struct hv_pcibus_device *hbus = 1570 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1571 sysdata); 1572 struct hv_pci_dev *hpdev; 1573 1574 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1575 if (!hpdev) 1576 return -ENODEV; 1577 1578 hpdev->block_invalidate = block_invalidate; 1579 hpdev->invalidate_context = context; 1580 1581 put_pcichild(hpdev); 1582 return 0; 1583 1584 } 1585 1586 /* Interrupt management hooks */ 1587 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1588 struct tran_int_desc *int_desc) 1589 { 1590 struct pci_delete_interrupt *int_pkt; 1591 struct { 1592 struct pci_packet pkt; 1593 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1594 } ctxt; 1595 1596 if (!int_desc->vector_count) { 1597 kfree(int_desc); 1598 return; 1599 } 1600 memset(&ctxt, 0, sizeof(ctxt)); 1601 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1602 int_pkt->message_type.type = 1603 PCI_DELETE_INTERRUPT_MESSAGE; 1604 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1605 int_pkt->int_desc = *int_desc; 1606 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1607 0, VM_PKT_DATA_INBAND, 0); 1608 kfree(int_desc); 1609 } 1610 1611 /** 1612 * hv_msi_free() - Free the MSI. 1613 * @domain: The interrupt domain pointer 1614 * @info: Extra MSI-related context 1615 * @irq: Identifies the IRQ. 1616 * 1617 * The Hyper-V parent partition and hypervisor are tracking the 1618 * messages that are in use, keeping the interrupt redirection 1619 * table up to date. This callback sends a message that frees 1620 * the IRT entry and related tracking nonsense. 1621 */ 1622 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1623 unsigned int irq) 1624 { 1625 struct hv_pcibus_device *hbus; 1626 struct hv_pci_dev *hpdev; 1627 struct pci_dev *pdev; 1628 struct tran_int_desc *int_desc; 1629 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1630 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1631 1632 pdev = msi_desc_to_pci_dev(msi); 1633 hbus = info->data; 1634 int_desc = irq_data_get_irq_chip_data(irq_data); 1635 if (!int_desc) 1636 return; 1637 1638 irq_data->chip_data = NULL; 1639 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1640 if (!hpdev) { 1641 kfree(int_desc); 1642 return; 1643 } 1644 1645 hv_int_desc_free(hpdev, int_desc); 1646 put_pcichild(hpdev); 1647 } 1648 1649 static void hv_irq_mask(struct irq_data *data) 1650 { 1651 pci_msi_mask_irq(data); 1652 if (data->parent_data->chip->irq_mask) 1653 irq_chip_mask_parent(data); 1654 } 1655 1656 static void hv_irq_unmask(struct irq_data *data) 1657 { 1658 hv_arch_irq_unmask(data); 1659 1660 if (data->parent_data->chip->irq_unmask) 1661 irq_chip_unmask_parent(data); 1662 pci_msi_unmask_irq(data); 1663 } 1664 1665 struct compose_comp_ctxt { 1666 struct hv_pci_compl comp_pkt; 1667 struct tran_int_desc int_desc; 1668 }; 1669 1670 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1671 int resp_packet_size) 1672 { 1673 struct compose_comp_ctxt *comp_pkt = context; 1674 struct pci_create_int_response *int_resp = 1675 (struct pci_create_int_response *)resp; 1676 1677 if (resp_packet_size < sizeof(*int_resp)) { 1678 comp_pkt->comp_pkt.completion_status = -1; 1679 goto out; 1680 } 1681 comp_pkt->comp_pkt.completion_status = resp->status; 1682 comp_pkt->int_desc = int_resp->int_desc; 1683 out: 1684 complete(&comp_pkt->comp_pkt.host_event); 1685 } 1686 1687 static u32 hv_compose_msi_req_v1( 1688 struct pci_create_interrupt *int_pkt, 1689 u32 slot, u8 vector, u16 vector_count) 1690 { 1691 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1692 int_pkt->wslot.slot = slot; 1693 int_pkt->int_desc.vector = vector; 1694 int_pkt->int_desc.vector_count = vector_count; 1695 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1696 1697 /* 1698 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1699 * hv_irq_unmask(). 1700 */ 1701 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1702 1703 return sizeof(*int_pkt); 1704 } 1705 1706 /* 1707 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1708 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1709 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1710 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1711 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1712 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1713 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1714 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1715 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1716 * to spread out the pCPUs that it selects. 1717 * 1718 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1719 * to always return the same dummy vCPU, because a second call to 1720 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1721 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1722 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1723 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1724 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1725 * the same pCPU, even though the vCPUs will be spread out by later calls 1726 * to hv_irq_unmask(), but that is the best we can do now. 1727 * 1728 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1729 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1730 * enhancement is planned for a future version. With that enhancement, the 1731 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1732 * device will be spread across multiple pCPUs. 1733 */ 1734 1735 /* 1736 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1737 * by subsequent retarget in hv_irq_unmask(). 1738 */ 1739 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1740 { 1741 return cpumask_first_and(affinity, cpu_online_mask); 1742 } 1743 1744 /* 1745 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1746 */ 1747 static int hv_compose_multi_msi_req_get_cpu(void) 1748 { 1749 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1750 1751 /* -1 means starting with CPU 0 */ 1752 static int cpu_next = -1; 1753 1754 unsigned long flags; 1755 int cpu; 1756 1757 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1758 1759 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids, 1760 false); 1761 cpu = cpu_next; 1762 1763 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1764 1765 return cpu; 1766 } 1767 1768 static u32 hv_compose_msi_req_v2( 1769 struct pci_create_interrupt2 *int_pkt, int cpu, 1770 u32 slot, u8 vector, u16 vector_count) 1771 { 1772 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1773 int_pkt->wslot.slot = slot; 1774 int_pkt->int_desc.vector = vector; 1775 int_pkt->int_desc.vector_count = vector_count; 1776 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1777 int_pkt->int_desc.processor_array[0] = 1778 hv_cpu_number_to_vp_number(cpu); 1779 int_pkt->int_desc.processor_count = 1; 1780 1781 return sizeof(*int_pkt); 1782 } 1783 1784 static u32 hv_compose_msi_req_v3( 1785 struct pci_create_interrupt3 *int_pkt, int cpu, 1786 u32 slot, u32 vector, u16 vector_count) 1787 { 1788 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1789 int_pkt->wslot.slot = slot; 1790 int_pkt->int_desc.vector = vector; 1791 int_pkt->int_desc.reserved = 0; 1792 int_pkt->int_desc.vector_count = vector_count; 1793 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1794 int_pkt->int_desc.processor_array[0] = 1795 hv_cpu_number_to_vp_number(cpu); 1796 int_pkt->int_desc.processor_count = 1; 1797 1798 return sizeof(*int_pkt); 1799 } 1800 1801 /** 1802 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1803 * @data: Everything about this MSI 1804 * @msg: Buffer that is filled in by this function 1805 * 1806 * This function unpacks the IRQ looking for target CPU set, IDT 1807 * vector and mode and sends a message to the parent partition 1808 * asking for a mapping for that tuple in this partition. The 1809 * response supplies a data value and address to which that data 1810 * should be written to trigger that interrupt. 1811 */ 1812 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1813 { 1814 struct hv_pcibus_device *hbus; 1815 struct vmbus_channel *channel; 1816 struct hv_pci_dev *hpdev; 1817 struct pci_bus *pbus; 1818 struct pci_dev *pdev; 1819 const struct cpumask *dest; 1820 struct compose_comp_ctxt comp; 1821 struct tran_int_desc *int_desc; 1822 struct msi_desc *msi_desc; 1823 /* 1824 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1825 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1826 */ 1827 u16 vector_count; 1828 u32 vector; 1829 struct { 1830 struct pci_packet pci_pkt; 1831 union { 1832 struct pci_create_interrupt v1; 1833 struct pci_create_interrupt2 v2; 1834 struct pci_create_interrupt3 v3; 1835 } int_pkts; 1836 } __packed ctxt; 1837 bool multi_msi; 1838 u64 trans_id; 1839 u32 size; 1840 int ret; 1841 int cpu; 1842 1843 msi_desc = irq_data_get_msi_desc(data); 1844 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1845 msi_desc->nvec_used > 1; 1846 1847 /* Reuse the previous allocation */ 1848 if (data->chip_data && multi_msi) { 1849 int_desc = data->chip_data; 1850 msg->address_hi = int_desc->address >> 32; 1851 msg->address_lo = int_desc->address & 0xffffffff; 1852 msg->data = int_desc->data; 1853 return; 1854 } 1855 1856 pdev = msi_desc_to_pci_dev(msi_desc); 1857 dest = irq_data_get_effective_affinity_mask(data); 1858 pbus = pdev->bus; 1859 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1860 channel = hbus->hdev->channel; 1861 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1862 if (!hpdev) 1863 goto return_null_message; 1864 1865 /* Free any previous message that might have already been composed. */ 1866 if (data->chip_data && !multi_msi) { 1867 int_desc = data->chip_data; 1868 data->chip_data = NULL; 1869 hv_int_desc_free(hpdev, int_desc); 1870 } 1871 1872 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1873 if (!int_desc) 1874 goto drop_reference; 1875 1876 if (multi_msi) { 1877 /* 1878 * If this is not the first MSI of Multi MSI, we already have 1879 * a mapping. Can exit early. 1880 */ 1881 if (msi_desc->irq != data->irq) { 1882 data->chip_data = int_desc; 1883 int_desc->address = msi_desc->msg.address_lo | 1884 (u64)msi_desc->msg.address_hi << 32; 1885 int_desc->data = msi_desc->msg.data + 1886 (data->irq - msi_desc->irq); 1887 msg->address_hi = msi_desc->msg.address_hi; 1888 msg->address_lo = msi_desc->msg.address_lo; 1889 msg->data = int_desc->data; 1890 put_pcichild(hpdev); 1891 return; 1892 } 1893 /* 1894 * The vector we select here is a dummy value. The correct 1895 * value gets sent to the hypervisor in unmask(). This needs 1896 * to be aligned with the count, and also not zero. Multi-msi 1897 * is powers of 2 up to 32, so 32 will always work here. 1898 */ 1899 vector = 32; 1900 vector_count = msi_desc->nvec_used; 1901 cpu = hv_compose_multi_msi_req_get_cpu(); 1902 } else { 1903 vector = hv_msi_get_int_vector(data); 1904 vector_count = 1; 1905 cpu = hv_compose_msi_req_get_cpu(dest); 1906 } 1907 1908 /* 1909 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1910 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1911 * for better readability. 1912 */ 1913 memset(&ctxt, 0, sizeof(ctxt)); 1914 init_completion(&comp.comp_pkt.host_event); 1915 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1916 ctxt.pci_pkt.compl_ctxt = ∁ 1917 1918 switch (hbus->protocol_version) { 1919 case PCI_PROTOCOL_VERSION_1_1: 1920 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1921 hpdev->desc.win_slot.slot, 1922 (u8)vector, 1923 vector_count); 1924 break; 1925 1926 case PCI_PROTOCOL_VERSION_1_2: 1927 case PCI_PROTOCOL_VERSION_1_3: 1928 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1929 cpu, 1930 hpdev->desc.win_slot.slot, 1931 (u8)vector, 1932 vector_count); 1933 break; 1934 1935 case PCI_PROTOCOL_VERSION_1_4: 1936 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 1937 cpu, 1938 hpdev->desc.win_slot.slot, 1939 vector, 1940 vector_count); 1941 break; 1942 1943 default: 1944 /* As we only negotiate protocol versions known to this driver, 1945 * this path should never hit. However, this is it not a hot 1946 * path so we print a message to aid future updates. 1947 */ 1948 dev_err(&hbus->hdev->device, 1949 "Unexpected vPCI protocol, update driver."); 1950 goto free_int_desc; 1951 } 1952 1953 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1954 size, (unsigned long)&ctxt.pci_pkt, 1955 &trans_id, VM_PKT_DATA_INBAND, 1956 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1957 if (ret) { 1958 dev_err(&hbus->hdev->device, 1959 "Sending request for interrupt failed: 0x%x", 1960 comp.comp_pkt.completion_status); 1961 goto free_int_desc; 1962 } 1963 1964 /* 1965 * Prevents hv_pci_onchannelcallback() from running concurrently 1966 * in the tasklet. 1967 */ 1968 tasklet_disable_in_atomic(&channel->callback_event); 1969 1970 /* 1971 * Since this function is called with IRQ locks held, can't 1972 * do normal wait for completion; instead poll. 1973 */ 1974 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1975 unsigned long flags; 1976 1977 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1978 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1979 dev_err_once(&hbus->hdev->device, 1980 "the device has gone\n"); 1981 goto enable_tasklet; 1982 } 1983 1984 /* 1985 * Make sure that the ring buffer data structure doesn't get 1986 * freed while we dereference the ring buffer pointer. Test 1987 * for the channel's onchannel_callback being NULL within a 1988 * sched_lock critical section. See also the inline comments 1989 * in vmbus_reset_channel_cb(). 1990 */ 1991 spin_lock_irqsave(&channel->sched_lock, flags); 1992 if (unlikely(channel->onchannel_callback == NULL)) { 1993 spin_unlock_irqrestore(&channel->sched_lock, flags); 1994 goto enable_tasklet; 1995 } 1996 hv_pci_onchannelcallback(hbus); 1997 spin_unlock_irqrestore(&channel->sched_lock, flags); 1998 1999 udelay(100); 2000 } 2001 2002 tasklet_enable(&channel->callback_event); 2003 2004 if (comp.comp_pkt.completion_status < 0) { 2005 dev_err(&hbus->hdev->device, 2006 "Request for interrupt failed: 0x%x", 2007 comp.comp_pkt.completion_status); 2008 goto free_int_desc; 2009 } 2010 2011 /* 2012 * Record the assignment so that this can be unwound later. Using 2013 * irq_set_chip_data() here would be appropriate, but the lock it takes 2014 * is already held. 2015 */ 2016 *int_desc = comp.int_desc; 2017 data->chip_data = int_desc; 2018 2019 /* Pass up the result. */ 2020 msg->address_hi = comp.int_desc.address >> 32; 2021 msg->address_lo = comp.int_desc.address & 0xffffffff; 2022 msg->data = comp.int_desc.data; 2023 2024 put_pcichild(hpdev); 2025 return; 2026 2027 enable_tasklet: 2028 tasklet_enable(&channel->callback_event); 2029 /* 2030 * The completion packet on the stack becomes invalid after 'return'; 2031 * remove the ID from the VMbus requestor if the identifier is still 2032 * mapped to/associated with the packet. (The identifier could have 2033 * been 're-used', i.e., already removed and (re-)mapped.) 2034 * 2035 * Cf. hv_pci_onchannelcallback(). 2036 */ 2037 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2038 free_int_desc: 2039 kfree(int_desc); 2040 drop_reference: 2041 put_pcichild(hpdev); 2042 return_null_message: 2043 msg->address_hi = 0; 2044 msg->address_lo = 0; 2045 msg->data = 0; 2046 } 2047 2048 /* HW Interrupt Chip Descriptor */ 2049 static struct irq_chip hv_msi_irq_chip = { 2050 .name = "Hyper-V PCIe MSI", 2051 .irq_compose_msi_msg = hv_compose_msi_msg, 2052 .irq_set_affinity = irq_chip_set_affinity_parent, 2053 #ifdef CONFIG_X86 2054 .irq_ack = irq_chip_ack_parent, 2055 #elif defined(CONFIG_ARM64) 2056 .irq_eoi = irq_chip_eoi_parent, 2057 #endif 2058 .irq_mask = hv_irq_mask, 2059 .irq_unmask = hv_irq_unmask, 2060 }; 2061 2062 static struct msi_domain_ops hv_msi_ops = { 2063 .msi_prepare = hv_msi_prepare, 2064 .msi_free = hv_msi_free, 2065 }; 2066 2067 /** 2068 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2069 * @hbus: The root PCI bus 2070 * 2071 * This function creates an IRQ domain which will be used for 2072 * interrupts from devices that have been passed through. These 2073 * devices only support MSI and MSI-X, not line-based interrupts 2074 * or simulations of line-based interrupts through PCIe's 2075 * fabric-layer messages. Because interrupts are remapped, we 2076 * can support multi-message MSI here. 2077 * 2078 * Return: '0' on success and error value on failure 2079 */ 2080 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2081 { 2082 hbus->msi_info.chip = &hv_msi_irq_chip; 2083 hbus->msi_info.ops = &hv_msi_ops; 2084 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 2085 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 2086 MSI_FLAG_PCI_MSIX); 2087 hbus->msi_info.handler = FLOW_HANDLER; 2088 hbus->msi_info.handler_name = FLOW_NAME; 2089 hbus->msi_info.data = hbus; 2090 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 2091 &hbus->msi_info, 2092 hv_pci_get_root_domain()); 2093 if (!hbus->irq_domain) { 2094 dev_err(&hbus->hdev->device, 2095 "Failed to build an MSI IRQ domain\n"); 2096 return -ENODEV; 2097 } 2098 2099 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2100 2101 return 0; 2102 } 2103 2104 /** 2105 * get_bar_size() - Get the address space consumed by a BAR 2106 * @bar_val: Value that a BAR returned after -1 was written 2107 * to it. 2108 * 2109 * This function returns the size of the BAR, rounded up to 1 2110 * page. It has to be rounded up because the hypervisor's page 2111 * table entry that maps the BAR into the VM can't specify an 2112 * offset within a page. The invariant is that the hypervisor 2113 * must place any BARs of smaller than page length at the 2114 * beginning of a page. 2115 * 2116 * Return: Size in bytes of the consumed MMIO space. 2117 */ 2118 static u64 get_bar_size(u64 bar_val) 2119 { 2120 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2121 PAGE_SIZE); 2122 } 2123 2124 /** 2125 * survey_child_resources() - Total all MMIO requirements 2126 * @hbus: Root PCI bus, as understood by this driver 2127 */ 2128 static void survey_child_resources(struct hv_pcibus_device *hbus) 2129 { 2130 struct hv_pci_dev *hpdev; 2131 resource_size_t bar_size = 0; 2132 unsigned long flags; 2133 struct completion *event; 2134 u64 bar_val; 2135 int i; 2136 2137 /* If nobody is waiting on the answer, don't compute it. */ 2138 event = xchg(&hbus->survey_event, NULL); 2139 if (!event) 2140 return; 2141 2142 /* If the answer has already been computed, go with it. */ 2143 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2144 complete(event); 2145 return; 2146 } 2147 2148 spin_lock_irqsave(&hbus->device_list_lock, flags); 2149 2150 /* 2151 * Due to an interesting quirk of the PCI spec, all memory regions 2152 * for a child device are a power of 2 in size and aligned in memory, 2153 * so it's sufficient to just add them up without tracking alignment. 2154 */ 2155 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2156 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2157 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2158 dev_err(&hbus->hdev->device, 2159 "There's an I/O BAR in this list!\n"); 2160 2161 if (hpdev->probed_bar[i] != 0) { 2162 /* 2163 * A probed BAR has all the upper bits set that 2164 * can be changed. 2165 */ 2166 2167 bar_val = hpdev->probed_bar[i]; 2168 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2169 bar_val |= 2170 ((u64)hpdev->probed_bar[++i] << 32); 2171 else 2172 bar_val |= 0xffffffff00000000ULL; 2173 2174 bar_size = get_bar_size(bar_val); 2175 2176 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2177 hbus->high_mmio_space += bar_size; 2178 else 2179 hbus->low_mmio_space += bar_size; 2180 } 2181 } 2182 } 2183 2184 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2185 complete(event); 2186 } 2187 2188 /** 2189 * prepopulate_bars() - Fill in BARs with defaults 2190 * @hbus: Root PCI bus, as understood by this driver 2191 * 2192 * The core PCI driver code seems much, much happier if the BARs 2193 * for a device have values upon first scan. So fill them in. 2194 * The algorithm below works down from large sizes to small, 2195 * attempting to pack the assignments optimally. The assumption, 2196 * enforced in other parts of the code, is that the beginning of 2197 * the memory-mapped I/O space will be aligned on the largest 2198 * BAR size. 2199 */ 2200 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2201 { 2202 resource_size_t high_size = 0; 2203 resource_size_t low_size = 0; 2204 resource_size_t high_base = 0; 2205 resource_size_t low_base = 0; 2206 resource_size_t bar_size; 2207 struct hv_pci_dev *hpdev; 2208 unsigned long flags; 2209 u64 bar_val; 2210 u32 command; 2211 bool high; 2212 int i; 2213 2214 if (hbus->low_mmio_space) { 2215 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2216 low_base = hbus->low_mmio_res->start; 2217 } 2218 2219 if (hbus->high_mmio_space) { 2220 high_size = 1ULL << 2221 (63 - __builtin_clzll(hbus->high_mmio_space)); 2222 high_base = hbus->high_mmio_res->start; 2223 } 2224 2225 spin_lock_irqsave(&hbus->device_list_lock, flags); 2226 2227 /* 2228 * Clear the memory enable bit, in case it's already set. This occurs 2229 * in the suspend path of hibernation, where the device is suspended, 2230 * resumed and suspended again: see hibernation_snapshot() and 2231 * hibernation_platform_enter(). 2232 * 2233 * If the memory enable bit is already set, Hyper-V silently ignores 2234 * the below BAR updates, and the related PCI device driver can not 2235 * work, because reading from the device register(s) always returns 2236 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2237 */ 2238 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2239 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2240 command &= ~PCI_COMMAND_MEMORY; 2241 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2242 } 2243 2244 /* Pick addresses for the BARs. */ 2245 do { 2246 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2247 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2248 bar_val = hpdev->probed_bar[i]; 2249 if (bar_val == 0) 2250 continue; 2251 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2252 if (high) { 2253 bar_val |= 2254 ((u64)hpdev->probed_bar[i + 1] 2255 << 32); 2256 } else { 2257 bar_val |= 0xffffffffULL << 32; 2258 } 2259 bar_size = get_bar_size(bar_val); 2260 if (high) { 2261 if (high_size != bar_size) { 2262 i++; 2263 continue; 2264 } 2265 _hv_pcifront_write_config(hpdev, 2266 PCI_BASE_ADDRESS_0 + (4 * i), 2267 4, 2268 (u32)(high_base & 0xffffff00)); 2269 i++; 2270 _hv_pcifront_write_config(hpdev, 2271 PCI_BASE_ADDRESS_0 + (4 * i), 2272 4, (u32)(high_base >> 32)); 2273 high_base += bar_size; 2274 } else { 2275 if (low_size != bar_size) 2276 continue; 2277 _hv_pcifront_write_config(hpdev, 2278 PCI_BASE_ADDRESS_0 + (4 * i), 2279 4, 2280 (u32)(low_base & 0xffffff00)); 2281 low_base += bar_size; 2282 } 2283 } 2284 if (high_size <= 1 && low_size <= 1) { 2285 /* 2286 * No need to set the PCI_COMMAND_MEMORY bit as 2287 * the core PCI driver doesn't require the bit 2288 * to be pre-set. Actually here we intentionally 2289 * keep the bit off so that the PCI BAR probing 2290 * in the core PCI driver doesn't cause Hyper-V 2291 * to unnecessarily unmap/map the virtual BARs 2292 * from/to the physical BARs multiple times. 2293 * This reduces the VM boot time significantly 2294 * if the BAR sizes are huge. 2295 */ 2296 break; 2297 } 2298 } 2299 2300 high_size >>= 1; 2301 low_size >>= 1; 2302 } while (high_size || low_size); 2303 2304 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2305 } 2306 2307 /* 2308 * Assign entries in sysfs pci slot directory. 2309 * 2310 * Note that this function does not need to lock the children list 2311 * because it is called from pci_devices_present_work which 2312 * is serialized with hv_eject_device_work because they are on the 2313 * same ordered workqueue. Therefore hbus->children list will not change 2314 * even when pci_create_slot sleeps. 2315 */ 2316 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2317 { 2318 struct hv_pci_dev *hpdev; 2319 char name[SLOT_NAME_SIZE]; 2320 int slot_nr; 2321 2322 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2323 if (hpdev->pci_slot) 2324 continue; 2325 2326 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2327 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2328 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2329 name, NULL); 2330 if (IS_ERR(hpdev->pci_slot)) { 2331 pr_warn("pci_create slot %s failed\n", name); 2332 hpdev->pci_slot = NULL; 2333 } 2334 } 2335 } 2336 2337 /* 2338 * Remove entries in sysfs pci slot directory. 2339 */ 2340 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2341 { 2342 struct hv_pci_dev *hpdev; 2343 2344 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2345 if (!hpdev->pci_slot) 2346 continue; 2347 pci_destroy_slot(hpdev->pci_slot); 2348 hpdev->pci_slot = NULL; 2349 } 2350 } 2351 2352 /* 2353 * Set NUMA node for the devices on the bus 2354 */ 2355 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2356 { 2357 struct pci_dev *dev; 2358 struct pci_bus *bus = hbus->bridge->bus; 2359 struct hv_pci_dev *hv_dev; 2360 2361 list_for_each_entry(dev, &bus->devices, bus_list) { 2362 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2363 if (!hv_dev) 2364 continue; 2365 2366 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2367 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2368 /* 2369 * The kernel may boot with some NUMA nodes offline 2370 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2371 * "numa=off". In those cases, adjust the host provided 2372 * NUMA node to a valid NUMA node used by the kernel. 2373 */ 2374 set_dev_node(&dev->dev, 2375 numa_map_to_online_node( 2376 hv_dev->desc.virtual_numa_node)); 2377 2378 put_pcichild(hv_dev); 2379 } 2380 } 2381 2382 /** 2383 * create_root_hv_pci_bus() - Expose a new root PCI bus 2384 * @hbus: Root PCI bus, as understood by this driver 2385 * 2386 * Return: 0 on success, -errno on failure 2387 */ 2388 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2389 { 2390 int error; 2391 struct pci_host_bridge *bridge = hbus->bridge; 2392 2393 bridge->dev.parent = &hbus->hdev->device; 2394 bridge->sysdata = &hbus->sysdata; 2395 bridge->ops = &hv_pcifront_ops; 2396 2397 error = pci_scan_root_bus_bridge(bridge); 2398 if (error) 2399 return error; 2400 2401 pci_lock_rescan_remove(); 2402 hv_pci_assign_numa_node(hbus); 2403 pci_bus_assign_resources(bridge->bus); 2404 hv_pci_assign_slots(hbus); 2405 pci_bus_add_devices(bridge->bus); 2406 pci_unlock_rescan_remove(); 2407 hbus->state = hv_pcibus_installed; 2408 return 0; 2409 } 2410 2411 struct q_res_req_compl { 2412 struct completion host_event; 2413 struct hv_pci_dev *hpdev; 2414 }; 2415 2416 /** 2417 * q_resource_requirements() - Query Resource Requirements 2418 * @context: The completion context. 2419 * @resp: The response that came from the host. 2420 * @resp_packet_size: The size in bytes of resp. 2421 * 2422 * This function is invoked on completion of a Query Resource 2423 * Requirements packet. 2424 */ 2425 static void q_resource_requirements(void *context, struct pci_response *resp, 2426 int resp_packet_size) 2427 { 2428 struct q_res_req_compl *completion = context; 2429 struct pci_q_res_req_response *q_res_req = 2430 (struct pci_q_res_req_response *)resp; 2431 s32 status; 2432 int i; 2433 2434 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2435 if (status < 0) { 2436 dev_err(&completion->hpdev->hbus->hdev->device, 2437 "query resource requirements failed: %x\n", 2438 status); 2439 } else { 2440 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2441 completion->hpdev->probed_bar[i] = 2442 q_res_req->probed_bar[i]; 2443 } 2444 } 2445 2446 complete(&completion->host_event); 2447 } 2448 2449 /** 2450 * new_pcichild_device() - Create a new child device 2451 * @hbus: The internal struct tracking this root PCI bus. 2452 * @desc: The information supplied so far from the host 2453 * about the device. 2454 * 2455 * This function creates the tracking structure for a new child 2456 * device and kicks off the process of figuring out what it is. 2457 * 2458 * Return: Pointer to the new tracking struct 2459 */ 2460 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2461 struct hv_pcidev_description *desc) 2462 { 2463 struct hv_pci_dev *hpdev; 2464 struct pci_child_message *res_req; 2465 struct q_res_req_compl comp_pkt; 2466 struct { 2467 struct pci_packet init_packet; 2468 u8 buffer[sizeof(struct pci_child_message)]; 2469 } pkt; 2470 unsigned long flags; 2471 int ret; 2472 2473 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2474 if (!hpdev) 2475 return NULL; 2476 2477 hpdev->hbus = hbus; 2478 2479 memset(&pkt, 0, sizeof(pkt)); 2480 init_completion(&comp_pkt.host_event); 2481 comp_pkt.hpdev = hpdev; 2482 pkt.init_packet.compl_ctxt = &comp_pkt; 2483 pkt.init_packet.completion_func = q_resource_requirements; 2484 res_req = (struct pci_child_message *)&pkt.init_packet.message; 2485 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2486 res_req->wslot.slot = desc->win_slot.slot; 2487 2488 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2489 sizeof(struct pci_child_message), 2490 (unsigned long)&pkt.init_packet, 2491 VM_PKT_DATA_INBAND, 2492 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2493 if (ret) 2494 goto error; 2495 2496 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2497 goto error; 2498 2499 hpdev->desc = *desc; 2500 refcount_set(&hpdev->refs, 1); 2501 get_pcichild(hpdev); 2502 spin_lock_irqsave(&hbus->device_list_lock, flags); 2503 2504 list_add_tail(&hpdev->list_entry, &hbus->children); 2505 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2506 return hpdev; 2507 2508 error: 2509 kfree(hpdev); 2510 return NULL; 2511 } 2512 2513 /** 2514 * get_pcichild_wslot() - Find device from slot 2515 * @hbus: Root PCI bus, as understood by this driver 2516 * @wslot: Location on the bus 2517 * 2518 * This function looks up a PCI device and returns the internal 2519 * representation of it. It acquires a reference on it, so that 2520 * the device won't be deleted while somebody is using it. The 2521 * caller is responsible for calling put_pcichild() to release 2522 * this reference. 2523 * 2524 * Return: Internal representation of a PCI device 2525 */ 2526 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2527 u32 wslot) 2528 { 2529 unsigned long flags; 2530 struct hv_pci_dev *iter, *hpdev = NULL; 2531 2532 spin_lock_irqsave(&hbus->device_list_lock, flags); 2533 list_for_each_entry(iter, &hbus->children, list_entry) { 2534 if (iter->desc.win_slot.slot == wslot) { 2535 hpdev = iter; 2536 get_pcichild(hpdev); 2537 break; 2538 } 2539 } 2540 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2541 2542 return hpdev; 2543 } 2544 2545 /** 2546 * pci_devices_present_work() - Handle new list of child devices 2547 * @work: Work struct embedded in struct hv_dr_work 2548 * 2549 * "Bus Relations" is the Windows term for "children of this 2550 * bus." The terminology is preserved here for people trying to 2551 * debug the interaction between Hyper-V and Linux. This 2552 * function is called when the parent partition reports a list 2553 * of functions that should be observed under this PCI Express 2554 * port (bus). 2555 * 2556 * This function updates the list, and must tolerate being 2557 * called multiple times with the same information. The typical 2558 * number of child devices is one, with very atypical cases 2559 * involving three or four, so the algorithms used here can be 2560 * simple and inefficient. 2561 * 2562 * It must also treat the omission of a previously observed device as 2563 * notification that the device no longer exists. 2564 * 2565 * Note that this function is serialized with hv_eject_device_work(), 2566 * because both are pushed to the ordered workqueue hbus->wq. 2567 */ 2568 static void pci_devices_present_work(struct work_struct *work) 2569 { 2570 u32 child_no; 2571 bool found; 2572 struct hv_pcidev_description *new_desc; 2573 struct hv_pci_dev *hpdev; 2574 struct hv_pcibus_device *hbus; 2575 struct list_head removed; 2576 struct hv_dr_work *dr_wrk; 2577 struct hv_dr_state *dr = NULL; 2578 unsigned long flags; 2579 2580 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2581 hbus = dr_wrk->bus; 2582 kfree(dr_wrk); 2583 2584 INIT_LIST_HEAD(&removed); 2585 2586 /* Pull this off the queue and process it if it was the last one. */ 2587 spin_lock_irqsave(&hbus->device_list_lock, flags); 2588 while (!list_empty(&hbus->dr_list)) { 2589 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2590 list_entry); 2591 list_del(&dr->list_entry); 2592 2593 /* Throw this away if the list still has stuff in it. */ 2594 if (!list_empty(&hbus->dr_list)) { 2595 kfree(dr); 2596 continue; 2597 } 2598 } 2599 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2600 2601 if (!dr) 2602 return; 2603 2604 mutex_lock(&hbus->state_lock); 2605 2606 /* First, mark all existing children as reported missing. */ 2607 spin_lock_irqsave(&hbus->device_list_lock, flags); 2608 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2609 hpdev->reported_missing = true; 2610 } 2611 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2612 2613 /* Next, add back any reported devices. */ 2614 for (child_no = 0; child_no < dr->device_count; child_no++) { 2615 found = false; 2616 new_desc = &dr->func[child_no]; 2617 2618 spin_lock_irqsave(&hbus->device_list_lock, flags); 2619 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2620 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2621 (hpdev->desc.v_id == new_desc->v_id) && 2622 (hpdev->desc.d_id == new_desc->d_id) && 2623 (hpdev->desc.ser == new_desc->ser)) { 2624 hpdev->reported_missing = false; 2625 found = true; 2626 } 2627 } 2628 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2629 2630 if (!found) { 2631 hpdev = new_pcichild_device(hbus, new_desc); 2632 if (!hpdev) 2633 dev_err(&hbus->hdev->device, 2634 "couldn't record a child device.\n"); 2635 } 2636 } 2637 2638 /* Move missing children to a list on the stack. */ 2639 spin_lock_irqsave(&hbus->device_list_lock, flags); 2640 do { 2641 found = false; 2642 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2643 if (hpdev->reported_missing) { 2644 found = true; 2645 put_pcichild(hpdev); 2646 list_move_tail(&hpdev->list_entry, &removed); 2647 break; 2648 } 2649 } 2650 } while (found); 2651 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2652 2653 /* Delete everything that should no longer exist. */ 2654 while (!list_empty(&removed)) { 2655 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2656 list_entry); 2657 list_del(&hpdev->list_entry); 2658 2659 if (hpdev->pci_slot) 2660 pci_destroy_slot(hpdev->pci_slot); 2661 2662 put_pcichild(hpdev); 2663 } 2664 2665 switch (hbus->state) { 2666 case hv_pcibus_installed: 2667 /* 2668 * Tell the core to rescan bus 2669 * because there may have been changes. 2670 */ 2671 pci_lock_rescan_remove(); 2672 pci_scan_child_bus(hbus->bridge->bus); 2673 hv_pci_assign_numa_node(hbus); 2674 hv_pci_assign_slots(hbus); 2675 pci_unlock_rescan_remove(); 2676 break; 2677 2678 case hv_pcibus_init: 2679 case hv_pcibus_probed: 2680 survey_child_resources(hbus); 2681 break; 2682 2683 default: 2684 break; 2685 } 2686 2687 mutex_unlock(&hbus->state_lock); 2688 2689 kfree(dr); 2690 } 2691 2692 /** 2693 * hv_pci_start_relations_work() - Queue work to start device discovery 2694 * @hbus: Root PCI bus, as understood by this driver 2695 * @dr: The list of children returned from host 2696 * 2697 * Return: 0 on success, -errno on failure 2698 */ 2699 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2700 struct hv_dr_state *dr) 2701 { 2702 struct hv_dr_work *dr_wrk; 2703 unsigned long flags; 2704 bool pending_dr; 2705 2706 if (hbus->state == hv_pcibus_removing) { 2707 dev_info(&hbus->hdev->device, 2708 "PCI VMBus BUS_RELATIONS: ignored\n"); 2709 return -ENOENT; 2710 } 2711 2712 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2713 if (!dr_wrk) 2714 return -ENOMEM; 2715 2716 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2717 dr_wrk->bus = hbus; 2718 2719 spin_lock_irqsave(&hbus->device_list_lock, flags); 2720 /* 2721 * If pending_dr is true, we have already queued a work, 2722 * which will see the new dr. Otherwise, we need to 2723 * queue a new work. 2724 */ 2725 pending_dr = !list_empty(&hbus->dr_list); 2726 list_add_tail(&dr->list_entry, &hbus->dr_list); 2727 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2728 2729 if (pending_dr) 2730 kfree(dr_wrk); 2731 else 2732 queue_work(hbus->wq, &dr_wrk->wrk); 2733 2734 return 0; 2735 } 2736 2737 /** 2738 * hv_pci_devices_present() - Handle list of new children 2739 * @hbus: Root PCI bus, as understood by this driver 2740 * @relations: Packet from host listing children 2741 * 2742 * Process a new list of devices on the bus. The list of devices is 2743 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2744 * whenever a new list of devices for this bus appears. 2745 */ 2746 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2747 struct pci_bus_relations *relations) 2748 { 2749 struct hv_dr_state *dr; 2750 int i; 2751 2752 dr = kzalloc(struct_size(dr, func, relations->device_count), 2753 GFP_NOWAIT); 2754 if (!dr) 2755 return; 2756 2757 dr->device_count = relations->device_count; 2758 for (i = 0; i < dr->device_count; i++) { 2759 dr->func[i].v_id = relations->func[i].v_id; 2760 dr->func[i].d_id = relations->func[i].d_id; 2761 dr->func[i].rev = relations->func[i].rev; 2762 dr->func[i].prog_intf = relations->func[i].prog_intf; 2763 dr->func[i].subclass = relations->func[i].subclass; 2764 dr->func[i].base_class = relations->func[i].base_class; 2765 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2766 dr->func[i].win_slot = relations->func[i].win_slot; 2767 dr->func[i].ser = relations->func[i].ser; 2768 } 2769 2770 if (hv_pci_start_relations_work(hbus, dr)) 2771 kfree(dr); 2772 } 2773 2774 /** 2775 * hv_pci_devices_present2() - Handle list of new children 2776 * @hbus: Root PCI bus, as understood by this driver 2777 * @relations: Packet from host listing children 2778 * 2779 * This function is the v2 version of hv_pci_devices_present() 2780 */ 2781 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2782 struct pci_bus_relations2 *relations) 2783 { 2784 struct hv_dr_state *dr; 2785 int i; 2786 2787 dr = kzalloc(struct_size(dr, func, relations->device_count), 2788 GFP_NOWAIT); 2789 if (!dr) 2790 return; 2791 2792 dr->device_count = relations->device_count; 2793 for (i = 0; i < dr->device_count; i++) { 2794 dr->func[i].v_id = relations->func[i].v_id; 2795 dr->func[i].d_id = relations->func[i].d_id; 2796 dr->func[i].rev = relations->func[i].rev; 2797 dr->func[i].prog_intf = relations->func[i].prog_intf; 2798 dr->func[i].subclass = relations->func[i].subclass; 2799 dr->func[i].base_class = relations->func[i].base_class; 2800 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2801 dr->func[i].win_slot = relations->func[i].win_slot; 2802 dr->func[i].ser = relations->func[i].ser; 2803 dr->func[i].flags = relations->func[i].flags; 2804 dr->func[i].virtual_numa_node = 2805 relations->func[i].virtual_numa_node; 2806 } 2807 2808 if (hv_pci_start_relations_work(hbus, dr)) 2809 kfree(dr); 2810 } 2811 2812 /** 2813 * hv_eject_device_work() - Asynchronously handles ejection 2814 * @work: Work struct embedded in internal device struct 2815 * 2816 * This function handles ejecting a device. Windows will 2817 * attempt to gracefully eject a device, waiting 60 seconds to 2818 * hear back from the guest OS that this completed successfully. 2819 * If this timer expires, the device will be forcibly removed. 2820 */ 2821 static void hv_eject_device_work(struct work_struct *work) 2822 { 2823 struct pci_eject_response *ejct_pkt; 2824 struct hv_pcibus_device *hbus; 2825 struct hv_pci_dev *hpdev; 2826 struct pci_dev *pdev; 2827 unsigned long flags; 2828 int wslot; 2829 struct { 2830 struct pci_packet pkt; 2831 u8 buffer[sizeof(struct pci_eject_response)]; 2832 } ctxt; 2833 2834 hpdev = container_of(work, struct hv_pci_dev, wrk); 2835 hbus = hpdev->hbus; 2836 2837 mutex_lock(&hbus->state_lock); 2838 2839 /* 2840 * Ejection can come before or after the PCI bus has been set up, so 2841 * attempt to find it and tear down the bus state, if it exists. This 2842 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2843 * because hbus->bridge->bus may not exist yet. 2844 */ 2845 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2846 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2847 if (pdev) { 2848 pci_lock_rescan_remove(); 2849 pci_stop_and_remove_bus_device(pdev); 2850 pci_dev_put(pdev); 2851 pci_unlock_rescan_remove(); 2852 } 2853 2854 spin_lock_irqsave(&hbus->device_list_lock, flags); 2855 list_del(&hpdev->list_entry); 2856 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2857 2858 if (hpdev->pci_slot) 2859 pci_destroy_slot(hpdev->pci_slot); 2860 2861 memset(&ctxt, 0, sizeof(ctxt)); 2862 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2863 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2864 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2865 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2866 sizeof(*ejct_pkt), 0, 2867 VM_PKT_DATA_INBAND, 0); 2868 2869 /* For the get_pcichild() in hv_pci_eject_device() */ 2870 put_pcichild(hpdev); 2871 /* For the two refs got in new_pcichild_device() */ 2872 put_pcichild(hpdev); 2873 put_pcichild(hpdev); 2874 /* hpdev has been freed. Do not use it any more. */ 2875 2876 mutex_unlock(&hbus->state_lock); 2877 } 2878 2879 /** 2880 * hv_pci_eject_device() - Handles device ejection 2881 * @hpdev: Internal device tracking struct 2882 * 2883 * This function is invoked when an ejection packet arrives. It 2884 * just schedules work so that we don't re-enter the packet 2885 * delivery code handling the ejection. 2886 */ 2887 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2888 { 2889 struct hv_pcibus_device *hbus = hpdev->hbus; 2890 struct hv_device *hdev = hbus->hdev; 2891 2892 if (hbus->state == hv_pcibus_removing) { 2893 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2894 return; 2895 } 2896 2897 get_pcichild(hpdev); 2898 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2899 queue_work(hbus->wq, &hpdev->wrk); 2900 } 2901 2902 /** 2903 * hv_pci_onchannelcallback() - Handles incoming packets 2904 * @context: Internal bus tracking struct 2905 * 2906 * This function is invoked whenever the host sends a packet to 2907 * this channel (which is private to this root PCI bus). 2908 */ 2909 static void hv_pci_onchannelcallback(void *context) 2910 { 2911 const int packet_size = 0x100; 2912 int ret; 2913 struct hv_pcibus_device *hbus = context; 2914 struct vmbus_channel *chan = hbus->hdev->channel; 2915 u32 bytes_recvd; 2916 u64 req_id, req_addr; 2917 struct vmpacket_descriptor *desc; 2918 unsigned char *buffer; 2919 int bufferlen = packet_size; 2920 struct pci_packet *comp_packet; 2921 struct pci_response *response; 2922 struct pci_incoming_message *new_message; 2923 struct pci_bus_relations *bus_rel; 2924 struct pci_bus_relations2 *bus_rel2; 2925 struct pci_dev_inval_block *inval; 2926 struct pci_dev_incoming *dev_message; 2927 struct hv_pci_dev *hpdev; 2928 unsigned long flags; 2929 2930 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2931 if (!buffer) 2932 return; 2933 2934 while (1) { 2935 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 2936 &bytes_recvd, &req_id); 2937 2938 if (ret == -ENOBUFS) { 2939 kfree(buffer); 2940 /* Handle large packet */ 2941 bufferlen = bytes_recvd; 2942 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2943 if (!buffer) 2944 return; 2945 continue; 2946 } 2947 2948 /* Zero length indicates there are no more packets. */ 2949 if (ret || !bytes_recvd) 2950 break; 2951 2952 /* 2953 * All incoming packets must be at least as large as a 2954 * response. 2955 */ 2956 if (bytes_recvd <= sizeof(struct pci_response)) 2957 continue; 2958 desc = (struct vmpacket_descriptor *)buffer; 2959 2960 switch (desc->type) { 2961 case VM_PKT_COMP: 2962 2963 lock_requestor(chan, flags); 2964 req_addr = __vmbus_request_addr_match(chan, req_id, 2965 VMBUS_RQST_ADDR_ANY); 2966 if (req_addr == VMBUS_RQST_ERROR) { 2967 unlock_requestor(chan, flags); 2968 dev_err(&hbus->hdev->device, 2969 "Invalid transaction ID %llx\n", 2970 req_id); 2971 break; 2972 } 2973 comp_packet = (struct pci_packet *)req_addr; 2974 response = (struct pci_response *)buffer; 2975 /* 2976 * Call ->completion_func() within the critical section to make 2977 * sure that the packet pointer is still valid during the call: 2978 * here 'valid' means that there's a task still waiting for the 2979 * completion, and that the packet data is still on the waiting 2980 * task's stack. Cf. hv_compose_msi_msg(). 2981 */ 2982 comp_packet->completion_func(comp_packet->compl_ctxt, 2983 response, 2984 bytes_recvd); 2985 unlock_requestor(chan, flags); 2986 break; 2987 2988 case VM_PKT_DATA_INBAND: 2989 2990 new_message = (struct pci_incoming_message *)buffer; 2991 switch (new_message->message_type.type) { 2992 case PCI_BUS_RELATIONS: 2993 2994 bus_rel = (struct pci_bus_relations *)buffer; 2995 if (bytes_recvd < sizeof(*bus_rel) || 2996 bytes_recvd < 2997 struct_size(bus_rel, func, 2998 bus_rel->device_count)) { 2999 dev_err(&hbus->hdev->device, 3000 "bus relations too small\n"); 3001 break; 3002 } 3003 3004 hv_pci_devices_present(hbus, bus_rel); 3005 break; 3006 3007 case PCI_BUS_RELATIONS2: 3008 3009 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3010 if (bytes_recvd < sizeof(*bus_rel2) || 3011 bytes_recvd < 3012 struct_size(bus_rel2, func, 3013 bus_rel2->device_count)) { 3014 dev_err(&hbus->hdev->device, 3015 "bus relations v2 too small\n"); 3016 break; 3017 } 3018 3019 hv_pci_devices_present2(hbus, bus_rel2); 3020 break; 3021 3022 case PCI_EJECT: 3023 3024 dev_message = (struct pci_dev_incoming *)buffer; 3025 if (bytes_recvd < sizeof(*dev_message)) { 3026 dev_err(&hbus->hdev->device, 3027 "eject message too small\n"); 3028 break; 3029 } 3030 hpdev = get_pcichild_wslot(hbus, 3031 dev_message->wslot.slot); 3032 if (hpdev) { 3033 hv_pci_eject_device(hpdev); 3034 put_pcichild(hpdev); 3035 } 3036 break; 3037 3038 case PCI_INVALIDATE_BLOCK: 3039 3040 inval = (struct pci_dev_inval_block *)buffer; 3041 if (bytes_recvd < sizeof(*inval)) { 3042 dev_err(&hbus->hdev->device, 3043 "invalidate message too small\n"); 3044 break; 3045 } 3046 hpdev = get_pcichild_wslot(hbus, 3047 inval->wslot.slot); 3048 if (hpdev) { 3049 if (hpdev->block_invalidate) { 3050 hpdev->block_invalidate( 3051 hpdev->invalidate_context, 3052 inval->block_mask); 3053 } 3054 put_pcichild(hpdev); 3055 } 3056 break; 3057 3058 default: 3059 dev_warn(&hbus->hdev->device, 3060 "Unimplemented protocol message %x\n", 3061 new_message->message_type.type); 3062 break; 3063 } 3064 break; 3065 3066 default: 3067 dev_err(&hbus->hdev->device, 3068 "unhandled packet type %d, tid %llx len %d\n", 3069 desc->type, req_id, bytes_recvd); 3070 break; 3071 } 3072 } 3073 3074 kfree(buffer); 3075 } 3076 3077 /** 3078 * hv_pci_protocol_negotiation() - Set up protocol 3079 * @hdev: VMBus's tracking struct for this root PCI bus. 3080 * @version: Array of supported channel protocol versions in 3081 * the order of probing - highest go first. 3082 * @num_version: Number of elements in the version array. 3083 * 3084 * This driver is intended to support running on Windows 10 3085 * (server) and later versions. It will not run on earlier 3086 * versions, as they assume that many of the operations which 3087 * Linux needs accomplished with a spinlock held were done via 3088 * asynchronous messaging via VMBus. Windows 10 increases the 3089 * surface area of PCI emulation so that these actions can take 3090 * place by suspending a virtual processor for their duration. 3091 * 3092 * This function negotiates the channel protocol version, 3093 * failing if the host doesn't support the necessary protocol 3094 * level. 3095 */ 3096 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3097 enum pci_protocol_version_t version[], 3098 int num_version) 3099 { 3100 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3101 struct pci_version_request *version_req; 3102 struct hv_pci_compl comp_pkt; 3103 struct pci_packet *pkt; 3104 int ret; 3105 int i; 3106 3107 /* 3108 * Initiate the handshake with the host and negotiate 3109 * a version that the host can support. We start with the 3110 * highest version number and go down if the host cannot 3111 * support it. 3112 */ 3113 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3114 if (!pkt) 3115 return -ENOMEM; 3116 3117 init_completion(&comp_pkt.host_event); 3118 pkt->completion_func = hv_pci_generic_compl; 3119 pkt->compl_ctxt = &comp_pkt; 3120 version_req = (struct pci_version_request *)&pkt->message; 3121 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3122 3123 for (i = 0; i < num_version; i++) { 3124 version_req->protocol_version = version[i]; 3125 ret = vmbus_sendpacket(hdev->channel, version_req, 3126 sizeof(struct pci_version_request), 3127 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3128 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3129 if (!ret) 3130 ret = wait_for_response(hdev, &comp_pkt.host_event); 3131 3132 if (ret) { 3133 dev_err(&hdev->device, 3134 "PCI Pass-through VSP failed to request version: %d", 3135 ret); 3136 goto exit; 3137 } 3138 3139 if (comp_pkt.completion_status >= 0) { 3140 hbus->protocol_version = version[i]; 3141 dev_info(&hdev->device, 3142 "PCI VMBus probing: Using version %#x\n", 3143 hbus->protocol_version); 3144 goto exit; 3145 } 3146 3147 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3148 dev_err(&hdev->device, 3149 "PCI Pass-through VSP failed version request: %#x", 3150 comp_pkt.completion_status); 3151 ret = -EPROTO; 3152 goto exit; 3153 } 3154 3155 reinit_completion(&comp_pkt.host_event); 3156 } 3157 3158 dev_err(&hdev->device, 3159 "PCI pass-through VSP failed to find supported version"); 3160 ret = -EPROTO; 3161 3162 exit: 3163 kfree(pkt); 3164 return ret; 3165 } 3166 3167 /** 3168 * hv_pci_free_bridge_windows() - Release memory regions for the 3169 * bus 3170 * @hbus: Root PCI bus, as understood by this driver 3171 */ 3172 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3173 { 3174 /* 3175 * Set the resources back to the way they looked when they 3176 * were allocated by setting IORESOURCE_BUSY again. 3177 */ 3178 3179 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3180 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3181 vmbus_free_mmio(hbus->low_mmio_res->start, 3182 resource_size(hbus->low_mmio_res)); 3183 } 3184 3185 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3186 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3187 vmbus_free_mmio(hbus->high_mmio_res->start, 3188 resource_size(hbus->high_mmio_res)); 3189 } 3190 } 3191 3192 /** 3193 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3194 * for the bus 3195 * @hbus: Root PCI bus, as understood by this driver 3196 * 3197 * This function calls vmbus_allocate_mmio(), which is itself a 3198 * bit of a compromise. Ideally, we might change the pnp layer 3199 * in the kernel such that it comprehends either PCI devices 3200 * which are "grandchildren of ACPI," with some intermediate bus 3201 * node (in this case, VMBus) or change it such that it 3202 * understands VMBus. The pnp layer, however, has been declared 3203 * deprecated, and not subject to change. 3204 * 3205 * The workaround, implemented here, is to ask VMBus to allocate 3206 * MMIO space for this bus. VMBus itself knows which ranges are 3207 * appropriate by looking at its own ACPI objects. Then, after 3208 * these ranges are claimed, they're modified to look like they 3209 * would have looked if the ACPI and pnp code had allocated 3210 * bridge windows. These descriptors have to exist in this form 3211 * in order to satisfy the code which will get invoked when the 3212 * endpoint PCI function driver calls request_mem_region() or 3213 * request_mem_region_exclusive(). 3214 * 3215 * Return: 0 on success, -errno on failure 3216 */ 3217 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3218 { 3219 resource_size_t align; 3220 int ret; 3221 3222 if (hbus->low_mmio_space) { 3223 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3224 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3225 (u64)(u32)0xffffffff, 3226 hbus->low_mmio_space, 3227 align, false); 3228 if (ret) { 3229 dev_err(&hbus->hdev->device, 3230 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3231 hbus->low_mmio_space); 3232 return ret; 3233 } 3234 3235 /* Modify this resource to become a bridge window. */ 3236 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3237 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3238 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3239 } 3240 3241 if (hbus->high_mmio_space) { 3242 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3243 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3244 0x100000000, -1, 3245 hbus->high_mmio_space, align, 3246 false); 3247 if (ret) { 3248 dev_err(&hbus->hdev->device, 3249 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3250 hbus->high_mmio_space); 3251 goto release_low_mmio; 3252 } 3253 3254 /* Modify this resource to become a bridge window. */ 3255 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3256 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3257 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3258 } 3259 3260 return 0; 3261 3262 release_low_mmio: 3263 if (hbus->low_mmio_res) { 3264 vmbus_free_mmio(hbus->low_mmio_res->start, 3265 resource_size(hbus->low_mmio_res)); 3266 } 3267 3268 return ret; 3269 } 3270 3271 /** 3272 * hv_allocate_config_window() - Find MMIO space for PCI Config 3273 * @hbus: Root PCI bus, as understood by this driver 3274 * 3275 * This function claims memory-mapped I/O space for accessing 3276 * configuration space for the functions on this bus. 3277 * 3278 * Return: 0 on success, -errno on failure 3279 */ 3280 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3281 { 3282 int ret; 3283 3284 /* 3285 * Set up a region of MMIO space to use for accessing configuration 3286 * space. 3287 */ 3288 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3289 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3290 if (ret) 3291 return ret; 3292 3293 /* 3294 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3295 * resource claims (those which cannot be overlapped) and the ranges 3296 * which are valid for the children of this bus, which are intended 3297 * to be overlapped by those children. Set the flag on this claim 3298 * meaning that this region can't be overlapped. 3299 */ 3300 3301 hbus->mem_config->flags |= IORESOURCE_BUSY; 3302 3303 return 0; 3304 } 3305 3306 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3307 { 3308 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3309 } 3310 3311 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3312 3313 /** 3314 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3315 * @hdev: VMBus's tracking struct for this root PCI bus 3316 * 3317 * Return: 0 on success, -errno on failure 3318 */ 3319 static int hv_pci_enter_d0(struct hv_device *hdev) 3320 { 3321 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3322 struct pci_bus_d0_entry *d0_entry; 3323 struct hv_pci_compl comp_pkt; 3324 struct pci_packet *pkt; 3325 bool retry = true; 3326 int ret; 3327 3328 enter_d0_retry: 3329 /* 3330 * Tell the host that the bus is ready to use, and moved into the 3331 * powered-on state. This includes telling the host which region 3332 * of memory-mapped I/O space has been chosen for configuration space 3333 * access. 3334 */ 3335 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3336 if (!pkt) 3337 return -ENOMEM; 3338 3339 init_completion(&comp_pkt.host_event); 3340 pkt->completion_func = hv_pci_generic_compl; 3341 pkt->compl_ctxt = &comp_pkt; 3342 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 3343 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3344 d0_entry->mmio_base = hbus->mem_config->start; 3345 3346 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3347 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3348 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3349 if (!ret) 3350 ret = wait_for_response(hdev, &comp_pkt.host_event); 3351 3352 if (ret) 3353 goto exit; 3354 3355 /* 3356 * In certain case (Kdump) the pci device of interest was 3357 * not cleanly shut down and resource is still held on host 3358 * side, the host could return invalid device status. 3359 * We need to explicitly request host to release the resource 3360 * and try to enter D0 again. 3361 */ 3362 if (comp_pkt.completion_status < 0 && retry) { 3363 retry = false; 3364 3365 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3366 3367 /* 3368 * Hv_pci_bus_exit() calls hv_send_resource_released() 3369 * to free up resources of its child devices. 3370 * In the kdump kernel we need to set the 3371 * wslot_res_allocated to 255 so it scans all child 3372 * devices to release resources allocated in the 3373 * normal kernel before panic happened. 3374 */ 3375 hbus->wslot_res_allocated = 255; 3376 3377 ret = hv_pci_bus_exit(hdev, true); 3378 3379 if (ret == 0) { 3380 kfree(pkt); 3381 goto enter_d0_retry; 3382 } 3383 dev_err(&hdev->device, 3384 "Retrying D0 failed with ret %d\n", ret); 3385 } 3386 3387 if (comp_pkt.completion_status < 0) { 3388 dev_err(&hdev->device, 3389 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3390 comp_pkt.completion_status); 3391 ret = -EPROTO; 3392 goto exit; 3393 } 3394 3395 ret = 0; 3396 3397 exit: 3398 kfree(pkt); 3399 return ret; 3400 } 3401 3402 /** 3403 * hv_pci_query_relations() - Ask host to send list of child 3404 * devices 3405 * @hdev: VMBus's tracking struct for this root PCI bus 3406 * 3407 * Return: 0 on success, -errno on failure 3408 */ 3409 static int hv_pci_query_relations(struct hv_device *hdev) 3410 { 3411 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3412 struct pci_message message; 3413 struct completion comp; 3414 int ret; 3415 3416 /* Ask the host to send along the list of child devices */ 3417 init_completion(&comp); 3418 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3419 return -ENOTEMPTY; 3420 3421 memset(&message, 0, sizeof(message)); 3422 message.type = PCI_QUERY_BUS_RELATIONS; 3423 3424 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3425 0, VM_PKT_DATA_INBAND, 0); 3426 if (!ret) 3427 ret = wait_for_response(hdev, &comp); 3428 3429 /* 3430 * In the case of fast device addition/removal, it's possible that 3431 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we 3432 * already got a PCI_BUS_RELATIONS* message from the host and the 3433 * channel callback already scheduled a work to hbus->wq, which can be 3434 * running pci_devices_present_work() -> survey_child_resources() -> 3435 * complete(&hbus->survey_event), even after hv_pci_query_relations() 3436 * exits and the stack variable 'comp' is no longer valid; as a result, 3437 * a hang or a page fault may happen when the complete() calls 3438 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from 3439 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is 3440 * -ENODEV, there can't be any more work item scheduled to hbus->wq 3441 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> 3442 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> 3443 * channel->rescind = true. 3444 */ 3445 flush_workqueue(hbus->wq); 3446 3447 return ret; 3448 } 3449 3450 /** 3451 * hv_send_resources_allocated() - Report local resource choices 3452 * @hdev: VMBus's tracking struct for this root PCI bus 3453 * 3454 * The host OS is expecting to be sent a request as a message 3455 * which contains all the resources that the device will use. 3456 * The response contains those same resources, "translated" 3457 * which is to say, the values which should be used by the 3458 * hardware, when it delivers an interrupt. (MMIO resources are 3459 * used in local terms.) This is nice for Windows, and lines up 3460 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3461 * is deeply expecting to scan an emulated PCI configuration 3462 * space. So this message is sent here only to drive the state 3463 * machine on the host forward. 3464 * 3465 * Return: 0 on success, -errno on failure 3466 */ 3467 static int hv_send_resources_allocated(struct hv_device *hdev) 3468 { 3469 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3470 struct pci_resources_assigned *res_assigned; 3471 struct pci_resources_assigned2 *res_assigned2; 3472 struct hv_pci_compl comp_pkt; 3473 struct hv_pci_dev *hpdev; 3474 struct pci_packet *pkt; 3475 size_t size_res; 3476 int wslot; 3477 int ret; 3478 3479 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3480 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3481 3482 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3483 if (!pkt) 3484 return -ENOMEM; 3485 3486 ret = 0; 3487 3488 for (wslot = 0; wslot < 256; wslot++) { 3489 hpdev = get_pcichild_wslot(hbus, wslot); 3490 if (!hpdev) 3491 continue; 3492 3493 memset(pkt, 0, sizeof(*pkt) + size_res); 3494 init_completion(&comp_pkt.host_event); 3495 pkt->completion_func = hv_pci_generic_compl; 3496 pkt->compl_ctxt = &comp_pkt; 3497 3498 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3499 res_assigned = 3500 (struct pci_resources_assigned *)&pkt->message; 3501 res_assigned->message_type.type = 3502 PCI_RESOURCES_ASSIGNED; 3503 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3504 } else { 3505 res_assigned2 = 3506 (struct pci_resources_assigned2 *)&pkt->message; 3507 res_assigned2->message_type.type = 3508 PCI_RESOURCES_ASSIGNED2; 3509 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3510 } 3511 put_pcichild(hpdev); 3512 3513 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 3514 size_res, (unsigned long)pkt, 3515 VM_PKT_DATA_INBAND, 3516 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3517 if (!ret) 3518 ret = wait_for_response(hdev, &comp_pkt.host_event); 3519 if (ret) 3520 break; 3521 3522 if (comp_pkt.completion_status < 0) { 3523 ret = -EPROTO; 3524 dev_err(&hdev->device, 3525 "resource allocated returned 0x%x", 3526 comp_pkt.completion_status); 3527 break; 3528 } 3529 3530 hbus->wslot_res_allocated = wslot; 3531 } 3532 3533 kfree(pkt); 3534 return ret; 3535 } 3536 3537 /** 3538 * hv_send_resources_released() - Report local resources 3539 * released 3540 * @hdev: VMBus's tracking struct for this root PCI bus 3541 * 3542 * Return: 0 on success, -errno on failure 3543 */ 3544 static int hv_send_resources_released(struct hv_device *hdev) 3545 { 3546 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3547 struct pci_child_message pkt; 3548 struct hv_pci_dev *hpdev; 3549 int wslot; 3550 int ret; 3551 3552 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3553 hpdev = get_pcichild_wslot(hbus, wslot); 3554 if (!hpdev) 3555 continue; 3556 3557 memset(&pkt, 0, sizeof(pkt)); 3558 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3559 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3560 3561 put_pcichild(hpdev); 3562 3563 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3564 VM_PKT_DATA_INBAND, 0); 3565 if (ret) 3566 return ret; 3567 3568 hbus->wslot_res_allocated = wslot - 1; 3569 } 3570 3571 hbus->wslot_res_allocated = -1; 3572 3573 return 0; 3574 } 3575 3576 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3577 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3578 3579 /* 3580 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3581 * as invalid for passthrough PCI devices of this driver. 3582 */ 3583 #define HVPCI_DOM_INVALID 0 3584 3585 /** 3586 * hv_get_dom_num() - Get a valid PCI domain number 3587 * Check if the PCI domain number is in use, and return another number if 3588 * it is in use. 3589 * 3590 * @dom: Requested domain number 3591 * 3592 * return: domain number on success, HVPCI_DOM_INVALID on failure 3593 */ 3594 static u16 hv_get_dom_num(u16 dom) 3595 { 3596 unsigned int i; 3597 3598 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3599 return dom; 3600 3601 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3602 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3603 return i; 3604 } 3605 3606 return HVPCI_DOM_INVALID; 3607 } 3608 3609 /** 3610 * hv_put_dom_num() - Mark the PCI domain number as free 3611 * @dom: Domain number to be freed 3612 */ 3613 static void hv_put_dom_num(u16 dom) 3614 { 3615 clear_bit(dom, hvpci_dom_map); 3616 } 3617 3618 /** 3619 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3620 * @hdev: VMBus's tracking struct for this root PCI bus 3621 * @dev_id: Identifies the device itself 3622 * 3623 * Return: 0 on success, -errno on failure 3624 */ 3625 static int hv_pci_probe(struct hv_device *hdev, 3626 const struct hv_vmbus_device_id *dev_id) 3627 { 3628 struct pci_host_bridge *bridge; 3629 struct hv_pcibus_device *hbus; 3630 u16 dom_req, dom; 3631 char *name; 3632 int ret; 3633 3634 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3635 if (!bridge) 3636 return -ENOMEM; 3637 3638 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); 3639 if (!hbus) 3640 return -ENOMEM; 3641 3642 hbus->bridge = bridge; 3643 mutex_init(&hbus->state_lock); 3644 hbus->state = hv_pcibus_init; 3645 hbus->wslot_res_allocated = -1; 3646 3647 /* 3648 * The PCI bus "domain" is what is called "segment" in ACPI and other 3649 * specs. Pull it from the instance ID, to get something usually 3650 * unique. In rare cases of collision, we will find out another number 3651 * not in use. 3652 * 3653 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3654 * together with this guest driver can guarantee that (1) The only 3655 * domain used by Gen1 VMs for something that looks like a physical 3656 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3657 * (2) There will be no overlap between domains (after fixing possible 3658 * collisions) in the same VM. 3659 */ 3660 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3661 dom = hv_get_dom_num(dom_req); 3662 3663 if (dom == HVPCI_DOM_INVALID) { 3664 dev_err(&hdev->device, 3665 "Unable to use dom# 0x%x or other numbers", dom_req); 3666 ret = -EINVAL; 3667 goto free_bus; 3668 } 3669 3670 if (dom != dom_req) 3671 dev_info(&hdev->device, 3672 "PCI dom# 0x%x has collision, using 0x%x", 3673 dom_req, dom); 3674 3675 hbus->bridge->domain_nr = dom; 3676 #ifdef CONFIG_X86 3677 hbus->sysdata.domain = dom; 3678 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3679 #elif defined(CONFIG_ARM64) 3680 /* 3681 * Set the PCI bus parent to be the corresponding VMbus 3682 * device. Then the VMbus device will be assigned as the 3683 * ACPI companion in pcibios_root_bridge_prepare() and 3684 * pci_dma_configure() will propagate device coherence 3685 * information to devices created on the bus. 3686 */ 3687 hbus->sysdata.parent = hdev->device.parent; 3688 hbus->use_calls = false; 3689 #endif 3690 3691 hbus->hdev = hdev; 3692 INIT_LIST_HEAD(&hbus->children); 3693 INIT_LIST_HEAD(&hbus->dr_list); 3694 spin_lock_init(&hbus->config_lock); 3695 spin_lock_init(&hbus->device_list_lock); 3696 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3697 hbus->bridge->domain_nr); 3698 if (!hbus->wq) { 3699 ret = -ENOMEM; 3700 goto free_dom; 3701 } 3702 3703 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3704 hdev->channel->request_addr_callback = vmbus_request_addr; 3705 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3706 3707 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3708 hv_pci_onchannelcallback, hbus); 3709 if (ret) 3710 goto destroy_wq; 3711 3712 hv_set_drvdata(hdev, hbus); 3713 3714 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3715 ARRAY_SIZE(pci_protocol_versions)); 3716 if (ret) 3717 goto close; 3718 3719 ret = hv_allocate_config_window(hbus); 3720 if (ret) 3721 goto close; 3722 3723 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3724 PCI_CONFIG_MMIO_LENGTH); 3725 if (!hbus->cfg_addr) { 3726 dev_err(&hdev->device, 3727 "Unable to map a virtual address for config space\n"); 3728 ret = -ENOMEM; 3729 goto free_config; 3730 } 3731 3732 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3733 if (!name) { 3734 ret = -ENOMEM; 3735 goto unmap; 3736 } 3737 3738 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3739 kfree(name); 3740 if (!hbus->fwnode) { 3741 ret = -ENOMEM; 3742 goto unmap; 3743 } 3744 3745 ret = hv_pcie_init_irq_domain(hbus); 3746 if (ret) 3747 goto free_fwnode; 3748 3749 ret = hv_pci_query_relations(hdev); 3750 if (ret) 3751 goto free_irq_domain; 3752 3753 mutex_lock(&hbus->state_lock); 3754 3755 ret = hv_pci_enter_d0(hdev); 3756 if (ret) 3757 goto release_state_lock; 3758 3759 ret = hv_pci_allocate_bridge_windows(hbus); 3760 if (ret) 3761 goto exit_d0; 3762 3763 ret = hv_send_resources_allocated(hdev); 3764 if (ret) 3765 goto free_windows; 3766 3767 prepopulate_bars(hbus); 3768 3769 hbus->state = hv_pcibus_probed; 3770 3771 ret = create_root_hv_pci_bus(hbus); 3772 if (ret) 3773 goto free_windows; 3774 3775 mutex_unlock(&hbus->state_lock); 3776 return 0; 3777 3778 free_windows: 3779 hv_pci_free_bridge_windows(hbus); 3780 exit_d0: 3781 (void) hv_pci_bus_exit(hdev, true); 3782 release_state_lock: 3783 mutex_unlock(&hbus->state_lock); 3784 free_irq_domain: 3785 irq_domain_remove(hbus->irq_domain); 3786 free_fwnode: 3787 irq_domain_free_fwnode(hbus->fwnode); 3788 unmap: 3789 iounmap(hbus->cfg_addr); 3790 free_config: 3791 hv_free_config_window(hbus); 3792 close: 3793 vmbus_close(hdev->channel); 3794 destroy_wq: 3795 destroy_workqueue(hbus->wq); 3796 free_dom: 3797 hv_put_dom_num(hbus->bridge->domain_nr); 3798 free_bus: 3799 kfree(hbus); 3800 return ret; 3801 } 3802 3803 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3804 { 3805 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3806 struct vmbus_channel *chan = hdev->channel; 3807 struct { 3808 struct pci_packet teardown_packet; 3809 u8 buffer[sizeof(struct pci_message)]; 3810 } pkt; 3811 struct hv_pci_compl comp_pkt; 3812 struct hv_pci_dev *hpdev, *tmp; 3813 unsigned long flags; 3814 u64 trans_id; 3815 int ret; 3816 3817 /* 3818 * After the host sends the RESCIND_CHANNEL message, it doesn't 3819 * access the per-channel ringbuffer any longer. 3820 */ 3821 if (chan->rescind) 3822 return 0; 3823 3824 if (!keep_devs) { 3825 struct list_head removed; 3826 3827 /* Move all present children to the list on stack */ 3828 INIT_LIST_HEAD(&removed); 3829 spin_lock_irqsave(&hbus->device_list_lock, flags); 3830 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3831 list_move_tail(&hpdev->list_entry, &removed); 3832 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3833 3834 /* Remove all children in the list */ 3835 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3836 list_del(&hpdev->list_entry); 3837 if (hpdev->pci_slot) 3838 pci_destroy_slot(hpdev->pci_slot); 3839 /* For the two refs got in new_pcichild_device() */ 3840 put_pcichild(hpdev); 3841 put_pcichild(hpdev); 3842 } 3843 } 3844 3845 ret = hv_send_resources_released(hdev); 3846 if (ret) { 3847 dev_err(&hdev->device, 3848 "Couldn't send resources released packet(s)\n"); 3849 return ret; 3850 } 3851 3852 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3853 init_completion(&comp_pkt.host_event); 3854 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3855 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3856 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3857 3858 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message, 3859 sizeof(struct pci_message), 3860 (unsigned long)&pkt.teardown_packet, 3861 &trans_id, VM_PKT_DATA_INBAND, 3862 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3863 if (ret) 3864 return ret; 3865 3866 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3867 /* 3868 * The completion packet on the stack becomes invalid after 3869 * 'return'; remove the ID from the VMbus requestor if the 3870 * identifier is still mapped to/associated with the packet. 3871 * 3872 * Cf. hv_pci_onchannelcallback(). 3873 */ 3874 vmbus_request_addr_match(chan, trans_id, 3875 (unsigned long)&pkt.teardown_packet); 3876 return -ETIMEDOUT; 3877 } 3878 3879 return 0; 3880 } 3881 3882 /** 3883 * hv_pci_remove() - Remove routine for this VMBus channel 3884 * @hdev: VMBus's tracking struct for this root PCI bus 3885 */ 3886 static void hv_pci_remove(struct hv_device *hdev) 3887 { 3888 struct hv_pcibus_device *hbus; 3889 3890 hbus = hv_get_drvdata(hdev); 3891 if (hbus->state == hv_pcibus_installed) { 3892 tasklet_disable(&hdev->channel->callback_event); 3893 hbus->state = hv_pcibus_removing; 3894 tasklet_enable(&hdev->channel->callback_event); 3895 destroy_workqueue(hbus->wq); 3896 hbus->wq = NULL; 3897 /* 3898 * At this point, no work is running or can be scheduled 3899 * on hbus-wq. We can't race with hv_pci_devices_present() 3900 * or hv_pci_eject_device(), it's safe to proceed. 3901 */ 3902 3903 /* Remove the bus from PCI's point of view. */ 3904 pci_lock_rescan_remove(); 3905 pci_stop_root_bus(hbus->bridge->bus); 3906 hv_pci_remove_slots(hbus); 3907 pci_remove_root_bus(hbus->bridge->bus); 3908 pci_unlock_rescan_remove(); 3909 } 3910 3911 hv_pci_bus_exit(hdev, false); 3912 3913 vmbus_close(hdev->channel); 3914 3915 iounmap(hbus->cfg_addr); 3916 hv_free_config_window(hbus); 3917 hv_pci_free_bridge_windows(hbus); 3918 irq_domain_remove(hbus->irq_domain); 3919 irq_domain_free_fwnode(hbus->fwnode); 3920 3921 hv_put_dom_num(hbus->bridge->domain_nr); 3922 3923 kfree(hbus); 3924 } 3925 3926 static int hv_pci_suspend(struct hv_device *hdev) 3927 { 3928 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3929 enum hv_pcibus_state old_state; 3930 int ret; 3931 3932 /* 3933 * hv_pci_suspend() must make sure there are no pending work items 3934 * before calling vmbus_close(), since it runs in a process context 3935 * as a callback in dpm_suspend(). When it starts to run, the channel 3936 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3937 * context, can be still running concurrently and scheduling new work 3938 * items onto hbus->wq in hv_pci_devices_present() and 3939 * hv_pci_eject_device(), and the work item handlers can access the 3940 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3941 * the work item handler pci_devices_present_work() -> 3942 * new_pcichild_device() writes to the vmbus channel. 3943 * 3944 * To eliminate the race, hv_pci_suspend() disables the channel 3945 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3946 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3947 * it knows that no new work item can be scheduled, and then it flushes 3948 * hbus->wq and safely closes the vmbus channel. 3949 */ 3950 tasklet_disable(&hdev->channel->callback_event); 3951 3952 /* Change the hbus state to prevent new work items. */ 3953 old_state = hbus->state; 3954 if (hbus->state == hv_pcibus_installed) 3955 hbus->state = hv_pcibus_removing; 3956 3957 tasklet_enable(&hdev->channel->callback_event); 3958 3959 if (old_state != hv_pcibus_installed) 3960 return -EINVAL; 3961 3962 flush_workqueue(hbus->wq); 3963 3964 ret = hv_pci_bus_exit(hdev, true); 3965 if (ret) 3966 return ret; 3967 3968 vmbus_close(hdev->channel); 3969 3970 return 0; 3971 } 3972 3973 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3974 { 3975 struct irq_data *irq_data; 3976 struct msi_desc *entry; 3977 int ret = 0; 3978 3979 if (!pdev->msi_enabled && !pdev->msix_enabled) 3980 return 0; 3981 3982 msi_lock_descs(&pdev->dev); 3983 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 3984 irq_data = irq_get_irq_data(entry->irq); 3985 if (WARN_ON_ONCE(!irq_data)) { 3986 ret = -EINVAL; 3987 break; 3988 } 3989 3990 hv_compose_msi_msg(irq_data, &entry->msg); 3991 } 3992 msi_unlock_descs(&pdev->dev); 3993 3994 return ret; 3995 } 3996 3997 /* 3998 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 3999 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 4000 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 4001 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 4002 * Table entries. 4003 */ 4004 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 4005 { 4006 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 4007 } 4008 4009 static int hv_pci_resume(struct hv_device *hdev) 4010 { 4011 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4012 enum pci_protocol_version_t version[1]; 4013 int ret; 4014 4015 hbus->state = hv_pcibus_init; 4016 4017 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4018 hdev->channel->request_addr_callback = vmbus_request_addr; 4019 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4020 4021 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4022 hv_pci_onchannelcallback, hbus); 4023 if (ret) 4024 return ret; 4025 4026 /* Only use the version that was in use before hibernation. */ 4027 version[0] = hbus->protocol_version; 4028 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4029 if (ret) 4030 goto out; 4031 4032 ret = hv_pci_query_relations(hdev); 4033 if (ret) 4034 goto out; 4035 4036 mutex_lock(&hbus->state_lock); 4037 4038 ret = hv_pci_enter_d0(hdev); 4039 if (ret) 4040 goto release_state_lock; 4041 4042 ret = hv_send_resources_allocated(hdev); 4043 if (ret) 4044 goto release_state_lock; 4045 4046 prepopulate_bars(hbus); 4047 4048 hv_pci_restore_msi_state(hbus); 4049 4050 hbus->state = hv_pcibus_installed; 4051 mutex_unlock(&hbus->state_lock); 4052 return 0; 4053 4054 release_state_lock: 4055 mutex_unlock(&hbus->state_lock); 4056 out: 4057 vmbus_close(hdev->channel); 4058 return ret; 4059 } 4060 4061 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4062 /* PCI Pass-through Class ID */ 4063 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4064 { HV_PCIE_GUID, }, 4065 { }, 4066 }; 4067 4068 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4069 4070 static struct hv_driver hv_pci_drv = { 4071 .name = "hv_pci", 4072 .id_table = hv_pci_id_table, 4073 .probe = hv_pci_probe, 4074 .remove = hv_pci_remove, 4075 .suspend = hv_pci_suspend, 4076 .resume = hv_pci_resume, 4077 }; 4078 4079 static void __exit exit_hv_pci_drv(void) 4080 { 4081 vmbus_driver_unregister(&hv_pci_drv); 4082 4083 hvpci_block_ops.read_block = NULL; 4084 hvpci_block_ops.write_block = NULL; 4085 hvpci_block_ops.reg_blk_invalidate = NULL; 4086 } 4087 4088 static int __init init_hv_pci_drv(void) 4089 { 4090 int ret; 4091 4092 if (!hv_is_hyperv_initialized()) 4093 return -ENODEV; 4094 4095 ret = hv_pci_irqchip_init(); 4096 if (ret) 4097 return ret; 4098 4099 /* Set the invalid domain number's bit, so it will not be used */ 4100 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4101 4102 /* Initialize PCI block r/w interface */ 4103 hvpci_block_ops.read_block = hv_read_config_block; 4104 hvpci_block_ops.write_block = hv_write_config_block; 4105 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4106 4107 return vmbus_driver_register(&hv_pci_drv); 4108 } 4109 4110 module_init(init_hv_pci_drv); 4111 module_exit(exit_hv_pci_drv); 4112 4113 MODULE_DESCRIPTION("Hyper-V PCI"); 4114 MODULE_LICENSE("GPL v2"); 4115