1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/irqchip/irq-msi-lib.h> 48 #include <linux/msi.h> 49 #include <linux/hyperv.h> 50 #include <linux/refcount.h> 51 #include <linux/irqdomain.h> 52 #include <linux/acpi.h> 53 #include <linux/sizes.h> 54 #include <linux/of_irq.h> 55 #include <asm/mshyperv.h> 56 57 /* 58 * Protocol versions. The low word is the minor version, the high word the 59 * major version. 60 */ 61 62 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 63 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 64 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 65 66 enum pci_protocol_version_t { 67 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 68 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 69 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 70 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 71 }; 72 73 #define CPU_AFFINITY_ALL -1ULL 74 75 /* 76 * Supported protocol versions in the order of probing - highest go 77 * first. 78 */ 79 static enum pci_protocol_version_t pci_protocol_versions[] = { 80 PCI_PROTOCOL_VERSION_1_4, 81 PCI_PROTOCOL_VERSION_1_3, 82 PCI_PROTOCOL_VERSION_1_2, 83 PCI_PROTOCOL_VERSION_1_1, 84 }; 85 86 #define PCI_CONFIG_MMIO_LENGTH 0x2000 87 #define CFG_PAGE_OFFSET 0x1000 88 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 89 90 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 91 92 #define STATUS_REVISION_MISMATCH 0xC0000059 93 94 /* space for 32bit serial number as string */ 95 #define SLOT_NAME_SIZE 11 96 97 /* 98 * Size of requestor for VMbus; the value is based on the observation 99 * that having more than one request outstanding is 'rare', and so 64 100 * should be generous in ensuring that we don't ever run out. 101 */ 102 #define HV_PCI_RQSTOR_SIZE 64 103 104 /* 105 * Message Types 106 */ 107 108 enum pci_message_type { 109 /* 110 * Version 1.1 111 */ 112 PCI_MESSAGE_BASE = 0x42490000, 113 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 114 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 115 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 116 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 117 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 118 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 119 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 120 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 121 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 122 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 123 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 124 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 125 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 126 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 127 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 128 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 129 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 130 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 131 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 132 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 133 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 134 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 135 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 136 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 137 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 138 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 139 PCI_MESSAGE_MAXIMUM 140 }; 141 142 /* 143 * Structures defining the virtual PCI Express protocol. 144 */ 145 146 union pci_version { 147 struct { 148 u16 minor_version; 149 u16 major_version; 150 } parts; 151 u32 version; 152 } __packed; 153 154 /* 155 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 156 * which is all this driver does. This representation is the one used in 157 * Windows, which is what is expected when sending this back and forth with 158 * the Hyper-V parent partition. 159 */ 160 union win_slot_encoding { 161 struct { 162 u32 dev:5; 163 u32 func:3; 164 u32 reserved:24; 165 } bits; 166 u32 slot; 167 } __packed; 168 169 /* 170 * Pretty much as defined in the PCI Specifications. 171 */ 172 struct pci_function_description { 173 u16 v_id; /* vendor ID */ 174 u16 d_id; /* device ID */ 175 u8 rev; 176 u8 prog_intf; 177 u8 subclass; 178 u8 base_class; 179 u32 subsystem_id; 180 union win_slot_encoding win_slot; 181 u32 ser; /* serial number */ 182 } __packed; 183 184 enum pci_device_description_flags { 185 HV_PCI_DEVICE_FLAG_NONE = 0x0, 186 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 187 }; 188 189 struct pci_function_description2 { 190 u16 v_id; /* vendor ID */ 191 u16 d_id; /* device ID */ 192 u8 rev; 193 u8 prog_intf; 194 u8 subclass; 195 u8 base_class; 196 u32 subsystem_id; 197 union win_slot_encoding win_slot; 198 u32 ser; /* serial number */ 199 u32 flags; 200 u16 virtual_numa_node; 201 u16 reserved; 202 } __packed; 203 204 /** 205 * struct hv_msi_desc 206 * @vector: IDT entry 207 * @delivery_mode: As defined in Intel's Programmer's 208 * Reference Manual, Volume 3, Chapter 8. 209 * @vector_count: Number of contiguous entries in the 210 * Interrupt Descriptor Table that are 211 * occupied by this Message-Signaled 212 * Interrupt. For "MSI", as first defined 213 * in PCI 2.2, this can be between 1 and 214 * 32. For "MSI-X," as first defined in PCI 215 * 3.0, this must be 1, as each MSI-X table 216 * entry would have its own descriptor. 217 * @reserved: Empty space 218 * @cpu_mask: All the target virtual processors. 219 */ 220 struct hv_msi_desc { 221 u8 vector; 222 u8 delivery_mode; 223 u16 vector_count; 224 u32 reserved; 225 u64 cpu_mask; 226 } __packed; 227 228 /** 229 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 230 * @vector: IDT entry 231 * @delivery_mode: As defined in Intel's Programmer's 232 * Reference Manual, Volume 3, Chapter 8. 233 * @vector_count: Number of contiguous entries in the 234 * Interrupt Descriptor Table that are 235 * occupied by this Message-Signaled 236 * Interrupt. For "MSI", as first defined 237 * in PCI 2.2, this can be between 1 and 238 * 32. For "MSI-X," as first defined in PCI 239 * 3.0, this must be 1, as each MSI-X table 240 * entry would have its own descriptor. 241 * @processor_count: number of bits enabled in array. 242 * @processor_array: All the target virtual processors. 243 */ 244 struct hv_msi_desc2 { 245 u8 vector; 246 u8 delivery_mode; 247 u16 vector_count; 248 u16 processor_count; 249 u16 processor_array[32]; 250 } __packed; 251 252 /* 253 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 254 * Everything is the same as in 'hv_msi_desc2' except that the size of the 255 * 'vector' field is larger to support bigger vector values. For ex: LPI 256 * vectors on ARM. 257 */ 258 struct hv_msi_desc3 { 259 u32 vector; 260 u8 delivery_mode; 261 u8 reserved; 262 u16 vector_count; 263 u16 processor_count; 264 u16 processor_array[32]; 265 } __packed; 266 267 /** 268 * struct tran_int_desc 269 * @reserved: unused, padding 270 * @vector_count: same as in hv_msi_desc 271 * @data: This is the "data payload" value that is 272 * written by the device when it generates 273 * a message-signaled interrupt, either MSI 274 * or MSI-X. 275 * @address: This is the address to which the data 276 * payload is written on interrupt 277 * generation. 278 */ 279 struct tran_int_desc { 280 u16 reserved; 281 u16 vector_count; 282 u32 data; 283 u64 address; 284 } __packed; 285 286 /* 287 * A generic message format for virtual PCI. 288 * Specific message formats are defined later in the file. 289 */ 290 291 struct pci_message { 292 u32 type; 293 } __packed; 294 295 struct pci_child_message { 296 struct pci_message message_type; 297 union win_slot_encoding wslot; 298 } __packed; 299 300 struct pci_incoming_message { 301 struct vmpacket_descriptor hdr; 302 struct pci_message message_type; 303 } __packed; 304 305 struct pci_response { 306 struct vmpacket_descriptor hdr; 307 s32 status; /* negative values are failures */ 308 } __packed; 309 310 struct pci_packet { 311 void (*completion_func)(void *context, struct pci_response *resp, 312 int resp_packet_size); 313 void *compl_ctxt; 314 }; 315 316 /* 317 * Specific message types supporting the PCI protocol. 318 */ 319 320 /* 321 * Version negotiation message. Sent from the guest to the host. 322 * The guest is free to try different versions until the host 323 * accepts the version. 324 * 325 * pci_version: The protocol version requested. 326 * is_last_attempt: If TRUE, this is the last version guest will request. 327 * reservedz: Reserved field, set to zero. 328 */ 329 330 struct pci_version_request { 331 struct pci_message message_type; 332 u32 protocol_version; 333 } __packed; 334 335 /* 336 * Bus D0 Entry. This is sent from the guest to the host when the virtual 337 * bus (PCI Express port) is ready for action. 338 */ 339 340 struct pci_bus_d0_entry { 341 struct pci_message message_type; 342 u32 reserved; 343 u64 mmio_base; 344 } __packed; 345 346 struct pci_bus_relations { 347 struct pci_incoming_message incoming; 348 u32 device_count; 349 struct pci_function_description func[]; 350 } __packed; 351 352 struct pci_bus_relations2 { 353 struct pci_incoming_message incoming; 354 u32 device_count; 355 struct pci_function_description2 func[]; 356 } __packed; 357 358 struct pci_q_res_req_response { 359 struct vmpacket_descriptor hdr; 360 s32 status; /* negative values are failures */ 361 u32 probed_bar[PCI_STD_NUM_BARS]; 362 } __packed; 363 364 struct pci_set_power { 365 struct pci_message message_type; 366 union win_slot_encoding wslot; 367 u32 power_state; /* In Windows terms */ 368 u32 reserved; 369 } __packed; 370 371 struct pci_set_power_response { 372 struct vmpacket_descriptor hdr; 373 s32 status; /* negative values are failures */ 374 union win_slot_encoding wslot; 375 u32 resultant_state; /* In Windows terms */ 376 u32 reserved; 377 } __packed; 378 379 struct pci_resources_assigned { 380 struct pci_message message_type; 381 union win_slot_encoding wslot; 382 u8 memory_range[0x14][6]; /* not used here */ 383 u32 msi_descriptors; 384 u32 reserved[4]; 385 } __packed; 386 387 struct pci_resources_assigned2 { 388 struct pci_message message_type; 389 union win_slot_encoding wslot; 390 u8 memory_range[0x14][6]; /* not used here */ 391 u32 msi_descriptor_count; 392 u8 reserved[70]; 393 } __packed; 394 395 struct pci_create_interrupt { 396 struct pci_message message_type; 397 union win_slot_encoding wslot; 398 struct hv_msi_desc int_desc; 399 } __packed; 400 401 struct pci_create_int_response { 402 struct pci_response response; 403 u32 reserved; 404 struct tran_int_desc int_desc; 405 } __packed; 406 407 struct pci_create_interrupt2 { 408 struct pci_message message_type; 409 union win_slot_encoding wslot; 410 struct hv_msi_desc2 int_desc; 411 } __packed; 412 413 struct pci_create_interrupt3 { 414 struct pci_message message_type; 415 union win_slot_encoding wslot; 416 struct hv_msi_desc3 int_desc; 417 } __packed; 418 419 struct pci_delete_interrupt { 420 struct pci_message message_type; 421 union win_slot_encoding wslot; 422 struct tran_int_desc int_desc; 423 } __packed; 424 425 /* 426 * Note: the VM must pass a valid block id, wslot and bytes_requested. 427 */ 428 struct pci_read_block { 429 struct pci_message message_type; 430 u32 block_id; 431 union win_slot_encoding wslot; 432 u32 bytes_requested; 433 } __packed; 434 435 struct pci_read_block_response { 436 struct vmpacket_descriptor hdr; 437 u32 status; 438 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 439 } __packed; 440 441 /* 442 * Note: the VM must pass a valid block id, wslot and byte_count. 443 */ 444 struct pci_write_block { 445 struct pci_message message_type; 446 u32 block_id; 447 union win_slot_encoding wslot; 448 u32 byte_count; 449 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 450 } __packed; 451 452 struct pci_dev_inval_block { 453 struct pci_incoming_message incoming; 454 union win_slot_encoding wslot; 455 u64 block_mask; 456 } __packed; 457 458 struct pci_dev_incoming { 459 struct pci_incoming_message incoming; 460 union win_slot_encoding wslot; 461 } __packed; 462 463 struct pci_eject_response { 464 struct pci_message message_type; 465 union win_slot_encoding wslot; 466 u32 status; 467 } __packed; 468 469 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K); 470 471 /* 472 * Driver specific state. 473 */ 474 475 enum hv_pcibus_state { 476 hv_pcibus_init = 0, 477 hv_pcibus_probed, 478 hv_pcibus_installed, 479 hv_pcibus_removing, 480 hv_pcibus_maximum 481 }; 482 483 struct hv_pcibus_device { 484 #ifdef CONFIG_X86 485 struct pci_sysdata sysdata; 486 #elif defined(CONFIG_ARM64) 487 struct pci_config_window sysdata; 488 #endif 489 struct pci_host_bridge *bridge; 490 struct fwnode_handle *fwnode; 491 /* Protocol version negotiated with the host */ 492 enum pci_protocol_version_t protocol_version; 493 494 struct mutex state_lock; 495 enum hv_pcibus_state state; 496 497 struct hv_device *hdev; 498 resource_size_t low_mmio_space; 499 resource_size_t high_mmio_space; 500 struct resource *mem_config; 501 struct resource *low_mmio_res; 502 struct resource *high_mmio_res; 503 struct completion *survey_event; 504 spinlock_t config_lock; /* Avoid two threads writing index page */ 505 spinlock_t device_list_lock; /* Protect lists below */ 506 void __iomem *cfg_addr; 507 508 struct list_head children; 509 struct list_head dr_list; 510 511 struct irq_domain *irq_domain; 512 513 struct workqueue_struct *wq; 514 515 /* Highest slot of child device with resources allocated */ 516 int wslot_res_allocated; 517 bool use_calls; /* Use hypercalls to access mmio cfg space */ 518 }; 519 520 /* 521 * Tracks "Device Relations" messages from the host, which must be both 522 * processed in order and deferred so that they don't run in the context 523 * of the incoming packet callback. 524 */ 525 struct hv_dr_work { 526 struct work_struct wrk; 527 struct hv_pcibus_device *bus; 528 }; 529 530 struct hv_pcidev_description { 531 u16 v_id; /* vendor ID */ 532 u16 d_id; /* device ID */ 533 u8 rev; 534 u8 prog_intf; 535 u8 subclass; 536 u8 base_class; 537 u32 subsystem_id; 538 union win_slot_encoding win_slot; 539 u32 ser; /* serial number */ 540 u32 flags; 541 u16 virtual_numa_node; 542 }; 543 544 struct hv_dr_state { 545 struct list_head list_entry; 546 u32 device_count; 547 struct hv_pcidev_description func[] __counted_by(device_count); 548 }; 549 550 struct hv_pci_dev { 551 /* List protected by pci_rescan_remove_lock */ 552 struct list_head list_entry; 553 refcount_t refs; 554 struct pci_slot *pci_slot; 555 struct hv_pcidev_description desc; 556 bool reported_missing; 557 struct hv_pcibus_device *hbus; 558 struct work_struct wrk; 559 560 void (*block_invalidate)(void *context, u64 block_mask); 561 void *invalidate_context; 562 563 /* 564 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 565 * read it back, for each of the BAR offsets within config space. 566 */ 567 u32 probed_bar[PCI_STD_NUM_BARS]; 568 }; 569 570 struct hv_pci_compl { 571 struct completion host_event; 572 s32 completion_status; 573 }; 574 575 static void hv_pci_onchannelcallback(void *context); 576 577 #ifdef CONFIG_X86 578 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 579 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_ACK 580 581 static int hv_pci_irqchip_init(void) 582 { 583 return 0; 584 } 585 586 static struct irq_domain *hv_pci_get_root_domain(void) 587 { 588 return x86_vector_domain; 589 } 590 591 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 592 { 593 struct irq_cfg *cfg = irqd_cfg(data); 594 595 return cfg->vector; 596 } 597 598 #define hv_msi_prepare pci_msi_prepare 599 600 /** 601 * hv_irq_retarget_interrupt() - "Unmask" the IRQ by setting its current 602 * affinity. 603 * @data: Describes the IRQ 604 * 605 * Build new a destination for the MSI and make a hypercall to 606 * update the Interrupt Redirection Table. "Device Logical ID" 607 * is built out of this PCI bus's instance GUID and the function 608 * number of the device. 609 */ 610 static void hv_irq_retarget_interrupt(struct irq_data *data) 611 { 612 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 613 struct hv_retarget_device_interrupt *params; 614 struct tran_int_desc *int_desc; 615 struct hv_pcibus_device *hbus; 616 const struct cpumask *dest; 617 cpumask_var_t tmp; 618 struct pci_bus *pbus; 619 struct pci_dev *pdev; 620 unsigned long flags; 621 u32 var_size = 0; 622 int cpu, nr_bank; 623 u64 res; 624 625 dest = irq_data_get_effective_affinity_mask(data); 626 pdev = msi_desc_to_pci_dev(msi_desc); 627 pbus = pdev->bus; 628 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 629 int_desc = data->chip_data; 630 if (!int_desc) { 631 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", 632 __func__, data->irq); 633 return; 634 } 635 636 local_irq_save(flags); 637 638 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 639 memset(params, 0, sizeof(*params)); 640 params->partition_id = HV_PARTITION_ID_SELF; 641 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 642 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 643 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 644 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 645 (hbus->hdev->dev_instance.b[4] << 16) | 646 (hbus->hdev->dev_instance.b[7] << 8) | 647 (hbus->hdev->dev_instance.b[6] & 0xf8) | 648 PCI_FUNC(pdev->devfn); 649 params->int_target.vector = hv_msi_get_int_vector(data); 650 651 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 652 /* 653 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 654 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 655 * with >64 VP support. 656 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 657 * is not sufficient for this hypercall. 658 */ 659 params->int_target.flags |= 660 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 661 662 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 663 res = 1; 664 goto out; 665 } 666 667 cpumask_and(tmp, dest, cpu_online_mask); 668 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 669 free_cpumask_var(tmp); 670 671 if (nr_bank <= 0) { 672 res = 1; 673 goto out; 674 } 675 676 /* 677 * var-sized hypercall, var-size starts after vp_mask (thus 678 * vp_set.format does not count, but vp_set.valid_bank_mask 679 * does). 680 */ 681 var_size = 1 + nr_bank; 682 } else { 683 for_each_cpu_and(cpu, dest, cpu_online_mask) { 684 params->int_target.vp_mask |= 685 (1ULL << hv_cpu_number_to_vp_number(cpu)); 686 } 687 } 688 689 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 690 params, NULL); 691 692 out: 693 local_irq_restore(flags); 694 695 /* 696 * During hibernation, when a CPU is offlined, the kernel tries 697 * to move the interrupt to the remaining CPUs that haven't 698 * been offlined yet. In this case, the below hv_do_hypercall() 699 * always fails since the vmbus channel has been closed: 700 * refer to cpu_disable_common() -> fixup_irqs() -> 701 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 702 * 703 * Suppress the error message for hibernation because the failure 704 * during hibernation does not matter (at this time all the devices 705 * have been frozen). Note: the correct affinity info is still updated 706 * into the irqdata data structure in migrate_one_irq() -> 707 * irq_do_set_affinity(), so later when the VM resumes, 708 * hv_pci_restore_msi_state() is able to correctly restore the 709 * interrupt with the correct affinity. 710 */ 711 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 712 dev_err(&hbus->hdev->device, 713 "%s() failed: %#llx", __func__, res); 714 } 715 716 static void hv_arch_irq_unmask(struct irq_data *data) 717 { 718 if (hv_root_partition()) 719 /* 720 * In case of the nested root partition, the nested hypervisor 721 * is taking care of interrupt remapping and thus the 722 * MAP_DEVICE_INTERRUPT hypercall is required instead of 723 * RETARGET_INTERRUPT. 724 */ 725 (void)hv_map_msi_interrupt(data, NULL); 726 else 727 hv_irq_retarget_interrupt(data); 728 } 729 #elif defined(CONFIG_ARM64) 730 /* 731 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 732 * of room at the start to allow for SPIs to be specified through ACPI and 733 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 734 */ 735 #define HV_PCI_MSI_SPI_START 64 736 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 737 #define DELIVERY_MODE 0 738 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_EOI 739 #define hv_msi_prepare NULL 740 741 struct hv_pci_chip_data { 742 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 743 struct mutex map_lock; 744 }; 745 746 /* Hyper-V vPCI MSI GIC IRQ domain */ 747 static struct irq_domain *hv_msi_gic_irq_domain; 748 749 /* Hyper-V PCI MSI IRQ chip */ 750 static struct irq_chip hv_arm64_msi_irq_chip = { 751 .name = "MSI", 752 .irq_set_affinity = irq_chip_set_affinity_parent, 753 .irq_eoi = irq_chip_eoi_parent, 754 .irq_mask = irq_chip_mask_parent, 755 .irq_unmask = irq_chip_unmask_parent 756 }; 757 758 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 759 { 760 return irqd->parent_data->hwirq; 761 } 762 763 /* 764 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 765 * the bitmap. 766 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 767 * the parent domain. 768 */ 769 static void hv_pci_vec_irq_free(struct irq_domain *domain, 770 unsigned int virq, 771 unsigned int nr_bm_irqs, 772 unsigned int nr_dom_irqs) 773 { 774 struct hv_pci_chip_data *chip_data = domain->host_data; 775 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 776 int first = d->hwirq - HV_PCI_MSI_SPI_START; 777 int i; 778 779 mutex_lock(&chip_data->map_lock); 780 bitmap_release_region(chip_data->spi_map, 781 first, 782 get_count_order(nr_bm_irqs)); 783 mutex_unlock(&chip_data->map_lock); 784 for (i = 0; i < nr_dom_irqs; i++) { 785 if (i) 786 d = irq_domain_get_irq_data(domain, virq + i); 787 irq_domain_reset_irq_data(d); 788 } 789 790 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 791 } 792 793 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 794 unsigned int virq, 795 unsigned int nr_irqs) 796 { 797 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 798 } 799 800 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 801 unsigned int nr_irqs, 802 irq_hw_number_t *hwirq) 803 { 804 struct hv_pci_chip_data *chip_data = domain->host_data; 805 int index; 806 807 /* Find and allocate region from the SPI bitmap */ 808 mutex_lock(&chip_data->map_lock); 809 index = bitmap_find_free_region(chip_data->spi_map, 810 HV_PCI_MSI_SPI_NR, 811 get_count_order(nr_irqs)); 812 mutex_unlock(&chip_data->map_lock); 813 if (index < 0) 814 return -ENOSPC; 815 816 *hwirq = index + HV_PCI_MSI_SPI_START; 817 818 return 0; 819 } 820 821 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 822 unsigned int virq, 823 irq_hw_number_t hwirq) 824 { 825 struct irq_fwspec fwspec; 826 struct irq_data *d; 827 int ret; 828 829 fwspec.fwnode = domain->parent->fwnode; 830 if (is_of_node(fwspec.fwnode)) { 831 /* SPI lines for OF translations start at offset 32 */ 832 fwspec.param_count = 3; 833 fwspec.param[0] = 0; 834 fwspec.param[1] = hwirq - 32; 835 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 836 } else { 837 fwspec.param_count = 2; 838 fwspec.param[0] = hwirq; 839 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 840 } 841 842 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 843 if (ret) 844 return ret; 845 846 /* 847 * Since the interrupt specifier is not coming from ACPI or DT, the 848 * trigger type will need to be set explicitly. Otherwise, it will be 849 * set to whatever is in the GIC configuration. 850 */ 851 d = irq_domain_get_irq_data(domain->parent, virq); 852 853 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 854 } 855 856 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 857 unsigned int virq, unsigned int nr_irqs, 858 void *args) 859 { 860 irq_hw_number_t hwirq; 861 unsigned int i; 862 int ret; 863 864 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 865 if (ret) 866 return ret; 867 868 for (i = 0; i < nr_irqs; i++) { 869 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 870 hwirq + i); 871 if (ret) { 872 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 873 return ret; 874 } 875 876 irq_domain_set_hwirq_and_chip(domain, virq + i, 877 hwirq + i, 878 &hv_arm64_msi_irq_chip, 879 domain->host_data); 880 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 881 } 882 883 return 0; 884 } 885 886 /* 887 * Pick the first cpu as the irq affinity that can be temporarily used for 888 * composing MSI from the hypervisor. GIC will eventually set the right 889 * affinity for the irq and the 'unmask' will retarget the interrupt to that 890 * cpu. 891 */ 892 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 893 struct irq_data *irqd, bool reserve) 894 { 895 int cpu = cpumask_first(cpu_present_mask); 896 897 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 898 899 return 0; 900 } 901 902 static const struct irq_domain_ops hv_pci_domain_ops = { 903 .alloc = hv_pci_vec_irq_domain_alloc, 904 .free = hv_pci_vec_irq_domain_free, 905 .activate = hv_pci_vec_irq_domain_activate, 906 }; 907 908 #ifdef CONFIG_OF 909 910 static struct irq_domain *hv_pci_of_irq_domain_parent(void) 911 { 912 struct device_node *parent; 913 struct irq_domain *domain; 914 915 parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node); 916 if (!parent) 917 return NULL; 918 domain = irq_find_host(parent); 919 of_node_put(parent); 920 921 return domain; 922 } 923 924 #endif 925 926 #ifdef CONFIG_ACPI 927 928 static struct irq_domain *hv_pci_acpi_irq_domain_parent(void) 929 { 930 acpi_gsi_domain_disp_fn gsi_domain_disp_fn; 931 932 gsi_domain_disp_fn = acpi_get_gsi_dispatcher(); 933 if (!gsi_domain_disp_fn) 934 return NULL; 935 return irq_find_matching_fwnode(gsi_domain_disp_fn(0), 936 DOMAIN_BUS_ANY); 937 } 938 939 #endif 940 941 static int hv_pci_irqchip_init(void) 942 { 943 static struct hv_pci_chip_data *chip_data; 944 struct fwnode_handle *fn = NULL; 945 struct irq_domain *irq_domain_parent = NULL; 946 int ret = -ENOMEM; 947 948 chip_data = kzalloc_obj(*chip_data, GFP_KERNEL); 949 if (!chip_data) 950 return ret; 951 952 mutex_init(&chip_data->map_lock); 953 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 954 if (!fn) 955 goto free_chip; 956 957 /* 958 * IRQ domain once enabled, should not be removed since there is no 959 * way to ensure that all the corresponding devices are also gone and 960 * no interrupts will be generated. 961 */ 962 #ifdef CONFIG_ACPI 963 if (!acpi_disabled) 964 irq_domain_parent = hv_pci_acpi_irq_domain_parent(); 965 #endif 966 #ifdef CONFIG_OF 967 if (!irq_domain_parent) 968 irq_domain_parent = hv_pci_of_irq_domain_parent(); 969 #endif 970 if (!irq_domain_parent) { 971 WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n"); 972 ret = -EINVAL; 973 goto free_chip; 974 } 975 976 hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0, 977 HV_PCI_MSI_SPI_NR, 978 fn, &hv_pci_domain_ops, 979 chip_data); 980 981 if (!hv_msi_gic_irq_domain) { 982 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 983 goto free_chip; 984 } 985 986 return 0; 987 988 free_chip: 989 kfree(chip_data); 990 if (fn) 991 irq_domain_free_fwnode(fn); 992 993 return ret; 994 } 995 996 static struct irq_domain *hv_pci_get_root_domain(void) 997 { 998 return hv_msi_gic_irq_domain; 999 } 1000 1001 /* 1002 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 1003 * registers which Hyper-V already supports, so no hypercall needed. 1004 */ 1005 static void hv_arch_irq_unmask(struct irq_data *data) { } 1006 #endif /* CONFIG_ARM64 */ 1007 1008 /** 1009 * hv_pci_generic_compl() - Invoked for a completion packet 1010 * @context: Set up by the sender of the packet. 1011 * @resp: The response packet 1012 * @resp_packet_size: Size in bytes of the packet 1013 * 1014 * This function is used to trigger an event and report status 1015 * for any message for which the completion packet contains a 1016 * status and nothing else. 1017 */ 1018 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 1019 int resp_packet_size) 1020 { 1021 struct hv_pci_compl *comp_pkt = context; 1022 1023 comp_pkt->completion_status = resp->status; 1024 complete(&comp_pkt->host_event); 1025 } 1026 1027 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1028 u32 wslot); 1029 1030 static void get_pcichild(struct hv_pci_dev *hpdev) 1031 { 1032 refcount_inc(&hpdev->refs); 1033 } 1034 1035 static void put_pcichild(struct hv_pci_dev *hpdev) 1036 { 1037 if (refcount_dec_and_test(&hpdev->refs)) 1038 kfree(hpdev); 1039 } 1040 1041 /* 1042 * There is no good way to get notified from vmbus_onoffer_rescind(), 1043 * so let's use polling here, since this is not a hot path. 1044 */ 1045 static int wait_for_response(struct hv_device *hdev, 1046 struct completion *comp) 1047 { 1048 while (true) { 1049 if (hdev->channel->rescind) { 1050 dev_warn_once(&hdev->device, "The device is gone.\n"); 1051 return -ENODEV; 1052 } 1053 1054 if (wait_for_completion_timeout(comp, HZ / 10)) 1055 break; 1056 } 1057 1058 return 0; 1059 } 1060 1061 /** 1062 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1063 * @devfn: The Linux representation of PCI slot 1064 * 1065 * Windows uses a slightly different representation of PCI slot. 1066 * 1067 * Return: The Windows representation 1068 */ 1069 static u32 devfn_to_wslot(int devfn) 1070 { 1071 union win_slot_encoding wslot; 1072 1073 wslot.slot = 0; 1074 wslot.bits.dev = PCI_SLOT(devfn); 1075 wslot.bits.func = PCI_FUNC(devfn); 1076 1077 return wslot.slot; 1078 } 1079 1080 /** 1081 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1082 * @wslot: The Windows representation of PCI slot 1083 * 1084 * Windows uses a slightly different representation of PCI slot. 1085 * 1086 * Return: The Linux representation 1087 */ 1088 static int wslot_to_devfn(u32 wslot) 1089 { 1090 union win_slot_encoding slot_no; 1091 1092 slot_no.slot = wslot; 1093 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1094 } 1095 1096 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1097 { 1098 struct hv_mmio_read_input *in; 1099 struct hv_mmio_read_output *out; 1100 u64 ret; 1101 1102 /* 1103 * Must be called with interrupts disabled so it is safe 1104 * to use the per-cpu input argument page. Use it for 1105 * both input and output. 1106 */ 1107 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1108 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1109 in->gpa = gpa; 1110 in->size = size; 1111 1112 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1113 if (hv_result_success(ret)) { 1114 switch (size) { 1115 case 1: 1116 *val = *(u8 *)(out->data); 1117 break; 1118 case 2: 1119 *val = *(u16 *)(out->data); 1120 break; 1121 default: 1122 *val = *(u32 *)(out->data); 1123 break; 1124 } 1125 } else 1126 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1127 ret, gpa, size); 1128 } 1129 1130 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1131 { 1132 struct hv_mmio_write_input *in; 1133 u64 ret; 1134 1135 /* 1136 * Must be called with interrupts disabled so it is safe 1137 * to use the per-cpu input argument memory. 1138 */ 1139 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1140 in->gpa = gpa; 1141 in->size = size; 1142 switch (size) { 1143 case 1: 1144 *(u8 *)(in->data) = val; 1145 break; 1146 case 2: 1147 *(u16 *)(in->data) = val; 1148 break; 1149 default: 1150 *(u32 *)(in->data) = val; 1151 break; 1152 } 1153 1154 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1155 if (!hv_result_success(ret)) 1156 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1157 ret, gpa, size); 1158 } 1159 1160 /* 1161 * PCI Configuration Space for these root PCI buses is implemented as a pair 1162 * of pages in memory-mapped I/O space. Writing to the first page chooses 1163 * the PCI function being written or read. Once the first page has been 1164 * written to, the following page maps in the entire configuration space of 1165 * the function. 1166 */ 1167 1168 /** 1169 * _hv_pcifront_read_config() - Internal PCI config read 1170 * @hpdev: The PCI driver's representation of the device 1171 * @where: Offset within config space 1172 * @size: Size of the transfer 1173 * @val: Pointer to the buffer receiving the data 1174 */ 1175 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1176 int size, u32 *val) 1177 { 1178 struct hv_pcibus_device *hbus = hpdev->hbus; 1179 struct device *dev = &hbus->hdev->device; 1180 int offset = where + CFG_PAGE_OFFSET; 1181 unsigned long flags; 1182 1183 /* 1184 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1185 */ 1186 if (where + size <= PCI_COMMAND) { 1187 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1188 } else if (where >= PCI_CLASS_REVISION && where + size <= 1189 PCI_CACHE_LINE_SIZE) { 1190 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1191 PCI_CLASS_REVISION, size); 1192 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1193 PCI_ROM_ADDRESS) { 1194 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1195 PCI_SUBSYSTEM_VENDOR_ID, size); 1196 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1197 PCI_CAPABILITY_LIST) { 1198 /* ROM BARs are unimplemented */ 1199 *val = 0; 1200 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) || 1201 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) { 1202 /* 1203 * Interrupt Line and Interrupt PIN are hard-wired to zero 1204 * because this front-end only supports message-signaled 1205 * interrupts. 1206 */ 1207 *val = 0; 1208 } else if (where + size <= CFG_PAGE_SIZE) { 1209 1210 spin_lock_irqsave(&hbus->config_lock, flags); 1211 if (hbus->use_calls) { 1212 phys_addr_t addr = hbus->mem_config->start + offset; 1213 1214 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1215 hpdev->desc.win_slot.slot); 1216 hv_pci_read_mmio(dev, addr, size, val); 1217 } else { 1218 void __iomem *addr = hbus->cfg_addr + offset; 1219 1220 /* Choose the function to be read. (See comment above) */ 1221 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1222 /* Make sure the function was chosen before reading. */ 1223 mb(); 1224 /* Read from that function's config space. */ 1225 switch (size) { 1226 case 1: 1227 *val = readb(addr); 1228 break; 1229 case 2: 1230 *val = readw(addr); 1231 break; 1232 default: 1233 *val = readl(addr); 1234 break; 1235 } 1236 /* 1237 * Make sure the read was done before we release the 1238 * spinlock allowing consecutive reads/writes. 1239 */ 1240 mb(); 1241 } 1242 spin_unlock_irqrestore(&hbus->config_lock, flags); 1243 } else { 1244 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1245 } 1246 } 1247 1248 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1249 { 1250 struct hv_pcibus_device *hbus = hpdev->hbus; 1251 struct device *dev = &hbus->hdev->device; 1252 u32 val; 1253 u16 ret; 1254 unsigned long flags; 1255 1256 spin_lock_irqsave(&hbus->config_lock, flags); 1257 1258 if (hbus->use_calls) { 1259 phys_addr_t addr = hbus->mem_config->start + 1260 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1261 1262 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1263 hpdev->desc.win_slot.slot); 1264 hv_pci_read_mmio(dev, addr, 2, &val); 1265 ret = val; /* Truncates to 16 bits */ 1266 } else { 1267 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1268 PCI_VENDOR_ID; 1269 /* Choose the function to be read. (See comment above) */ 1270 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1271 /* Make sure the function was chosen before we start reading. */ 1272 mb(); 1273 /* Read from that function's config space. */ 1274 ret = readw(addr); 1275 /* 1276 * mb() is not required here, because the 1277 * spin_unlock_irqrestore() is a barrier. 1278 */ 1279 } 1280 1281 spin_unlock_irqrestore(&hbus->config_lock, flags); 1282 1283 return ret; 1284 } 1285 1286 /** 1287 * _hv_pcifront_write_config() - Internal PCI config write 1288 * @hpdev: The PCI driver's representation of the device 1289 * @where: Offset within config space 1290 * @size: Size of the transfer 1291 * @val: The data being transferred 1292 */ 1293 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1294 int size, u32 val) 1295 { 1296 struct hv_pcibus_device *hbus = hpdev->hbus; 1297 struct device *dev = &hbus->hdev->device; 1298 int offset = where + CFG_PAGE_OFFSET; 1299 unsigned long flags; 1300 1301 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1302 where + size <= PCI_CAPABILITY_LIST) { 1303 /* SSIDs and ROM BARs are read-only */ 1304 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1305 spin_lock_irqsave(&hbus->config_lock, flags); 1306 1307 if (hbus->use_calls) { 1308 phys_addr_t addr = hbus->mem_config->start + offset; 1309 1310 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1311 hpdev->desc.win_slot.slot); 1312 hv_pci_write_mmio(dev, addr, size, val); 1313 } else { 1314 void __iomem *addr = hbus->cfg_addr + offset; 1315 1316 /* Choose the function to write. (See comment above) */ 1317 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1318 /* Make sure the function was chosen before writing. */ 1319 wmb(); 1320 /* Write to that function's config space. */ 1321 switch (size) { 1322 case 1: 1323 writeb(val, addr); 1324 break; 1325 case 2: 1326 writew(val, addr); 1327 break; 1328 default: 1329 writel(val, addr); 1330 break; 1331 } 1332 /* 1333 * Make sure the write was done before we release the 1334 * spinlock allowing consecutive reads/writes. 1335 */ 1336 mb(); 1337 } 1338 spin_unlock_irqrestore(&hbus->config_lock, flags); 1339 } else { 1340 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1341 } 1342 } 1343 1344 /** 1345 * hv_pcifront_read_config() - Read configuration space 1346 * @bus: PCI Bus structure 1347 * @devfn: Device/function 1348 * @where: Offset from base 1349 * @size: Byte/word/dword 1350 * @val: Value to be read 1351 * 1352 * Return: PCIBIOS_SUCCESSFUL on success 1353 * PCIBIOS_DEVICE_NOT_FOUND on failure 1354 */ 1355 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1356 int where, int size, u32 *val) 1357 { 1358 struct hv_pcibus_device *hbus = 1359 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1360 struct hv_pci_dev *hpdev; 1361 1362 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1363 if (!hpdev) 1364 return PCIBIOS_DEVICE_NOT_FOUND; 1365 1366 _hv_pcifront_read_config(hpdev, where, size, val); 1367 1368 put_pcichild(hpdev); 1369 return PCIBIOS_SUCCESSFUL; 1370 } 1371 1372 /** 1373 * hv_pcifront_write_config() - Write configuration space 1374 * @bus: PCI Bus structure 1375 * @devfn: Device/function 1376 * @where: Offset from base 1377 * @size: Byte/word/dword 1378 * @val: Value to be written to device 1379 * 1380 * Return: PCIBIOS_SUCCESSFUL on success 1381 * PCIBIOS_DEVICE_NOT_FOUND on failure 1382 */ 1383 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1384 int where, int size, u32 val) 1385 { 1386 struct hv_pcibus_device *hbus = 1387 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1388 struct hv_pci_dev *hpdev; 1389 1390 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1391 if (!hpdev) 1392 return PCIBIOS_DEVICE_NOT_FOUND; 1393 1394 _hv_pcifront_write_config(hpdev, where, size, val); 1395 1396 put_pcichild(hpdev); 1397 return PCIBIOS_SUCCESSFUL; 1398 } 1399 1400 /* PCIe operations */ 1401 static struct pci_ops hv_pcifront_ops = { 1402 .read = hv_pcifront_read_config, 1403 .write = hv_pcifront_write_config, 1404 }; 1405 1406 /* 1407 * Paravirtual backchannel 1408 * 1409 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1410 * communication between a VF driver and a PF driver. These 1411 * "configuration blocks" are similar in concept to PCI configuration space, 1412 * but instead of doing reads and writes in 32-bit chunks through a very slow 1413 * path, packets of up to 128 bytes can be sent or received asynchronously. 1414 * 1415 * Nearly every SR-IOV device contains just such a communications channel in 1416 * hardware, so using this one in software is usually optional. Using the 1417 * software channel, however, allows driver implementers to leverage software 1418 * tools that fuzz the communications channel looking for vulnerabilities. 1419 * 1420 * The usage model for these packets puts the responsibility for reading or 1421 * writing on the VF driver. The VF driver sends a read or a write packet, 1422 * indicating which "block" is being referred to by number. 1423 * 1424 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1425 * more of the first 64 blocks. This invalidation is delivered via a callback 1426 * supplied to the VF driver by this driver. 1427 * 1428 * No protocol is implied, except that supplied by the PF and VF drivers. 1429 */ 1430 1431 struct hv_read_config_compl { 1432 struct hv_pci_compl comp_pkt; 1433 void *buf; 1434 unsigned int len; 1435 unsigned int bytes_returned; 1436 }; 1437 1438 /** 1439 * hv_pci_read_config_compl() - Invoked when a response packet 1440 * for a read config block operation arrives. 1441 * @context: Identifies the read config operation 1442 * @resp: The response packet itself 1443 * @resp_packet_size: Size in bytes of the response packet 1444 */ 1445 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1446 int resp_packet_size) 1447 { 1448 struct hv_read_config_compl *comp = context; 1449 struct pci_read_block_response *read_resp = 1450 (struct pci_read_block_response *)resp; 1451 unsigned int data_len, hdr_len; 1452 1453 hdr_len = offsetof(struct pci_read_block_response, bytes); 1454 if (resp_packet_size < hdr_len) { 1455 comp->comp_pkt.completion_status = -1; 1456 goto out; 1457 } 1458 1459 data_len = resp_packet_size - hdr_len; 1460 if (data_len > 0 && read_resp->status == 0) { 1461 comp->bytes_returned = min(comp->len, data_len); 1462 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1463 } else { 1464 comp->bytes_returned = 0; 1465 } 1466 1467 comp->comp_pkt.completion_status = read_resp->status; 1468 out: 1469 complete(&comp->comp_pkt.host_event); 1470 } 1471 1472 /** 1473 * hv_read_config_block() - Sends a read config block request to 1474 * the back-end driver running in the Hyper-V parent partition. 1475 * @pdev: The PCI driver's representation for this device. 1476 * @buf: Buffer into which the config block will be copied. 1477 * @len: Size in bytes of buf. 1478 * @block_id: Identifies the config block which has been requested. 1479 * @bytes_returned: Size which came back from the back-end driver. 1480 * 1481 * Return: 0 on success, -errno on failure 1482 */ 1483 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1484 unsigned int len, unsigned int block_id, 1485 unsigned int *bytes_returned) 1486 { 1487 struct hv_pcibus_device *hbus = 1488 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1489 sysdata); 1490 struct { 1491 struct pci_packet pkt; 1492 char buf[sizeof(struct pci_read_block)]; 1493 } pkt; 1494 struct hv_read_config_compl comp_pkt; 1495 struct pci_read_block *read_blk; 1496 int ret; 1497 1498 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1499 return -EINVAL; 1500 1501 init_completion(&comp_pkt.comp_pkt.host_event); 1502 comp_pkt.buf = buf; 1503 comp_pkt.len = len; 1504 1505 memset(&pkt, 0, sizeof(pkt)); 1506 pkt.pkt.completion_func = hv_pci_read_config_compl; 1507 pkt.pkt.compl_ctxt = &comp_pkt; 1508 read_blk = (struct pci_read_block *)pkt.buf; 1509 read_blk->message_type.type = PCI_READ_BLOCK; 1510 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1511 read_blk->block_id = block_id; 1512 read_blk->bytes_requested = len; 1513 1514 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1515 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1516 VM_PKT_DATA_INBAND, 1517 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1518 if (ret) 1519 return ret; 1520 1521 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1522 if (ret) 1523 return ret; 1524 1525 if (comp_pkt.comp_pkt.completion_status != 0 || 1526 comp_pkt.bytes_returned == 0) { 1527 dev_err(&hbus->hdev->device, 1528 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1529 comp_pkt.comp_pkt.completion_status, 1530 comp_pkt.bytes_returned); 1531 return -EIO; 1532 } 1533 1534 *bytes_returned = comp_pkt.bytes_returned; 1535 return 0; 1536 } 1537 1538 /** 1539 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1540 * config block operation arrives. 1541 * @context: Identifies the write config operation 1542 * @resp: The response packet itself 1543 * @resp_packet_size: Size in bytes of the response packet 1544 */ 1545 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1546 int resp_packet_size) 1547 { 1548 struct hv_pci_compl *comp_pkt = context; 1549 1550 comp_pkt->completion_status = resp->status; 1551 complete(&comp_pkt->host_event); 1552 } 1553 1554 /** 1555 * hv_write_config_block() - Sends a write config block request to the 1556 * back-end driver running in the Hyper-V parent partition. 1557 * @pdev: The PCI driver's representation for this device. 1558 * @buf: Buffer from which the config block will be copied. 1559 * @len: Size in bytes of buf. 1560 * @block_id: Identifies the config block which is being written. 1561 * 1562 * Return: 0 on success, -errno on failure 1563 */ 1564 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1565 unsigned int len, unsigned int block_id) 1566 { 1567 struct hv_pcibus_device *hbus = 1568 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1569 sysdata); 1570 struct { 1571 struct pci_packet pkt; 1572 char buf[sizeof(struct pci_write_block)]; 1573 u32 reserved; 1574 } pkt; 1575 struct hv_pci_compl comp_pkt; 1576 struct pci_write_block *write_blk; 1577 u32 pkt_size; 1578 int ret; 1579 1580 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1581 return -EINVAL; 1582 1583 init_completion(&comp_pkt.host_event); 1584 1585 memset(&pkt, 0, sizeof(pkt)); 1586 pkt.pkt.completion_func = hv_pci_write_config_compl; 1587 pkt.pkt.compl_ctxt = &comp_pkt; 1588 write_blk = (struct pci_write_block *)pkt.buf; 1589 write_blk->message_type.type = PCI_WRITE_BLOCK; 1590 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1591 write_blk->block_id = block_id; 1592 write_blk->byte_count = len; 1593 memcpy(write_blk->bytes, buf, len); 1594 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1595 /* 1596 * This quirk is required on some hosts shipped around 2018, because 1597 * these hosts don't check the pkt_size correctly (new hosts have been 1598 * fixed since early 2019). The quirk is also safe on very old hosts 1599 * and new hosts, because, on them, what really matters is the length 1600 * specified in write_blk->byte_count. 1601 */ 1602 pkt_size += sizeof(pkt.reserved); 1603 1604 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1605 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1606 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1607 if (ret) 1608 return ret; 1609 1610 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1611 if (ret) 1612 return ret; 1613 1614 if (comp_pkt.completion_status != 0) { 1615 dev_err(&hbus->hdev->device, 1616 "Write Config Block failed: 0x%x\n", 1617 comp_pkt.completion_status); 1618 return -EIO; 1619 } 1620 1621 return 0; 1622 } 1623 1624 /** 1625 * hv_register_block_invalidate() - Invoked when a config block invalidation 1626 * arrives from the back-end driver. 1627 * @pdev: The PCI driver's representation for this device. 1628 * @context: Identifies the device. 1629 * @block_invalidate: Identifies all of the blocks being invalidated. 1630 * 1631 * Return: 0 on success, -errno on failure 1632 */ 1633 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1634 void (*block_invalidate)(void *context, 1635 u64 block_mask)) 1636 { 1637 struct hv_pcibus_device *hbus = 1638 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1639 sysdata); 1640 struct hv_pci_dev *hpdev; 1641 1642 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1643 if (!hpdev) 1644 return -ENODEV; 1645 1646 hpdev->block_invalidate = block_invalidate; 1647 hpdev->invalidate_context = context; 1648 1649 put_pcichild(hpdev); 1650 return 0; 1651 1652 } 1653 1654 /* Interrupt management hooks */ 1655 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1656 struct tran_int_desc *int_desc) 1657 { 1658 struct pci_delete_interrupt *int_pkt; 1659 struct { 1660 struct pci_packet pkt; 1661 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1662 } ctxt; 1663 1664 if (!int_desc->vector_count) { 1665 kfree(int_desc); 1666 return; 1667 } 1668 memset(&ctxt, 0, sizeof(ctxt)); 1669 int_pkt = (struct pci_delete_interrupt *)ctxt.buffer; 1670 int_pkt->message_type.type = 1671 PCI_DELETE_INTERRUPT_MESSAGE; 1672 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1673 int_pkt->int_desc = *int_desc; 1674 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1675 0, VM_PKT_DATA_INBAND, 0); 1676 kfree(int_desc); 1677 } 1678 1679 /** 1680 * hv_msi_free() - Free the MSI. 1681 * @domain: The interrupt domain pointer 1682 * @irq: Identifies the IRQ. 1683 * 1684 * The Hyper-V parent partition and hypervisor are tracking the 1685 * messages that are in use, keeping the interrupt redirection 1686 * table up to date. This callback sends a message that frees 1687 * the IRT entry and related tracking nonsense. 1688 */ 1689 static void hv_msi_free(struct irq_domain *domain, unsigned int irq) 1690 { 1691 struct hv_pcibus_device *hbus; 1692 struct hv_pci_dev *hpdev; 1693 struct pci_dev *pdev; 1694 struct tran_int_desc *int_desc; 1695 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1696 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1697 1698 pdev = msi_desc_to_pci_dev(msi); 1699 hbus = domain->host_data; 1700 int_desc = irq_data_get_irq_chip_data(irq_data); 1701 if (!int_desc) 1702 return; 1703 1704 irq_data->chip_data = NULL; 1705 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1706 if (!hpdev) { 1707 kfree(int_desc); 1708 return; 1709 } 1710 1711 hv_int_desc_free(hpdev, int_desc); 1712 put_pcichild(hpdev); 1713 } 1714 1715 static void hv_irq_mask(struct irq_data *data) 1716 { 1717 if (data->parent_data->chip->irq_mask) 1718 irq_chip_mask_parent(data); 1719 } 1720 1721 static void hv_irq_unmask(struct irq_data *data) 1722 { 1723 hv_arch_irq_unmask(data); 1724 1725 if (data->parent_data->chip->irq_unmask) 1726 irq_chip_unmask_parent(data); 1727 } 1728 1729 struct compose_comp_ctxt { 1730 struct hv_pci_compl comp_pkt; 1731 struct tran_int_desc int_desc; 1732 }; 1733 1734 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1735 int resp_packet_size) 1736 { 1737 struct compose_comp_ctxt *comp_pkt = context; 1738 struct pci_create_int_response *int_resp = 1739 (struct pci_create_int_response *)resp; 1740 1741 if (resp_packet_size < sizeof(*int_resp)) { 1742 comp_pkt->comp_pkt.completion_status = -1; 1743 goto out; 1744 } 1745 comp_pkt->comp_pkt.completion_status = resp->status; 1746 comp_pkt->int_desc = int_resp->int_desc; 1747 out: 1748 complete(&comp_pkt->comp_pkt.host_event); 1749 } 1750 1751 static u32 hv_compose_msi_req_v1( 1752 struct pci_create_interrupt *int_pkt, 1753 u32 slot, u8 vector, u16 vector_count) 1754 { 1755 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1756 int_pkt->wslot.slot = slot; 1757 int_pkt->int_desc.vector = vector; 1758 int_pkt->int_desc.vector_count = vector_count; 1759 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1760 1761 /* 1762 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1763 * hv_irq_unmask(). 1764 */ 1765 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1766 1767 return sizeof(*int_pkt); 1768 } 1769 1770 /* 1771 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1772 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1773 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1774 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1775 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1776 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1777 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1778 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1779 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1780 * to spread out the pCPUs that it selects. 1781 * 1782 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1783 * to always return the same dummy vCPU, because a second call to 1784 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1785 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1786 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1787 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1788 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1789 * the same pCPU, even though the vCPUs will be spread out by later calls 1790 * to hv_irq_unmask(), but that is the best we can do now. 1791 * 1792 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1793 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1794 * enhancement is planned for a future version. With that enhancement, the 1795 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1796 * device will be spread across multiple pCPUs. 1797 */ 1798 1799 /* 1800 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1801 * by subsequent retarget in hv_irq_unmask(). 1802 */ 1803 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1804 { 1805 return cpumask_first_and(affinity, cpu_online_mask); 1806 } 1807 1808 /* 1809 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1810 */ 1811 static int hv_compose_multi_msi_req_get_cpu(void) 1812 { 1813 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1814 1815 /* -1 means starting with CPU 0 */ 1816 static int cpu_next = -1; 1817 1818 unsigned long flags; 1819 int cpu; 1820 1821 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1822 1823 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask); 1824 cpu = cpu_next; 1825 1826 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1827 1828 return cpu; 1829 } 1830 1831 static u32 hv_compose_msi_req_v2( 1832 struct pci_create_interrupt2 *int_pkt, int cpu, 1833 u32 slot, u8 vector, u16 vector_count) 1834 { 1835 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1836 int_pkt->wslot.slot = slot; 1837 int_pkt->int_desc.vector = vector; 1838 int_pkt->int_desc.vector_count = vector_count; 1839 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1840 int_pkt->int_desc.processor_array[0] = 1841 hv_cpu_number_to_vp_number(cpu); 1842 int_pkt->int_desc.processor_count = 1; 1843 1844 return sizeof(*int_pkt); 1845 } 1846 1847 static u32 hv_compose_msi_req_v3( 1848 struct pci_create_interrupt3 *int_pkt, int cpu, 1849 u32 slot, u32 vector, u16 vector_count) 1850 { 1851 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1852 int_pkt->wslot.slot = slot; 1853 int_pkt->int_desc.vector = vector; 1854 int_pkt->int_desc.reserved = 0; 1855 int_pkt->int_desc.vector_count = vector_count; 1856 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1857 int_pkt->int_desc.processor_array[0] = 1858 hv_cpu_number_to_vp_number(cpu); 1859 int_pkt->int_desc.processor_count = 1; 1860 1861 return sizeof(*int_pkt); 1862 } 1863 1864 /** 1865 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1866 * @data: Everything about this MSI 1867 * @msg: Buffer that is filled in by this function 1868 * 1869 * This function unpacks the IRQ looking for target CPU set, IDT 1870 * vector and mode and sends a message to the parent partition 1871 * asking for a mapping for that tuple in this partition. The 1872 * response supplies a data value and address to which that data 1873 * should be written to trigger that interrupt. 1874 */ 1875 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1876 { 1877 struct hv_pcibus_device *hbus; 1878 struct vmbus_channel *channel; 1879 struct hv_pci_dev *hpdev; 1880 struct pci_bus *pbus; 1881 struct pci_dev *pdev; 1882 const struct cpumask *dest; 1883 struct compose_comp_ctxt comp; 1884 struct tran_int_desc *int_desc; 1885 struct msi_desc *msi_desc; 1886 /* 1887 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1888 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1889 */ 1890 u16 vector_count; 1891 u32 vector; 1892 struct { 1893 struct pci_packet pci_pkt; 1894 union { 1895 struct pci_create_interrupt v1; 1896 struct pci_create_interrupt2 v2; 1897 struct pci_create_interrupt3 v3; 1898 } int_pkts; 1899 } __packed ctxt; 1900 bool multi_msi; 1901 u64 trans_id; 1902 u32 size; 1903 int ret; 1904 int cpu; 1905 1906 msi_desc = irq_data_get_msi_desc(data); 1907 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1908 msi_desc->nvec_used > 1; 1909 1910 /* Reuse the previous allocation */ 1911 if (data->chip_data && multi_msi) { 1912 int_desc = data->chip_data; 1913 msg->address_hi = int_desc->address >> 32; 1914 msg->address_lo = int_desc->address & 0xffffffff; 1915 msg->data = int_desc->data; 1916 return; 1917 } 1918 1919 pdev = msi_desc_to_pci_dev(msi_desc); 1920 dest = irq_data_get_effective_affinity_mask(data); 1921 pbus = pdev->bus; 1922 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1923 channel = hbus->hdev->channel; 1924 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1925 if (!hpdev) 1926 goto return_null_message; 1927 1928 /* Free any previous message that might have already been composed. */ 1929 if (data->chip_data && !multi_msi) { 1930 int_desc = data->chip_data; 1931 data->chip_data = NULL; 1932 hv_int_desc_free(hpdev, int_desc); 1933 } 1934 1935 int_desc = kzalloc_obj(*int_desc, GFP_ATOMIC); 1936 if (!int_desc) 1937 goto drop_reference; 1938 1939 if (multi_msi) { 1940 /* 1941 * If this is not the first MSI of Multi MSI, we already have 1942 * a mapping. Can exit early. 1943 */ 1944 if (msi_desc->irq != data->irq) { 1945 data->chip_data = int_desc; 1946 int_desc->address = msi_desc->msg.address_lo | 1947 (u64)msi_desc->msg.address_hi << 32; 1948 int_desc->data = msi_desc->msg.data + 1949 (data->irq - msi_desc->irq); 1950 msg->address_hi = msi_desc->msg.address_hi; 1951 msg->address_lo = msi_desc->msg.address_lo; 1952 msg->data = int_desc->data; 1953 put_pcichild(hpdev); 1954 return; 1955 } 1956 /* 1957 * The vector we select here is a dummy value. The correct 1958 * value gets sent to the hypervisor in unmask(). This needs 1959 * to be aligned with the count, and also not zero. Multi-msi 1960 * is powers of 2 up to 32, so 32 will always work here. 1961 */ 1962 vector = 32; 1963 vector_count = msi_desc->nvec_used; 1964 cpu = hv_compose_multi_msi_req_get_cpu(); 1965 } else { 1966 vector = hv_msi_get_int_vector(data); 1967 vector_count = 1; 1968 cpu = hv_compose_msi_req_get_cpu(dest); 1969 } 1970 1971 /* 1972 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1973 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1974 * for better readability. 1975 */ 1976 memset(&ctxt, 0, sizeof(ctxt)); 1977 init_completion(&comp.comp_pkt.host_event); 1978 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1979 ctxt.pci_pkt.compl_ctxt = ∁ 1980 1981 switch (hbus->protocol_version) { 1982 case PCI_PROTOCOL_VERSION_1_1: 1983 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1984 hpdev->desc.win_slot.slot, 1985 (u8)vector, 1986 vector_count); 1987 break; 1988 1989 case PCI_PROTOCOL_VERSION_1_2: 1990 case PCI_PROTOCOL_VERSION_1_3: 1991 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1992 cpu, 1993 hpdev->desc.win_slot.slot, 1994 (u8)vector, 1995 vector_count); 1996 break; 1997 1998 case PCI_PROTOCOL_VERSION_1_4: 1999 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 2000 cpu, 2001 hpdev->desc.win_slot.slot, 2002 vector, 2003 vector_count); 2004 break; 2005 2006 default: 2007 /* As we only negotiate protocol versions known to this driver, 2008 * this path should never hit. However, this is it not a hot 2009 * path so we print a message to aid future updates. 2010 */ 2011 dev_err(&hbus->hdev->device, 2012 "Unexpected vPCI protocol, update driver."); 2013 goto free_int_desc; 2014 } 2015 2016 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 2017 size, (unsigned long)&ctxt.pci_pkt, 2018 &trans_id, VM_PKT_DATA_INBAND, 2019 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2020 if (ret) { 2021 dev_err(&hbus->hdev->device, 2022 "Sending request for interrupt failed: 0x%x", 2023 comp.comp_pkt.completion_status); 2024 goto free_int_desc; 2025 } 2026 2027 /* 2028 * Prevents hv_pci_onchannelcallback() from running concurrently 2029 * in the tasklet. 2030 */ 2031 tasklet_disable_in_atomic(&channel->callback_event); 2032 2033 /* 2034 * Since this function is called with IRQ locks held, can't 2035 * do normal wait for completion; instead poll. 2036 */ 2037 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 2038 unsigned long flags; 2039 2040 /* 0xFFFF means an invalid PCI VENDOR ID. */ 2041 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 2042 dev_err_once(&hbus->hdev->device, 2043 "the device has gone\n"); 2044 goto enable_tasklet; 2045 } 2046 2047 /* 2048 * Make sure that the ring buffer data structure doesn't get 2049 * freed while we dereference the ring buffer pointer. Test 2050 * for the channel's onchannel_callback being NULL within a 2051 * sched_lock critical section. See also the inline comments 2052 * in vmbus_reset_channel_cb(). 2053 */ 2054 spin_lock_irqsave(&channel->sched_lock, flags); 2055 if (unlikely(channel->onchannel_callback == NULL)) { 2056 spin_unlock_irqrestore(&channel->sched_lock, flags); 2057 goto enable_tasklet; 2058 } 2059 hv_pci_onchannelcallback(hbus); 2060 spin_unlock_irqrestore(&channel->sched_lock, flags); 2061 2062 udelay(100); 2063 } 2064 2065 tasklet_enable(&channel->callback_event); 2066 2067 if (comp.comp_pkt.completion_status < 0) { 2068 dev_err(&hbus->hdev->device, 2069 "Request for interrupt failed: 0x%x", 2070 comp.comp_pkt.completion_status); 2071 goto free_int_desc; 2072 } 2073 2074 /* 2075 * Record the assignment so that this can be unwound later. Using 2076 * irq_set_chip_data() here would be appropriate, but the lock it takes 2077 * is already held. 2078 */ 2079 *int_desc = comp.int_desc; 2080 data->chip_data = int_desc; 2081 2082 /* Pass up the result. */ 2083 msg->address_hi = comp.int_desc.address >> 32; 2084 msg->address_lo = comp.int_desc.address & 0xffffffff; 2085 msg->data = comp.int_desc.data; 2086 2087 put_pcichild(hpdev); 2088 return; 2089 2090 enable_tasklet: 2091 tasklet_enable(&channel->callback_event); 2092 /* 2093 * The completion packet on the stack becomes invalid after 'return'; 2094 * remove the ID from the VMbus requestor if the identifier is still 2095 * mapped to/associated with the packet. (The identifier could have 2096 * been 're-used', i.e., already removed and (re-)mapped.) 2097 * 2098 * Cf. hv_pci_onchannelcallback(). 2099 */ 2100 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2101 free_int_desc: 2102 kfree(int_desc); 2103 drop_reference: 2104 put_pcichild(hpdev); 2105 return_null_message: 2106 msg->address_hi = 0; 2107 msg->address_lo = 0; 2108 msg->data = 0; 2109 } 2110 2111 static bool hv_pcie_init_dev_msi_info(struct device *dev, struct irq_domain *domain, 2112 struct irq_domain *real_parent, struct msi_domain_info *info) 2113 { 2114 struct irq_chip *chip = info->chip; 2115 2116 if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info)) 2117 return false; 2118 2119 info->ops->msi_prepare = hv_msi_prepare; 2120 2121 chip->irq_set_affinity = irq_chip_set_affinity_parent; 2122 2123 if (IS_ENABLED(CONFIG_X86)) 2124 chip->flags |= IRQCHIP_MOVE_DEFERRED; 2125 2126 return true; 2127 } 2128 2129 #define HV_PCIE_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | \ 2130 MSI_FLAG_USE_DEF_CHIP_OPS | \ 2131 MSI_FLAG_PCI_MSI_MASK_PARENT) 2132 #define HV_PCIE_MSI_FLAGS_SUPPORTED (MSI_FLAG_MULTI_PCI_MSI | \ 2133 MSI_FLAG_PCI_MSIX | \ 2134 MSI_FLAG_PCI_MSIX_ALLOC_DYN | \ 2135 MSI_GENERIC_FLAGS_MASK) 2136 2137 static const struct msi_parent_ops hv_pcie_msi_parent_ops = { 2138 .required_flags = HV_PCIE_MSI_FLAGS_REQUIRED, 2139 .supported_flags = HV_PCIE_MSI_FLAGS_SUPPORTED, 2140 .bus_select_token = DOMAIN_BUS_PCI_MSI, 2141 .chip_flags = HV_MSI_CHIP_FLAGS, 2142 .prefix = "HV-", 2143 .init_dev_msi_info = hv_pcie_init_dev_msi_info, 2144 }; 2145 2146 /* HW Interrupt Chip Descriptor */ 2147 static struct irq_chip hv_msi_irq_chip = { 2148 .name = "Hyper-V PCIe MSI", 2149 .irq_compose_msi_msg = hv_compose_msi_msg, 2150 .irq_set_affinity = irq_chip_set_affinity_parent, 2151 .irq_ack = irq_chip_ack_parent, 2152 .irq_eoi = irq_chip_eoi_parent, 2153 .irq_mask = hv_irq_mask, 2154 .irq_unmask = hv_irq_unmask, 2155 }; 2156 2157 static int hv_pcie_domain_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs, 2158 void *arg) 2159 { 2160 /* 2161 * TODO: Allocating and populating struct tran_int_desc in hv_compose_msi_msg() 2162 * should be moved here. 2163 */ 2164 int ret; 2165 2166 ret = irq_domain_alloc_irqs_parent(d, virq, nr_irqs, arg); 2167 if (ret < 0) 2168 return ret; 2169 2170 for (int i = 0; i < nr_irqs; i++) { 2171 irq_domain_set_hwirq_and_chip(d, virq + i, 0, &hv_msi_irq_chip, NULL); 2172 if (IS_ENABLED(CONFIG_X86)) 2173 __irq_set_handler(virq + i, handle_edge_irq, 0, "edge"); 2174 } 2175 2176 return 0; 2177 } 2178 2179 static void hv_pcie_domain_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) 2180 { 2181 for (int i = 0; i < nr_irqs; i++) 2182 hv_msi_free(d, virq + i); 2183 2184 irq_domain_free_irqs_top(d, virq, nr_irqs); 2185 } 2186 2187 static const struct irq_domain_ops hv_pcie_domain_ops = { 2188 .alloc = hv_pcie_domain_alloc, 2189 .free = hv_pcie_domain_free, 2190 }; 2191 2192 /** 2193 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2194 * @hbus: The root PCI bus 2195 * 2196 * This function creates an IRQ domain which will be used for 2197 * interrupts from devices that have been passed through. These 2198 * devices only support MSI and MSI-X, not line-based interrupts 2199 * or simulations of line-based interrupts through PCIe's 2200 * fabric-layer messages. Because interrupts are remapped, we 2201 * can support multi-message MSI here. 2202 * 2203 * Return: '0' on success and error value on failure 2204 */ 2205 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2206 { 2207 struct irq_domain_info info = { 2208 .fwnode = hbus->fwnode, 2209 .ops = &hv_pcie_domain_ops, 2210 .host_data = hbus, 2211 .parent = hv_pci_get_root_domain(), 2212 }; 2213 2214 hbus->irq_domain = msi_create_parent_irq_domain(&info, &hv_pcie_msi_parent_ops); 2215 if (!hbus->irq_domain) { 2216 dev_err(&hbus->hdev->device, 2217 "Failed to build an MSI IRQ domain\n"); 2218 return -ENODEV; 2219 } 2220 2221 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2222 2223 return 0; 2224 } 2225 2226 /** 2227 * get_bar_size() - Get the address space consumed by a BAR 2228 * @bar_val: Value that a BAR returned after -1 was written 2229 * to it. 2230 * 2231 * This function returns the size of the BAR, rounded up to 1 2232 * page. It has to be rounded up because the hypervisor's page 2233 * table entry that maps the BAR into the VM can't specify an 2234 * offset within a page. The invariant is that the hypervisor 2235 * must place any BARs of smaller than page length at the 2236 * beginning of a page. 2237 * 2238 * Return: Size in bytes of the consumed MMIO space. 2239 */ 2240 static u64 get_bar_size(u64 bar_val) 2241 { 2242 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2243 PAGE_SIZE); 2244 } 2245 2246 /** 2247 * survey_child_resources() - Total all MMIO requirements 2248 * @hbus: Root PCI bus, as understood by this driver 2249 */ 2250 static void survey_child_resources(struct hv_pcibus_device *hbus) 2251 { 2252 struct hv_pci_dev *hpdev; 2253 resource_size_t bar_size = 0; 2254 unsigned long flags; 2255 struct completion *event; 2256 u64 bar_val; 2257 int i; 2258 2259 /* If nobody is waiting on the answer, don't compute it. */ 2260 event = xchg(&hbus->survey_event, NULL); 2261 if (!event) 2262 return; 2263 2264 /* If the answer has already been computed, go with it. */ 2265 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2266 complete(event); 2267 return; 2268 } 2269 2270 spin_lock_irqsave(&hbus->device_list_lock, flags); 2271 2272 /* 2273 * Due to an interesting quirk of the PCI spec, all memory regions 2274 * for a child device are a power of 2 in size and aligned in memory, 2275 * so it's sufficient to just add them up without tracking alignment. 2276 */ 2277 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2278 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2279 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2280 dev_err(&hbus->hdev->device, 2281 "There's an I/O BAR in this list!\n"); 2282 2283 if (hpdev->probed_bar[i] != 0) { 2284 /* 2285 * A probed BAR has all the upper bits set that 2286 * can be changed. 2287 */ 2288 2289 bar_val = hpdev->probed_bar[i]; 2290 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2291 bar_val |= 2292 ((u64)hpdev->probed_bar[++i] << 32); 2293 else 2294 bar_val |= 0xffffffff00000000ULL; 2295 2296 bar_size = get_bar_size(bar_val); 2297 2298 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2299 hbus->high_mmio_space += bar_size; 2300 else 2301 hbus->low_mmio_space += bar_size; 2302 } 2303 } 2304 } 2305 2306 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2307 complete(event); 2308 } 2309 2310 /** 2311 * prepopulate_bars() - Fill in BARs with defaults 2312 * @hbus: Root PCI bus, as understood by this driver 2313 * 2314 * The core PCI driver code seems much, much happier if the BARs 2315 * for a device have values upon first scan. So fill them in. 2316 * The algorithm below works down from large sizes to small, 2317 * attempting to pack the assignments optimally. The assumption, 2318 * enforced in other parts of the code, is that the beginning of 2319 * the memory-mapped I/O space will be aligned on the largest 2320 * BAR size. 2321 */ 2322 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2323 { 2324 resource_size_t high_size = 0; 2325 resource_size_t low_size = 0; 2326 resource_size_t high_base = 0; 2327 resource_size_t low_base = 0; 2328 resource_size_t bar_size; 2329 struct hv_pci_dev *hpdev; 2330 unsigned long flags; 2331 u64 bar_val; 2332 u32 command; 2333 bool high; 2334 int i; 2335 2336 if (hbus->low_mmio_space) { 2337 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2338 low_base = hbus->low_mmio_res->start; 2339 } 2340 2341 if (hbus->high_mmio_space) { 2342 high_size = 1ULL << 2343 (63 - __builtin_clzll(hbus->high_mmio_space)); 2344 high_base = hbus->high_mmio_res->start; 2345 } 2346 2347 spin_lock_irqsave(&hbus->device_list_lock, flags); 2348 2349 /* 2350 * Clear the memory enable bit, in case it's already set. This occurs 2351 * in the suspend path of hibernation, where the device is suspended, 2352 * resumed and suspended again: see hibernation_snapshot() and 2353 * hibernation_platform_enter(). 2354 * 2355 * If the memory enable bit is already set, Hyper-V silently ignores 2356 * the below BAR updates, and the related PCI device driver can not 2357 * work, because reading from the device register(s) always returns 2358 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2359 */ 2360 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2361 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2362 command &= ~PCI_COMMAND_MEMORY; 2363 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2364 } 2365 2366 /* Pick addresses for the BARs. */ 2367 do { 2368 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2369 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2370 bar_val = hpdev->probed_bar[i]; 2371 if (bar_val == 0) 2372 continue; 2373 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2374 if (high) { 2375 bar_val |= 2376 ((u64)hpdev->probed_bar[i + 1] 2377 << 32); 2378 } else { 2379 bar_val |= 0xffffffffULL << 32; 2380 } 2381 bar_size = get_bar_size(bar_val); 2382 if (high) { 2383 if (high_size != bar_size) { 2384 i++; 2385 continue; 2386 } 2387 _hv_pcifront_write_config(hpdev, 2388 PCI_BASE_ADDRESS_0 + (4 * i), 2389 4, 2390 (u32)(high_base & 0xffffff00)); 2391 i++; 2392 _hv_pcifront_write_config(hpdev, 2393 PCI_BASE_ADDRESS_0 + (4 * i), 2394 4, (u32)(high_base >> 32)); 2395 high_base += bar_size; 2396 } else { 2397 if (low_size != bar_size) 2398 continue; 2399 _hv_pcifront_write_config(hpdev, 2400 PCI_BASE_ADDRESS_0 + (4 * i), 2401 4, 2402 (u32)(low_base & 0xffffff00)); 2403 low_base += bar_size; 2404 } 2405 } 2406 if (high_size <= 1 && low_size <= 1) { 2407 /* 2408 * No need to set the PCI_COMMAND_MEMORY bit as 2409 * the core PCI driver doesn't require the bit 2410 * to be pre-set. Actually here we intentionally 2411 * keep the bit off so that the PCI BAR probing 2412 * in the core PCI driver doesn't cause Hyper-V 2413 * to unnecessarily unmap/map the virtual BARs 2414 * from/to the physical BARs multiple times. 2415 * This reduces the VM boot time significantly 2416 * if the BAR sizes are huge. 2417 */ 2418 break; 2419 } 2420 } 2421 2422 high_size >>= 1; 2423 low_size >>= 1; 2424 } while (high_size || low_size); 2425 2426 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2427 } 2428 2429 /* 2430 * Assign entries in sysfs pci slot directory. 2431 * 2432 * Note that this function does not need to lock the children list 2433 * because it is called from pci_devices_present_work which 2434 * is serialized with hv_eject_device_work because they are on the 2435 * same ordered workqueue. Therefore hbus->children list will not change 2436 * even when pci_create_slot sleeps. 2437 */ 2438 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2439 { 2440 struct hv_pci_dev *hpdev; 2441 char name[SLOT_NAME_SIZE]; 2442 int slot_nr; 2443 2444 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2445 if (hpdev->pci_slot) 2446 continue; 2447 2448 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2449 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2450 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2451 name, NULL); 2452 if (IS_ERR(hpdev->pci_slot)) { 2453 pr_warn("pci_create slot %s failed\n", name); 2454 hpdev->pci_slot = NULL; 2455 } 2456 } 2457 } 2458 2459 /* 2460 * Remove entries in sysfs pci slot directory. 2461 */ 2462 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2463 { 2464 struct hv_pci_dev *hpdev; 2465 2466 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2467 if (!hpdev->pci_slot) 2468 continue; 2469 pci_destroy_slot(hpdev->pci_slot); 2470 hpdev->pci_slot = NULL; 2471 } 2472 } 2473 2474 /* 2475 * Set NUMA node for the devices on the bus 2476 */ 2477 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2478 { 2479 struct pci_dev *dev; 2480 struct pci_bus *bus = hbus->bridge->bus; 2481 struct hv_pci_dev *hv_dev; 2482 2483 list_for_each_entry(dev, &bus->devices, bus_list) { 2484 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2485 if (!hv_dev) 2486 continue; 2487 2488 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2489 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2490 /* 2491 * The kernel may boot with some NUMA nodes offline 2492 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2493 * "numa=off". In those cases, adjust the host provided 2494 * NUMA node to a valid NUMA node used by the kernel. 2495 */ 2496 set_dev_node(&dev->dev, 2497 numa_map_to_online_node( 2498 hv_dev->desc.virtual_numa_node)); 2499 2500 put_pcichild(hv_dev); 2501 } 2502 } 2503 2504 /** 2505 * create_root_hv_pci_bus() - Expose a new root PCI bus 2506 * @hbus: Root PCI bus, as understood by this driver 2507 * 2508 * Return: 0 on success, -errno on failure 2509 */ 2510 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2511 { 2512 int error; 2513 struct pci_host_bridge *bridge = hbus->bridge; 2514 2515 bridge->dev.parent = &hbus->hdev->device; 2516 bridge->sysdata = &hbus->sysdata; 2517 bridge->ops = &hv_pcifront_ops; 2518 2519 error = pci_scan_root_bus_bridge(bridge); 2520 if (error) 2521 return error; 2522 2523 pci_lock_rescan_remove(); 2524 hv_pci_assign_numa_node(hbus); 2525 pci_bus_assign_resources(bridge->bus); 2526 hv_pci_assign_slots(hbus); 2527 pci_bus_add_devices(bridge->bus); 2528 pci_unlock_rescan_remove(); 2529 hbus->state = hv_pcibus_installed; 2530 return 0; 2531 } 2532 2533 struct q_res_req_compl { 2534 struct completion host_event; 2535 struct hv_pci_dev *hpdev; 2536 }; 2537 2538 /** 2539 * q_resource_requirements() - Query Resource Requirements 2540 * @context: The completion context. 2541 * @resp: The response that came from the host. 2542 * @resp_packet_size: The size in bytes of resp. 2543 * 2544 * This function is invoked on completion of a Query Resource 2545 * Requirements packet. 2546 */ 2547 static void q_resource_requirements(void *context, struct pci_response *resp, 2548 int resp_packet_size) 2549 { 2550 struct q_res_req_compl *completion = context; 2551 struct pci_q_res_req_response *q_res_req = 2552 (struct pci_q_res_req_response *)resp; 2553 s32 status; 2554 int i; 2555 2556 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2557 if (status < 0) { 2558 dev_err(&completion->hpdev->hbus->hdev->device, 2559 "query resource requirements failed: %x\n", 2560 status); 2561 } else { 2562 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2563 completion->hpdev->probed_bar[i] = 2564 q_res_req->probed_bar[i]; 2565 } 2566 } 2567 2568 complete(&completion->host_event); 2569 } 2570 2571 /** 2572 * new_pcichild_device() - Create a new child device 2573 * @hbus: The internal struct tracking this root PCI bus. 2574 * @desc: The information supplied so far from the host 2575 * about the device. 2576 * 2577 * This function creates the tracking structure for a new child 2578 * device and kicks off the process of figuring out what it is. 2579 * 2580 * Return: Pointer to the new tracking struct 2581 */ 2582 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2583 struct hv_pcidev_description *desc) 2584 { 2585 struct hv_pci_dev *hpdev; 2586 struct pci_child_message *res_req; 2587 struct q_res_req_compl comp_pkt; 2588 struct { 2589 struct pci_packet init_packet; 2590 u8 buffer[sizeof(struct pci_child_message)]; 2591 } pkt; 2592 unsigned long flags; 2593 int ret; 2594 2595 hpdev = kzalloc_obj(*hpdev, GFP_KERNEL); 2596 if (!hpdev) 2597 return NULL; 2598 2599 hpdev->hbus = hbus; 2600 2601 memset(&pkt, 0, sizeof(pkt)); 2602 init_completion(&comp_pkt.host_event); 2603 comp_pkt.hpdev = hpdev; 2604 pkt.init_packet.compl_ctxt = &comp_pkt; 2605 pkt.init_packet.completion_func = q_resource_requirements; 2606 res_req = (struct pci_child_message *)pkt.buffer; 2607 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2608 res_req->wslot.slot = desc->win_slot.slot; 2609 2610 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2611 sizeof(struct pci_child_message), 2612 (unsigned long)&pkt.init_packet, 2613 VM_PKT_DATA_INBAND, 2614 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2615 if (ret) 2616 goto error; 2617 2618 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2619 goto error; 2620 2621 hpdev->desc = *desc; 2622 refcount_set(&hpdev->refs, 1); 2623 get_pcichild(hpdev); 2624 spin_lock_irqsave(&hbus->device_list_lock, flags); 2625 2626 list_add_tail(&hpdev->list_entry, &hbus->children); 2627 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2628 return hpdev; 2629 2630 error: 2631 kfree(hpdev); 2632 return NULL; 2633 } 2634 2635 /** 2636 * get_pcichild_wslot() - Find device from slot 2637 * @hbus: Root PCI bus, as understood by this driver 2638 * @wslot: Location on the bus 2639 * 2640 * This function looks up a PCI device and returns the internal 2641 * representation of it. It acquires a reference on it, so that 2642 * the device won't be deleted while somebody is using it. The 2643 * caller is responsible for calling put_pcichild() to release 2644 * this reference. 2645 * 2646 * Return: Internal representation of a PCI device 2647 */ 2648 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2649 u32 wslot) 2650 { 2651 unsigned long flags; 2652 struct hv_pci_dev *iter, *hpdev = NULL; 2653 2654 spin_lock_irqsave(&hbus->device_list_lock, flags); 2655 list_for_each_entry(iter, &hbus->children, list_entry) { 2656 if (iter->desc.win_slot.slot == wslot) { 2657 hpdev = iter; 2658 get_pcichild(hpdev); 2659 break; 2660 } 2661 } 2662 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2663 2664 return hpdev; 2665 } 2666 2667 /** 2668 * pci_devices_present_work() - Handle new list of child devices 2669 * @work: Work struct embedded in struct hv_dr_work 2670 * 2671 * "Bus Relations" is the Windows term for "children of this 2672 * bus." The terminology is preserved here for people trying to 2673 * debug the interaction between Hyper-V and Linux. This 2674 * function is called when the parent partition reports a list 2675 * of functions that should be observed under this PCI Express 2676 * port (bus). 2677 * 2678 * This function updates the list, and must tolerate being 2679 * called multiple times with the same information. The typical 2680 * number of child devices is one, with very atypical cases 2681 * involving three or four, so the algorithms used here can be 2682 * simple and inefficient. 2683 * 2684 * It must also treat the omission of a previously observed device as 2685 * notification that the device no longer exists. 2686 * 2687 * Note that this function is serialized with hv_eject_device_work(), 2688 * because both are pushed to the ordered workqueue hbus->wq. 2689 */ 2690 static void pci_devices_present_work(struct work_struct *work) 2691 { 2692 u32 child_no; 2693 bool found; 2694 struct hv_pcidev_description *new_desc; 2695 struct hv_pci_dev *hpdev; 2696 struct hv_pcibus_device *hbus; 2697 struct list_head removed; 2698 struct hv_dr_work *dr_wrk; 2699 struct hv_dr_state *dr = NULL; 2700 unsigned long flags; 2701 2702 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2703 hbus = dr_wrk->bus; 2704 kfree(dr_wrk); 2705 2706 INIT_LIST_HEAD(&removed); 2707 2708 /* Pull this off the queue and process it if it was the last one. */ 2709 spin_lock_irqsave(&hbus->device_list_lock, flags); 2710 while (!list_empty(&hbus->dr_list)) { 2711 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2712 list_entry); 2713 list_del(&dr->list_entry); 2714 2715 /* Throw this away if the list still has stuff in it. */ 2716 if (!list_empty(&hbus->dr_list)) { 2717 kfree(dr); 2718 continue; 2719 } 2720 } 2721 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2722 2723 if (!dr) 2724 return; 2725 2726 mutex_lock(&hbus->state_lock); 2727 2728 /* First, mark all existing children as reported missing. */ 2729 spin_lock_irqsave(&hbus->device_list_lock, flags); 2730 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2731 hpdev->reported_missing = true; 2732 } 2733 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2734 2735 /* Next, add back any reported devices. */ 2736 for (child_no = 0; child_no < dr->device_count; child_no++) { 2737 found = false; 2738 new_desc = &dr->func[child_no]; 2739 2740 spin_lock_irqsave(&hbus->device_list_lock, flags); 2741 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2742 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2743 (hpdev->desc.v_id == new_desc->v_id) && 2744 (hpdev->desc.d_id == new_desc->d_id) && 2745 (hpdev->desc.ser == new_desc->ser)) { 2746 hpdev->reported_missing = false; 2747 found = true; 2748 } 2749 } 2750 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2751 2752 if (!found) { 2753 hpdev = new_pcichild_device(hbus, new_desc); 2754 if (!hpdev) 2755 dev_err(&hbus->hdev->device, 2756 "couldn't record a child device.\n"); 2757 } 2758 } 2759 2760 /* Move missing children to a list on the stack. */ 2761 spin_lock_irqsave(&hbus->device_list_lock, flags); 2762 do { 2763 found = false; 2764 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2765 if (hpdev->reported_missing) { 2766 found = true; 2767 put_pcichild(hpdev); 2768 list_move_tail(&hpdev->list_entry, &removed); 2769 break; 2770 } 2771 } 2772 } while (found); 2773 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2774 2775 /* Delete everything that should no longer exist. */ 2776 while (!list_empty(&removed)) { 2777 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2778 list_entry); 2779 list_del(&hpdev->list_entry); 2780 2781 if (hpdev->pci_slot) 2782 pci_destroy_slot(hpdev->pci_slot); 2783 2784 put_pcichild(hpdev); 2785 } 2786 2787 switch (hbus->state) { 2788 case hv_pcibus_installed: 2789 /* 2790 * Tell the core to rescan bus 2791 * because there may have been changes. 2792 */ 2793 pci_lock_rescan_remove(); 2794 pci_scan_child_bus(hbus->bridge->bus); 2795 hv_pci_assign_numa_node(hbus); 2796 hv_pci_assign_slots(hbus); 2797 pci_unlock_rescan_remove(); 2798 break; 2799 2800 case hv_pcibus_init: 2801 case hv_pcibus_probed: 2802 survey_child_resources(hbus); 2803 break; 2804 2805 default: 2806 break; 2807 } 2808 2809 mutex_unlock(&hbus->state_lock); 2810 2811 kfree(dr); 2812 } 2813 2814 /** 2815 * hv_pci_start_relations_work() - Queue work to start device discovery 2816 * @hbus: Root PCI bus, as understood by this driver 2817 * @dr: The list of children returned from host 2818 * 2819 * Return: 0 on success, -errno on failure 2820 */ 2821 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2822 struct hv_dr_state *dr) 2823 { 2824 struct hv_dr_work *dr_wrk; 2825 unsigned long flags; 2826 bool pending_dr; 2827 2828 if (hbus->state == hv_pcibus_removing) { 2829 dev_info(&hbus->hdev->device, 2830 "PCI VMBus BUS_RELATIONS: ignored\n"); 2831 return -ENOENT; 2832 } 2833 2834 dr_wrk = kzalloc_obj(*dr_wrk, GFP_NOWAIT); 2835 if (!dr_wrk) 2836 return -ENOMEM; 2837 2838 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2839 dr_wrk->bus = hbus; 2840 2841 spin_lock_irqsave(&hbus->device_list_lock, flags); 2842 /* 2843 * If pending_dr is true, we have already queued a work, 2844 * which will see the new dr. Otherwise, we need to 2845 * queue a new work. 2846 */ 2847 pending_dr = !list_empty(&hbus->dr_list); 2848 list_add_tail(&dr->list_entry, &hbus->dr_list); 2849 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2850 2851 if (pending_dr) 2852 kfree(dr_wrk); 2853 else 2854 queue_work(hbus->wq, &dr_wrk->wrk); 2855 2856 return 0; 2857 } 2858 2859 /** 2860 * hv_pci_devices_present() - Handle list of new children 2861 * @hbus: Root PCI bus, as understood by this driver 2862 * @relations: Packet from host listing children 2863 * 2864 * Process a new list of devices on the bus. The list of devices is 2865 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2866 * whenever a new list of devices for this bus appears. 2867 */ 2868 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2869 struct pci_bus_relations *relations) 2870 { 2871 struct hv_dr_state *dr; 2872 int i; 2873 2874 dr = kzalloc_flex(*dr, func, relations->device_count, GFP_NOWAIT); 2875 if (!dr) 2876 return; 2877 2878 dr->device_count = relations->device_count; 2879 for (i = 0; i < dr->device_count; i++) { 2880 dr->func[i].v_id = relations->func[i].v_id; 2881 dr->func[i].d_id = relations->func[i].d_id; 2882 dr->func[i].rev = relations->func[i].rev; 2883 dr->func[i].prog_intf = relations->func[i].prog_intf; 2884 dr->func[i].subclass = relations->func[i].subclass; 2885 dr->func[i].base_class = relations->func[i].base_class; 2886 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2887 dr->func[i].win_slot = relations->func[i].win_slot; 2888 dr->func[i].ser = relations->func[i].ser; 2889 } 2890 2891 if (hv_pci_start_relations_work(hbus, dr)) 2892 kfree(dr); 2893 } 2894 2895 /** 2896 * hv_pci_devices_present2() - Handle list of new children 2897 * @hbus: Root PCI bus, as understood by this driver 2898 * @relations: Packet from host listing children 2899 * 2900 * This function is the v2 version of hv_pci_devices_present() 2901 */ 2902 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2903 struct pci_bus_relations2 *relations) 2904 { 2905 struct hv_dr_state *dr; 2906 int i; 2907 2908 dr = kzalloc_flex(*dr, func, relations->device_count, GFP_NOWAIT); 2909 if (!dr) 2910 return; 2911 2912 dr->device_count = relations->device_count; 2913 for (i = 0; i < dr->device_count; i++) { 2914 dr->func[i].v_id = relations->func[i].v_id; 2915 dr->func[i].d_id = relations->func[i].d_id; 2916 dr->func[i].rev = relations->func[i].rev; 2917 dr->func[i].prog_intf = relations->func[i].prog_intf; 2918 dr->func[i].subclass = relations->func[i].subclass; 2919 dr->func[i].base_class = relations->func[i].base_class; 2920 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2921 dr->func[i].win_slot = relations->func[i].win_slot; 2922 dr->func[i].ser = relations->func[i].ser; 2923 dr->func[i].flags = relations->func[i].flags; 2924 dr->func[i].virtual_numa_node = 2925 relations->func[i].virtual_numa_node; 2926 } 2927 2928 if (hv_pci_start_relations_work(hbus, dr)) 2929 kfree(dr); 2930 } 2931 2932 /** 2933 * hv_eject_device_work() - Asynchronously handles ejection 2934 * @work: Work struct embedded in internal device struct 2935 * 2936 * This function handles ejecting a device. Windows will 2937 * attempt to gracefully eject a device, waiting 60 seconds to 2938 * hear back from the guest OS that this completed successfully. 2939 * If this timer expires, the device will be forcibly removed. 2940 */ 2941 static void hv_eject_device_work(struct work_struct *work) 2942 { 2943 struct pci_eject_response *ejct_pkt; 2944 struct hv_pcibus_device *hbus; 2945 struct hv_pci_dev *hpdev; 2946 struct pci_dev *pdev; 2947 unsigned long flags; 2948 int wslot; 2949 struct { 2950 struct pci_packet pkt; 2951 u8 buffer[sizeof(struct pci_eject_response)]; 2952 } ctxt; 2953 2954 hpdev = container_of(work, struct hv_pci_dev, wrk); 2955 hbus = hpdev->hbus; 2956 2957 mutex_lock(&hbus->state_lock); 2958 2959 /* 2960 * Ejection can come before or after the PCI bus has been set up, so 2961 * attempt to find it and tear down the bus state, if it exists. This 2962 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2963 * because hbus->bridge->bus may not exist yet. 2964 */ 2965 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2966 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2967 if (pdev) { 2968 pci_lock_rescan_remove(); 2969 pci_stop_and_remove_bus_device(pdev); 2970 pci_dev_put(pdev); 2971 pci_unlock_rescan_remove(); 2972 } 2973 2974 spin_lock_irqsave(&hbus->device_list_lock, flags); 2975 list_del(&hpdev->list_entry); 2976 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2977 2978 if (hpdev->pci_slot) 2979 pci_destroy_slot(hpdev->pci_slot); 2980 2981 memset(&ctxt, 0, sizeof(ctxt)); 2982 ejct_pkt = (struct pci_eject_response *)ctxt.buffer; 2983 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2984 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2985 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2986 sizeof(*ejct_pkt), 0, 2987 VM_PKT_DATA_INBAND, 0); 2988 2989 /* For the get_pcichild() in hv_pci_eject_device() */ 2990 put_pcichild(hpdev); 2991 /* For the two refs got in new_pcichild_device() */ 2992 put_pcichild(hpdev); 2993 put_pcichild(hpdev); 2994 /* hpdev has been freed. Do not use it any more. */ 2995 2996 mutex_unlock(&hbus->state_lock); 2997 } 2998 2999 /** 3000 * hv_pci_eject_device() - Handles device ejection 3001 * @hpdev: Internal device tracking struct 3002 * 3003 * This function is invoked when an ejection packet arrives. It 3004 * just schedules work so that we don't re-enter the packet 3005 * delivery code handling the ejection. 3006 */ 3007 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 3008 { 3009 struct hv_pcibus_device *hbus = hpdev->hbus; 3010 struct hv_device *hdev = hbus->hdev; 3011 3012 if (hbus->state == hv_pcibus_removing) { 3013 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 3014 return; 3015 } 3016 3017 get_pcichild(hpdev); 3018 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 3019 queue_work(hbus->wq, &hpdev->wrk); 3020 } 3021 3022 /** 3023 * hv_pci_onchannelcallback() - Handles incoming packets 3024 * @context: Internal bus tracking struct 3025 * 3026 * This function is invoked whenever the host sends a packet to 3027 * this channel (which is private to this root PCI bus). 3028 */ 3029 static void hv_pci_onchannelcallback(void *context) 3030 { 3031 const int packet_size = 0x100; 3032 int ret; 3033 struct hv_pcibus_device *hbus = context; 3034 struct vmbus_channel *chan = hbus->hdev->channel; 3035 u32 bytes_recvd; 3036 u64 req_id, req_addr; 3037 struct vmpacket_descriptor *desc; 3038 unsigned char *buffer; 3039 int bufferlen = packet_size; 3040 struct pci_packet *comp_packet; 3041 struct pci_response *response; 3042 struct pci_incoming_message *new_message; 3043 struct pci_bus_relations *bus_rel; 3044 struct pci_bus_relations2 *bus_rel2; 3045 struct pci_dev_inval_block *inval; 3046 struct pci_dev_incoming *dev_message; 3047 struct hv_pci_dev *hpdev; 3048 unsigned long flags; 3049 3050 buffer = kmalloc(bufferlen, GFP_ATOMIC); 3051 if (!buffer) 3052 return; 3053 3054 while (1) { 3055 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 3056 &bytes_recvd, &req_id); 3057 3058 if (ret == -ENOBUFS) { 3059 kfree(buffer); 3060 /* Handle large packet */ 3061 bufferlen = bytes_recvd; 3062 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 3063 if (!buffer) 3064 return; 3065 continue; 3066 } 3067 3068 /* Zero length indicates there are no more packets. */ 3069 if (ret || !bytes_recvd) 3070 break; 3071 3072 /* 3073 * All incoming packets must be at least as large as a 3074 * response. 3075 */ 3076 if (bytes_recvd <= sizeof(struct pci_response)) 3077 continue; 3078 desc = (struct vmpacket_descriptor *)buffer; 3079 3080 switch (desc->type) { 3081 case VM_PKT_COMP: 3082 3083 lock_requestor(chan, flags); 3084 req_addr = __vmbus_request_addr_match(chan, req_id, 3085 VMBUS_RQST_ADDR_ANY); 3086 if (req_addr == VMBUS_RQST_ERROR) { 3087 unlock_requestor(chan, flags); 3088 dev_err(&hbus->hdev->device, 3089 "Invalid transaction ID %llx\n", 3090 req_id); 3091 break; 3092 } 3093 comp_packet = (struct pci_packet *)req_addr; 3094 response = (struct pci_response *)buffer; 3095 /* 3096 * Call ->completion_func() within the critical section to make 3097 * sure that the packet pointer is still valid during the call: 3098 * here 'valid' means that there's a task still waiting for the 3099 * completion, and that the packet data is still on the waiting 3100 * task's stack. Cf. hv_compose_msi_msg(). 3101 */ 3102 comp_packet->completion_func(comp_packet->compl_ctxt, 3103 response, 3104 bytes_recvd); 3105 unlock_requestor(chan, flags); 3106 break; 3107 3108 case VM_PKT_DATA_INBAND: 3109 3110 new_message = (struct pci_incoming_message *)buffer; 3111 switch (new_message->message_type.type) { 3112 case PCI_BUS_RELATIONS: 3113 3114 bus_rel = (struct pci_bus_relations *)buffer; 3115 if (bytes_recvd < sizeof(*bus_rel) || 3116 bytes_recvd < 3117 struct_size(bus_rel, func, 3118 bus_rel->device_count)) { 3119 dev_err(&hbus->hdev->device, 3120 "bus relations too small\n"); 3121 break; 3122 } 3123 3124 hv_pci_devices_present(hbus, bus_rel); 3125 break; 3126 3127 case PCI_BUS_RELATIONS2: 3128 3129 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3130 if (bytes_recvd < sizeof(*bus_rel2) || 3131 bytes_recvd < 3132 struct_size(bus_rel2, func, 3133 bus_rel2->device_count)) { 3134 dev_err(&hbus->hdev->device, 3135 "bus relations v2 too small\n"); 3136 break; 3137 } 3138 3139 hv_pci_devices_present2(hbus, bus_rel2); 3140 break; 3141 3142 case PCI_EJECT: 3143 3144 dev_message = (struct pci_dev_incoming *)buffer; 3145 if (bytes_recvd < sizeof(*dev_message)) { 3146 dev_err(&hbus->hdev->device, 3147 "eject message too small\n"); 3148 break; 3149 } 3150 hpdev = get_pcichild_wslot(hbus, 3151 dev_message->wslot.slot); 3152 if (hpdev) { 3153 hv_pci_eject_device(hpdev); 3154 put_pcichild(hpdev); 3155 } 3156 break; 3157 3158 case PCI_INVALIDATE_BLOCK: 3159 3160 inval = (struct pci_dev_inval_block *)buffer; 3161 if (bytes_recvd < sizeof(*inval)) { 3162 dev_err(&hbus->hdev->device, 3163 "invalidate message too small\n"); 3164 break; 3165 } 3166 hpdev = get_pcichild_wslot(hbus, 3167 inval->wslot.slot); 3168 if (hpdev) { 3169 if (hpdev->block_invalidate) { 3170 hpdev->block_invalidate( 3171 hpdev->invalidate_context, 3172 inval->block_mask); 3173 } 3174 put_pcichild(hpdev); 3175 } 3176 break; 3177 3178 default: 3179 dev_warn(&hbus->hdev->device, 3180 "Unimplemented protocol message %x\n", 3181 new_message->message_type.type); 3182 break; 3183 } 3184 break; 3185 3186 default: 3187 dev_err(&hbus->hdev->device, 3188 "unhandled packet type %d, tid %llx len %d\n", 3189 desc->type, req_id, bytes_recvd); 3190 break; 3191 } 3192 } 3193 3194 kfree(buffer); 3195 } 3196 3197 /** 3198 * hv_pci_protocol_negotiation() - Set up protocol 3199 * @hdev: VMBus's tracking struct for this root PCI bus. 3200 * @version: Array of supported channel protocol versions in 3201 * the order of probing - highest go first. 3202 * @num_version: Number of elements in the version array. 3203 * 3204 * This driver is intended to support running on Windows 10 3205 * (server) and later versions. It will not run on earlier 3206 * versions, as they assume that many of the operations which 3207 * Linux needs accomplished with a spinlock held were done via 3208 * asynchronous messaging via VMBus. Windows 10 increases the 3209 * surface area of PCI emulation so that these actions can take 3210 * place by suspending a virtual processor for their duration. 3211 * 3212 * This function negotiates the channel protocol version, 3213 * failing if the host doesn't support the necessary protocol 3214 * level. 3215 */ 3216 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3217 enum pci_protocol_version_t version[], 3218 int num_version) 3219 { 3220 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3221 struct pci_version_request *version_req; 3222 struct hv_pci_compl comp_pkt; 3223 struct pci_packet *pkt; 3224 int ret; 3225 int i; 3226 3227 /* 3228 * Initiate the handshake with the host and negotiate 3229 * a version that the host can support. We start with the 3230 * highest version number and go down if the host cannot 3231 * support it. 3232 */ 3233 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3234 if (!pkt) 3235 return -ENOMEM; 3236 3237 init_completion(&comp_pkt.host_event); 3238 pkt->completion_func = hv_pci_generic_compl; 3239 pkt->compl_ctxt = &comp_pkt; 3240 version_req = (struct pci_version_request *)(pkt + 1); 3241 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3242 3243 for (i = 0; i < num_version; i++) { 3244 version_req->protocol_version = version[i]; 3245 ret = vmbus_sendpacket(hdev->channel, version_req, 3246 sizeof(struct pci_version_request), 3247 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3248 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3249 if (!ret) 3250 ret = wait_for_response(hdev, &comp_pkt.host_event); 3251 3252 if (ret) { 3253 dev_err(&hdev->device, 3254 "PCI Pass-through VSP failed to request version: %d", 3255 ret); 3256 goto exit; 3257 } 3258 3259 if (comp_pkt.completion_status >= 0) { 3260 hbus->protocol_version = version[i]; 3261 dev_info(&hdev->device, 3262 "PCI VMBus probing: Using version %#x\n", 3263 hbus->protocol_version); 3264 goto exit; 3265 } 3266 3267 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3268 dev_err(&hdev->device, 3269 "PCI Pass-through VSP failed version request: %#x", 3270 comp_pkt.completion_status); 3271 ret = -EPROTO; 3272 goto exit; 3273 } 3274 3275 reinit_completion(&comp_pkt.host_event); 3276 } 3277 3278 dev_err(&hdev->device, 3279 "PCI pass-through VSP failed to find supported version"); 3280 ret = -EPROTO; 3281 3282 exit: 3283 kfree(pkt); 3284 return ret; 3285 } 3286 3287 /** 3288 * hv_pci_free_bridge_windows() - Release memory regions for the 3289 * bus 3290 * @hbus: Root PCI bus, as understood by this driver 3291 */ 3292 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3293 { 3294 /* 3295 * Set the resources back to the way they looked when they 3296 * were allocated by setting IORESOURCE_BUSY again. 3297 */ 3298 3299 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3300 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3301 vmbus_free_mmio(hbus->low_mmio_res->start, 3302 resource_size(hbus->low_mmio_res)); 3303 } 3304 3305 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3306 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3307 vmbus_free_mmio(hbus->high_mmio_res->start, 3308 resource_size(hbus->high_mmio_res)); 3309 } 3310 } 3311 3312 /** 3313 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3314 * for the bus 3315 * @hbus: Root PCI bus, as understood by this driver 3316 * 3317 * This function calls vmbus_allocate_mmio(), which is itself a 3318 * bit of a compromise. Ideally, we might change the pnp layer 3319 * in the kernel such that it comprehends either PCI devices 3320 * which are "grandchildren of ACPI," with some intermediate bus 3321 * node (in this case, VMBus) or change it such that it 3322 * understands VMBus. The pnp layer, however, has been declared 3323 * deprecated, and not subject to change. 3324 * 3325 * The workaround, implemented here, is to ask VMBus to allocate 3326 * MMIO space for this bus. VMBus itself knows which ranges are 3327 * appropriate by looking at its own ACPI objects. Then, after 3328 * these ranges are claimed, they're modified to look like they 3329 * would have looked if the ACPI and pnp code had allocated 3330 * bridge windows. These descriptors have to exist in this form 3331 * in order to satisfy the code which will get invoked when the 3332 * endpoint PCI function driver calls request_mem_region() or 3333 * request_mem_region_exclusive(). 3334 * 3335 * Return: 0 on success, -errno on failure 3336 */ 3337 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3338 { 3339 resource_size_t align; 3340 int ret; 3341 3342 if (hbus->low_mmio_space) { 3343 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3344 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3345 (u64)(u32)0xffffffff, 3346 hbus->low_mmio_space, 3347 align, false); 3348 if (ret) { 3349 dev_err(&hbus->hdev->device, 3350 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3351 hbus->low_mmio_space); 3352 return ret; 3353 } 3354 3355 /* Modify this resource to become a bridge window. */ 3356 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3357 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3358 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3359 } 3360 3361 if (hbus->high_mmio_space) { 3362 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3363 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3364 0x100000000, -1, 3365 hbus->high_mmio_space, align, 3366 false); 3367 if (ret) { 3368 dev_err(&hbus->hdev->device, 3369 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3370 hbus->high_mmio_space); 3371 goto release_low_mmio; 3372 } 3373 3374 /* Modify this resource to become a bridge window. */ 3375 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3376 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3377 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3378 } 3379 3380 return 0; 3381 3382 release_low_mmio: 3383 if (hbus->low_mmio_res) { 3384 vmbus_free_mmio(hbus->low_mmio_res->start, 3385 resource_size(hbus->low_mmio_res)); 3386 } 3387 3388 return ret; 3389 } 3390 3391 /** 3392 * hv_allocate_config_window() - Find MMIO space for PCI Config 3393 * @hbus: Root PCI bus, as understood by this driver 3394 * 3395 * This function claims memory-mapped I/O space for accessing 3396 * configuration space for the functions on this bus. 3397 * 3398 * Return: 0 on success, -errno on failure 3399 */ 3400 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3401 { 3402 int ret; 3403 3404 /* 3405 * Set up a region of MMIO space to use for accessing configuration 3406 * space. 3407 */ 3408 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3409 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3410 if (ret) 3411 return ret; 3412 3413 /* 3414 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3415 * resource claims (those which cannot be overlapped) and the ranges 3416 * which are valid for the children of this bus, which are intended 3417 * to be overlapped by those children. Set the flag on this claim 3418 * meaning that this region can't be overlapped. 3419 */ 3420 3421 hbus->mem_config->flags |= IORESOURCE_BUSY; 3422 3423 return 0; 3424 } 3425 3426 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3427 { 3428 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3429 } 3430 3431 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3432 3433 /** 3434 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3435 * @hdev: VMBus's tracking struct for this root PCI bus 3436 * 3437 * Return: 0 on success, -errno on failure 3438 */ 3439 static int hv_pci_enter_d0(struct hv_device *hdev) 3440 { 3441 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3442 struct pci_bus_d0_entry *d0_entry; 3443 struct hv_pci_compl comp_pkt; 3444 struct pci_packet *pkt; 3445 bool retry = true; 3446 int ret; 3447 3448 enter_d0_retry: 3449 /* 3450 * Tell the host that the bus is ready to use, and moved into the 3451 * powered-on state. This includes telling the host which region 3452 * of memory-mapped I/O space has been chosen for configuration space 3453 * access. 3454 */ 3455 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3456 if (!pkt) 3457 return -ENOMEM; 3458 3459 init_completion(&comp_pkt.host_event); 3460 pkt->completion_func = hv_pci_generic_compl; 3461 pkt->compl_ctxt = &comp_pkt; 3462 d0_entry = (struct pci_bus_d0_entry *)(pkt + 1); 3463 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3464 d0_entry->mmio_base = hbus->mem_config->start; 3465 3466 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3467 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3468 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3469 if (!ret) 3470 ret = wait_for_response(hdev, &comp_pkt.host_event); 3471 3472 if (ret) 3473 goto exit; 3474 3475 /* 3476 * In certain case (Kdump) the pci device of interest was 3477 * not cleanly shut down and resource is still held on host 3478 * side, the host could return invalid device status. 3479 * We need to explicitly request host to release the resource 3480 * and try to enter D0 again. 3481 */ 3482 if (comp_pkt.completion_status < 0 && retry) { 3483 retry = false; 3484 3485 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3486 3487 /* 3488 * Hv_pci_bus_exit() calls hv_send_resource_released() 3489 * to free up resources of its child devices. 3490 * In the kdump kernel we need to set the 3491 * wslot_res_allocated to 255 so it scans all child 3492 * devices to release resources allocated in the 3493 * normal kernel before panic happened. 3494 */ 3495 hbus->wslot_res_allocated = 255; 3496 3497 ret = hv_pci_bus_exit(hdev, true); 3498 3499 if (ret == 0) { 3500 kfree(pkt); 3501 goto enter_d0_retry; 3502 } 3503 dev_err(&hdev->device, 3504 "Retrying D0 failed with ret %d\n", ret); 3505 } 3506 3507 if (comp_pkt.completion_status < 0) { 3508 dev_err(&hdev->device, 3509 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3510 comp_pkt.completion_status); 3511 ret = -EPROTO; 3512 goto exit; 3513 } 3514 3515 ret = 0; 3516 3517 exit: 3518 kfree(pkt); 3519 return ret; 3520 } 3521 3522 /** 3523 * hv_pci_query_relations() - Ask host to send list of child 3524 * devices 3525 * @hdev: VMBus's tracking struct for this root PCI bus 3526 * 3527 * Return: 0 on success, -errno on failure 3528 */ 3529 static int hv_pci_query_relations(struct hv_device *hdev) 3530 { 3531 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3532 struct pci_message message; 3533 struct completion comp; 3534 int ret; 3535 3536 /* Ask the host to send along the list of child devices */ 3537 init_completion(&comp); 3538 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3539 return -ENOTEMPTY; 3540 3541 memset(&message, 0, sizeof(message)); 3542 message.type = PCI_QUERY_BUS_RELATIONS; 3543 3544 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3545 0, VM_PKT_DATA_INBAND, 0); 3546 if (!ret) 3547 ret = wait_for_response(hdev, &comp); 3548 3549 /* 3550 * In the case of fast device addition/removal, it's possible that 3551 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we 3552 * already got a PCI_BUS_RELATIONS* message from the host and the 3553 * channel callback already scheduled a work to hbus->wq, which can be 3554 * running pci_devices_present_work() -> survey_child_resources() -> 3555 * complete(&hbus->survey_event), even after hv_pci_query_relations() 3556 * exits and the stack variable 'comp' is no longer valid; as a result, 3557 * a hang or a page fault may happen when the complete() calls 3558 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from 3559 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is 3560 * -ENODEV, there can't be any more work item scheduled to hbus->wq 3561 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> 3562 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> 3563 * channel->rescind = true. 3564 */ 3565 flush_workqueue(hbus->wq); 3566 3567 return ret; 3568 } 3569 3570 /** 3571 * hv_send_resources_allocated() - Report local resource choices 3572 * @hdev: VMBus's tracking struct for this root PCI bus 3573 * 3574 * The host OS is expecting to be sent a request as a message 3575 * which contains all the resources that the device will use. 3576 * The response contains those same resources, "translated" 3577 * which is to say, the values which should be used by the 3578 * hardware, when it delivers an interrupt. (MMIO resources are 3579 * used in local terms.) This is nice for Windows, and lines up 3580 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3581 * is deeply expecting to scan an emulated PCI configuration 3582 * space. So this message is sent here only to drive the state 3583 * machine on the host forward. 3584 * 3585 * Return: 0 on success, -errno on failure 3586 */ 3587 static int hv_send_resources_allocated(struct hv_device *hdev) 3588 { 3589 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3590 struct pci_resources_assigned *res_assigned; 3591 struct pci_resources_assigned2 *res_assigned2; 3592 struct hv_pci_compl comp_pkt; 3593 struct hv_pci_dev *hpdev; 3594 struct pci_packet *pkt; 3595 size_t size_res; 3596 int wslot; 3597 int ret; 3598 3599 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3600 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3601 3602 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3603 if (!pkt) 3604 return -ENOMEM; 3605 3606 ret = 0; 3607 3608 for (wslot = 0; wslot < 256; wslot++) { 3609 hpdev = get_pcichild_wslot(hbus, wslot); 3610 if (!hpdev) 3611 continue; 3612 3613 memset(pkt, 0, sizeof(*pkt) + size_res); 3614 init_completion(&comp_pkt.host_event); 3615 pkt->completion_func = hv_pci_generic_compl; 3616 pkt->compl_ctxt = &comp_pkt; 3617 3618 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3619 res_assigned = 3620 (struct pci_resources_assigned *)(pkt + 1); 3621 res_assigned->message_type.type = 3622 PCI_RESOURCES_ASSIGNED; 3623 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3624 } else { 3625 res_assigned2 = 3626 (struct pci_resources_assigned2 *)(pkt + 1); 3627 res_assigned2->message_type.type = 3628 PCI_RESOURCES_ASSIGNED2; 3629 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3630 } 3631 put_pcichild(hpdev); 3632 3633 ret = vmbus_sendpacket(hdev->channel, pkt + 1, 3634 size_res, (unsigned long)pkt, 3635 VM_PKT_DATA_INBAND, 3636 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3637 if (!ret) 3638 ret = wait_for_response(hdev, &comp_pkt.host_event); 3639 if (ret) 3640 break; 3641 3642 if (comp_pkt.completion_status < 0) { 3643 ret = -EPROTO; 3644 dev_err(&hdev->device, 3645 "resource allocated returned 0x%x", 3646 comp_pkt.completion_status); 3647 break; 3648 } 3649 3650 hbus->wslot_res_allocated = wslot; 3651 } 3652 3653 kfree(pkt); 3654 return ret; 3655 } 3656 3657 /** 3658 * hv_send_resources_released() - Report local resources 3659 * released 3660 * @hdev: VMBus's tracking struct for this root PCI bus 3661 * 3662 * Return: 0 on success, -errno on failure 3663 */ 3664 static int hv_send_resources_released(struct hv_device *hdev) 3665 { 3666 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3667 struct pci_child_message pkt; 3668 struct hv_pci_dev *hpdev; 3669 int wslot; 3670 int ret; 3671 3672 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3673 hpdev = get_pcichild_wslot(hbus, wslot); 3674 if (!hpdev) 3675 continue; 3676 3677 memset(&pkt, 0, sizeof(pkt)); 3678 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3679 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3680 3681 put_pcichild(hpdev); 3682 3683 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3684 VM_PKT_DATA_INBAND, 0); 3685 if (ret) 3686 return ret; 3687 3688 hbus->wslot_res_allocated = wslot - 1; 3689 } 3690 3691 hbus->wslot_res_allocated = -1; 3692 3693 return 0; 3694 } 3695 3696 /** 3697 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3698 * @hdev: VMBus's tracking struct for this root PCI bus 3699 * @dev_id: Identifies the device itself 3700 * 3701 * Return: 0 on success, -errno on failure 3702 */ 3703 static int hv_pci_probe(struct hv_device *hdev, 3704 const struct hv_vmbus_device_id *dev_id) 3705 { 3706 struct pci_host_bridge *bridge; 3707 struct hv_pcibus_device *hbus; 3708 int ret, dom; 3709 u16 dom_req; 3710 char *name; 3711 3712 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3713 if (!bridge) 3714 return -ENOMEM; 3715 3716 hbus = kzalloc_obj(*hbus, GFP_KERNEL); 3717 if (!hbus) 3718 return -ENOMEM; 3719 3720 hbus->bridge = bridge; 3721 mutex_init(&hbus->state_lock); 3722 hbus->state = hv_pcibus_init; 3723 hbus->wslot_res_allocated = -1; 3724 3725 /* 3726 * The PCI bus "domain" is what is called "segment" in ACPI and other 3727 * specs. Pull it from the instance ID, to get something usually 3728 * unique. In rare cases of collision, we will find out another number 3729 * not in use. 3730 * 3731 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3732 * together with this guest driver can guarantee that (1) The only 3733 * domain used by Gen1 VMs for something that looks like a physical 3734 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3735 * (2) There will be no overlap between domains (after fixing possible 3736 * collisions) in the same VM. 3737 * 3738 * Because Gen1 VMs use domain 0, don't allow picking domain 0 here, 3739 * even if bytes 4 and 5 of the instance GUID are both zero. For wider 3740 * userspace compatibility, limit the domain ID to a 16-bit value. 3741 */ 3742 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3743 dom = pci_bus_find_emul_domain_nr(dom_req, 1, U16_MAX); 3744 if (dom < 0) { 3745 dev_err(&hdev->device, 3746 "Unable to use dom# 0x%x or other numbers", dom_req); 3747 ret = -EINVAL; 3748 goto free_bus; 3749 } 3750 3751 if (dom != dom_req) 3752 dev_info(&hdev->device, 3753 "PCI dom# 0x%x has collision, using 0x%x", 3754 dom_req, dom); 3755 3756 hbus->bridge->domain_nr = dom; 3757 #ifdef CONFIG_X86 3758 hbus->sysdata.domain = dom; 3759 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3760 #elif defined(CONFIG_ARM64) 3761 /* 3762 * Set the PCI bus parent to be the corresponding VMbus 3763 * device. Then the VMbus device will be assigned as the 3764 * ACPI companion in pcibios_root_bridge_prepare() and 3765 * pci_dma_configure() will propagate device coherence 3766 * information to devices created on the bus. 3767 */ 3768 hbus->sysdata.parent = hdev->device.parent; 3769 hbus->use_calls = false; 3770 #endif 3771 3772 hbus->hdev = hdev; 3773 INIT_LIST_HEAD(&hbus->children); 3774 INIT_LIST_HEAD(&hbus->dr_list); 3775 spin_lock_init(&hbus->config_lock); 3776 spin_lock_init(&hbus->device_list_lock); 3777 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3778 hbus->bridge->domain_nr); 3779 if (!hbus->wq) { 3780 ret = -ENOMEM; 3781 goto free_dom; 3782 } 3783 3784 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3785 hdev->channel->request_addr_callback = vmbus_request_addr; 3786 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3787 3788 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3789 hv_pci_onchannelcallback, hbus); 3790 if (ret) 3791 goto destroy_wq; 3792 3793 hv_set_drvdata(hdev, hbus); 3794 3795 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3796 ARRAY_SIZE(pci_protocol_versions)); 3797 if (ret) 3798 goto close; 3799 3800 ret = hv_allocate_config_window(hbus); 3801 if (ret) 3802 goto close; 3803 3804 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3805 PCI_CONFIG_MMIO_LENGTH); 3806 if (!hbus->cfg_addr) { 3807 dev_err(&hdev->device, 3808 "Unable to map a virtual address for config space\n"); 3809 ret = -ENOMEM; 3810 goto free_config; 3811 } 3812 3813 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3814 if (!name) { 3815 ret = -ENOMEM; 3816 goto unmap; 3817 } 3818 3819 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3820 kfree(name); 3821 if (!hbus->fwnode) { 3822 ret = -ENOMEM; 3823 goto unmap; 3824 } 3825 3826 ret = hv_pcie_init_irq_domain(hbus); 3827 if (ret) 3828 goto free_fwnode; 3829 3830 ret = hv_pci_query_relations(hdev); 3831 if (ret) 3832 goto free_irq_domain; 3833 3834 mutex_lock(&hbus->state_lock); 3835 3836 ret = hv_pci_enter_d0(hdev); 3837 if (ret) 3838 goto release_state_lock; 3839 3840 ret = hv_pci_allocate_bridge_windows(hbus); 3841 if (ret) 3842 goto exit_d0; 3843 3844 ret = hv_send_resources_allocated(hdev); 3845 if (ret) 3846 goto free_windows; 3847 3848 prepopulate_bars(hbus); 3849 3850 hbus->state = hv_pcibus_probed; 3851 3852 ret = create_root_hv_pci_bus(hbus); 3853 if (ret) 3854 goto free_windows; 3855 3856 mutex_unlock(&hbus->state_lock); 3857 return 0; 3858 3859 free_windows: 3860 hv_pci_free_bridge_windows(hbus); 3861 exit_d0: 3862 (void) hv_pci_bus_exit(hdev, true); 3863 release_state_lock: 3864 mutex_unlock(&hbus->state_lock); 3865 free_irq_domain: 3866 irq_domain_remove(hbus->irq_domain); 3867 free_fwnode: 3868 irq_domain_free_fwnode(hbus->fwnode); 3869 unmap: 3870 iounmap(hbus->cfg_addr); 3871 free_config: 3872 hv_free_config_window(hbus); 3873 close: 3874 vmbus_close(hdev->channel); 3875 destroy_wq: 3876 destroy_workqueue(hbus->wq); 3877 free_dom: 3878 pci_bus_release_emul_domain_nr(hbus->bridge->domain_nr); 3879 free_bus: 3880 kfree(hbus); 3881 return ret; 3882 } 3883 3884 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3885 { 3886 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3887 struct vmbus_channel *chan = hdev->channel; 3888 struct { 3889 struct pci_packet teardown_packet; 3890 u8 buffer[sizeof(struct pci_message)]; 3891 } pkt; 3892 struct pci_message *msg; 3893 struct hv_pci_compl comp_pkt; 3894 struct hv_pci_dev *hpdev, *tmp; 3895 unsigned long flags; 3896 u64 trans_id; 3897 int ret; 3898 3899 /* 3900 * After the host sends the RESCIND_CHANNEL message, it doesn't 3901 * access the per-channel ringbuffer any longer. 3902 */ 3903 if (chan->rescind) 3904 return 0; 3905 3906 if (!keep_devs) { 3907 struct list_head removed; 3908 3909 /* Move all present children to the list on stack */ 3910 INIT_LIST_HEAD(&removed); 3911 spin_lock_irqsave(&hbus->device_list_lock, flags); 3912 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3913 list_move_tail(&hpdev->list_entry, &removed); 3914 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3915 3916 /* Remove all children in the list */ 3917 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3918 list_del(&hpdev->list_entry); 3919 if (hpdev->pci_slot) 3920 pci_destroy_slot(hpdev->pci_slot); 3921 /* For the two refs got in new_pcichild_device() */ 3922 put_pcichild(hpdev); 3923 put_pcichild(hpdev); 3924 } 3925 } 3926 3927 ret = hv_send_resources_released(hdev); 3928 if (ret) { 3929 dev_err(&hdev->device, 3930 "Couldn't send resources released packet(s)\n"); 3931 return ret; 3932 } 3933 3934 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3935 init_completion(&comp_pkt.host_event); 3936 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3937 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3938 msg = (struct pci_message *)pkt.buffer; 3939 msg->type = PCI_BUS_D0EXIT; 3940 3941 ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg), 3942 (unsigned long)&pkt.teardown_packet, 3943 &trans_id, VM_PKT_DATA_INBAND, 3944 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3945 if (ret) 3946 return ret; 3947 3948 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3949 /* 3950 * The completion packet on the stack becomes invalid after 3951 * 'return'; remove the ID from the VMbus requestor if the 3952 * identifier is still mapped to/associated with the packet. 3953 * 3954 * Cf. hv_pci_onchannelcallback(). 3955 */ 3956 vmbus_request_addr_match(chan, trans_id, 3957 (unsigned long)&pkt.teardown_packet); 3958 return -ETIMEDOUT; 3959 } 3960 3961 return 0; 3962 } 3963 3964 /** 3965 * hv_pci_remove() - Remove routine for this VMBus channel 3966 * @hdev: VMBus's tracking struct for this root PCI bus 3967 */ 3968 static void hv_pci_remove(struct hv_device *hdev) 3969 { 3970 struct hv_pcibus_device *hbus; 3971 3972 hbus = hv_get_drvdata(hdev); 3973 if (hbus->state == hv_pcibus_installed) { 3974 tasklet_disable(&hdev->channel->callback_event); 3975 hbus->state = hv_pcibus_removing; 3976 tasklet_enable(&hdev->channel->callback_event); 3977 destroy_workqueue(hbus->wq); 3978 hbus->wq = NULL; 3979 /* 3980 * At this point, no work is running or can be scheduled 3981 * on hbus-wq. We can't race with hv_pci_devices_present() 3982 * or hv_pci_eject_device(), it's safe to proceed. 3983 */ 3984 3985 /* Remove the bus from PCI's point of view. */ 3986 pci_lock_rescan_remove(); 3987 pci_stop_root_bus(hbus->bridge->bus); 3988 hv_pci_remove_slots(hbus); 3989 pci_remove_root_bus(hbus->bridge->bus); 3990 pci_unlock_rescan_remove(); 3991 } 3992 3993 hv_pci_bus_exit(hdev, false); 3994 3995 vmbus_close(hdev->channel); 3996 3997 iounmap(hbus->cfg_addr); 3998 hv_free_config_window(hbus); 3999 hv_pci_free_bridge_windows(hbus); 4000 irq_domain_remove(hbus->irq_domain); 4001 irq_domain_free_fwnode(hbus->fwnode); 4002 4003 kfree(hbus); 4004 } 4005 4006 static int hv_pci_suspend(struct hv_device *hdev) 4007 { 4008 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4009 enum hv_pcibus_state old_state; 4010 int ret; 4011 4012 /* 4013 * hv_pci_suspend() must make sure there are no pending work items 4014 * before calling vmbus_close(), since it runs in a process context 4015 * as a callback in dpm_suspend(). When it starts to run, the channel 4016 * callback hv_pci_onchannelcallback(), which runs in a tasklet 4017 * context, can be still running concurrently and scheduling new work 4018 * items onto hbus->wq in hv_pci_devices_present() and 4019 * hv_pci_eject_device(), and the work item handlers can access the 4020 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 4021 * the work item handler pci_devices_present_work() -> 4022 * new_pcichild_device() writes to the vmbus channel. 4023 * 4024 * To eliminate the race, hv_pci_suspend() disables the channel 4025 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 4026 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 4027 * it knows that no new work item can be scheduled, and then it flushes 4028 * hbus->wq and safely closes the vmbus channel. 4029 */ 4030 tasklet_disable(&hdev->channel->callback_event); 4031 4032 /* Change the hbus state to prevent new work items. */ 4033 old_state = hbus->state; 4034 if (hbus->state == hv_pcibus_installed) 4035 hbus->state = hv_pcibus_removing; 4036 4037 tasklet_enable(&hdev->channel->callback_event); 4038 4039 if (old_state != hv_pcibus_installed) 4040 return -EINVAL; 4041 4042 flush_workqueue(hbus->wq); 4043 4044 ret = hv_pci_bus_exit(hdev, true); 4045 if (ret) 4046 return ret; 4047 4048 vmbus_close(hdev->channel); 4049 4050 return 0; 4051 } 4052 4053 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 4054 { 4055 struct irq_data *irq_data; 4056 struct msi_desc *entry; 4057 4058 if (!pdev->msi_enabled && !pdev->msix_enabled) 4059 return 0; 4060 4061 guard(msi_descs_lock)(&pdev->dev); 4062 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 4063 irq_data = irq_get_irq_data(entry->irq); 4064 if (WARN_ON_ONCE(!irq_data)) 4065 return -EINVAL; 4066 hv_compose_msi_msg(irq_data, &entry->msg); 4067 } 4068 return 0; 4069 } 4070 4071 /* 4072 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 4073 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 4074 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 4075 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 4076 * Table entries. 4077 */ 4078 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 4079 { 4080 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 4081 } 4082 4083 static int hv_pci_resume(struct hv_device *hdev) 4084 { 4085 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4086 enum pci_protocol_version_t version[1]; 4087 int ret; 4088 4089 hbus->state = hv_pcibus_init; 4090 4091 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4092 hdev->channel->request_addr_callback = vmbus_request_addr; 4093 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4094 4095 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4096 hv_pci_onchannelcallback, hbus); 4097 if (ret) 4098 return ret; 4099 4100 /* Only use the version that was in use before hibernation. */ 4101 version[0] = hbus->protocol_version; 4102 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4103 if (ret) 4104 goto out; 4105 4106 ret = hv_pci_query_relations(hdev); 4107 if (ret) 4108 goto out; 4109 4110 mutex_lock(&hbus->state_lock); 4111 4112 ret = hv_pci_enter_d0(hdev); 4113 if (ret) 4114 goto release_state_lock; 4115 4116 ret = hv_send_resources_allocated(hdev); 4117 if (ret) 4118 goto release_state_lock; 4119 4120 prepopulate_bars(hbus); 4121 4122 hv_pci_restore_msi_state(hbus); 4123 4124 hbus->state = hv_pcibus_installed; 4125 mutex_unlock(&hbus->state_lock); 4126 return 0; 4127 4128 release_state_lock: 4129 mutex_unlock(&hbus->state_lock); 4130 out: 4131 vmbus_close(hdev->channel); 4132 return ret; 4133 } 4134 4135 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4136 /* PCI Pass-through Class ID */ 4137 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4138 { HV_PCIE_GUID, }, 4139 { }, 4140 }; 4141 4142 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4143 4144 static struct hv_driver hv_pci_drv = { 4145 .name = "hv_pci", 4146 .id_table = hv_pci_id_table, 4147 .probe = hv_pci_probe, 4148 .remove = hv_pci_remove, 4149 .suspend = hv_pci_suspend, 4150 .resume = hv_pci_resume, 4151 }; 4152 4153 static void __exit exit_hv_pci_drv(void) 4154 { 4155 vmbus_driver_unregister(&hv_pci_drv); 4156 4157 hvpci_block_ops.read_block = NULL; 4158 hvpci_block_ops.write_block = NULL; 4159 hvpci_block_ops.reg_blk_invalidate = NULL; 4160 } 4161 4162 static int __init init_hv_pci_drv(void) 4163 { 4164 int ret; 4165 4166 if (!hv_is_hyperv_initialized()) 4167 return -ENODEV; 4168 4169 if (hv_root_partition() && !hv_nested) 4170 return -ENODEV; 4171 4172 ret = hv_pci_irqchip_init(); 4173 if (ret) 4174 return ret; 4175 4176 /* Initialize PCI block r/w interface */ 4177 hvpci_block_ops.read_block = hv_read_config_block; 4178 hvpci_block_ops.write_block = hv_write_config_block; 4179 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4180 4181 return vmbus_driver_register(&hv_pci_drv); 4182 } 4183 4184 module_init(init_hv_pci_drv); 4185 module_exit(exit_hv_pci_drv); 4186 4187 MODULE_DESCRIPTION("Hyper-V PCI"); 4188 MODULE_LICENSE("GPL v2"); 4189