xref: /linux/drivers/pci/controller/pci-hyperv.c (revision 8c2e602225f0a96f2c5c65de8ab06e304081e542)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (c) Microsoft Corporation.
4  *
5  * Author:
6  *   Jake Oshins <jakeo@microsoft.com>
7  *
8  * This driver acts as a paravirtual front-end for PCI Express root buses.
9  * When a PCI Express function (either an entire device or an SR-IOV
10  * Virtual Function) is being passed through to the VM, this driver exposes
11  * a new bus to the guest VM.  This is modeled as a root PCI bus because
12  * no bridges are being exposed to the VM.  In fact, with a "Generation 2"
13  * VM within Hyper-V, there may seem to be no PCI bus at all in the VM
14  * until a device as been exposed using this driver.
15  *
16  * Each root PCI bus has its own PCI domain, which is called "Segment" in
17  * the PCI Firmware Specifications.  Thus while each device passed through
18  * to the VM using this front-end will appear at "device 0", the domain will
19  * be unique.  Typically, each bus will have one PCI function on it, though
20  * this driver does support more than one.
21  *
22  * In order to map the interrupts from the device through to the guest VM,
23  * this driver also implements an IRQ Domain, which handles interrupts (either
24  * MSI or MSI-X) associated with the functions on the bus.  As interrupts are
25  * set up, torn down, or reaffined, this driver communicates with the
26  * underlying hypervisor to adjust the mappings in the I/O MMU so that each
27  * interrupt will be delivered to the correct virtual processor at the right
28  * vector.  This driver does not support level-triggered (line-based)
29  * interrupts, and will report that the Interrupt Line register in the
30  * function's configuration space is zero.
31  *
32  * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V
33  * facilities.  For instance, the configuration space of a function exposed
34  * by Hyper-V is mapped into a single page of memory space, and the
35  * read and write handlers for config space must be aware of this mechanism.
36  * Similarly, device setup and teardown involves messages sent to and from
37  * the PCI back-end driver in Hyper-V.
38  */
39 
40 #include <linux/kernel.h>
41 #include <linux/module.h>
42 #include <linux/pci.h>
43 #include <linux/pci-ecam.h>
44 #include <linux/delay.h>
45 #include <linux/semaphore.h>
46 #include <linux/irq.h>
47 #include <linux/irqchip/irq-msi-lib.h>
48 #include <linux/msi.h>
49 #include <linux/hyperv.h>
50 #include <linux/refcount.h>
51 #include <linux/irqdomain.h>
52 #include <linux/acpi.h>
53 #include <linux/sizes.h>
54 #include <linux/of_irq.h>
55 #include <asm/mshyperv.h>
56 
57 /*
58  * Protocol versions. The low word is the minor version, the high word the
59  * major version.
60  */
61 
62 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor)))
63 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16)
64 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff)
65 
66 enum pci_protocol_version_t {
67 	PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1),	/* Win10 */
68 	PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2),	/* RS1 */
69 	PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3),	/* Vibranium */
70 	PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4),	/* WS2022 */
71 };
72 
73 #define CPU_AFFINITY_ALL	-1ULL
74 
75 /*
76  * Supported protocol versions in the order of probing - highest go
77  * first.
78  */
79 static enum pci_protocol_version_t pci_protocol_versions[] = {
80 	PCI_PROTOCOL_VERSION_1_4,
81 	PCI_PROTOCOL_VERSION_1_3,
82 	PCI_PROTOCOL_VERSION_1_2,
83 	PCI_PROTOCOL_VERSION_1_1,
84 };
85 
86 #define PCI_CONFIG_MMIO_LENGTH	0x2000
87 #define CFG_PAGE_OFFSET 0x1000
88 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET)
89 
90 #define MAX_SUPPORTED_MSI_MESSAGES 0x400
91 
92 #define STATUS_REVISION_MISMATCH 0xC0000059
93 
94 /* space for 32bit serial number as string */
95 #define SLOT_NAME_SIZE 11
96 
97 /*
98  * Size of requestor for VMbus; the value is based on the observation
99  * that having more than one request outstanding is 'rare', and so 64
100  * should be generous in ensuring that we don't ever run out.
101  */
102 #define HV_PCI_RQSTOR_SIZE 64
103 
104 /*
105  * Message Types
106  */
107 
108 enum pci_message_type {
109 	/*
110 	 * Version 1.1
111 	 */
112 	PCI_MESSAGE_BASE                = 0x42490000,
113 	PCI_BUS_RELATIONS               = PCI_MESSAGE_BASE + 0,
114 	PCI_QUERY_BUS_RELATIONS         = PCI_MESSAGE_BASE + 1,
115 	PCI_POWER_STATE_CHANGE          = PCI_MESSAGE_BASE + 4,
116 	PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5,
117 	PCI_QUERY_RESOURCE_RESOURCES    = PCI_MESSAGE_BASE + 6,
118 	PCI_BUS_D0ENTRY                 = PCI_MESSAGE_BASE + 7,
119 	PCI_BUS_D0EXIT                  = PCI_MESSAGE_BASE + 8,
120 	PCI_READ_BLOCK                  = PCI_MESSAGE_BASE + 9,
121 	PCI_WRITE_BLOCK                 = PCI_MESSAGE_BASE + 0xA,
122 	PCI_EJECT                       = PCI_MESSAGE_BASE + 0xB,
123 	PCI_QUERY_STOP                  = PCI_MESSAGE_BASE + 0xC,
124 	PCI_REENABLE                    = PCI_MESSAGE_BASE + 0xD,
125 	PCI_QUERY_STOP_FAILED           = PCI_MESSAGE_BASE + 0xE,
126 	PCI_EJECTION_COMPLETE           = PCI_MESSAGE_BASE + 0xF,
127 	PCI_RESOURCES_ASSIGNED          = PCI_MESSAGE_BASE + 0x10,
128 	PCI_RESOURCES_RELEASED          = PCI_MESSAGE_BASE + 0x11,
129 	PCI_INVALIDATE_BLOCK            = PCI_MESSAGE_BASE + 0x12,
130 	PCI_QUERY_PROTOCOL_VERSION      = PCI_MESSAGE_BASE + 0x13,
131 	PCI_CREATE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x14,
132 	PCI_DELETE_INTERRUPT_MESSAGE    = PCI_MESSAGE_BASE + 0x15,
133 	PCI_RESOURCES_ASSIGNED2		= PCI_MESSAGE_BASE + 0x16,
134 	PCI_CREATE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x17,
135 	PCI_DELETE_INTERRUPT_MESSAGE2	= PCI_MESSAGE_BASE + 0x18, /* unused */
136 	PCI_BUS_RELATIONS2		= PCI_MESSAGE_BASE + 0x19,
137 	PCI_RESOURCES_ASSIGNED3         = PCI_MESSAGE_BASE + 0x1A,
138 	PCI_CREATE_INTERRUPT_MESSAGE3   = PCI_MESSAGE_BASE + 0x1B,
139 	PCI_MESSAGE_MAXIMUM
140 };
141 
142 /*
143  * Structures defining the virtual PCI Express protocol.
144  */
145 
146 union pci_version {
147 	struct {
148 		u16 minor_version;
149 		u16 major_version;
150 	} parts;
151 	u32 version;
152 } __packed;
153 
154 /*
155  * Function numbers are 8-bits wide on Express, as interpreted through ARI,
156  * which is all this driver does.  This representation is the one used in
157  * Windows, which is what is expected when sending this back and forth with
158  * the Hyper-V parent partition.
159  */
160 union win_slot_encoding {
161 	struct {
162 		u32	dev:5;
163 		u32	func:3;
164 		u32	reserved:24;
165 	} bits;
166 	u32 slot;
167 } __packed;
168 
169 /*
170  * Pretty much as defined in the PCI Specifications.
171  */
172 struct pci_function_description {
173 	u16	v_id;	/* vendor ID */
174 	u16	d_id;	/* device ID */
175 	u8	rev;
176 	u8	prog_intf;
177 	u8	subclass;
178 	u8	base_class;
179 	u32	subsystem_id;
180 	union win_slot_encoding win_slot;
181 	u32	ser;	/* serial number */
182 } __packed;
183 
184 enum pci_device_description_flags {
185 	HV_PCI_DEVICE_FLAG_NONE			= 0x0,
186 	HV_PCI_DEVICE_FLAG_NUMA_AFFINITY	= 0x1,
187 };
188 
189 struct pci_function_description2 {
190 	u16	v_id;	/* vendor ID */
191 	u16	d_id;	/* device ID */
192 	u8	rev;
193 	u8	prog_intf;
194 	u8	subclass;
195 	u8	base_class;
196 	u32	subsystem_id;
197 	union	win_slot_encoding win_slot;
198 	u32	ser;	/* serial number */
199 	u32	flags;
200 	u16	virtual_numa_node;
201 	u16	reserved;
202 } __packed;
203 
204 /**
205  * struct hv_msi_desc
206  * @vector:		IDT entry
207  * @delivery_mode:	As defined in Intel's Programmer's
208  *			Reference Manual, Volume 3, Chapter 8.
209  * @vector_count:	Number of contiguous entries in the
210  *			Interrupt Descriptor Table that are
211  *			occupied by this Message-Signaled
212  *			Interrupt. For "MSI", as first defined
213  *			in PCI 2.2, this can be between 1 and
214  *			32. For "MSI-X," as first defined in PCI
215  *			3.0, this must be 1, as each MSI-X table
216  *			entry would have its own descriptor.
217  * @reserved:		Empty space
218  * @cpu_mask:		All the target virtual processors.
219  */
220 struct hv_msi_desc {
221 	u8	vector;
222 	u8	delivery_mode;
223 	u16	vector_count;
224 	u32	reserved;
225 	u64	cpu_mask;
226 } __packed;
227 
228 /**
229  * struct hv_msi_desc2 - 1.2 version of hv_msi_desc
230  * @vector:		IDT entry
231  * @delivery_mode:	As defined in Intel's Programmer's
232  *			Reference Manual, Volume 3, Chapter 8.
233  * @vector_count:	Number of contiguous entries in the
234  *			Interrupt Descriptor Table that are
235  *			occupied by this Message-Signaled
236  *			Interrupt. For "MSI", as first defined
237  *			in PCI 2.2, this can be between 1 and
238  *			32. For "MSI-X," as first defined in PCI
239  *			3.0, this must be 1, as each MSI-X table
240  *			entry would have its own descriptor.
241  * @processor_count:	number of bits enabled in array.
242  * @processor_array:	All the target virtual processors.
243  */
244 struct hv_msi_desc2 {
245 	u8	vector;
246 	u8	delivery_mode;
247 	u16	vector_count;
248 	u16	processor_count;
249 	u16	processor_array[32];
250 } __packed;
251 
252 /*
253  * struct hv_msi_desc3 - 1.3 version of hv_msi_desc
254  *	Everything is the same as in 'hv_msi_desc2' except that the size of the
255  *	'vector' field is larger to support bigger vector values. For ex: LPI
256  *	vectors on ARM.
257  */
258 struct hv_msi_desc3 {
259 	u32	vector;
260 	u8	delivery_mode;
261 	u8	reserved;
262 	u16	vector_count;
263 	u16	processor_count;
264 	u16	processor_array[32];
265 } __packed;
266 
267 /**
268  * struct tran_int_desc
269  * @reserved:		unused, padding
270  * @vector_count:	same as in hv_msi_desc
271  * @data:		This is the "data payload" value that is
272  *			written by the device when it generates
273  *			a message-signaled interrupt, either MSI
274  *			or MSI-X.
275  * @address:		This is the address to which the data
276  *			payload is written on interrupt
277  *			generation.
278  */
279 struct tran_int_desc {
280 	u16	reserved;
281 	u16	vector_count;
282 	u32	data;
283 	u64	address;
284 } __packed;
285 
286 /*
287  * A generic message format for virtual PCI.
288  * Specific message formats are defined later in the file.
289  */
290 
291 struct pci_message {
292 	u32 type;
293 } __packed;
294 
295 struct pci_child_message {
296 	struct pci_message message_type;
297 	union win_slot_encoding wslot;
298 } __packed;
299 
300 struct pci_incoming_message {
301 	struct vmpacket_descriptor hdr;
302 	struct pci_message message_type;
303 } __packed;
304 
305 struct pci_response {
306 	struct vmpacket_descriptor hdr;
307 	s32 status;			/* negative values are failures */
308 } __packed;
309 
310 struct pci_packet {
311 	void (*completion_func)(void *context, struct pci_response *resp,
312 				int resp_packet_size);
313 	void *compl_ctxt;
314 };
315 
316 /*
317  * Specific message types supporting the PCI protocol.
318  */
319 
320 /*
321  * Version negotiation message. Sent from the guest to the host.
322  * The guest is free to try different versions until the host
323  * accepts the version.
324  *
325  * pci_version: The protocol version requested.
326  * is_last_attempt: If TRUE, this is the last version guest will request.
327  * reservedz: Reserved field, set to zero.
328  */
329 
330 struct pci_version_request {
331 	struct pci_message message_type;
332 	u32 protocol_version;
333 } __packed;
334 
335 /*
336  * Bus D0 Entry.  This is sent from the guest to the host when the virtual
337  * bus (PCI Express port) is ready for action.
338  */
339 
340 struct pci_bus_d0_entry {
341 	struct pci_message message_type;
342 	u32 reserved;
343 	u64 mmio_base;
344 } __packed;
345 
346 struct pci_bus_relations {
347 	struct pci_incoming_message incoming;
348 	u32 device_count;
349 	struct pci_function_description func[];
350 } __packed;
351 
352 struct pci_bus_relations2 {
353 	struct pci_incoming_message incoming;
354 	u32 device_count;
355 	struct pci_function_description2 func[];
356 } __packed;
357 
358 struct pci_q_res_req_response {
359 	struct vmpacket_descriptor hdr;
360 	s32 status;			/* negative values are failures */
361 	u32 probed_bar[PCI_STD_NUM_BARS];
362 } __packed;
363 
364 struct pci_set_power {
365 	struct pci_message message_type;
366 	union win_slot_encoding wslot;
367 	u32 power_state;		/* In Windows terms */
368 	u32 reserved;
369 } __packed;
370 
371 struct pci_set_power_response {
372 	struct vmpacket_descriptor hdr;
373 	s32 status;			/* negative values are failures */
374 	union win_slot_encoding wslot;
375 	u32 resultant_state;		/* In Windows terms */
376 	u32 reserved;
377 } __packed;
378 
379 struct pci_resources_assigned {
380 	struct pci_message message_type;
381 	union win_slot_encoding wslot;
382 	u8 memory_range[0x14][6];	/* not used here */
383 	u32 msi_descriptors;
384 	u32 reserved[4];
385 } __packed;
386 
387 struct pci_resources_assigned2 {
388 	struct pci_message message_type;
389 	union win_slot_encoding wslot;
390 	u8 memory_range[0x14][6];	/* not used here */
391 	u32 msi_descriptor_count;
392 	u8 reserved[70];
393 } __packed;
394 
395 struct pci_create_interrupt {
396 	struct pci_message message_type;
397 	union win_slot_encoding wslot;
398 	struct hv_msi_desc int_desc;
399 } __packed;
400 
401 struct pci_create_int_response {
402 	struct pci_response response;
403 	u32 reserved;
404 	struct tran_int_desc int_desc;
405 } __packed;
406 
407 struct pci_create_interrupt2 {
408 	struct pci_message message_type;
409 	union win_slot_encoding wslot;
410 	struct hv_msi_desc2 int_desc;
411 } __packed;
412 
413 struct pci_create_interrupt3 {
414 	struct pci_message message_type;
415 	union win_slot_encoding wslot;
416 	struct hv_msi_desc3 int_desc;
417 } __packed;
418 
419 struct pci_delete_interrupt {
420 	struct pci_message message_type;
421 	union win_slot_encoding wslot;
422 	struct tran_int_desc int_desc;
423 } __packed;
424 
425 /*
426  * Note: the VM must pass a valid block id, wslot and bytes_requested.
427  */
428 struct pci_read_block {
429 	struct pci_message message_type;
430 	u32 block_id;
431 	union win_slot_encoding wslot;
432 	u32 bytes_requested;
433 } __packed;
434 
435 struct pci_read_block_response {
436 	struct vmpacket_descriptor hdr;
437 	u32 status;
438 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
439 } __packed;
440 
441 /*
442  * Note: the VM must pass a valid block id, wslot and byte_count.
443  */
444 struct pci_write_block {
445 	struct pci_message message_type;
446 	u32 block_id;
447 	union win_slot_encoding wslot;
448 	u32 byte_count;
449 	u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX];
450 } __packed;
451 
452 struct pci_dev_inval_block {
453 	struct pci_incoming_message incoming;
454 	union win_slot_encoding wslot;
455 	u64 block_mask;
456 } __packed;
457 
458 struct pci_dev_incoming {
459 	struct pci_incoming_message incoming;
460 	union win_slot_encoding wslot;
461 } __packed;
462 
463 struct pci_eject_response {
464 	struct pci_message message_type;
465 	union win_slot_encoding wslot;
466 	u32 status;
467 } __packed;
468 
469 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K);
470 
471 /*
472  * Driver specific state.
473  */
474 
475 enum hv_pcibus_state {
476 	hv_pcibus_init = 0,
477 	hv_pcibus_probed,
478 	hv_pcibus_installed,
479 	hv_pcibus_removing,
480 	hv_pcibus_maximum
481 };
482 
483 struct hv_pcibus_device {
484 #ifdef CONFIG_X86
485 	struct pci_sysdata sysdata;
486 #elif defined(CONFIG_ARM64)
487 	struct pci_config_window sysdata;
488 #endif
489 	struct pci_host_bridge *bridge;
490 	struct fwnode_handle *fwnode;
491 	/* Protocol version negotiated with the host */
492 	enum pci_protocol_version_t protocol_version;
493 
494 	struct mutex state_lock;
495 	enum hv_pcibus_state state;
496 
497 	struct hv_device *hdev;
498 	resource_size_t low_mmio_space;
499 	resource_size_t high_mmio_space;
500 	struct resource *mem_config;
501 	struct resource *low_mmio_res;
502 	struct resource *high_mmio_res;
503 	struct completion *survey_event;
504 	struct pci_bus *pci_bus;
505 	spinlock_t config_lock;	/* Avoid two threads writing index page */
506 	spinlock_t device_list_lock;	/* Protect lists below */
507 	void __iomem *cfg_addr;
508 
509 	struct list_head children;
510 	struct list_head dr_list;
511 
512 	struct irq_domain *irq_domain;
513 
514 	struct workqueue_struct *wq;
515 
516 	/* Highest slot of child device with resources allocated */
517 	int wslot_res_allocated;
518 	bool use_calls; /* Use hypercalls to access mmio cfg space */
519 };
520 
521 /*
522  * Tracks "Device Relations" messages from the host, which must be both
523  * processed in order and deferred so that they don't run in the context
524  * of the incoming packet callback.
525  */
526 struct hv_dr_work {
527 	struct work_struct wrk;
528 	struct hv_pcibus_device *bus;
529 };
530 
531 struct hv_pcidev_description {
532 	u16	v_id;	/* vendor ID */
533 	u16	d_id;	/* device ID */
534 	u8	rev;
535 	u8	prog_intf;
536 	u8	subclass;
537 	u8	base_class;
538 	u32	subsystem_id;
539 	union	win_slot_encoding win_slot;
540 	u32	ser;	/* serial number */
541 	u32	flags;
542 	u16	virtual_numa_node;
543 };
544 
545 struct hv_dr_state {
546 	struct list_head list_entry;
547 	u32 device_count;
548 	struct hv_pcidev_description func[] __counted_by(device_count);
549 };
550 
551 struct hv_pci_dev {
552 	/* List protected by pci_rescan_remove_lock */
553 	struct list_head list_entry;
554 	refcount_t refs;
555 	struct pci_slot *pci_slot;
556 	struct hv_pcidev_description desc;
557 	bool reported_missing;
558 	struct hv_pcibus_device *hbus;
559 	struct work_struct wrk;
560 
561 	void (*block_invalidate)(void *context, u64 block_mask);
562 	void *invalidate_context;
563 
564 	/*
565 	 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then
566 	 * read it back, for each of the BAR offsets within config space.
567 	 */
568 	u32 probed_bar[PCI_STD_NUM_BARS];
569 };
570 
571 struct hv_pci_compl {
572 	struct completion host_event;
573 	s32 completion_status;
574 };
575 
576 static void hv_pci_onchannelcallback(void *context);
577 
578 #ifdef CONFIG_X86
579 #define DELIVERY_MODE		APIC_DELIVERY_MODE_FIXED
580 #define HV_MSI_CHIP_FLAGS	MSI_CHIP_FLAG_SET_ACK
581 
582 static int hv_pci_irqchip_init(void)
583 {
584 	return 0;
585 }
586 
587 static struct irq_domain *hv_pci_get_root_domain(void)
588 {
589 	return x86_vector_domain;
590 }
591 
592 static unsigned int hv_msi_get_int_vector(struct irq_data *data)
593 {
594 	struct irq_cfg *cfg = irqd_cfg(data);
595 
596 	return cfg->vector;
597 }
598 
599 #define hv_msi_prepare		pci_msi_prepare
600 
601 /**
602  * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current
603  * affinity.
604  * @data:	Describes the IRQ
605  *
606  * Build new a destination for the MSI and make a hypercall to
607  * update the Interrupt Redirection Table. "Device Logical ID"
608  * is built out of this PCI bus's instance GUID and the function
609  * number of the device.
610  */
611 static void hv_arch_irq_unmask(struct irq_data *data)
612 {
613 	struct msi_desc *msi_desc = irq_data_get_msi_desc(data);
614 	struct hv_retarget_device_interrupt *params;
615 	struct tran_int_desc *int_desc;
616 	struct hv_pcibus_device *hbus;
617 	const struct cpumask *dest;
618 	cpumask_var_t tmp;
619 	struct pci_bus *pbus;
620 	struct pci_dev *pdev;
621 	unsigned long flags;
622 	u32 var_size = 0;
623 	int cpu, nr_bank;
624 	u64 res;
625 
626 	dest = irq_data_get_effective_affinity_mask(data);
627 	pdev = msi_desc_to_pci_dev(msi_desc);
628 	pbus = pdev->bus;
629 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
630 	int_desc = data->chip_data;
631 	if (!int_desc) {
632 		dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n",
633 			 __func__, data->irq);
634 		return;
635 	}
636 
637 	local_irq_save(flags);
638 
639 	params = *this_cpu_ptr(hyperv_pcpu_input_arg);
640 	memset(params, 0, sizeof(*params));
641 	params->partition_id = HV_PARTITION_ID_SELF;
642 	params->int_entry.source = HV_INTERRUPT_SOURCE_MSI;
643 	params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff;
644 	params->int_entry.msi_entry.data.as_uint32 = int_desc->data;
645 	params->device_id = (hbus->hdev->dev_instance.b[5] << 24) |
646 			   (hbus->hdev->dev_instance.b[4] << 16) |
647 			   (hbus->hdev->dev_instance.b[7] << 8) |
648 			   (hbus->hdev->dev_instance.b[6] & 0xf8) |
649 			   PCI_FUNC(pdev->devfn);
650 	params->int_target.vector = hv_msi_get_int_vector(data);
651 
652 	if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) {
653 		/*
654 		 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the
655 		 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides
656 		 * with >64 VP support.
657 		 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED
658 		 * is not sufficient for this hypercall.
659 		 */
660 		params->int_target.flags |=
661 			HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET;
662 
663 		if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) {
664 			res = 1;
665 			goto out;
666 		}
667 
668 		cpumask_and(tmp, dest, cpu_online_mask);
669 		nr_bank = cpumask_to_vpset(&params->int_target.vp_set, tmp);
670 		free_cpumask_var(tmp);
671 
672 		if (nr_bank <= 0) {
673 			res = 1;
674 			goto out;
675 		}
676 
677 		/*
678 		 * var-sized hypercall, var-size starts after vp_mask (thus
679 		 * vp_set.format does not count, but vp_set.valid_bank_mask
680 		 * does).
681 		 */
682 		var_size = 1 + nr_bank;
683 	} else {
684 		for_each_cpu_and(cpu, dest, cpu_online_mask) {
685 			params->int_target.vp_mask |=
686 				(1ULL << hv_cpu_number_to_vp_number(cpu));
687 		}
688 	}
689 
690 	res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17),
691 			      params, NULL);
692 
693 out:
694 	local_irq_restore(flags);
695 
696 	/*
697 	 * During hibernation, when a CPU is offlined, the kernel tries
698 	 * to move the interrupt to the remaining CPUs that haven't
699 	 * been offlined yet. In this case, the below hv_do_hypercall()
700 	 * always fails since the vmbus channel has been closed:
701 	 * refer to cpu_disable_common() -> fixup_irqs() ->
702 	 * irq_migrate_all_off_this_cpu() -> migrate_one_irq().
703 	 *
704 	 * Suppress the error message for hibernation because the failure
705 	 * during hibernation does not matter (at this time all the devices
706 	 * have been frozen). Note: the correct affinity info is still updated
707 	 * into the irqdata data structure in migrate_one_irq() ->
708 	 * irq_do_set_affinity(), so later when the VM resumes,
709 	 * hv_pci_restore_msi_state() is able to correctly restore the
710 	 * interrupt with the correct affinity.
711 	 */
712 	if (!hv_result_success(res) && hbus->state != hv_pcibus_removing)
713 		dev_err(&hbus->hdev->device,
714 			"%s() failed: %#llx", __func__, res);
715 }
716 #elif defined(CONFIG_ARM64)
717 /*
718  * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit
719  * of room at the start to allow for SPIs to be specified through ACPI and
720  * starting with a power of two to satisfy power of 2 multi-MSI requirement.
721  */
722 #define HV_PCI_MSI_SPI_START	64
723 #define HV_PCI_MSI_SPI_NR	(1020 - HV_PCI_MSI_SPI_START)
724 #define DELIVERY_MODE		0
725 #define HV_MSI_CHIP_FLAGS	MSI_CHIP_FLAG_SET_EOI
726 #define hv_msi_prepare		NULL
727 
728 struct hv_pci_chip_data {
729 	DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR);
730 	struct mutex	map_lock;
731 };
732 
733 /* Hyper-V vPCI MSI GIC IRQ domain */
734 static struct irq_domain *hv_msi_gic_irq_domain;
735 
736 /* Hyper-V PCI MSI IRQ chip */
737 static struct irq_chip hv_arm64_msi_irq_chip = {
738 	.name = "MSI",
739 	.irq_set_affinity = irq_chip_set_affinity_parent,
740 	.irq_eoi = irq_chip_eoi_parent,
741 	.irq_mask = irq_chip_mask_parent,
742 	.irq_unmask = irq_chip_unmask_parent
743 };
744 
745 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd)
746 {
747 	return irqd->parent_data->hwirq;
748 }
749 
750 /*
751  * @nr_bm_irqs:		Indicates the number of IRQs that were allocated from
752  *			the bitmap.
753  * @nr_dom_irqs:	Indicates the number of IRQs that were allocated from
754  *			the parent domain.
755  */
756 static void hv_pci_vec_irq_free(struct irq_domain *domain,
757 				unsigned int virq,
758 				unsigned int nr_bm_irqs,
759 				unsigned int nr_dom_irqs)
760 {
761 	struct hv_pci_chip_data *chip_data = domain->host_data;
762 	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
763 	int first = d->hwirq - HV_PCI_MSI_SPI_START;
764 	int i;
765 
766 	mutex_lock(&chip_data->map_lock);
767 	bitmap_release_region(chip_data->spi_map,
768 			      first,
769 			      get_count_order(nr_bm_irqs));
770 	mutex_unlock(&chip_data->map_lock);
771 	for (i = 0; i < nr_dom_irqs; i++) {
772 		if (i)
773 			d = irq_domain_get_irq_data(domain, virq + i);
774 		irq_domain_reset_irq_data(d);
775 	}
776 
777 	irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs);
778 }
779 
780 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain,
781 				       unsigned int virq,
782 				       unsigned int nr_irqs)
783 {
784 	hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs);
785 }
786 
787 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain,
788 				       unsigned int nr_irqs,
789 				       irq_hw_number_t *hwirq)
790 {
791 	struct hv_pci_chip_data *chip_data = domain->host_data;
792 	int index;
793 
794 	/* Find and allocate region from the SPI bitmap */
795 	mutex_lock(&chip_data->map_lock);
796 	index = bitmap_find_free_region(chip_data->spi_map,
797 					HV_PCI_MSI_SPI_NR,
798 					get_count_order(nr_irqs));
799 	mutex_unlock(&chip_data->map_lock);
800 	if (index < 0)
801 		return -ENOSPC;
802 
803 	*hwirq = index + HV_PCI_MSI_SPI_START;
804 
805 	return 0;
806 }
807 
808 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain,
809 					   unsigned int virq,
810 					   irq_hw_number_t hwirq)
811 {
812 	struct irq_fwspec fwspec;
813 	struct irq_data *d;
814 	int ret;
815 
816 	fwspec.fwnode = domain->parent->fwnode;
817 	if (is_of_node(fwspec.fwnode)) {
818 		/* SPI lines for OF translations start at offset 32 */
819 		fwspec.param_count = 3;
820 		fwspec.param[0] = 0;
821 		fwspec.param[1] = hwirq - 32;
822 		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
823 	} else {
824 		fwspec.param_count = 2;
825 		fwspec.param[0] = hwirq;
826 		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
827 	}
828 
829 	ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
830 	if (ret)
831 		return ret;
832 
833 	/*
834 	 * Since the interrupt specifier is not coming from ACPI or DT, the
835 	 * trigger type will need to be set explicitly. Otherwise, it will be
836 	 * set to whatever is in the GIC configuration.
837 	 */
838 	d = irq_domain_get_irq_data(domain->parent, virq);
839 
840 	return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING);
841 }
842 
843 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain,
844 				       unsigned int virq, unsigned int nr_irqs,
845 				       void *args)
846 {
847 	irq_hw_number_t hwirq;
848 	unsigned int i;
849 	int ret;
850 
851 	ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq);
852 	if (ret)
853 		return ret;
854 
855 	for (i = 0; i < nr_irqs; i++) {
856 		ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i,
857 						      hwirq + i);
858 		if (ret) {
859 			hv_pci_vec_irq_free(domain, virq, nr_irqs, i);
860 			return ret;
861 		}
862 
863 		irq_domain_set_hwirq_and_chip(domain, virq + i,
864 					      hwirq + i,
865 					      &hv_arm64_msi_irq_chip,
866 					      domain->host_data);
867 		pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i);
868 	}
869 
870 	return 0;
871 }
872 
873 /*
874  * Pick the first cpu as the irq affinity that can be temporarily used for
875  * composing MSI from the hypervisor. GIC will eventually set the right
876  * affinity for the irq and the 'unmask' will retarget the interrupt to that
877  * cpu.
878  */
879 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain,
880 					  struct irq_data *irqd, bool reserve)
881 {
882 	int cpu = cpumask_first(cpu_present_mask);
883 
884 	irq_data_update_effective_affinity(irqd, cpumask_of(cpu));
885 
886 	return 0;
887 }
888 
889 static const struct irq_domain_ops hv_pci_domain_ops = {
890 	.alloc	= hv_pci_vec_irq_domain_alloc,
891 	.free	= hv_pci_vec_irq_domain_free,
892 	.activate = hv_pci_vec_irq_domain_activate,
893 };
894 
895 #ifdef CONFIG_OF
896 
897 static struct irq_domain *hv_pci_of_irq_domain_parent(void)
898 {
899 	struct device_node *parent;
900 	struct irq_domain *domain;
901 
902 	parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node);
903 	if (!parent)
904 		return NULL;
905 	domain = irq_find_host(parent);
906 	of_node_put(parent);
907 
908 	return domain;
909 }
910 
911 #endif
912 
913 #ifdef CONFIG_ACPI
914 
915 static struct irq_domain *hv_pci_acpi_irq_domain_parent(void)
916 {
917 	acpi_gsi_domain_disp_fn gsi_domain_disp_fn;
918 
919 	gsi_domain_disp_fn = acpi_get_gsi_dispatcher();
920 	if (!gsi_domain_disp_fn)
921 		return NULL;
922 	return irq_find_matching_fwnode(gsi_domain_disp_fn(0),
923 				     DOMAIN_BUS_ANY);
924 }
925 
926 #endif
927 
928 static int hv_pci_irqchip_init(void)
929 {
930 	static struct hv_pci_chip_data *chip_data;
931 	struct fwnode_handle *fn = NULL;
932 	struct irq_domain *irq_domain_parent = NULL;
933 	int ret = -ENOMEM;
934 
935 	chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL);
936 	if (!chip_data)
937 		return ret;
938 
939 	mutex_init(&chip_data->map_lock);
940 	fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64");
941 	if (!fn)
942 		goto free_chip;
943 
944 	/*
945 	 * IRQ domain once enabled, should not be removed since there is no
946 	 * way to ensure that all the corresponding devices are also gone and
947 	 * no interrupts will be generated.
948 	 */
949 #ifdef CONFIG_ACPI
950 	if (!acpi_disabled)
951 		irq_domain_parent = hv_pci_acpi_irq_domain_parent();
952 #endif
953 #ifdef CONFIG_OF
954 	if (!irq_domain_parent)
955 		irq_domain_parent = hv_pci_of_irq_domain_parent();
956 #endif
957 	if (!irq_domain_parent) {
958 		WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n");
959 		ret = -EINVAL;
960 		goto free_chip;
961 	}
962 
963 	hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0,
964 		HV_PCI_MSI_SPI_NR,
965 		fn, &hv_pci_domain_ops,
966 		chip_data);
967 
968 	if (!hv_msi_gic_irq_domain) {
969 		pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n");
970 		goto free_chip;
971 	}
972 
973 	return 0;
974 
975 free_chip:
976 	kfree(chip_data);
977 	if (fn)
978 		irq_domain_free_fwnode(fn);
979 
980 	return ret;
981 }
982 
983 static struct irq_domain *hv_pci_get_root_domain(void)
984 {
985 	return hv_msi_gic_irq_domain;
986 }
987 
988 /*
989  * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD
990  * registers which Hyper-V already supports, so no hypercall needed.
991  */
992 static void hv_arch_irq_unmask(struct irq_data *data) { }
993 #endif /* CONFIG_ARM64 */
994 
995 /**
996  * hv_pci_generic_compl() - Invoked for a completion packet
997  * @context:		Set up by the sender of the packet.
998  * @resp:		The response packet
999  * @resp_packet_size:	Size in bytes of the packet
1000  *
1001  * This function is used to trigger an event and report status
1002  * for any message for which the completion packet contains a
1003  * status and nothing else.
1004  */
1005 static void hv_pci_generic_compl(void *context, struct pci_response *resp,
1006 				 int resp_packet_size)
1007 {
1008 	struct hv_pci_compl *comp_pkt = context;
1009 
1010 	comp_pkt->completion_status = resp->status;
1011 	complete(&comp_pkt->host_event);
1012 }
1013 
1014 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
1015 						u32 wslot);
1016 
1017 static void get_pcichild(struct hv_pci_dev *hpdev)
1018 {
1019 	refcount_inc(&hpdev->refs);
1020 }
1021 
1022 static void put_pcichild(struct hv_pci_dev *hpdev)
1023 {
1024 	if (refcount_dec_and_test(&hpdev->refs))
1025 		kfree(hpdev);
1026 }
1027 
1028 /*
1029  * There is no good way to get notified from vmbus_onoffer_rescind(),
1030  * so let's use polling here, since this is not a hot path.
1031  */
1032 static int wait_for_response(struct hv_device *hdev,
1033 			     struct completion *comp)
1034 {
1035 	while (true) {
1036 		if (hdev->channel->rescind) {
1037 			dev_warn_once(&hdev->device, "The device is gone.\n");
1038 			return -ENODEV;
1039 		}
1040 
1041 		if (wait_for_completion_timeout(comp, HZ / 10))
1042 			break;
1043 	}
1044 
1045 	return 0;
1046 }
1047 
1048 /**
1049  * devfn_to_wslot() - Convert from Linux PCI slot to Windows
1050  * @devfn:	The Linux representation of PCI slot
1051  *
1052  * Windows uses a slightly different representation of PCI slot.
1053  *
1054  * Return: The Windows representation
1055  */
1056 static u32 devfn_to_wslot(int devfn)
1057 {
1058 	union win_slot_encoding wslot;
1059 
1060 	wslot.slot = 0;
1061 	wslot.bits.dev = PCI_SLOT(devfn);
1062 	wslot.bits.func = PCI_FUNC(devfn);
1063 
1064 	return wslot.slot;
1065 }
1066 
1067 /**
1068  * wslot_to_devfn() - Convert from Windows PCI slot to Linux
1069  * @wslot:	The Windows representation of PCI slot
1070  *
1071  * Windows uses a slightly different representation of PCI slot.
1072  *
1073  * Return: The Linux representation
1074  */
1075 static int wslot_to_devfn(u32 wslot)
1076 {
1077 	union win_slot_encoding slot_no;
1078 
1079 	slot_no.slot = wslot;
1080 	return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func);
1081 }
1082 
1083 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val)
1084 {
1085 	struct hv_mmio_read_input *in;
1086 	struct hv_mmio_read_output *out;
1087 	u64 ret;
1088 
1089 	/*
1090 	 * Must be called with interrupts disabled so it is safe
1091 	 * to use the per-cpu input argument page.  Use it for
1092 	 * both input and output.
1093 	 */
1094 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1095 	out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in);
1096 	in->gpa = gpa;
1097 	in->size = size;
1098 
1099 	ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out);
1100 	if (hv_result_success(ret)) {
1101 		switch (size) {
1102 		case 1:
1103 			*val = *(u8 *)(out->data);
1104 			break;
1105 		case 2:
1106 			*val = *(u16 *)(out->data);
1107 			break;
1108 		default:
1109 			*val = *(u32 *)(out->data);
1110 			break;
1111 		}
1112 	} else
1113 		dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n",
1114 				ret, gpa, size);
1115 }
1116 
1117 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val)
1118 {
1119 	struct hv_mmio_write_input *in;
1120 	u64 ret;
1121 
1122 	/*
1123 	 * Must be called with interrupts disabled so it is safe
1124 	 * to use the per-cpu input argument memory.
1125 	 */
1126 	in = *this_cpu_ptr(hyperv_pcpu_input_arg);
1127 	in->gpa = gpa;
1128 	in->size = size;
1129 	switch (size) {
1130 	case 1:
1131 		*(u8 *)(in->data) = val;
1132 		break;
1133 	case 2:
1134 		*(u16 *)(in->data) = val;
1135 		break;
1136 	default:
1137 		*(u32 *)(in->data) = val;
1138 		break;
1139 	}
1140 
1141 	ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL);
1142 	if (!hv_result_success(ret))
1143 		dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n",
1144 				ret, gpa, size);
1145 }
1146 
1147 /*
1148  * PCI Configuration Space for these root PCI buses is implemented as a pair
1149  * of pages in memory-mapped I/O space.  Writing to the first page chooses
1150  * the PCI function being written or read.  Once the first page has been
1151  * written to, the following page maps in the entire configuration space of
1152  * the function.
1153  */
1154 
1155 /**
1156  * _hv_pcifront_read_config() - Internal PCI config read
1157  * @hpdev:	The PCI driver's representation of the device
1158  * @where:	Offset within config space
1159  * @size:	Size of the transfer
1160  * @val:	Pointer to the buffer receiving the data
1161  */
1162 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where,
1163 				     int size, u32 *val)
1164 {
1165 	struct hv_pcibus_device *hbus = hpdev->hbus;
1166 	struct device *dev = &hbus->hdev->device;
1167 	int offset = where + CFG_PAGE_OFFSET;
1168 	unsigned long flags;
1169 
1170 	/*
1171 	 * If the attempt is to read the IDs or the ROM BAR, simulate that.
1172 	 */
1173 	if (where + size <= PCI_COMMAND) {
1174 		memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size);
1175 	} else if (where >= PCI_CLASS_REVISION && where + size <=
1176 		   PCI_CACHE_LINE_SIZE) {
1177 		memcpy(val, ((u8 *)&hpdev->desc.rev) + where -
1178 		       PCI_CLASS_REVISION, size);
1179 	} else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <=
1180 		   PCI_ROM_ADDRESS) {
1181 		memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where -
1182 		       PCI_SUBSYSTEM_VENDOR_ID, size);
1183 	} else if (where >= PCI_ROM_ADDRESS && where + size <=
1184 		   PCI_CAPABILITY_LIST) {
1185 		/* ROM BARs are unimplemented */
1186 		*val = 0;
1187 	} else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) ||
1188 		   (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) {
1189 		/*
1190 		 * Interrupt Line and Interrupt PIN are hard-wired to zero
1191 		 * because this front-end only supports message-signaled
1192 		 * interrupts.
1193 		 */
1194 		*val = 0;
1195 	} else if (where + size <= CFG_PAGE_SIZE) {
1196 
1197 		spin_lock_irqsave(&hbus->config_lock, flags);
1198 		if (hbus->use_calls) {
1199 			phys_addr_t addr = hbus->mem_config->start + offset;
1200 
1201 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1202 						hpdev->desc.win_slot.slot);
1203 			hv_pci_read_mmio(dev, addr, size, val);
1204 		} else {
1205 			void __iomem *addr = hbus->cfg_addr + offset;
1206 
1207 			/* Choose the function to be read. (See comment above) */
1208 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1209 			/* Make sure the function was chosen before reading. */
1210 			mb();
1211 			/* Read from that function's config space. */
1212 			switch (size) {
1213 			case 1:
1214 				*val = readb(addr);
1215 				break;
1216 			case 2:
1217 				*val = readw(addr);
1218 				break;
1219 			default:
1220 				*val = readl(addr);
1221 				break;
1222 			}
1223 			/*
1224 			 * Make sure the read was done before we release the
1225 			 * spinlock allowing consecutive reads/writes.
1226 			 */
1227 			mb();
1228 		}
1229 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1230 	} else {
1231 		dev_err(dev, "Attempt to read beyond a function's config space.\n");
1232 	}
1233 }
1234 
1235 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev)
1236 {
1237 	struct hv_pcibus_device *hbus = hpdev->hbus;
1238 	struct device *dev = &hbus->hdev->device;
1239 	u32 val;
1240 	u16 ret;
1241 	unsigned long flags;
1242 
1243 	spin_lock_irqsave(&hbus->config_lock, flags);
1244 
1245 	if (hbus->use_calls) {
1246 		phys_addr_t addr = hbus->mem_config->start +
1247 					 CFG_PAGE_OFFSET + PCI_VENDOR_ID;
1248 
1249 		hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1250 					hpdev->desc.win_slot.slot);
1251 		hv_pci_read_mmio(dev, addr, 2, &val);
1252 		ret = val;  /* Truncates to 16 bits */
1253 	} else {
1254 		void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET +
1255 					     PCI_VENDOR_ID;
1256 		/* Choose the function to be read. (See comment above) */
1257 		writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1258 		/* Make sure the function was chosen before we start reading. */
1259 		mb();
1260 		/* Read from that function's config space. */
1261 		ret = readw(addr);
1262 		/*
1263 		 * mb() is not required here, because the
1264 		 * spin_unlock_irqrestore() is a barrier.
1265 		 */
1266 	}
1267 
1268 	spin_unlock_irqrestore(&hbus->config_lock, flags);
1269 
1270 	return ret;
1271 }
1272 
1273 /**
1274  * _hv_pcifront_write_config() - Internal PCI config write
1275  * @hpdev:	The PCI driver's representation of the device
1276  * @where:	Offset within config space
1277  * @size:	Size of the transfer
1278  * @val:	The data being transferred
1279  */
1280 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where,
1281 				      int size, u32 val)
1282 {
1283 	struct hv_pcibus_device *hbus = hpdev->hbus;
1284 	struct device *dev = &hbus->hdev->device;
1285 	int offset = where + CFG_PAGE_OFFSET;
1286 	unsigned long flags;
1287 
1288 	if (where >= PCI_SUBSYSTEM_VENDOR_ID &&
1289 	    where + size <= PCI_CAPABILITY_LIST) {
1290 		/* SSIDs and ROM BARs are read-only */
1291 	} else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) {
1292 		spin_lock_irqsave(&hbus->config_lock, flags);
1293 
1294 		if (hbus->use_calls) {
1295 			phys_addr_t addr = hbus->mem_config->start + offset;
1296 
1297 			hv_pci_write_mmio(dev, hbus->mem_config->start, 4,
1298 						hpdev->desc.win_slot.slot);
1299 			hv_pci_write_mmio(dev, addr, size, val);
1300 		} else {
1301 			void __iomem *addr = hbus->cfg_addr + offset;
1302 
1303 			/* Choose the function to write. (See comment above) */
1304 			writel(hpdev->desc.win_slot.slot, hbus->cfg_addr);
1305 			/* Make sure the function was chosen before writing. */
1306 			wmb();
1307 			/* Write to that function's config space. */
1308 			switch (size) {
1309 			case 1:
1310 				writeb(val, addr);
1311 				break;
1312 			case 2:
1313 				writew(val, addr);
1314 				break;
1315 			default:
1316 				writel(val, addr);
1317 				break;
1318 			}
1319 			/*
1320 			 * Make sure the write was done before we release the
1321 			 * spinlock allowing consecutive reads/writes.
1322 			 */
1323 			mb();
1324 		}
1325 		spin_unlock_irqrestore(&hbus->config_lock, flags);
1326 	} else {
1327 		dev_err(dev, "Attempt to write beyond a function's config space.\n");
1328 	}
1329 }
1330 
1331 /**
1332  * hv_pcifront_read_config() - Read configuration space
1333  * @bus: PCI Bus structure
1334  * @devfn: Device/function
1335  * @where: Offset from base
1336  * @size: Byte/word/dword
1337  * @val: Value to be read
1338  *
1339  * Return: PCIBIOS_SUCCESSFUL on success
1340  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1341  */
1342 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn,
1343 				   int where, int size, u32 *val)
1344 {
1345 	struct hv_pcibus_device *hbus =
1346 		container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1347 	struct hv_pci_dev *hpdev;
1348 
1349 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1350 	if (!hpdev)
1351 		return PCIBIOS_DEVICE_NOT_FOUND;
1352 
1353 	_hv_pcifront_read_config(hpdev, where, size, val);
1354 
1355 	put_pcichild(hpdev);
1356 	return PCIBIOS_SUCCESSFUL;
1357 }
1358 
1359 /**
1360  * hv_pcifront_write_config() - Write configuration space
1361  * @bus: PCI Bus structure
1362  * @devfn: Device/function
1363  * @where: Offset from base
1364  * @size: Byte/word/dword
1365  * @val: Value to be written to device
1366  *
1367  * Return: PCIBIOS_SUCCESSFUL on success
1368  *	   PCIBIOS_DEVICE_NOT_FOUND on failure
1369  */
1370 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn,
1371 				    int where, int size, u32 val)
1372 {
1373 	struct hv_pcibus_device *hbus =
1374 	    container_of(bus->sysdata, struct hv_pcibus_device, sysdata);
1375 	struct hv_pci_dev *hpdev;
1376 
1377 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn));
1378 	if (!hpdev)
1379 		return PCIBIOS_DEVICE_NOT_FOUND;
1380 
1381 	_hv_pcifront_write_config(hpdev, where, size, val);
1382 
1383 	put_pcichild(hpdev);
1384 	return PCIBIOS_SUCCESSFUL;
1385 }
1386 
1387 /* PCIe operations */
1388 static struct pci_ops hv_pcifront_ops = {
1389 	.read  = hv_pcifront_read_config,
1390 	.write = hv_pcifront_write_config,
1391 };
1392 
1393 /*
1394  * Paravirtual backchannel
1395  *
1396  * Hyper-V SR-IOV provides a backchannel mechanism in software for
1397  * communication between a VF driver and a PF driver.  These
1398  * "configuration blocks" are similar in concept to PCI configuration space,
1399  * but instead of doing reads and writes in 32-bit chunks through a very slow
1400  * path, packets of up to 128 bytes can be sent or received asynchronously.
1401  *
1402  * Nearly every SR-IOV device contains just such a communications channel in
1403  * hardware, so using this one in software is usually optional.  Using the
1404  * software channel, however, allows driver implementers to leverage software
1405  * tools that fuzz the communications channel looking for vulnerabilities.
1406  *
1407  * The usage model for these packets puts the responsibility for reading or
1408  * writing on the VF driver.  The VF driver sends a read or a write packet,
1409  * indicating which "block" is being referred to by number.
1410  *
1411  * If the PF driver wishes to initiate communication, it can "invalidate" one or
1412  * more of the first 64 blocks.  This invalidation is delivered via a callback
1413  * supplied to the VF driver by this driver.
1414  *
1415  * No protocol is implied, except that supplied by the PF and VF drivers.
1416  */
1417 
1418 struct hv_read_config_compl {
1419 	struct hv_pci_compl comp_pkt;
1420 	void *buf;
1421 	unsigned int len;
1422 	unsigned int bytes_returned;
1423 };
1424 
1425 /**
1426  * hv_pci_read_config_compl() - Invoked when a response packet
1427  * for a read config block operation arrives.
1428  * @context:		Identifies the read config operation
1429  * @resp:		The response packet itself
1430  * @resp_packet_size:	Size in bytes of the response packet
1431  */
1432 static void hv_pci_read_config_compl(void *context, struct pci_response *resp,
1433 				     int resp_packet_size)
1434 {
1435 	struct hv_read_config_compl *comp = context;
1436 	struct pci_read_block_response *read_resp =
1437 		(struct pci_read_block_response *)resp;
1438 	unsigned int data_len, hdr_len;
1439 
1440 	hdr_len = offsetof(struct pci_read_block_response, bytes);
1441 	if (resp_packet_size < hdr_len) {
1442 		comp->comp_pkt.completion_status = -1;
1443 		goto out;
1444 	}
1445 
1446 	data_len = resp_packet_size - hdr_len;
1447 	if (data_len > 0 && read_resp->status == 0) {
1448 		comp->bytes_returned = min(comp->len, data_len);
1449 		memcpy(comp->buf, read_resp->bytes, comp->bytes_returned);
1450 	} else {
1451 		comp->bytes_returned = 0;
1452 	}
1453 
1454 	comp->comp_pkt.completion_status = read_resp->status;
1455 out:
1456 	complete(&comp->comp_pkt.host_event);
1457 }
1458 
1459 /**
1460  * hv_read_config_block() - Sends a read config block request to
1461  * the back-end driver running in the Hyper-V parent partition.
1462  * @pdev:		The PCI driver's representation for this device.
1463  * @buf:		Buffer into which the config block will be copied.
1464  * @len:		Size in bytes of buf.
1465  * @block_id:		Identifies the config block which has been requested.
1466  * @bytes_returned:	Size which came back from the back-end driver.
1467  *
1468  * Return: 0 on success, -errno on failure
1469  */
1470 static int hv_read_config_block(struct pci_dev *pdev, void *buf,
1471 				unsigned int len, unsigned int block_id,
1472 				unsigned int *bytes_returned)
1473 {
1474 	struct hv_pcibus_device *hbus =
1475 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1476 			     sysdata);
1477 	struct {
1478 		struct pci_packet pkt;
1479 		char buf[sizeof(struct pci_read_block)];
1480 	} pkt;
1481 	struct hv_read_config_compl comp_pkt;
1482 	struct pci_read_block *read_blk;
1483 	int ret;
1484 
1485 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1486 		return -EINVAL;
1487 
1488 	init_completion(&comp_pkt.comp_pkt.host_event);
1489 	comp_pkt.buf = buf;
1490 	comp_pkt.len = len;
1491 
1492 	memset(&pkt, 0, sizeof(pkt));
1493 	pkt.pkt.completion_func = hv_pci_read_config_compl;
1494 	pkt.pkt.compl_ctxt = &comp_pkt;
1495 	read_blk = (struct pci_read_block *)pkt.buf;
1496 	read_blk->message_type.type = PCI_READ_BLOCK;
1497 	read_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1498 	read_blk->block_id = block_id;
1499 	read_blk->bytes_requested = len;
1500 
1501 	ret = vmbus_sendpacket(hbus->hdev->channel, read_blk,
1502 			       sizeof(*read_blk), (unsigned long)&pkt.pkt,
1503 			       VM_PKT_DATA_INBAND,
1504 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1505 	if (ret)
1506 		return ret;
1507 
1508 	ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event);
1509 	if (ret)
1510 		return ret;
1511 
1512 	if (comp_pkt.comp_pkt.completion_status != 0 ||
1513 	    comp_pkt.bytes_returned == 0) {
1514 		dev_err(&hbus->hdev->device,
1515 			"Read Config Block failed: 0x%x, bytes_returned=%d\n",
1516 			comp_pkt.comp_pkt.completion_status,
1517 			comp_pkt.bytes_returned);
1518 		return -EIO;
1519 	}
1520 
1521 	*bytes_returned = comp_pkt.bytes_returned;
1522 	return 0;
1523 }
1524 
1525 /**
1526  * hv_pci_write_config_compl() - Invoked when a response packet for a write
1527  * config block operation arrives.
1528  * @context:		Identifies the write config operation
1529  * @resp:		The response packet itself
1530  * @resp_packet_size:	Size in bytes of the response packet
1531  */
1532 static void hv_pci_write_config_compl(void *context, struct pci_response *resp,
1533 				      int resp_packet_size)
1534 {
1535 	struct hv_pci_compl *comp_pkt = context;
1536 
1537 	comp_pkt->completion_status = resp->status;
1538 	complete(&comp_pkt->host_event);
1539 }
1540 
1541 /**
1542  * hv_write_config_block() - Sends a write config block request to the
1543  * back-end driver running in the Hyper-V parent partition.
1544  * @pdev:		The PCI driver's representation for this device.
1545  * @buf:		Buffer from which the config block will	be copied.
1546  * @len:		Size in bytes of buf.
1547  * @block_id:		Identifies the config block which is being written.
1548  *
1549  * Return: 0 on success, -errno on failure
1550  */
1551 static int hv_write_config_block(struct pci_dev *pdev, void *buf,
1552 				unsigned int len, unsigned int block_id)
1553 {
1554 	struct hv_pcibus_device *hbus =
1555 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1556 			     sysdata);
1557 	struct {
1558 		struct pci_packet pkt;
1559 		char buf[sizeof(struct pci_write_block)];
1560 		u32 reserved;
1561 	} pkt;
1562 	struct hv_pci_compl comp_pkt;
1563 	struct pci_write_block *write_blk;
1564 	u32 pkt_size;
1565 	int ret;
1566 
1567 	if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX)
1568 		return -EINVAL;
1569 
1570 	init_completion(&comp_pkt.host_event);
1571 
1572 	memset(&pkt, 0, sizeof(pkt));
1573 	pkt.pkt.completion_func = hv_pci_write_config_compl;
1574 	pkt.pkt.compl_ctxt = &comp_pkt;
1575 	write_blk = (struct pci_write_block *)pkt.buf;
1576 	write_blk->message_type.type = PCI_WRITE_BLOCK;
1577 	write_blk->wslot.slot = devfn_to_wslot(pdev->devfn);
1578 	write_blk->block_id = block_id;
1579 	write_blk->byte_count = len;
1580 	memcpy(write_blk->bytes, buf, len);
1581 	pkt_size = offsetof(struct pci_write_block, bytes) + len;
1582 	/*
1583 	 * This quirk is required on some hosts shipped around 2018, because
1584 	 * these hosts don't check the pkt_size correctly (new hosts have been
1585 	 * fixed since early 2019). The quirk is also safe on very old hosts
1586 	 * and new hosts, because, on them, what really matters is the length
1587 	 * specified in write_blk->byte_count.
1588 	 */
1589 	pkt_size += sizeof(pkt.reserved);
1590 
1591 	ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size,
1592 			       (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND,
1593 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
1594 	if (ret)
1595 		return ret;
1596 
1597 	ret = wait_for_response(hbus->hdev, &comp_pkt.host_event);
1598 	if (ret)
1599 		return ret;
1600 
1601 	if (comp_pkt.completion_status != 0) {
1602 		dev_err(&hbus->hdev->device,
1603 			"Write Config Block failed: 0x%x\n",
1604 			comp_pkt.completion_status);
1605 		return -EIO;
1606 	}
1607 
1608 	return 0;
1609 }
1610 
1611 /**
1612  * hv_register_block_invalidate() - Invoked when a config block invalidation
1613  * arrives from the back-end driver.
1614  * @pdev:		The PCI driver's representation for this device.
1615  * @context:		Identifies the device.
1616  * @block_invalidate:	Identifies all of the blocks being invalidated.
1617  *
1618  * Return: 0 on success, -errno on failure
1619  */
1620 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context,
1621 					void (*block_invalidate)(void *context,
1622 								 u64 block_mask))
1623 {
1624 	struct hv_pcibus_device *hbus =
1625 		container_of(pdev->bus->sysdata, struct hv_pcibus_device,
1626 			     sysdata);
1627 	struct hv_pci_dev *hpdev;
1628 
1629 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1630 	if (!hpdev)
1631 		return -ENODEV;
1632 
1633 	hpdev->block_invalidate = block_invalidate;
1634 	hpdev->invalidate_context = context;
1635 
1636 	put_pcichild(hpdev);
1637 	return 0;
1638 
1639 }
1640 
1641 /* Interrupt management hooks */
1642 static void hv_int_desc_free(struct hv_pci_dev *hpdev,
1643 			     struct tran_int_desc *int_desc)
1644 {
1645 	struct pci_delete_interrupt *int_pkt;
1646 	struct {
1647 		struct pci_packet pkt;
1648 		u8 buffer[sizeof(struct pci_delete_interrupt)];
1649 	} ctxt;
1650 
1651 	if (!int_desc->vector_count) {
1652 		kfree(int_desc);
1653 		return;
1654 	}
1655 	memset(&ctxt, 0, sizeof(ctxt));
1656 	int_pkt = (struct pci_delete_interrupt *)ctxt.buffer;
1657 	int_pkt->message_type.type =
1658 		PCI_DELETE_INTERRUPT_MESSAGE;
1659 	int_pkt->wslot.slot = hpdev->desc.win_slot.slot;
1660 	int_pkt->int_desc = *int_desc;
1661 	vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt),
1662 			 0, VM_PKT_DATA_INBAND, 0);
1663 	kfree(int_desc);
1664 }
1665 
1666 /**
1667  * hv_msi_free() - Free the MSI.
1668  * @domain:	The interrupt domain pointer
1669  * @info:	Extra MSI-related context
1670  * @irq:	Identifies the IRQ.
1671  *
1672  * The Hyper-V parent partition and hypervisor are tracking the
1673  * messages that are in use, keeping the interrupt redirection
1674  * table up to date.  This callback sends a message that frees
1675  * the IRT entry and related tracking nonsense.
1676  */
1677 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info,
1678 			unsigned int irq)
1679 {
1680 	struct hv_pcibus_device *hbus;
1681 	struct hv_pci_dev *hpdev;
1682 	struct pci_dev *pdev;
1683 	struct tran_int_desc *int_desc;
1684 	struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq);
1685 	struct msi_desc *msi = irq_data_get_msi_desc(irq_data);
1686 
1687 	pdev = msi_desc_to_pci_dev(msi);
1688 	hbus = domain->host_data;
1689 	int_desc = irq_data_get_irq_chip_data(irq_data);
1690 	if (!int_desc)
1691 		return;
1692 
1693 	irq_data->chip_data = NULL;
1694 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1695 	if (!hpdev) {
1696 		kfree(int_desc);
1697 		return;
1698 	}
1699 
1700 	hv_int_desc_free(hpdev, int_desc);
1701 	put_pcichild(hpdev);
1702 }
1703 
1704 static void hv_irq_mask(struct irq_data *data)
1705 {
1706 	if (data->parent_data->chip->irq_mask)
1707 		irq_chip_mask_parent(data);
1708 }
1709 
1710 static void hv_irq_unmask(struct irq_data *data)
1711 {
1712 	hv_arch_irq_unmask(data);
1713 
1714 	if (data->parent_data->chip->irq_unmask)
1715 		irq_chip_unmask_parent(data);
1716 }
1717 
1718 struct compose_comp_ctxt {
1719 	struct hv_pci_compl comp_pkt;
1720 	struct tran_int_desc int_desc;
1721 };
1722 
1723 static void hv_pci_compose_compl(void *context, struct pci_response *resp,
1724 				 int resp_packet_size)
1725 {
1726 	struct compose_comp_ctxt *comp_pkt = context;
1727 	struct pci_create_int_response *int_resp =
1728 		(struct pci_create_int_response *)resp;
1729 
1730 	if (resp_packet_size < sizeof(*int_resp)) {
1731 		comp_pkt->comp_pkt.completion_status = -1;
1732 		goto out;
1733 	}
1734 	comp_pkt->comp_pkt.completion_status = resp->status;
1735 	comp_pkt->int_desc = int_resp->int_desc;
1736 out:
1737 	complete(&comp_pkt->comp_pkt.host_event);
1738 }
1739 
1740 static u32 hv_compose_msi_req_v1(
1741 	struct pci_create_interrupt *int_pkt,
1742 	u32 slot, u8 vector, u16 vector_count)
1743 {
1744 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE;
1745 	int_pkt->wslot.slot = slot;
1746 	int_pkt->int_desc.vector = vector;
1747 	int_pkt->int_desc.vector_count = vector_count;
1748 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1749 
1750 	/*
1751 	 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in
1752 	 * hv_irq_unmask().
1753 	 */
1754 	int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL;
1755 
1756 	return sizeof(*int_pkt);
1757 }
1758 
1759 /*
1760  * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and
1761  * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be
1762  * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V
1763  * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is
1764  * not irrelevant because Hyper-V chooses the physical CPU to handle the
1765  * interrupts based on the vCPU specified in message sent to the vPCI VSP in
1766  * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest,
1767  * but assigning too many vPCI device interrupts to the same pCPU can cause a
1768  * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V
1769  * to spread out the pCPUs that it selects.
1770  *
1771  * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu()
1772  * to always return the same dummy vCPU, because a second call to
1773  * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a
1774  * new pCPU for the interrupt. But for the multi-MSI case, the second call to
1775  * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the
1776  * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that
1777  * the pCPUs are spread out. All interrupts for a multi-MSI device end up using
1778  * the same pCPU, even though the vCPUs will be spread out by later calls
1779  * to hv_irq_unmask(), but that is the best we can do now.
1780  *
1781  * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not*
1782  * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an
1783  * enhancement is planned for a future version. With that enhancement, the
1784  * dummy vCPU selection won't matter, and interrupts for the same multi-MSI
1785  * device will be spread across multiple pCPUs.
1786  */
1787 
1788 /*
1789  * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten
1790  * by subsequent retarget in hv_irq_unmask().
1791  */
1792 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity)
1793 {
1794 	return cpumask_first_and(affinity, cpu_online_mask);
1795 }
1796 
1797 /*
1798  * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0.
1799  */
1800 static int hv_compose_multi_msi_req_get_cpu(void)
1801 {
1802 	static DEFINE_SPINLOCK(multi_msi_cpu_lock);
1803 
1804 	/* -1 means starting with CPU 0 */
1805 	static int cpu_next = -1;
1806 
1807 	unsigned long flags;
1808 	int cpu;
1809 
1810 	spin_lock_irqsave(&multi_msi_cpu_lock, flags);
1811 
1812 	cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask);
1813 	cpu = cpu_next;
1814 
1815 	spin_unlock_irqrestore(&multi_msi_cpu_lock, flags);
1816 
1817 	return cpu;
1818 }
1819 
1820 static u32 hv_compose_msi_req_v2(
1821 	struct pci_create_interrupt2 *int_pkt, int cpu,
1822 	u32 slot, u8 vector, u16 vector_count)
1823 {
1824 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2;
1825 	int_pkt->wslot.slot = slot;
1826 	int_pkt->int_desc.vector = vector;
1827 	int_pkt->int_desc.vector_count = vector_count;
1828 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1829 	int_pkt->int_desc.processor_array[0] =
1830 		hv_cpu_number_to_vp_number(cpu);
1831 	int_pkt->int_desc.processor_count = 1;
1832 
1833 	return sizeof(*int_pkt);
1834 }
1835 
1836 static u32 hv_compose_msi_req_v3(
1837 	struct pci_create_interrupt3 *int_pkt, int cpu,
1838 	u32 slot, u32 vector, u16 vector_count)
1839 {
1840 	int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3;
1841 	int_pkt->wslot.slot = slot;
1842 	int_pkt->int_desc.vector = vector;
1843 	int_pkt->int_desc.reserved = 0;
1844 	int_pkt->int_desc.vector_count = vector_count;
1845 	int_pkt->int_desc.delivery_mode = DELIVERY_MODE;
1846 	int_pkt->int_desc.processor_array[0] =
1847 		hv_cpu_number_to_vp_number(cpu);
1848 	int_pkt->int_desc.processor_count = 1;
1849 
1850 	return sizeof(*int_pkt);
1851 }
1852 
1853 /**
1854  * hv_compose_msi_msg() - Supplies a valid MSI address/data
1855  * @data:	Everything about this MSI
1856  * @msg:	Buffer that is filled in by this function
1857  *
1858  * This function unpacks the IRQ looking for target CPU set, IDT
1859  * vector and mode and sends a message to the parent partition
1860  * asking for a mapping for that tuple in this partition.  The
1861  * response supplies a data value and address to which that data
1862  * should be written to trigger that interrupt.
1863  */
1864 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg)
1865 {
1866 	struct hv_pcibus_device *hbus;
1867 	struct vmbus_channel *channel;
1868 	struct hv_pci_dev *hpdev;
1869 	struct pci_bus *pbus;
1870 	struct pci_dev *pdev;
1871 	const struct cpumask *dest;
1872 	struct compose_comp_ctxt comp;
1873 	struct tran_int_desc *int_desc;
1874 	struct msi_desc *msi_desc;
1875 	/*
1876 	 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2
1877 	 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3.
1878 	 */
1879 	u16 vector_count;
1880 	u32 vector;
1881 	struct {
1882 		struct pci_packet pci_pkt;
1883 		union {
1884 			struct pci_create_interrupt v1;
1885 			struct pci_create_interrupt2 v2;
1886 			struct pci_create_interrupt3 v3;
1887 		} int_pkts;
1888 	} __packed ctxt;
1889 	bool multi_msi;
1890 	u64 trans_id;
1891 	u32 size;
1892 	int ret;
1893 	int cpu;
1894 
1895 	msi_desc  = irq_data_get_msi_desc(data);
1896 	multi_msi = !msi_desc->pci.msi_attrib.is_msix &&
1897 		    msi_desc->nvec_used > 1;
1898 
1899 	/* Reuse the previous allocation */
1900 	if (data->chip_data && multi_msi) {
1901 		int_desc = data->chip_data;
1902 		msg->address_hi = int_desc->address >> 32;
1903 		msg->address_lo = int_desc->address & 0xffffffff;
1904 		msg->data = int_desc->data;
1905 		return;
1906 	}
1907 
1908 	pdev = msi_desc_to_pci_dev(msi_desc);
1909 	dest = irq_data_get_effective_affinity_mask(data);
1910 	pbus = pdev->bus;
1911 	hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata);
1912 	channel = hbus->hdev->channel;
1913 	hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn));
1914 	if (!hpdev)
1915 		goto return_null_message;
1916 
1917 	/* Free any previous message that might have already been composed. */
1918 	if (data->chip_data && !multi_msi) {
1919 		int_desc = data->chip_data;
1920 		data->chip_data = NULL;
1921 		hv_int_desc_free(hpdev, int_desc);
1922 	}
1923 
1924 	int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC);
1925 	if (!int_desc)
1926 		goto drop_reference;
1927 
1928 	if (multi_msi) {
1929 		/*
1930 		 * If this is not the first MSI of Multi MSI, we already have
1931 		 * a mapping.  Can exit early.
1932 		 */
1933 		if (msi_desc->irq != data->irq) {
1934 			data->chip_data = int_desc;
1935 			int_desc->address = msi_desc->msg.address_lo |
1936 					    (u64)msi_desc->msg.address_hi << 32;
1937 			int_desc->data = msi_desc->msg.data +
1938 					 (data->irq - msi_desc->irq);
1939 			msg->address_hi = msi_desc->msg.address_hi;
1940 			msg->address_lo = msi_desc->msg.address_lo;
1941 			msg->data = int_desc->data;
1942 			put_pcichild(hpdev);
1943 			return;
1944 		}
1945 		/*
1946 		 * The vector we select here is a dummy value.  The correct
1947 		 * value gets sent to the hypervisor in unmask().  This needs
1948 		 * to be aligned with the count, and also not zero.  Multi-msi
1949 		 * is powers of 2 up to 32, so 32 will always work here.
1950 		 */
1951 		vector = 32;
1952 		vector_count = msi_desc->nvec_used;
1953 		cpu = hv_compose_multi_msi_req_get_cpu();
1954 	} else {
1955 		vector = hv_msi_get_int_vector(data);
1956 		vector_count = 1;
1957 		cpu = hv_compose_msi_req_get_cpu(dest);
1958 	}
1959 
1960 	/*
1961 	 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector'
1962 	 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly
1963 	 * for better readability.
1964 	 */
1965 	memset(&ctxt, 0, sizeof(ctxt));
1966 	init_completion(&comp.comp_pkt.host_event);
1967 	ctxt.pci_pkt.completion_func = hv_pci_compose_compl;
1968 	ctxt.pci_pkt.compl_ctxt = &comp;
1969 
1970 	switch (hbus->protocol_version) {
1971 	case PCI_PROTOCOL_VERSION_1_1:
1972 		size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1,
1973 					hpdev->desc.win_slot.slot,
1974 					(u8)vector,
1975 					vector_count);
1976 		break;
1977 
1978 	case PCI_PROTOCOL_VERSION_1_2:
1979 	case PCI_PROTOCOL_VERSION_1_3:
1980 		size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2,
1981 					cpu,
1982 					hpdev->desc.win_slot.slot,
1983 					(u8)vector,
1984 					vector_count);
1985 		break;
1986 
1987 	case PCI_PROTOCOL_VERSION_1_4:
1988 		size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3,
1989 					cpu,
1990 					hpdev->desc.win_slot.slot,
1991 					vector,
1992 					vector_count);
1993 		break;
1994 
1995 	default:
1996 		/* As we only negotiate protocol versions known to this driver,
1997 		 * this path should never hit. However, this is it not a hot
1998 		 * path so we print a message to aid future updates.
1999 		 */
2000 		dev_err(&hbus->hdev->device,
2001 			"Unexpected vPCI protocol, update driver.");
2002 		goto free_int_desc;
2003 	}
2004 
2005 	ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts,
2006 				     size, (unsigned long)&ctxt.pci_pkt,
2007 				     &trans_id, VM_PKT_DATA_INBAND,
2008 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2009 	if (ret) {
2010 		dev_err(&hbus->hdev->device,
2011 			"Sending request for interrupt failed: 0x%x",
2012 			comp.comp_pkt.completion_status);
2013 		goto free_int_desc;
2014 	}
2015 
2016 	/*
2017 	 * Prevents hv_pci_onchannelcallback() from running concurrently
2018 	 * in the tasklet.
2019 	 */
2020 	tasklet_disable_in_atomic(&channel->callback_event);
2021 
2022 	/*
2023 	 * Since this function is called with IRQ locks held, can't
2024 	 * do normal wait for completion; instead poll.
2025 	 */
2026 	while (!try_wait_for_completion(&comp.comp_pkt.host_event)) {
2027 		unsigned long flags;
2028 
2029 		/* 0xFFFF means an invalid PCI VENDOR ID. */
2030 		if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) {
2031 			dev_err_once(&hbus->hdev->device,
2032 				     "the device has gone\n");
2033 			goto enable_tasklet;
2034 		}
2035 
2036 		/*
2037 		 * Make sure that the ring buffer data structure doesn't get
2038 		 * freed while we dereference the ring buffer pointer.  Test
2039 		 * for the channel's onchannel_callback being NULL within a
2040 		 * sched_lock critical section.  See also the inline comments
2041 		 * in vmbus_reset_channel_cb().
2042 		 */
2043 		spin_lock_irqsave(&channel->sched_lock, flags);
2044 		if (unlikely(channel->onchannel_callback == NULL)) {
2045 			spin_unlock_irqrestore(&channel->sched_lock, flags);
2046 			goto enable_tasklet;
2047 		}
2048 		hv_pci_onchannelcallback(hbus);
2049 		spin_unlock_irqrestore(&channel->sched_lock, flags);
2050 
2051 		udelay(100);
2052 	}
2053 
2054 	tasklet_enable(&channel->callback_event);
2055 
2056 	if (comp.comp_pkt.completion_status < 0) {
2057 		dev_err(&hbus->hdev->device,
2058 			"Request for interrupt failed: 0x%x",
2059 			comp.comp_pkt.completion_status);
2060 		goto free_int_desc;
2061 	}
2062 
2063 	/*
2064 	 * Record the assignment so that this can be unwound later. Using
2065 	 * irq_set_chip_data() here would be appropriate, but the lock it takes
2066 	 * is already held.
2067 	 */
2068 	*int_desc = comp.int_desc;
2069 	data->chip_data = int_desc;
2070 
2071 	/* Pass up the result. */
2072 	msg->address_hi = comp.int_desc.address >> 32;
2073 	msg->address_lo = comp.int_desc.address & 0xffffffff;
2074 	msg->data = comp.int_desc.data;
2075 
2076 	put_pcichild(hpdev);
2077 	return;
2078 
2079 enable_tasklet:
2080 	tasklet_enable(&channel->callback_event);
2081 	/*
2082 	 * The completion packet on the stack becomes invalid after 'return';
2083 	 * remove the ID from the VMbus requestor if the identifier is still
2084 	 * mapped to/associated with the packet.  (The identifier could have
2085 	 * been 're-used', i.e., already removed and (re-)mapped.)
2086 	 *
2087 	 * Cf. hv_pci_onchannelcallback().
2088 	 */
2089 	vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt);
2090 free_int_desc:
2091 	kfree(int_desc);
2092 drop_reference:
2093 	put_pcichild(hpdev);
2094 return_null_message:
2095 	msg->address_hi = 0;
2096 	msg->address_lo = 0;
2097 	msg->data = 0;
2098 }
2099 
2100 static bool hv_pcie_init_dev_msi_info(struct device *dev, struct irq_domain *domain,
2101 				      struct irq_domain *real_parent, struct msi_domain_info *info)
2102 {
2103 	struct irq_chip *chip = info->chip;
2104 
2105 	if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info))
2106 		return false;
2107 
2108 	info->ops->msi_prepare = hv_msi_prepare;
2109 
2110 	chip->irq_set_affinity = irq_chip_set_affinity_parent;
2111 
2112 	if (IS_ENABLED(CONFIG_X86))
2113 		chip->flags |= IRQCHIP_MOVE_DEFERRED;
2114 
2115 	return true;
2116 }
2117 
2118 #define HV_PCIE_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS		| \
2119 				    MSI_FLAG_USE_DEF_CHIP_OPS		| \
2120 				    MSI_FLAG_PCI_MSI_MASK_PARENT)
2121 #define HV_PCIE_MSI_FLAGS_SUPPORTED (MSI_FLAG_MULTI_PCI_MSI		| \
2122 				     MSI_FLAG_PCI_MSIX			| \
2123 				     MSI_FLAG_PCI_MSIX_ALLOC_DYN	| \
2124 				     MSI_GENERIC_FLAGS_MASK)
2125 
2126 static const struct msi_parent_ops hv_pcie_msi_parent_ops = {
2127 	.required_flags		= HV_PCIE_MSI_FLAGS_REQUIRED,
2128 	.supported_flags	= HV_PCIE_MSI_FLAGS_SUPPORTED,
2129 	.bus_select_token	= DOMAIN_BUS_PCI_MSI,
2130 	.chip_flags		= HV_MSI_CHIP_FLAGS,
2131 	.prefix			= "HV-",
2132 	.init_dev_msi_info	= hv_pcie_init_dev_msi_info,
2133 };
2134 
2135 /* HW Interrupt Chip Descriptor */
2136 static struct irq_chip hv_msi_irq_chip = {
2137 	.name			= "Hyper-V PCIe MSI",
2138 	.irq_compose_msi_msg	= hv_compose_msi_msg,
2139 	.irq_set_affinity	= irq_chip_set_affinity_parent,
2140 	.irq_ack		= irq_chip_ack_parent,
2141 	.irq_eoi		= irq_chip_eoi_parent,
2142 	.irq_mask		= hv_irq_mask,
2143 	.irq_unmask		= hv_irq_unmask,
2144 };
2145 
2146 static int hv_pcie_domain_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs,
2147 			       void *arg)
2148 {
2149 	/*
2150 	 * TODO: Allocating and populating struct tran_int_desc in hv_compose_msi_msg()
2151 	 * should be moved here.
2152 	 */
2153 	int ret;
2154 
2155 	ret = irq_domain_alloc_irqs_parent(d, virq, nr_irqs, arg);
2156 	if (ret < 0)
2157 		return ret;
2158 
2159 	for (int i = 0; i < nr_irqs; i++) {
2160 		irq_domain_set_hwirq_and_chip(d, virq + i, 0, &hv_msi_irq_chip, NULL);
2161 		if (IS_ENABLED(CONFIG_X86))
2162 			__irq_set_handler(virq + i, handle_edge_irq, 0, "edge");
2163 	}
2164 
2165 	return 0;
2166 }
2167 
2168 static void hv_pcie_domain_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs)
2169 {
2170 	struct msi_domain_info *info = d->host_data;
2171 
2172 	for (int i = 0; i < nr_irqs; i++)
2173 		hv_msi_free(d, info, virq + i);
2174 
2175 	irq_domain_free_irqs_top(d, virq, nr_irqs);
2176 }
2177 
2178 static const struct irq_domain_ops hv_pcie_domain_ops = {
2179 	.alloc	= hv_pcie_domain_alloc,
2180 	.free	= hv_pcie_domain_free,
2181 };
2182 
2183 /**
2184  * hv_pcie_init_irq_domain() - Initialize IRQ domain
2185  * @hbus:	The root PCI bus
2186  *
2187  * This function creates an IRQ domain which will be used for
2188  * interrupts from devices that have been passed through.  These
2189  * devices only support MSI and MSI-X, not line-based interrupts
2190  * or simulations of line-based interrupts through PCIe's
2191  * fabric-layer messages.  Because interrupts are remapped, we
2192  * can support multi-message MSI here.
2193  *
2194  * Return: '0' on success and error value on failure
2195  */
2196 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus)
2197 {
2198 	struct irq_domain_info info = {
2199 		.fwnode		= hbus->fwnode,
2200 		.ops		= &hv_pcie_domain_ops,
2201 		.host_data	= hbus,
2202 		.parent		= hv_pci_get_root_domain(),
2203 	};
2204 
2205 	hbus->irq_domain = msi_create_parent_irq_domain(&info, &hv_pcie_msi_parent_ops);
2206 	if (!hbus->irq_domain) {
2207 		dev_err(&hbus->hdev->device,
2208 			"Failed to build an MSI IRQ domain\n");
2209 		return -ENODEV;
2210 	}
2211 
2212 	dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain);
2213 
2214 	return 0;
2215 }
2216 
2217 /**
2218  * get_bar_size() - Get the address space consumed by a BAR
2219  * @bar_val:	Value that a BAR returned after -1 was written
2220  *              to it.
2221  *
2222  * This function returns the size of the BAR, rounded up to 1
2223  * page.  It has to be rounded up because the hypervisor's page
2224  * table entry that maps the BAR into the VM can't specify an
2225  * offset within a page.  The invariant is that the hypervisor
2226  * must place any BARs of smaller than page length at the
2227  * beginning of a page.
2228  *
2229  * Return:	Size in bytes of the consumed MMIO space.
2230  */
2231 static u64 get_bar_size(u64 bar_val)
2232 {
2233 	return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)),
2234 			PAGE_SIZE);
2235 }
2236 
2237 /**
2238  * survey_child_resources() - Total all MMIO requirements
2239  * @hbus:	Root PCI bus, as understood by this driver
2240  */
2241 static void survey_child_resources(struct hv_pcibus_device *hbus)
2242 {
2243 	struct hv_pci_dev *hpdev;
2244 	resource_size_t bar_size = 0;
2245 	unsigned long flags;
2246 	struct completion *event;
2247 	u64 bar_val;
2248 	int i;
2249 
2250 	/* If nobody is waiting on the answer, don't compute it. */
2251 	event = xchg(&hbus->survey_event, NULL);
2252 	if (!event)
2253 		return;
2254 
2255 	/* If the answer has already been computed, go with it. */
2256 	if (hbus->low_mmio_space || hbus->high_mmio_space) {
2257 		complete(event);
2258 		return;
2259 	}
2260 
2261 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2262 
2263 	/*
2264 	 * Due to an interesting quirk of the PCI spec, all memory regions
2265 	 * for a child device are a power of 2 in size and aligned in memory,
2266 	 * so it's sufficient to just add them up without tracking alignment.
2267 	 */
2268 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2269 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2270 			if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO)
2271 				dev_err(&hbus->hdev->device,
2272 					"There's an I/O BAR in this list!\n");
2273 
2274 			if (hpdev->probed_bar[i] != 0) {
2275 				/*
2276 				 * A probed BAR has all the upper bits set that
2277 				 * can be changed.
2278 				 */
2279 
2280 				bar_val = hpdev->probed_bar[i];
2281 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2282 					bar_val |=
2283 					((u64)hpdev->probed_bar[++i] << 32);
2284 				else
2285 					bar_val |= 0xffffffff00000000ULL;
2286 
2287 				bar_size = get_bar_size(bar_val);
2288 
2289 				if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64)
2290 					hbus->high_mmio_space += bar_size;
2291 				else
2292 					hbus->low_mmio_space += bar_size;
2293 			}
2294 		}
2295 	}
2296 
2297 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2298 	complete(event);
2299 }
2300 
2301 /**
2302  * prepopulate_bars() - Fill in BARs with defaults
2303  * @hbus:	Root PCI bus, as understood by this driver
2304  *
2305  * The core PCI driver code seems much, much happier if the BARs
2306  * for a device have values upon first scan. So fill them in.
2307  * The algorithm below works down from large sizes to small,
2308  * attempting to pack the assignments optimally. The assumption,
2309  * enforced in other parts of the code, is that the beginning of
2310  * the memory-mapped I/O space will be aligned on the largest
2311  * BAR size.
2312  */
2313 static void prepopulate_bars(struct hv_pcibus_device *hbus)
2314 {
2315 	resource_size_t high_size = 0;
2316 	resource_size_t low_size = 0;
2317 	resource_size_t high_base = 0;
2318 	resource_size_t low_base = 0;
2319 	resource_size_t bar_size;
2320 	struct hv_pci_dev *hpdev;
2321 	unsigned long flags;
2322 	u64 bar_val;
2323 	u32 command;
2324 	bool high;
2325 	int i;
2326 
2327 	if (hbus->low_mmio_space) {
2328 		low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
2329 		low_base = hbus->low_mmio_res->start;
2330 	}
2331 
2332 	if (hbus->high_mmio_space) {
2333 		high_size = 1ULL <<
2334 			(63 - __builtin_clzll(hbus->high_mmio_space));
2335 		high_base = hbus->high_mmio_res->start;
2336 	}
2337 
2338 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2339 
2340 	/*
2341 	 * Clear the memory enable bit, in case it's already set. This occurs
2342 	 * in the suspend path of hibernation, where the device is suspended,
2343 	 * resumed and suspended again: see hibernation_snapshot() and
2344 	 * hibernation_platform_enter().
2345 	 *
2346 	 * If the memory enable bit is already set, Hyper-V silently ignores
2347 	 * the below BAR updates, and the related PCI device driver can not
2348 	 * work, because reading from the device register(s) always returns
2349 	 * 0xFFFFFFFF (PCI_ERROR_RESPONSE).
2350 	 */
2351 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2352 		_hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command);
2353 		command &= ~PCI_COMMAND_MEMORY;
2354 		_hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command);
2355 	}
2356 
2357 	/* Pick addresses for the BARs. */
2358 	do {
2359 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2360 			for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2361 				bar_val = hpdev->probed_bar[i];
2362 				if (bar_val == 0)
2363 					continue;
2364 				high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64;
2365 				if (high) {
2366 					bar_val |=
2367 						((u64)hpdev->probed_bar[i + 1]
2368 						 << 32);
2369 				} else {
2370 					bar_val |= 0xffffffffULL << 32;
2371 				}
2372 				bar_size = get_bar_size(bar_val);
2373 				if (high) {
2374 					if (high_size != bar_size) {
2375 						i++;
2376 						continue;
2377 					}
2378 					_hv_pcifront_write_config(hpdev,
2379 						PCI_BASE_ADDRESS_0 + (4 * i),
2380 						4,
2381 						(u32)(high_base & 0xffffff00));
2382 					i++;
2383 					_hv_pcifront_write_config(hpdev,
2384 						PCI_BASE_ADDRESS_0 + (4 * i),
2385 						4, (u32)(high_base >> 32));
2386 					high_base += bar_size;
2387 				} else {
2388 					if (low_size != bar_size)
2389 						continue;
2390 					_hv_pcifront_write_config(hpdev,
2391 						PCI_BASE_ADDRESS_0 + (4 * i),
2392 						4,
2393 						(u32)(low_base & 0xffffff00));
2394 					low_base += bar_size;
2395 				}
2396 			}
2397 			if (high_size <= 1 && low_size <= 1) {
2398 				/*
2399 				 * No need to set the PCI_COMMAND_MEMORY bit as
2400 				 * the core PCI driver doesn't require the bit
2401 				 * to be pre-set. Actually here we intentionally
2402 				 * keep the bit off so that the PCI BAR probing
2403 				 * in the core PCI driver doesn't cause Hyper-V
2404 				 * to unnecessarily unmap/map the virtual BARs
2405 				 * from/to the physical BARs multiple times.
2406 				 * This reduces the VM boot time significantly
2407 				 * if the BAR sizes are huge.
2408 				 */
2409 				break;
2410 			}
2411 		}
2412 
2413 		high_size >>= 1;
2414 		low_size >>= 1;
2415 	}  while (high_size || low_size);
2416 
2417 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2418 }
2419 
2420 /*
2421  * Assign entries in sysfs pci slot directory.
2422  *
2423  * Note that this function does not need to lock the children list
2424  * because it is called from pci_devices_present_work which
2425  * is serialized with hv_eject_device_work because they are on the
2426  * same ordered workqueue. Therefore hbus->children list will not change
2427  * even when pci_create_slot sleeps.
2428  */
2429 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus)
2430 {
2431 	struct hv_pci_dev *hpdev;
2432 	char name[SLOT_NAME_SIZE];
2433 	int slot_nr;
2434 
2435 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2436 		if (hpdev->pci_slot)
2437 			continue;
2438 
2439 		slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot));
2440 		snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser);
2441 		hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr,
2442 					  name, NULL);
2443 		if (IS_ERR(hpdev->pci_slot)) {
2444 			pr_warn("pci_create slot %s failed\n", name);
2445 			hpdev->pci_slot = NULL;
2446 		}
2447 	}
2448 }
2449 
2450 /*
2451  * Remove entries in sysfs pci slot directory.
2452  */
2453 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus)
2454 {
2455 	struct hv_pci_dev *hpdev;
2456 
2457 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2458 		if (!hpdev->pci_slot)
2459 			continue;
2460 		pci_destroy_slot(hpdev->pci_slot);
2461 		hpdev->pci_slot = NULL;
2462 	}
2463 }
2464 
2465 /*
2466  * Set NUMA node for the devices on the bus
2467  */
2468 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus)
2469 {
2470 	struct pci_dev *dev;
2471 	struct pci_bus *bus = hbus->bridge->bus;
2472 	struct hv_pci_dev *hv_dev;
2473 
2474 	list_for_each_entry(dev, &bus->devices, bus_list) {
2475 		hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn));
2476 		if (!hv_dev)
2477 			continue;
2478 
2479 		if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY &&
2480 		    hv_dev->desc.virtual_numa_node < num_possible_nodes())
2481 			/*
2482 			 * The kernel may boot with some NUMA nodes offline
2483 			 * (e.g. in a KDUMP kernel) or with NUMA disabled via
2484 			 * "numa=off". In those cases, adjust the host provided
2485 			 * NUMA node to a valid NUMA node used by the kernel.
2486 			 */
2487 			set_dev_node(&dev->dev,
2488 				     numa_map_to_online_node(
2489 					     hv_dev->desc.virtual_numa_node));
2490 
2491 		put_pcichild(hv_dev);
2492 	}
2493 }
2494 
2495 /**
2496  * create_root_hv_pci_bus() - Expose a new root PCI bus
2497  * @hbus:	Root PCI bus, as understood by this driver
2498  *
2499  * Return: 0 on success, -errno on failure
2500  */
2501 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus)
2502 {
2503 	int error;
2504 	struct pci_host_bridge *bridge = hbus->bridge;
2505 
2506 	bridge->dev.parent = &hbus->hdev->device;
2507 	bridge->sysdata = &hbus->sysdata;
2508 	bridge->ops = &hv_pcifront_ops;
2509 
2510 	error = pci_scan_root_bus_bridge(bridge);
2511 	if (error)
2512 		return error;
2513 
2514 	pci_lock_rescan_remove();
2515 	hv_pci_assign_numa_node(hbus);
2516 	pci_bus_assign_resources(bridge->bus);
2517 	hv_pci_assign_slots(hbus);
2518 	pci_bus_add_devices(bridge->bus);
2519 	pci_unlock_rescan_remove();
2520 	hbus->state = hv_pcibus_installed;
2521 	return 0;
2522 }
2523 
2524 struct q_res_req_compl {
2525 	struct completion host_event;
2526 	struct hv_pci_dev *hpdev;
2527 };
2528 
2529 /**
2530  * q_resource_requirements() - Query Resource Requirements
2531  * @context:		The completion context.
2532  * @resp:		The response that came from the host.
2533  * @resp_packet_size:	The size in bytes of resp.
2534  *
2535  * This function is invoked on completion of a Query Resource
2536  * Requirements packet.
2537  */
2538 static void q_resource_requirements(void *context, struct pci_response *resp,
2539 				    int resp_packet_size)
2540 {
2541 	struct q_res_req_compl *completion = context;
2542 	struct pci_q_res_req_response *q_res_req =
2543 		(struct pci_q_res_req_response *)resp;
2544 	s32 status;
2545 	int i;
2546 
2547 	status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status;
2548 	if (status < 0) {
2549 		dev_err(&completion->hpdev->hbus->hdev->device,
2550 			"query resource requirements failed: %x\n",
2551 			status);
2552 	} else {
2553 		for (i = 0; i < PCI_STD_NUM_BARS; i++) {
2554 			completion->hpdev->probed_bar[i] =
2555 				q_res_req->probed_bar[i];
2556 		}
2557 	}
2558 
2559 	complete(&completion->host_event);
2560 }
2561 
2562 /**
2563  * new_pcichild_device() - Create a new child device
2564  * @hbus:	The internal struct tracking this root PCI bus.
2565  * @desc:	The information supplied so far from the host
2566  *              about the device.
2567  *
2568  * This function creates the tracking structure for a new child
2569  * device and kicks off the process of figuring out what it is.
2570  *
2571  * Return: Pointer to the new tracking struct
2572  */
2573 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus,
2574 		struct hv_pcidev_description *desc)
2575 {
2576 	struct hv_pci_dev *hpdev;
2577 	struct pci_child_message *res_req;
2578 	struct q_res_req_compl comp_pkt;
2579 	struct {
2580 		struct pci_packet init_packet;
2581 		u8 buffer[sizeof(struct pci_child_message)];
2582 	} pkt;
2583 	unsigned long flags;
2584 	int ret;
2585 
2586 	hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL);
2587 	if (!hpdev)
2588 		return NULL;
2589 
2590 	hpdev->hbus = hbus;
2591 
2592 	memset(&pkt, 0, sizeof(pkt));
2593 	init_completion(&comp_pkt.host_event);
2594 	comp_pkt.hpdev = hpdev;
2595 	pkt.init_packet.compl_ctxt = &comp_pkt;
2596 	pkt.init_packet.completion_func = q_resource_requirements;
2597 	res_req = (struct pci_child_message *)pkt.buffer;
2598 	res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS;
2599 	res_req->wslot.slot = desc->win_slot.slot;
2600 
2601 	ret = vmbus_sendpacket(hbus->hdev->channel, res_req,
2602 			       sizeof(struct pci_child_message),
2603 			       (unsigned long)&pkt.init_packet,
2604 			       VM_PKT_DATA_INBAND,
2605 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
2606 	if (ret)
2607 		goto error;
2608 
2609 	if (wait_for_response(hbus->hdev, &comp_pkt.host_event))
2610 		goto error;
2611 
2612 	hpdev->desc = *desc;
2613 	refcount_set(&hpdev->refs, 1);
2614 	get_pcichild(hpdev);
2615 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2616 
2617 	list_add_tail(&hpdev->list_entry, &hbus->children);
2618 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2619 	return hpdev;
2620 
2621 error:
2622 	kfree(hpdev);
2623 	return NULL;
2624 }
2625 
2626 /**
2627  * get_pcichild_wslot() - Find device from slot
2628  * @hbus:	Root PCI bus, as understood by this driver
2629  * @wslot:	Location on the bus
2630  *
2631  * This function looks up a PCI device and returns the internal
2632  * representation of it.  It acquires a reference on it, so that
2633  * the device won't be deleted while somebody is using it.  The
2634  * caller is responsible for calling put_pcichild() to release
2635  * this reference.
2636  *
2637  * Return:	Internal representation of a PCI device
2638  */
2639 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus,
2640 					     u32 wslot)
2641 {
2642 	unsigned long flags;
2643 	struct hv_pci_dev *iter, *hpdev = NULL;
2644 
2645 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2646 	list_for_each_entry(iter, &hbus->children, list_entry) {
2647 		if (iter->desc.win_slot.slot == wslot) {
2648 			hpdev = iter;
2649 			get_pcichild(hpdev);
2650 			break;
2651 		}
2652 	}
2653 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2654 
2655 	return hpdev;
2656 }
2657 
2658 /**
2659  * pci_devices_present_work() - Handle new list of child devices
2660  * @work:	Work struct embedded in struct hv_dr_work
2661  *
2662  * "Bus Relations" is the Windows term for "children of this
2663  * bus."  The terminology is preserved here for people trying to
2664  * debug the interaction between Hyper-V and Linux.  This
2665  * function is called when the parent partition reports a list
2666  * of functions that should be observed under this PCI Express
2667  * port (bus).
2668  *
2669  * This function updates the list, and must tolerate being
2670  * called multiple times with the same information.  The typical
2671  * number of child devices is one, with very atypical cases
2672  * involving three or four, so the algorithms used here can be
2673  * simple and inefficient.
2674  *
2675  * It must also treat the omission of a previously observed device as
2676  * notification that the device no longer exists.
2677  *
2678  * Note that this function is serialized with hv_eject_device_work(),
2679  * because both are pushed to the ordered workqueue hbus->wq.
2680  */
2681 static void pci_devices_present_work(struct work_struct *work)
2682 {
2683 	u32 child_no;
2684 	bool found;
2685 	struct hv_pcidev_description *new_desc;
2686 	struct hv_pci_dev *hpdev;
2687 	struct hv_pcibus_device *hbus;
2688 	struct list_head removed;
2689 	struct hv_dr_work *dr_wrk;
2690 	struct hv_dr_state *dr = NULL;
2691 	unsigned long flags;
2692 
2693 	dr_wrk = container_of(work, struct hv_dr_work, wrk);
2694 	hbus = dr_wrk->bus;
2695 	kfree(dr_wrk);
2696 
2697 	INIT_LIST_HEAD(&removed);
2698 
2699 	/* Pull this off the queue and process it if it was the last one. */
2700 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2701 	while (!list_empty(&hbus->dr_list)) {
2702 		dr = list_first_entry(&hbus->dr_list, struct hv_dr_state,
2703 				      list_entry);
2704 		list_del(&dr->list_entry);
2705 
2706 		/* Throw this away if the list still has stuff in it. */
2707 		if (!list_empty(&hbus->dr_list)) {
2708 			kfree(dr);
2709 			continue;
2710 		}
2711 	}
2712 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2713 
2714 	if (!dr)
2715 		return;
2716 
2717 	mutex_lock(&hbus->state_lock);
2718 
2719 	/* First, mark all existing children as reported missing. */
2720 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2721 	list_for_each_entry(hpdev, &hbus->children, list_entry) {
2722 		hpdev->reported_missing = true;
2723 	}
2724 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2725 
2726 	/* Next, add back any reported devices. */
2727 	for (child_no = 0; child_no < dr->device_count; child_no++) {
2728 		found = false;
2729 		new_desc = &dr->func[child_no];
2730 
2731 		spin_lock_irqsave(&hbus->device_list_lock, flags);
2732 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2733 			if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) &&
2734 			    (hpdev->desc.v_id == new_desc->v_id) &&
2735 			    (hpdev->desc.d_id == new_desc->d_id) &&
2736 			    (hpdev->desc.ser == new_desc->ser)) {
2737 				hpdev->reported_missing = false;
2738 				found = true;
2739 			}
2740 		}
2741 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2742 
2743 		if (!found) {
2744 			hpdev = new_pcichild_device(hbus, new_desc);
2745 			if (!hpdev)
2746 				dev_err(&hbus->hdev->device,
2747 					"couldn't record a child device.\n");
2748 		}
2749 	}
2750 
2751 	/* Move missing children to a list on the stack. */
2752 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2753 	do {
2754 		found = false;
2755 		list_for_each_entry(hpdev, &hbus->children, list_entry) {
2756 			if (hpdev->reported_missing) {
2757 				found = true;
2758 				put_pcichild(hpdev);
2759 				list_move_tail(&hpdev->list_entry, &removed);
2760 				break;
2761 			}
2762 		}
2763 	} while (found);
2764 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2765 
2766 	/* Delete everything that should no longer exist. */
2767 	while (!list_empty(&removed)) {
2768 		hpdev = list_first_entry(&removed, struct hv_pci_dev,
2769 					 list_entry);
2770 		list_del(&hpdev->list_entry);
2771 
2772 		if (hpdev->pci_slot)
2773 			pci_destroy_slot(hpdev->pci_slot);
2774 
2775 		put_pcichild(hpdev);
2776 	}
2777 
2778 	switch (hbus->state) {
2779 	case hv_pcibus_installed:
2780 		/*
2781 		 * Tell the core to rescan bus
2782 		 * because there may have been changes.
2783 		 */
2784 		pci_lock_rescan_remove();
2785 		pci_scan_child_bus(hbus->bridge->bus);
2786 		hv_pci_assign_numa_node(hbus);
2787 		hv_pci_assign_slots(hbus);
2788 		pci_unlock_rescan_remove();
2789 		break;
2790 
2791 	case hv_pcibus_init:
2792 	case hv_pcibus_probed:
2793 		survey_child_resources(hbus);
2794 		break;
2795 
2796 	default:
2797 		break;
2798 	}
2799 
2800 	mutex_unlock(&hbus->state_lock);
2801 
2802 	kfree(dr);
2803 }
2804 
2805 /**
2806  * hv_pci_start_relations_work() - Queue work to start device discovery
2807  * @hbus:	Root PCI bus, as understood by this driver
2808  * @dr:		The list of children returned from host
2809  *
2810  * Return:  0 on success, -errno on failure
2811  */
2812 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus,
2813 				       struct hv_dr_state *dr)
2814 {
2815 	struct hv_dr_work *dr_wrk;
2816 	unsigned long flags;
2817 	bool pending_dr;
2818 
2819 	if (hbus->state == hv_pcibus_removing) {
2820 		dev_info(&hbus->hdev->device,
2821 			 "PCI VMBus BUS_RELATIONS: ignored\n");
2822 		return -ENOENT;
2823 	}
2824 
2825 	dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT);
2826 	if (!dr_wrk)
2827 		return -ENOMEM;
2828 
2829 	INIT_WORK(&dr_wrk->wrk, pci_devices_present_work);
2830 	dr_wrk->bus = hbus;
2831 
2832 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2833 	/*
2834 	 * If pending_dr is true, we have already queued a work,
2835 	 * which will see the new dr. Otherwise, we need to
2836 	 * queue a new work.
2837 	 */
2838 	pending_dr = !list_empty(&hbus->dr_list);
2839 	list_add_tail(&dr->list_entry, &hbus->dr_list);
2840 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2841 
2842 	if (pending_dr)
2843 		kfree(dr_wrk);
2844 	else
2845 		queue_work(hbus->wq, &dr_wrk->wrk);
2846 
2847 	return 0;
2848 }
2849 
2850 /**
2851  * hv_pci_devices_present() - Handle list of new children
2852  * @hbus:      Root PCI bus, as understood by this driver
2853  * @relations: Packet from host listing children
2854  *
2855  * Process a new list of devices on the bus. The list of devices is
2856  * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS,
2857  * whenever a new list of devices for this bus appears.
2858  */
2859 static void hv_pci_devices_present(struct hv_pcibus_device *hbus,
2860 				   struct pci_bus_relations *relations)
2861 {
2862 	struct hv_dr_state *dr;
2863 	int i;
2864 
2865 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2866 		     GFP_NOWAIT);
2867 	if (!dr)
2868 		return;
2869 
2870 	dr->device_count = relations->device_count;
2871 	for (i = 0; i < dr->device_count; i++) {
2872 		dr->func[i].v_id = relations->func[i].v_id;
2873 		dr->func[i].d_id = relations->func[i].d_id;
2874 		dr->func[i].rev = relations->func[i].rev;
2875 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2876 		dr->func[i].subclass = relations->func[i].subclass;
2877 		dr->func[i].base_class = relations->func[i].base_class;
2878 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2879 		dr->func[i].win_slot = relations->func[i].win_slot;
2880 		dr->func[i].ser = relations->func[i].ser;
2881 	}
2882 
2883 	if (hv_pci_start_relations_work(hbus, dr))
2884 		kfree(dr);
2885 }
2886 
2887 /**
2888  * hv_pci_devices_present2() - Handle list of new children
2889  * @hbus:	Root PCI bus, as understood by this driver
2890  * @relations:	Packet from host listing children
2891  *
2892  * This function is the v2 version of hv_pci_devices_present()
2893  */
2894 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus,
2895 				    struct pci_bus_relations2 *relations)
2896 {
2897 	struct hv_dr_state *dr;
2898 	int i;
2899 
2900 	dr = kzalloc(struct_size(dr, func, relations->device_count),
2901 		     GFP_NOWAIT);
2902 	if (!dr)
2903 		return;
2904 
2905 	dr->device_count = relations->device_count;
2906 	for (i = 0; i < dr->device_count; i++) {
2907 		dr->func[i].v_id = relations->func[i].v_id;
2908 		dr->func[i].d_id = relations->func[i].d_id;
2909 		dr->func[i].rev = relations->func[i].rev;
2910 		dr->func[i].prog_intf = relations->func[i].prog_intf;
2911 		dr->func[i].subclass = relations->func[i].subclass;
2912 		dr->func[i].base_class = relations->func[i].base_class;
2913 		dr->func[i].subsystem_id = relations->func[i].subsystem_id;
2914 		dr->func[i].win_slot = relations->func[i].win_slot;
2915 		dr->func[i].ser = relations->func[i].ser;
2916 		dr->func[i].flags = relations->func[i].flags;
2917 		dr->func[i].virtual_numa_node =
2918 			relations->func[i].virtual_numa_node;
2919 	}
2920 
2921 	if (hv_pci_start_relations_work(hbus, dr))
2922 		kfree(dr);
2923 }
2924 
2925 /**
2926  * hv_eject_device_work() - Asynchronously handles ejection
2927  * @work:	Work struct embedded in internal device struct
2928  *
2929  * This function handles ejecting a device.  Windows will
2930  * attempt to gracefully eject a device, waiting 60 seconds to
2931  * hear back from the guest OS that this completed successfully.
2932  * If this timer expires, the device will be forcibly removed.
2933  */
2934 static void hv_eject_device_work(struct work_struct *work)
2935 {
2936 	struct pci_eject_response *ejct_pkt;
2937 	struct hv_pcibus_device *hbus;
2938 	struct hv_pci_dev *hpdev;
2939 	struct pci_dev *pdev;
2940 	unsigned long flags;
2941 	int wslot;
2942 	struct {
2943 		struct pci_packet pkt;
2944 		u8 buffer[sizeof(struct pci_eject_response)];
2945 	} ctxt;
2946 
2947 	hpdev = container_of(work, struct hv_pci_dev, wrk);
2948 	hbus = hpdev->hbus;
2949 
2950 	mutex_lock(&hbus->state_lock);
2951 
2952 	/*
2953 	 * Ejection can come before or after the PCI bus has been set up, so
2954 	 * attempt to find it and tear down the bus state, if it exists.  This
2955 	 * must be done without constructs like pci_domain_nr(hbus->bridge->bus)
2956 	 * because hbus->bridge->bus may not exist yet.
2957 	 */
2958 	wslot = wslot_to_devfn(hpdev->desc.win_slot.slot);
2959 	pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot);
2960 	if (pdev) {
2961 		pci_lock_rescan_remove();
2962 		pci_stop_and_remove_bus_device(pdev);
2963 		pci_dev_put(pdev);
2964 		pci_unlock_rescan_remove();
2965 	}
2966 
2967 	spin_lock_irqsave(&hbus->device_list_lock, flags);
2968 	list_del(&hpdev->list_entry);
2969 	spin_unlock_irqrestore(&hbus->device_list_lock, flags);
2970 
2971 	if (hpdev->pci_slot)
2972 		pci_destroy_slot(hpdev->pci_slot);
2973 
2974 	memset(&ctxt, 0, sizeof(ctxt));
2975 	ejct_pkt = (struct pci_eject_response *)ctxt.buffer;
2976 	ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE;
2977 	ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot;
2978 	vmbus_sendpacket(hbus->hdev->channel, ejct_pkt,
2979 			 sizeof(*ejct_pkt), 0,
2980 			 VM_PKT_DATA_INBAND, 0);
2981 
2982 	/* For the get_pcichild() in hv_pci_eject_device() */
2983 	put_pcichild(hpdev);
2984 	/* For the two refs got in new_pcichild_device() */
2985 	put_pcichild(hpdev);
2986 	put_pcichild(hpdev);
2987 	/* hpdev has been freed. Do not use it any more. */
2988 
2989 	mutex_unlock(&hbus->state_lock);
2990 }
2991 
2992 /**
2993  * hv_pci_eject_device() - Handles device ejection
2994  * @hpdev:	Internal device tracking struct
2995  *
2996  * This function is invoked when an ejection packet arrives.  It
2997  * just schedules work so that we don't re-enter the packet
2998  * delivery code handling the ejection.
2999  */
3000 static void hv_pci_eject_device(struct hv_pci_dev *hpdev)
3001 {
3002 	struct hv_pcibus_device *hbus = hpdev->hbus;
3003 	struct hv_device *hdev = hbus->hdev;
3004 
3005 	if (hbus->state == hv_pcibus_removing) {
3006 		dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n");
3007 		return;
3008 	}
3009 
3010 	get_pcichild(hpdev);
3011 	INIT_WORK(&hpdev->wrk, hv_eject_device_work);
3012 	queue_work(hbus->wq, &hpdev->wrk);
3013 }
3014 
3015 /**
3016  * hv_pci_onchannelcallback() - Handles incoming packets
3017  * @context:	Internal bus tracking struct
3018  *
3019  * This function is invoked whenever the host sends a packet to
3020  * this channel (which is private to this root PCI bus).
3021  */
3022 static void hv_pci_onchannelcallback(void *context)
3023 {
3024 	const int packet_size = 0x100;
3025 	int ret;
3026 	struct hv_pcibus_device *hbus = context;
3027 	struct vmbus_channel *chan = hbus->hdev->channel;
3028 	u32 bytes_recvd;
3029 	u64 req_id, req_addr;
3030 	struct vmpacket_descriptor *desc;
3031 	unsigned char *buffer;
3032 	int bufferlen = packet_size;
3033 	struct pci_packet *comp_packet;
3034 	struct pci_response *response;
3035 	struct pci_incoming_message *new_message;
3036 	struct pci_bus_relations *bus_rel;
3037 	struct pci_bus_relations2 *bus_rel2;
3038 	struct pci_dev_inval_block *inval;
3039 	struct pci_dev_incoming *dev_message;
3040 	struct hv_pci_dev *hpdev;
3041 	unsigned long flags;
3042 
3043 	buffer = kmalloc(bufferlen, GFP_ATOMIC);
3044 	if (!buffer)
3045 		return;
3046 
3047 	while (1) {
3048 		ret = vmbus_recvpacket_raw(chan, buffer, bufferlen,
3049 					   &bytes_recvd, &req_id);
3050 
3051 		if (ret == -ENOBUFS) {
3052 			kfree(buffer);
3053 			/* Handle large packet */
3054 			bufferlen = bytes_recvd;
3055 			buffer = kmalloc(bytes_recvd, GFP_ATOMIC);
3056 			if (!buffer)
3057 				return;
3058 			continue;
3059 		}
3060 
3061 		/* Zero length indicates there are no more packets. */
3062 		if (ret || !bytes_recvd)
3063 			break;
3064 
3065 		/*
3066 		 * All incoming packets must be at least as large as a
3067 		 * response.
3068 		 */
3069 		if (bytes_recvd <= sizeof(struct pci_response))
3070 			continue;
3071 		desc = (struct vmpacket_descriptor *)buffer;
3072 
3073 		switch (desc->type) {
3074 		case VM_PKT_COMP:
3075 
3076 			lock_requestor(chan, flags);
3077 			req_addr = __vmbus_request_addr_match(chan, req_id,
3078 							      VMBUS_RQST_ADDR_ANY);
3079 			if (req_addr == VMBUS_RQST_ERROR) {
3080 				unlock_requestor(chan, flags);
3081 				dev_err(&hbus->hdev->device,
3082 					"Invalid transaction ID %llx\n",
3083 					req_id);
3084 				break;
3085 			}
3086 			comp_packet = (struct pci_packet *)req_addr;
3087 			response = (struct pci_response *)buffer;
3088 			/*
3089 			 * Call ->completion_func() within the critical section to make
3090 			 * sure that the packet pointer is still valid during the call:
3091 			 * here 'valid' means that there's a task still waiting for the
3092 			 * completion, and that the packet data is still on the waiting
3093 			 * task's stack.  Cf. hv_compose_msi_msg().
3094 			 */
3095 			comp_packet->completion_func(comp_packet->compl_ctxt,
3096 						     response,
3097 						     bytes_recvd);
3098 			unlock_requestor(chan, flags);
3099 			break;
3100 
3101 		case VM_PKT_DATA_INBAND:
3102 
3103 			new_message = (struct pci_incoming_message *)buffer;
3104 			switch (new_message->message_type.type) {
3105 			case PCI_BUS_RELATIONS:
3106 
3107 				bus_rel = (struct pci_bus_relations *)buffer;
3108 				if (bytes_recvd < sizeof(*bus_rel) ||
3109 				    bytes_recvd <
3110 					struct_size(bus_rel, func,
3111 						    bus_rel->device_count)) {
3112 					dev_err(&hbus->hdev->device,
3113 						"bus relations too small\n");
3114 					break;
3115 				}
3116 
3117 				hv_pci_devices_present(hbus, bus_rel);
3118 				break;
3119 
3120 			case PCI_BUS_RELATIONS2:
3121 
3122 				bus_rel2 = (struct pci_bus_relations2 *)buffer;
3123 				if (bytes_recvd < sizeof(*bus_rel2) ||
3124 				    bytes_recvd <
3125 					struct_size(bus_rel2, func,
3126 						    bus_rel2->device_count)) {
3127 					dev_err(&hbus->hdev->device,
3128 						"bus relations v2 too small\n");
3129 					break;
3130 				}
3131 
3132 				hv_pci_devices_present2(hbus, bus_rel2);
3133 				break;
3134 
3135 			case PCI_EJECT:
3136 
3137 				dev_message = (struct pci_dev_incoming *)buffer;
3138 				if (bytes_recvd < sizeof(*dev_message)) {
3139 					dev_err(&hbus->hdev->device,
3140 						"eject message too small\n");
3141 					break;
3142 				}
3143 				hpdev = get_pcichild_wslot(hbus,
3144 						      dev_message->wslot.slot);
3145 				if (hpdev) {
3146 					hv_pci_eject_device(hpdev);
3147 					put_pcichild(hpdev);
3148 				}
3149 				break;
3150 
3151 			case PCI_INVALIDATE_BLOCK:
3152 
3153 				inval = (struct pci_dev_inval_block *)buffer;
3154 				if (bytes_recvd < sizeof(*inval)) {
3155 					dev_err(&hbus->hdev->device,
3156 						"invalidate message too small\n");
3157 					break;
3158 				}
3159 				hpdev = get_pcichild_wslot(hbus,
3160 							   inval->wslot.slot);
3161 				if (hpdev) {
3162 					if (hpdev->block_invalidate) {
3163 						hpdev->block_invalidate(
3164 						    hpdev->invalidate_context,
3165 						    inval->block_mask);
3166 					}
3167 					put_pcichild(hpdev);
3168 				}
3169 				break;
3170 
3171 			default:
3172 				dev_warn(&hbus->hdev->device,
3173 					"Unimplemented protocol message %x\n",
3174 					new_message->message_type.type);
3175 				break;
3176 			}
3177 			break;
3178 
3179 		default:
3180 			dev_err(&hbus->hdev->device,
3181 				"unhandled packet type %d, tid %llx len %d\n",
3182 				desc->type, req_id, bytes_recvd);
3183 			break;
3184 		}
3185 	}
3186 
3187 	kfree(buffer);
3188 }
3189 
3190 /**
3191  * hv_pci_protocol_negotiation() - Set up protocol
3192  * @hdev:		VMBus's tracking struct for this root PCI bus.
3193  * @version:		Array of supported channel protocol versions in
3194  *			the order of probing - highest go first.
3195  * @num_version:	Number of elements in the version array.
3196  *
3197  * This driver is intended to support running on Windows 10
3198  * (server) and later versions. It will not run on earlier
3199  * versions, as they assume that many of the operations which
3200  * Linux needs accomplished with a spinlock held were done via
3201  * asynchronous messaging via VMBus.  Windows 10 increases the
3202  * surface area of PCI emulation so that these actions can take
3203  * place by suspending a virtual processor for their duration.
3204  *
3205  * This function negotiates the channel protocol version,
3206  * failing if the host doesn't support the necessary protocol
3207  * level.
3208  */
3209 static int hv_pci_protocol_negotiation(struct hv_device *hdev,
3210 				       enum pci_protocol_version_t version[],
3211 				       int num_version)
3212 {
3213 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3214 	struct pci_version_request *version_req;
3215 	struct hv_pci_compl comp_pkt;
3216 	struct pci_packet *pkt;
3217 	int ret;
3218 	int i;
3219 
3220 	/*
3221 	 * Initiate the handshake with the host and negotiate
3222 	 * a version that the host can support. We start with the
3223 	 * highest version number and go down if the host cannot
3224 	 * support it.
3225 	 */
3226 	pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL);
3227 	if (!pkt)
3228 		return -ENOMEM;
3229 
3230 	init_completion(&comp_pkt.host_event);
3231 	pkt->completion_func = hv_pci_generic_compl;
3232 	pkt->compl_ctxt = &comp_pkt;
3233 	version_req = (struct pci_version_request *)(pkt + 1);
3234 	version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION;
3235 
3236 	for (i = 0; i < num_version; i++) {
3237 		version_req->protocol_version = version[i];
3238 		ret = vmbus_sendpacket(hdev->channel, version_req,
3239 				sizeof(struct pci_version_request),
3240 				(unsigned long)pkt, VM_PKT_DATA_INBAND,
3241 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3242 		if (!ret)
3243 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3244 
3245 		if (ret) {
3246 			dev_err(&hdev->device,
3247 				"PCI Pass-through VSP failed to request version: %d",
3248 				ret);
3249 			goto exit;
3250 		}
3251 
3252 		if (comp_pkt.completion_status >= 0) {
3253 			hbus->protocol_version = version[i];
3254 			dev_info(&hdev->device,
3255 				"PCI VMBus probing: Using version %#x\n",
3256 				hbus->protocol_version);
3257 			goto exit;
3258 		}
3259 
3260 		if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) {
3261 			dev_err(&hdev->device,
3262 				"PCI Pass-through VSP failed version request: %#x",
3263 				comp_pkt.completion_status);
3264 			ret = -EPROTO;
3265 			goto exit;
3266 		}
3267 
3268 		reinit_completion(&comp_pkt.host_event);
3269 	}
3270 
3271 	dev_err(&hdev->device,
3272 		"PCI pass-through VSP failed to find supported version");
3273 	ret = -EPROTO;
3274 
3275 exit:
3276 	kfree(pkt);
3277 	return ret;
3278 }
3279 
3280 /**
3281  * hv_pci_free_bridge_windows() - Release memory regions for the
3282  * bus
3283  * @hbus:	Root PCI bus, as understood by this driver
3284  */
3285 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus)
3286 {
3287 	/*
3288 	 * Set the resources back to the way they looked when they
3289 	 * were allocated by setting IORESOURCE_BUSY again.
3290 	 */
3291 
3292 	if (hbus->low_mmio_space && hbus->low_mmio_res) {
3293 		hbus->low_mmio_res->flags |= IORESOURCE_BUSY;
3294 		vmbus_free_mmio(hbus->low_mmio_res->start,
3295 				resource_size(hbus->low_mmio_res));
3296 	}
3297 
3298 	if (hbus->high_mmio_space && hbus->high_mmio_res) {
3299 		hbus->high_mmio_res->flags |= IORESOURCE_BUSY;
3300 		vmbus_free_mmio(hbus->high_mmio_res->start,
3301 				resource_size(hbus->high_mmio_res));
3302 	}
3303 }
3304 
3305 /**
3306  * hv_pci_allocate_bridge_windows() - Allocate memory regions
3307  * for the bus
3308  * @hbus:	Root PCI bus, as understood by this driver
3309  *
3310  * This function calls vmbus_allocate_mmio(), which is itself a
3311  * bit of a compromise.  Ideally, we might change the pnp layer
3312  * in the kernel such that it comprehends either PCI devices
3313  * which are "grandchildren of ACPI," with some intermediate bus
3314  * node (in this case, VMBus) or change it such that it
3315  * understands VMBus.  The pnp layer, however, has been declared
3316  * deprecated, and not subject to change.
3317  *
3318  * The workaround, implemented here, is to ask VMBus to allocate
3319  * MMIO space for this bus.  VMBus itself knows which ranges are
3320  * appropriate by looking at its own ACPI objects.  Then, after
3321  * these ranges are claimed, they're modified to look like they
3322  * would have looked if the ACPI and pnp code had allocated
3323  * bridge windows.  These descriptors have to exist in this form
3324  * in order to satisfy the code which will get invoked when the
3325  * endpoint PCI function driver calls request_mem_region() or
3326  * request_mem_region_exclusive().
3327  *
3328  * Return: 0 on success, -errno on failure
3329  */
3330 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus)
3331 {
3332 	resource_size_t align;
3333 	int ret;
3334 
3335 	if (hbus->low_mmio_space) {
3336 		align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space));
3337 		ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0,
3338 					  (u64)(u32)0xffffffff,
3339 					  hbus->low_mmio_space,
3340 					  align, false);
3341 		if (ret) {
3342 			dev_err(&hbus->hdev->device,
3343 				"Need %#llx of low MMIO space. Consider reconfiguring the VM.\n",
3344 				hbus->low_mmio_space);
3345 			return ret;
3346 		}
3347 
3348 		/* Modify this resource to become a bridge window. */
3349 		hbus->low_mmio_res->flags |= IORESOURCE_WINDOW;
3350 		hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY;
3351 		pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res);
3352 	}
3353 
3354 	if (hbus->high_mmio_space) {
3355 		align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space));
3356 		ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev,
3357 					  0x100000000, -1,
3358 					  hbus->high_mmio_space, align,
3359 					  false);
3360 		if (ret) {
3361 			dev_err(&hbus->hdev->device,
3362 				"Need %#llx of high MMIO space. Consider reconfiguring the VM.\n",
3363 				hbus->high_mmio_space);
3364 			goto release_low_mmio;
3365 		}
3366 
3367 		/* Modify this resource to become a bridge window. */
3368 		hbus->high_mmio_res->flags |= IORESOURCE_WINDOW;
3369 		hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY;
3370 		pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res);
3371 	}
3372 
3373 	return 0;
3374 
3375 release_low_mmio:
3376 	if (hbus->low_mmio_res) {
3377 		vmbus_free_mmio(hbus->low_mmio_res->start,
3378 				resource_size(hbus->low_mmio_res));
3379 	}
3380 
3381 	return ret;
3382 }
3383 
3384 /**
3385  * hv_allocate_config_window() - Find MMIO space for PCI Config
3386  * @hbus:	Root PCI bus, as understood by this driver
3387  *
3388  * This function claims memory-mapped I/O space for accessing
3389  * configuration space for the functions on this bus.
3390  *
3391  * Return: 0 on success, -errno on failure
3392  */
3393 static int hv_allocate_config_window(struct hv_pcibus_device *hbus)
3394 {
3395 	int ret;
3396 
3397 	/*
3398 	 * Set up a region of MMIO space to use for accessing configuration
3399 	 * space.
3400 	 */
3401 	ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1,
3402 				  PCI_CONFIG_MMIO_LENGTH, 0x1000, false);
3403 	if (ret)
3404 		return ret;
3405 
3406 	/*
3407 	 * vmbus_allocate_mmio() gets used for allocating both device endpoint
3408 	 * resource claims (those which cannot be overlapped) and the ranges
3409 	 * which are valid for the children of this bus, which are intended
3410 	 * to be overlapped by those children.  Set the flag on this claim
3411 	 * meaning that this region can't be overlapped.
3412 	 */
3413 
3414 	hbus->mem_config->flags |= IORESOURCE_BUSY;
3415 
3416 	return 0;
3417 }
3418 
3419 static void hv_free_config_window(struct hv_pcibus_device *hbus)
3420 {
3421 	vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH);
3422 }
3423 
3424 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs);
3425 
3426 /**
3427  * hv_pci_enter_d0() - Bring the "bus" into the D0 power state
3428  * @hdev:	VMBus's tracking struct for this root PCI bus
3429  *
3430  * Return: 0 on success, -errno on failure
3431  */
3432 static int hv_pci_enter_d0(struct hv_device *hdev)
3433 {
3434 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3435 	struct pci_bus_d0_entry *d0_entry;
3436 	struct hv_pci_compl comp_pkt;
3437 	struct pci_packet *pkt;
3438 	bool retry = true;
3439 	int ret;
3440 
3441 enter_d0_retry:
3442 	/*
3443 	 * Tell the host that the bus is ready to use, and moved into the
3444 	 * powered-on state.  This includes telling the host which region
3445 	 * of memory-mapped I/O space has been chosen for configuration space
3446 	 * access.
3447 	 */
3448 	pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL);
3449 	if (!pkt)
3450 		return -ENOMEM;
3451 
3452 	init_completion(&comp_pkt.host_event);
3453 	pkt->completion_func = hv_pci_generic_compl;
3454 	pkt->compl_ctxt = &comp_pkt;
3455 	d0_entry = (struct pci_bus_d0_entry *)(pkt + 1);
3456 	d0_entry->message_type.type = PCI_BUS_D0ENTRY;
3457 	d0_entry->mmio_base = hbus->mem_config->start;
3458 
3459 	ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry),
3460 			       (unsigned long)pkt, VM_PKT_DATA_INBAND,
3461 			       VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3462 	if (!ret)
3463 		ret = wait_for_response(hdev, &comp_pkt.host_event);
3464 
3465 	if (ret)
3466 		goto exit;
3467 
3468 	/*
3469 	 * In certain case (Kdump) the pci device of interest was
3470 	 * not cleanly shut down and resource is still held on host
3471 	 * side, the host could return invalid device status.
3472 	 * We need to explicitly request host to release the resource
3473 	 * and try to enter D0 again.
3474 	 */
3475 	if (comp_pkt.completion_status < 0 && retry) {
3476 		retry = false;
3477 
3478 		dev_err(&hdev->device, "Retrying D0 Entry\n");
3479 
3480 		/*
3481 		 * Hv_pci_bus_exit() calls hv_send_resource_released()
3482 		 * to free up resources of its child devices.
3483 		 * In the kdump kernel we need to set the
3484 		 * wslot_res_allocated to 255 so it scans all child
3485 		 * devices to release resources allocated in the
3486 		 * normal kernel before panic happened.
3487 		 */
3488 		hbus->wslot_res_allocated = 255;
3489 
3490 		ret = hv_pci_bus_exit(hdev, true);
3491 
3492 		if (ret == 0) {
3493 			kfree(pkt);
3494 			goto enter_d0_retry;
3495 		}
3496 		dev_err(&hdev->device,
3497 			"Retrying D0 failed with ret %d\n", ret);
3498 	}
3499 
3500 	if (comp_pkt.completion_status < 0) {
3501 		dev_err(&hdev->device,
3502 			"PCI Pass-through VSP failed D0 Entry with status %x\n",
3503 			comp_pkt.completion_status);
3504 		ret = -EPROTO;
3505 		goto exit;
3506 	}
3507 
3508 	ret = 0;
3509 
3510 exit:
3511 	kfree(pkt);
3512 	return ret;
3513 }
3514 
3515 /**
3516  * hv_pci_query_relations() - Ask host to send list of child
3517  * devices
3518  * @hdev:	VMBus's tracking struct for this root PCI bus
3519  *
3520  * Return: 0 on success, -errno on failure
3521  */
3522 static int hv_pci_query_relations(struct hv_device *hdev)
3523 {
3524 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3525 	struct pci_message message;
3526 	struct completion comp;
3527 	int ret;
3528 
3529 	/* Ask the host to send along the list of child devices */
3530 	init_completion(&comp);
3531 	if (cmpxchg(&hbus->survey_event, NULL, &comp))
3532 		return -ENOTEMPTY;
3533 
3534 	memset(&message, 0, sizeof(message));
3535 	message.type = PCI_QUERY_BUS_RELATIONS;
3536 
3537 	ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message),
3538 			       0, VM_PKT_DATA_INBAND, 0);
3539 	if (!ret)
3540 		ret = wait_for_response(hdev, &comp);
3541 
3542 	/*
3543 	 * In the case of fast device addition/removal, it's possible that
3544 	 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we
3545 	 * already got a PCI_BUS_RELATIONS* message from the host and the
3546 	 * channel callback already scheduled a work to hbus->wq, which can be
3547 	 * running pci_devices_present_work() -> survey_child_resources() ->
3548 	 * complete(&hbus->survey_event), even after hv_pci_query_relations()
3549 	 * exits and the stack variable 'comp' is no longer valid; as a result,
3550 	 * a hang or a page fault may happen when the complete() calls
3551 	 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from
3552 	 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is
3553 	 * -ENODEV, there can't be any more work item scheduled to hbus->wq
3554 	 * after the flush_workqueue(): see vmbus_onoffer_rescind() ->
3555 	 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() ->
3556 	 * channel->rescind = true.
3557 	 */
3558 	flush_workqueue(hbus->wq);
3559 
3560 	return ret;
3561 }
3562 
3563 /**
3564  * hv_send_resources_allocated() - Report local resource choices
3565  * @hdev:	VMBus's tracking struct for this root PCI bus
3566  *
3567  * The host OS is expecting to be sent a request as a message
3568  * which contains all the resources that the device will use.
3569  * The response contains those same resources, "translated"
3570  * which is to say, the values which should be used by the
3571  * hardware, when it delivers an interrupt.  (MMIO resources are
3572  * used in local terms.)  This is nice for Windows, and lines up
3573  * with the FDO/PDO split, which doesn't exist in Linux.  Linux
3574  * is deeply expecting to scan an emulated PCI configuration
3575  * space.  So this message is sent here only to drive the state
3576  * machine on the host forward.
3577  *
3578  * Return: 0 on success, -errno on failure
3579  */
3580 static int hv_send_resources_allocated(struct hv_device *hdev)
3581 {
3582 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3583 	struct pci_resources_assigned *res_assigned;
3584 	struct pci_resources_assigned2 *res_assigned2;
3585 	struct hv_pci_compl comp_pkt;
3586 	struct hv_pci_dev *hpdev;
3587 	struct pci_packet *pkt;
3588 	size_t size_res;
3589 	int wslot;
3590 	int ret;
3591 
3592 	size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2)
3593 			? sizeof(*res_assigned) : sizeof(*res_assigned2);
3594 
3595 	pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL);
3596 	if (!pkt)
3597 		return -ENOMEM;
3598 
3599 	ret = 0;
3600 
3601 	for (wslot = 0; wslot < 256; wslot++) {
3602 		hpdev = get_pcichild_wslot(hbus, wslot);
3603 		if (!hpdev)
3604 			continue;
3605 
3606 		memset(pkt, 0, sizeof(*pkt) + size_res);
3607 		init_completion(&comp_pkt.host_event);
3608 		pkt->completion_func = hv_pci_generic_compl;
3609 		pkt->compl_ctxt = &comp_pkt;
3610 
3611 		if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) {
3612 			res_assigned =
3613 				(struct pci_resources_assigned *)(pkt + 1);
3614 			res_assigned->message_type.type =
3615 				PCI_RESOURCES_ASSIGNED;
3616 			res_assigned->wslot.slot = hpdev->desc.win_slot.slot;
3617 		} else {
3618 			res_assigned2 =
3619 				(struct pci_resources_assigned2 *)(pkt + 1);
3620 			res_assigned2->message_type.type =
3621 				PCI_RESOURCES_ASSIGNED2;
3622 			res_assigned2->wslot.slot = hpdev->desc.win_slot.slot;
3623 		}
3624 		put_pcichild(hpdev);
3625 
3626 		ret = vmbus_sendpacket(hdev->channel, pkt + 1,
3627 				size_res, (unsigned long)pkt,
3628 				VM_PKT_DATA_INBAND,
3629 				VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3630 		if (!ret)
3631 			ret = wait_for_response(hdev, &comp_pkt.host_event);
3632 		if (ret)
3633 			break;
3634 
3635 		if (comp_pkt.completion_status < 0) {
3636 			ret = -EPROTO;
3637 			dev_err(&hdev->device,
3638 				"resource allocated returned 0x%x",
3639 				comp_pkt.completion_status);
3640 			break;
3641 		}
3642 
3643 		hbus->wslot_res_allocated = wslot;
3644 	}
3645 
3646 	kfree(pkt);
3647 	return ret;
3648 }
3649 
3650 /**
3651  * hv_send_resources_released() - Report local resources
3652  * released
3653  * @hdev:	VMBus's tracking struct for this root PCI bus
3654  *
3655  * Return: 0 on success, -errno on failure
3656  */
3657 static int hv_send_resources_released(struct hv_device *hdev)
3658 {
3659 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3660 	struct pci_child_message pkt;
3661 	struct hv_pci_dev *hpdev;
3662 	int wslot;
3663 	int ret;
3664 
3665 	for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) {
3666 		hpdev = get_pcichild_wslot(hbus, wslot);
3667 		if (!hpdev)
3668 			continue;
3669 
3670 		memset(&pkt, 0, sizeof(pkt));
3671 		pkt.message_type.type = PCI_RESOURCES_RELEASED;
3672 		pkt.wslot.slot = hpdev->desc.win_slot.slot;
3673 
3674 		put_pcichild(hpdev);
3675 
3676 		ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0,
3677 				       VM_PKT_DATA_INBAND, 0);
3678 		if (ret)
3679 			return ret;
3680 
3681 		hbus->wslot_res_allocated = wslot - 1;
3682 	}
3683 
3684 	hbus->wslot_res_allocated = -1;
3685 
3686 	return 0;
3687 }
3688 
3689 #define HVPCI_DOM_MAP_SIZE (64 * 1024)
3690 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE);
3691 
3692 /*
3693  * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0
3694  * as invalid for passthrough PCI devices of this driver.
3695  */
3696 #define HVPCI_DOM_INVALID 0
3697 
3698 /**
3699  * hv_get_dom_num() - Get a valid PCI domain number
3700  * Check if the PCI domain number is in use, and return another number if
3701  * it is in use.
3702  *
3703  * @dom: Requested domain number
3704  *
3705  * return: domain number on success, HVPCI_DOM_INVALID on failure
3706  */
3707 static u16 hv_get_dom_num(u16 dom)
3708 {
3709 	unsigned int i;
3710 
3711 	if (test_and_set_bit(dom, hvpci_dom_map) == 0)
3712 		return dom;
3713 
3714 	for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) {
3715 		if (test_and_set_bit(i, hvpci_dom_map) == 0)
3716 			return i;
3717 	}
3718 
3719 	return HVPCI_DOM_INVALID;
3720 }
3721 
3722 /**
3723  * hv_put_dom_num() - Mark the PCI domain number as free
3724  * @dom: Domain number to be freed
3725  */
3726 static void hv_put_dom_num(u16 dom)
3727 {
3728 	clear_bit(dom, hvpci_dom_map);
3729 }
3730 
3731 /**
3732  * hv_pci_probe() - New VMBus channel probe, for a root PCI bus
3733  * @hdev:	VMBus's tracking struct for this root PCI bus
3734  * @dev_id:	Identifies the device itself
3735  *
3736  * Return: 0 on success, -errno on failure
3737  */
3738 static int hv_pci_probe(struct hv_device *hdev,
3739 			const struct hv_vmbus_device_id *dev_id)
3740 {
3741 	struct pci_host_bridge *bridge;
3742 	struct hv_pcibus_device *hbus;
3743 	u16 dom_req, dom;
3744 	char *name;
3745 	int ret;
3746 
3747 	bridge = devm_pci_alloc_host_bridge(&hdev->device, 0);
3748 	if (!bridge)
3749 		return -ENOMEM;
3750 
3751 	hbus = kzalloc(sizeof(*hbus), GFP_KERNEL);
3752 	if (!hbus)
3753 		return -ENOMEM;
3754 
3755 	hbus->bridge = bridge;
3756 	mutex_init(&hbus->state_lock);
3757 	hbus->state = hv_pcibus_init;
3758 	hbus->wslot_res_allocated = -1;
3759 
3760 	/*
3761 	 * The PCI bus "domain" is what is called "segment" in ACPI and other
3762 	 * specs. Pull it from the instance ID, to get something usually
3763 	 * unique. In rare cases of collision, we will find out another number
3764 	 * not in use.
3765 	 *
3766 	 * Note that, since this code only runs in a Hyper-V VM, Hyper-V
3767 	 * together with this guest driver can guarantee that (1) The only
3768 	 * domain used by Gen1 VMs for something that looks like a physical
3769 	 * PCI bus (which is actually emulated by the hypervisor) is domain 0.
3770 	 * (2) There will be no overlap between domains (after fixing possible
3771 	 * collisions) in the same VM.
3772 	 */
3773 	dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4];
3774 	dom = hv_get_dom_num(dom_req);
3775 
3776 	if (dom == HVPCI_DOM_INVALID) {
3777 		dev_err(&hdev->device,
3778 			"Unable to use dom# 0x%x or other numbers", dom_req);
3779 		ret = -EINVAL;
3780 		goto free_bus;
3781 	}
3782 
3783 	if (dom != dom_req)
3784 		dev_info(&hdev->device,
3785 			 "PCI dom# 0x%x has collision, using 0x%x",
3786 			 dom_req, dom);
3787 
3788 	hbus->bridge->domain_nr = dom;
3789 #ifdef CONFIG_X86
3790 	hbus->sysdata.domain = dom;
3791 	hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS);
3792 #elif defined(CONFIG_ARM64)
3793 	/*
3794 	 * Set the PCI bus parent to be the corresponding VMbus
3795 	 * device. Then the VMbus device will be assigned as the
3796 	 * ACPI companion in pcibios_root_bridge_prepare() and
3797 	 * pci_dma_configure() will propagate device coherence
3798 	 * information to devices created on the bus.
3799 	 */
3800 	hbus->sysdata.parent = hdev->device.parent;
3801 	hbus->use_calls = false;
3802 #endif
3803 
3804 	hbus->hdev = hdev;
3805 	INIT_LIST_HEAD(&hbus->children);
3806 	INIT_LIST_HEAD(&hbus->dr_list);
3807 	spin_lock_init(&hbus->config_lock);
3808 	spin_lock_init(&hbus->device_list_lock);
3809 	hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0,
3810 					   hbus->bridge->domain_nr);
3811 	if (!hbus->wq) {
3812 		ret = -ENOMEM;
3813 		goto free_dom;
3814 	}
3815 
3816 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
3817 	hdev->channel->request_addr_callback = vmbus_request_addr;
3818 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
3819 
3820 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
3821 			 hv_pci_onchannelcallback, hbus);
3822 	if (ret)
3823 		goto destroy_wq;
3824 
3825 	hv_set_drvdata(hdev, hbus);
3826 
3827 	ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions,
3828 					  ARRAY_SIZE(pci_protocol_versions));
3829 	if (ret)
3830 		goto close;
3831 
3832 	ret = hv_allocate_config_window(hbus);
3833 	if (ret)
3834 		goto close;
3835 
3836 	hbus->cfg_addr = ioremap(hbus->mem_config->start,
3837 				 PCI_CONFIG_MMIO_LENGTH);
3838 	if (!hbus->cfg_addr) {
3839 		dev_err(&hdev->device,
3840 			"Unable to map a virtual address for config space\n");
3841 		ret = -ENOMEM;
3842 		goto free_config;
3843 	}
3844 
3845 	name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance);
3846 	if (!name) {
3847 		ret = -ENOMEM;
3848 		goto unmap;
3849 	}
3850 
3851 	hbus->fwnode = irq_domain_alloc_named_fwnode(name);
3852 	kfree(name);
3853 	if (!hbus->fwnode) {
3854 		ret = -ENOMEM;
3855 		goto unmap;
3856 	}
3857 
3858 	ret = hv_pcie_init_irq_domain(hbus);
3859 	if (ret)
3860 		goto free_fwnode;
3861 
3862 	ret = hv_pci_query_relations(hdev);
3863 	if (ret)
3864 		goto free_irq_domain;
3865 
3866 	mutex_lock(&hbus->state_lock);
3867 
3868 	ret = hv_pci_enter_d0(hdev);
3869 	if (ret)
3870 		goto release_state_lock;
3871 
3872 	ret = hv_pci_allocate_bridge_windows(hbus);
3873 	if (ret)
3874 		goto exit_d0;
3875 
3876 	ret = hv_send_resources_allocated(hdev);
3877 	if (ret)
3878 		goto free_windows;
3879 
3880 	prepopulate_bars(hbus);
3881 
3882 	hbus->state = hv_pcibus_probed;
3883 
3884 	ret = create_root_hv_pci_bus(hbus);
3885 	if (ret)
3886 		goto free_windows;
3887 
3888 	mutex_unlock(&hbus->state_lock);
3889 	return 0;
3890 
3891 free_windows:
3892 	hv_pci_free_bridge_windows(hbus);
3893 exit_d0:
3894 	(void) hv_pci_bus_exit(hdev, true);
3895 release_state_lock:
3896 	mutex_unlock(&hbus->state_lock);
3897 free_irq_domain:
3898 	irq_domain_remove(hbus->irq_domain);
3899 free_fwnode:
3900 	irq_domain_free_fwnode(hbus->fwnode);
3901 unmap:
3902 	iounmap(hbus->cfg_addr);
3903 free_config:
3904 	hv_free_config_window(hbus);
3905 close:
3906 	vmbus_close(hdev->channel);
3907 destroy_wq:
3908 	destroy_workqueue(hbus->wq);
3909 free_dom:
3910 	hv_put_dom_num(hbus->bridge->domain_nr);
3911 free_bus:
3912 	kfree(hbus);
3913 	return ret;
3914 }
3915 
3916 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs)
3917 {
3918 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
3919 	struct vmbus_channel *chan = hdev->channel;
3920 	struct {
3921 		struct pci_packet teardown_packet;
3922 		u8 buffer[sizeof(struct pci_message)];
3923 	} pkt;
3924 	struct pci_message *msg;
3925 	struct hv_pci_compl comp_pkt;
3926 	struct hv_pci_dev *hpdev, *tmp;
3927 	unsigned long flags;
3928 	u64 trans_id;
3929 	int ret;
3930 
3931 	/*
3932 	 * After the host sends the RESCIND_CHANNEL message, it doesn't
3933 	 * access the per-channel ringbuffer any longer.
3934 	 */
3935 	if (chan->rescind)
3936 		return 0;
3937 
3938 	if (!keep_devs) {
3939 		struct list_head removed;
3940 
3941 		/* Move all present children to the list on stack */
3942 		INIT_LIST_HEAD(&removed);
3943 		spin_lock_irqsave(&hbus->device_list_lock, flags);
3944 		list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry)
3945 			list_move_tail(&hpdev->list_entry, &removed);
3946 		spin_unlock_irqrestore(&hbus->device_list_lock, flags);
3947 
3948 		/* Remove all children in the list */
3949 		list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) {
3950 			list_del(&hpdev->list_entry);
3951 			if (hpdev->pci_slot)
3952 				pci_destroy_slot(hpdev->pci_slot);
3953 			/* For the two refs got in new_pcichild_device() */
3954 			put_pcichild(hpdev);
3955 			put_pcichild(hpdev);
3956 		}
3957 	}
3958 
3959 	ret = hv_send_resources_released(hdev);
3960 	if (ret) {
3961 		dev_err(&hdev->device,
3962 			"Couldn't send resources released packet(s)\n");
3963 		return ret;
3964 	}
3965 
3966 	memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet));
3967 	init_completion(&comp_pkt.host_event);
3968 	pkt.teardown_packet.completion_func = hv_pci_generic_compl;
3969 	pkt.teardown_packet.compl_ctxt = &comp_pkt;
3970 	msg = (struct pci_message *)pkt.buffer;
3971 	msg->type = PCI_BUS_D0EXIT;
3972 
3973 	ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg),
3974 				     (unsigned long)&pkt.teardown_packet,
3975 				     &trans_id, VM_PKT_DATA_INBAND,
3976 				     VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED);
3977 	if (ret)
3978 		return ret;
3979 
3980 	if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) {
3981 		/*
3982 		 * The completion packet on the stack becomes invalid after
3983 		 * 'return'; remove the ID from the VMbus requestor if the
3984 		 * identifier is still mapped to/associated with the packet.
3985 		 *
3986 		 * Cf. hv_pci_onchannelcallback().
3987 		 */
3988 		vmbus_request_addr_match(chan, trans_id,
3989 					 (unsigned long)&pkt.teardown_packet);
3990 		return -ETIMEDOUT;
3991 	}
3992 
3993 	return 0;
3994 }
3995 
3996 /**
3997  * hv_pci_remove() - Remove routine for this VMBus channel
3998  * @hdev:	VMBus's tracking struct for this root PCI bus
3999  */
4000 static void hv_pci_remove(struct hv_device *hdev)
4001 {
4002 	struct hv_pcibus_device *hbus;
4003 
4004 	hbus = hv_get_drvdata(hdev);
4005 	if (hbus->state == hv_pcibus_installed) {
4006 		tasklet_disable(&hdev->channel->callback_event);
4007 		hbus->state = hv_pcibus_removing;
4008 		tasklet_enable(&hdev->channel->callback_event);
4009 		destroy_workqueue(hbus->wq);
4010 		hbus->wq = NULL;
4011 		/*
4012 		 * At this point, no work is running or can be scheduled
4013 		 * on hbus-wq. We can't race with hv_pci_devices_present()
4014 		 * or hv_pci_eject_device(), it's safe to proceed.
4015 		 */
4016 
4017 		/* Remove the bus from PCI's point of view. */
4018 		pci_lock_rescan_remove();
4019 		pci_stop_root_bus(hbus->bridge->bus);
4020 		hv_pci_remove_slots(hbus);
4021 		pci_remove_root_bus(hbus->bridge->bus);
4022 		pci_unlock_rescan_remove();
4023 	}
4024 
4025 	hv_pci_bus_exit(hdev, false);
4026 
4027 	vmbus_close(hdev->channel);
4028 
4029 	iounmap(hbus->cfg_addr);
4030 	hv_free_config_window(hbus);
4031 	hv_pci_free_bridge_windows(hbus);
4032 	irq_domain_remove(hbus->irq_domain);
4033 	irq_domain_free_fwnode(hbus->fwnode);
4034 
4035 	hv_put_dom_num(hbus->bridge->domain_nr);
4036 
4037 	kfree(hbus);
4038 }
4039 
4040 static int hv_pci_suspend(struct hv_device *hdev)
4041 {
4042 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4043 	enum hv_pcibus_state old_state;
4044 	int ret;
4045 
4046 	/*
4047 	 * hv_pci_suspend() must make sure there are no pending work items
4048 	 * before calling vmbus_close(), since it runs in a process context
4049 	 * as a callback in dpm_suspend().  When it starts to run, the channel
4050 	 * callback hv_pci_onchannelcallback(), which runs in a tasklet
4051 	 * context, can be still running concurrently and scheduling new work
4052 	 * items onto hbus->wq in hv_pci_devices_present() and
4053 	 * hv_pci_eject_device(), and the work item handlers can access the
4054 	 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g.
4055 	 * the work item handler pci_devices_present_work() ->
4056 	 * new_pcichild_device() writes to the vmbus channel.
4057 	 *
4058 	 * To eliminate the race, hv_pci_suspend() disables the channel
4059 	 * callback tasklet, sets hbus->state to hv_pcibus_removing, and
4060 	 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds,
4061 	 * it knows that no new work item can be scheduled, and then it flushes
4062 	 * hbus->wq and safely closes the vmbus channel.
4063 	 */
4064 	tasklet_disable(&hdev->channel->callback_event);
4065 
4066 	/* Change the hbus state to prevent new work items. */
4067 	old_state = hbus->state;
4068 	if (hbus->state == hv_pcibus_installed)
4069 		hbus->state = hv_pcibus_removing;
4070 
4071 	tasklet_enable(&hdev->channel->callback_event);
4072 
4073 	if (old_state != hv_pcibus_installed)
4074 		return -EINVAL;
4075 
4076 	flush_workqueue(hbus->wq);
4077 
4078 	ret = hv_pci_bus_exit(hdev, true);
4079 	if (ret)
4080 		return ret;
4081 
4082 	vmbus_close(hdev->channel);
4083 
4084 	return 0;
4085 }
4086 
4087 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg)
4088 {
4089 	struct irq_data *irq_data;
4090 	struct msi_desc *entry;
4091 
4092 	if (!pdev->msi_enabled && !pdev->msix_enabled)
4093 		return 0;
4094 
4095 	guard(msi_descs_lock)(&pdev->dev);
4096 	msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) {
4097 		irq_data = irq_get_irq_data(entry->irq);
4098 		if (WARN_ON_ONCE(!irq_data))
4099 			return -EINVAL;
4100 		hv_compose_msi_msg(irq_data, &entry->msg);
4101 	}
4102 	return 0;
4103 }
4104 
4105 /*
4106  * Upon resume, pci_restore_msi_state() -> ... ->  __pci_write_msi_msg()
4107  * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V
4108  * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg()
4109  * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping
4110  * Table entries.
4111  */
4112 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus)
4113 {
4114 	pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL);
4115 }
4116 
4117 static int hv_pci_resume(struct hv_device *hdev)
4118 {
4119 	struct hv_pcibus_device *hbus = hv_get_drvdata(hdev);
4120 	enum pci_protocol_version_t version[1];
4121 	int ret;
4122 
4123 	hbus->state = hv_pcibus_init;
4124 
4125 	hdev->channel->next_request_id_callback = vmbus_next_request_id;
4126 	hdev->channel->request_addr_callback = vmbus_request_addr;
4127 	hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE;
4128 
4129 	ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0,
4130 			 hv_pci_onchannelcallback, hbus);
4131 	if (ret)
4132 		return ret;
4133 
4134 	/* Only use the version that was in use before hibernation. */
4135 	version[0] = hbus->protocol_version;
4136 	ret = hv_pci_protocol_negotiation(hdev, version, 1);
4137 	if (ret)
4138 		goto out;
4139 
4140 	ret = hv_pci_query_relations(hdev);
4141 	if (ret)
4142 		goto out;
4143 
4144 	mutex_lock(&hbus->state_lock);
4145 
4146 	ret = hv_pci_enter_d0(hdev);
4147 	if (ret)
4148 		goto release_state_lock;
4149 
4150 	ret = hv_send_resources_allocated(hdev);
4151 	if (ret)
4152 		goto release_state_lock;
4153 
4154 	prepopulate_bars(hbus);
4155 
4156 	hv_pci_restore_msi_state(hbus);
4157 
4158 	hbus->state = hv_pcibus_installed;
4159 	mutex_unlock(&hbus->state_lock);
4160 	return 0;
4161 
4162 release_state_lock:
4163 	mutex_unlock(&hbus->state_lock);
4164 out:
4165 	vmbus_close(hdev->channel);
4166 	return ret;
4167 }
4168 
4169 static const struct hv_vmbus_device_id hv_pci_id_table[] = {
4170 	/* PCI Pass-through Class ID */
4171 	/* 44C4F61D-4444-4400-9D52-802E27EDE19F */
4172 	{ HV_PCIE_GUID, },
4173 	{ },
4174 };
4175 
4176 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table);
4177 
4178 static struct hv_driver hv_pci_drv = {
4179 	.name		= "hv_pci",
4180 	.id_table	= hv_pci_id_table,
4181 	.probe		= hv_pci_probe,
4182 	.remove		= hv_pci_remove,
4183 	.suspend	= hv_pci_suspend,
4184 	.resume		= hv_pci_resume,
4185 };
4186 
4187 static void __exit exit_hv_pci_drv(void)
4188 {
4189 	vmbus_driver_unregister(&hv_pci_drv);
4190 
4191 	hvpci_block_ops.read_block = NULL;
4192 	hvpci_block_ops.write_block = NULL;
4193 	hvpci_block_ops.reg_blk_invalidate = NULL;
4194 }
4195 
4196 static int __init init_hv_pci_drv(void)
4197 {
4198 	int ret;
4199 
4200 	if (!hv_is_hyperv_initialized())
4201 		return -ENODEV;
4202 
4203 	ret = hv_pci_irqchip_init();
4204 	if (ret)
4205 		return ret;
4206 
4207 	/* Set the invalid domain number's bit, so it will not be used */
4208 	set_bit(HVPCI_DOM_INVALID, hvpci_dom_map);
4209 
4210 	/* Initialize PCI block r/w interface */
4211 	hvpci_block_ops.read_block = hv_read_config_block;
4212 	hvpci_block_ops.write_block = hv_write_config_block;
4213 	hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate;
4214 
4215 	return vmbus_driver_register(&hv_pci_drv);
4216 }
4217 
4218 module_init(init_hv_pci_drv);
4219 module_exit(exit_hv_pci_drv);
4220 
4221 MODULE_DESCRIPTION("Hyper-V PCI");
4222 MODULE_LICENSE("GPL v2");
4223