1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/irqchip/irq-msi-lib.h> 48 #include <linux/msi.h> 49 #include <linux/hyperv.h> 50 #include <linux/refcount.h> 51 #include <linux/irqdomain.h> 52 #include <linux/acpi.h> 53 #include <linux/sizes.h> 54 #include <linux/of_irq.h> 55 #include <asm/mshyperv.h> 56 57 /* 58 * Protocol versions. The low word is the minor version, the high word the 59 * major version. 60 */ 61 62 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 63 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 64 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 65 66 enum pci_protocol_version_t { 67 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 68 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 69 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 70 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 71 }; 72 73 #define CPU_AFFINITY_ALL -1ULL 74 75 /* 76 * Supported protocol versions in the order of probing - highest go 77 * first. 78 */ 79 static enum pci_protocol_version_t pci_protocol_versions[] = { 80 PCI_PROTOCOL_VERSION_1_4, 81 PCI_PROTOCOL_VERSION_1_3, 82 PCI_PROTOCOL_VERSION_1_2, 83 PCI_PROTOCOL_VERSION_1_1, 84 }; 85 86 #define PCI_CONFIG_MMIO_LENGTH 0x2000 87 #define CFG_PAGE_OFFSET 0x1000 88 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 89 90 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 91 92 #define STATUS_REVISION_MISMATCH 0xC0000059 93 94 /* space for 32bit serial number as string */ 95 #define SLOT_NAME_SIZE 11 96 97 /* 98 * Size of requestor for VMbus; the value is based on the observation 99 * that having more than one request outstanding is 'rare', and so 64 100 * should be generous in ensuring that we don't ever run out. 101 */ 102 #define HV_PCI_RQSTOR_SIZE 64 103 104 /* 105 * Message Types 106 */ 107 108 enum pci_message_type { 109 /* 110 * Version 1.1 111 */ 112 PCI_MESSAGE_BASE = 0x42490000, 113 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 114 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 115 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 116 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 117 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 118 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 119 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 120 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 121 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 122 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 123 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 124 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 125 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 126 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 127 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 128 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 129 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 130 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 131 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 132 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 133 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 134 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 135 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 136 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 137 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 138 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 139 PCI_MESSAGE_MAXIMUM 140 }; 141 142 /* 143 * Structures defining the virtual PCI Express protocol. 144 */ 145 146 union pci_version { 147 struct { 148 u16 minor_version; 149 u16 major_version; 150 } parts; 151 u32 version; 152 } __packed; 153 154 /* 155 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 156 * which is all this driver does. This representation is the one used in 157 * Windows, which is what is expected when sending this back and forth with 158 * the Hyper-V parent partition. 159 */ 160 union win_slot_encoding { 161 struct { 162 u32 dev:5; 163 u32 func:3; 164 u32 reserved:24; 165 } bits; 166 u32 slot; 167 } __packed; 168 169 /* 170 * Pretty much as defined in the PCI Specifications. 171 */ 172 struct pci_function_description { 173 u16 v_id; /* vendor ID */ 174 u16 d_id; /* device ID */ 175 u8 rev; 176 u8 prog_intf; 177 u8 subclass; 178 u8 base_class; 179 u32 subsystem_id; 180 union win_slot_encoding win_slot; 181 u32 ser; /* serial number */ 182 } __packed; 183 184 enum pci_device_description_flags { 185 HV_PCI_DEVICE_FLAG_NONE = 0x0, 186 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 187 }; 188 189 struct pci_function_description2 { 190 u16 v_id; /* vendor ID */ 191 u16 d_id; /* device ID */ 192 u8 rev; 193 u8 prog_intf; 194 u8 subclass; 195 u8 base_class; 196 u32 subsystem_id; 197 union win_slot_encoding win_slot; 198 u32 ser; /* serial number */ 199 u32 flags; 200 u16 virtual_numa_node; 201 u16 reserved; 202 } __packed; 203 204 /** 205 * struct hv_msi_desc 206 * @vector: IDT entry 207 * @delivery_mode: As defined in Intel's Programmer's 208 * Reference Manual, Volume 3, Chapter 8. 209 * @vector_count: Number of contiguous entries in the 210 * Interrupt Descriptor Table that are 211 * occupied by this Message-Signaled 212 * Interrupt. For "MSI", as first defined 213 * in PCI 2.2, this can be between 1 and 214 * 32. For "MSI-X," as first defined in PCI 215 * 3.0, this must be 1, as each MSI-X table 216 * entry would have its own descriptor. 217 * @reserved: Empty space 218 * @cpu_mask: All the target virtual processors. 219 */ 220 struct hv_msi_desc { 221 u8 vector; 222 u8 delivery_mode; 223 u16 vector_count; 224 u32 reserved; 225 u64 cpu_mask; 226 } __packed; 227 228 /** 229 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 230 * @vector: IDT entry 231 * @delivery_mode: As defined in Intel's Programmer's 232 * Reference Manual, Volume 3, Chapter 8. 233 * @vector_count: Number of contiguous entries in the 234 * Interrupt Descriptor Table that are 235 * occupied by this Message-Signaled 236 * Interrupt. For "MSI", as first defined 237 * in PCI 2.2, this can be between 1 and 238 * 32. For "MSI-X," as first defined in PCI 239 * 3.0, this must be 1, as each MSI-X table 240 * entry would have its own descriptor. 241 * @processor_count: number of bits enabled in array. 242 * @processor_array: All the target virtual processors. 243 */ 244 struct hv_msi_desc2 { 245 u8 vector; 246 u8 delivery_mode; 247 u16 vector_count; 248 u16 processor_count; 249 u16 processor_array[32]; 250 } __packed; 251 252 /* 253 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 254 * Everything is the same as in 'hv_msi_desc2' except that the size of the 255 * 'vector' field is larger to support bigger vector values. For ex: LPI 256 * vectors on ARM. 257 */ 258 struct hv_msi_desc3 { 259 u32 vector; 260 u8 delivery_mode; 261 u8 reserved; 262 u16 vector_count; 263 u16 processor_count; 264 u16 processor_array[32]; 265 } __packed; 266 267 /** 268 * struct tran_int_desc 269 * @reserved: unused, padding 270 * @vector_count: same as in hv_msi_desc 271 * @data: This is the "data payload" value that is 272 * written by the device when it generates 273 * a message-signaled interrupt, either MSI 274 * or MSI-X. 275 * @address: This is the address to which the data 276 * payload is written on interrupt 277 * generation. 278 */ 279 struct tran_int_desc { 280 u16 reserved; 281 u16 vector_count; 282 u32 data; 283 u64 address; 284 } __packed; 285 286 /* 287 * A generic message format for virtual PCI. 288 * Specific message formats are defined later in the file. 289 */ 290 291 struct pci_message { 292 u32 type; 293 } __packed; 294 295 struct pci_child_message { 296 struct pci_message message_type; 297 union win_slot_encoding wslot; 298 } __packed; 299 300 struct pci_incoming_message { 301 struct vmpacket_descriptor hdr; 302 struct pci_message message_type; 303 } __packed; 304 305 struct pci_response { 306 struct vmpacket_descriptor hdr; 307 s32 status; /* negative values are failures */ 308 } __packed; 309 310 struct pci_packet { 311 void (*completion_func)(void *context, struct pci_response *resp, 312 int resp_packet_size); 313 void *compl_ctxt; 314 }; 315 316 /* 317 * Specific message types supporting the PCI protocol. 318 */ 319 320 /* 321 * Version negotiation message. Sent from the guest to the host. 322 * The guest is free to try different versions until the host 323 * accepts the version. 324 * 325 * pci_version: The protocol version requested. 326 * is_last_attempt: If TRUE, this is the last version guest will request. 327 * reservedz: Reserved field, set to zero. 328 */ 329 330 struct pci_version_request { 331 struct pci_message message_type; 332 u32 protocol_version; 333 } __packed; 334 335 /* 336 * Bus D0 Entry. This is sent from the guest to the host when the virtual 337 * bus (PCI Express port) is ready for action. 338 */ 339 340 struct pci_bus_d0_entry { 341 struct pci_message message_type; 342 u32 reserved; 343 u64 mmio_base; 344 } __packed; 345 346 struct pci_bus_relations { 347 struct pci_incoming_message incoming; 348 u32 device_count; 349 struct pci_function_description func[]; 350 } __packed; 351 352 struct pci_bus_relations2 { 353 struct pci_incoming_message incoming; 354 u32 device_count; 355 struct pci_function_description2 func[]; 356 } __packed; 357 358 struct pci_q_res_req_response { 359 struct vmpacket_descriptor hdr; 360 s32 status; /* negative values are failures */ 361 u32 probed_bar[PCI_STD_NUM_BARS]; 362 } __packed; 363 364 struct pci_set_power { 365 struct pci_message message_type; 366 union win_slot_encoding wslot; 367 u32 power_state; /* In Windows terms */ 368 u32 reserved; 369 } __packed; 370 371 struct pci_set_power_response { 372 struct vmpacket_descriptor hdr; 373 s32 status; /* negative values are failures */ 374 union win_slot_encoding wslot; 375 u32 resultant_state; /* In Windows terms */ 376 u32 reserved; 377 } __packed; 378 379 struct pci_resources_assigned { 380 struct pci_message message_type; 381 union win_slot_encoding wslot; 382 u8 memory_range[0x14][6]; /* not used here */ 383 u32 msi_descriptors; 384 u32 reserved[4]; 385 } __packed; 386 387 struct pci_resources_assigned2 { 388 struct pci_message message_type; 389 union win_slot_encoding wslot; 390 u8 memory_range[0x14][6]; /* not used here */ 391 u32 msi_descriptor_count; 392 u8 reserved[70]; 393 } __packed; 394 395 struct pci_create_interrupt { 396 struct pci_message message_type; 397 union win_slot_encoding wslot; 398 struct hv_msi_desc int_desc; 399 } __packed; 400 401 struct pci_create_int_response { 402 struct pci_response response; 403 u32 reserved; 404 struct tran_int_desc int_desc; 405 } __packed; 406 407 struct pci_create_interrupt2 { 408 struct pci_message message_type; 409 union win_slot_encoding wslot; 410 struct hv_msi_desc2 int_desc; 411 } __packed; 412 413 struct pci_create_interrupt3 { 414 struct pci_message message_type; 415 union win_slot_encoding wslot; 416 struct hv_msi_desc3 int_desc; 417 } __packed; 418 419 struct pci_delete_interrupt { 420 struct pci_message message_type; 421 union win_slot_encoding wslot; 422 struct tran_int_desc int_desc; 423 } __packed; 424 425 /* 426 * Note: the VM must pass a valid block id, wslot and bytes_requested. 427 */ 428 struct pci_read_block { 429 struct pci_message message_type; 430 u32 block_id; 431 union win_slot_encoding wslot; 432 u32 bytes_requested; 433 } __packed; 434 435 struct pci_read_block_response { 436 struct vmpacket_descriptor hdr; 437 u32 status; 438 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 439 } __packed; 440 441 /* 442 * Note: the VM must pass a valid block id, wslot and byte_count. 443 */ 444 struct pci_write_block { 445 struct pci_message message_type; 446 u32 block_id; 447 union win_slot_encoding wslot; 448 u32 byte_count; 449 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 450 } __packed; 451 452 struct pci_dev_inval_block { 453 struct pci_incoming_message incoming; 454 union win_slot_encoding wslot; 455 u64 block_mask; 456 } __packed; 457 458 struct pci_dev_incoming { 459 struct pci_incoming_message incoming; 460 union win_slot_encoding wslot; 461 } __packed; 462 463 struct pci_eject_response { 464 struct pci_message message_type; 465 union win_slot_encoding wslot; 466 u32 status; 467 } __packed; 468 469 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K); 470 471 /* 472 * Driver specific state. 473 */ 474 475 enum hv_pcibus_state { 476 hv_pcibus_init = 0, 477 hv_pcibus_probed, 478 hv_pcibus_installed, 479 hv_pcibus_removing, 480 hv_pcibus_maximum 481 }; 482 483 struct hv_pcibus_device { 484 #ifdef CONFIG_X86 485 struct pci_sysdata sysdata; 486 #elif defined(CONFIG_ARM64) 487 struct pci_config_window sysdata; 488 #endif 489 struct pci_host_bridge *bridge; 490 struct fwnode_handle *fwnode; 491 /* Protocol version negotiated with the host */ 492 enum pci_protocol_version_t protocol_version; 493 494 struct mutex state_lock; 495 enum hv_pcibus_state state; 496 497 struct hv_device *hdev; 498 resource_size_t low_mmio_space; 499 resource_size_t high_mmio_space; 500 struct resource *mem_config; 501 struct resource *low_mmio_res; 502 struct resource *high_mmio_res; 503 struct completion *survey_event; 504 struct pci_bus *pci_bus; 505 spinlock_t config_lock; /* Avoid two threads writing index page */ 506 spinlock_t device_list_lock; /* Protect lists below */ 507 void __iomem *cfg_addr; 508 509 struct list_head children; 510 struct list_head dr_list; 511 512 struct irq_domain *irq_domain; 513 514 struct workqueue_struct *wq; 515 516 /* Highest slot of child device with resources allocated */ 517 int wslot_res_allocated; 518 bool use_calls; /* Use hypercalls to access mmio cfg space */ 519 }; 520 521 /* 522 * Tracks "Device Relations" messages from the host, which must be both 523 * processed in order and deferred so that they don't run in the context 524 * of the incoming packet callback. 525 */ 526 struct hv_dr_work { 527 struct work_struct wrk; 528 struct hv_pcibus_device *bus; 529 }; 530 531 struct hv_pcidev_description { 532 u16 v_id; /* vendor ID */ 533 u16 d_id; /* device ID */ 534 u8 rev; 535 u8 prog_intf; 536 u8 subclass; 537 u8 base_class; 538 u32 subsystem_id; 539 union win_slot_encoding win_slot; 540 u32 ser; /* serial number */ 541 u32 flags; 542 u16 virtual_numa_node; 543 }; 544 545 struct hv_dr_state { 546 struct list_head list_entry; 547 u32 device_count; 548 struct hv_pcidev_description func[] __counted_by(device_count); 549 }; 550 551 struct hv_pci_dev { 552 /* List protected by pci_rescan_remove_lock */ 553 struct list_head list_entry; 554 refcount_t refs; 555 struct pci_slot *pci_slot; 556 struct hv_pcidev_description desc; 557 bool reported_missing; 558 struct hv_pcibus_device *hbus; 559 struct work_struct wrk; 560 561 void (*block_invalidate)(void *context, u64 block_mask); 562 void *invalidate_context; 563 564 /* 565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 566 * read it back, for each of the BAR offsets within config space. 567 */ 568 u32 probed_bar[PCI_STD_NUM_BARS]; 569 }; 570 571 struct hv_pci_compl { 572 struct completion host_event; 573 s32 completion_status; 574 }; 575 576 static void hv_pci_onchannelcallback(void *context); 577 578 #ifdef CONFIG_X86 579 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 580 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_ACK 581 582 static int hv_pci_irqchip_init(void) 583 { 584 return 0; 585 } 586 587 static struct irq_domain *hv_pci_get_root_domain(void) 588 { 589 return x86_vector_domain; 590 } 591 592 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 593 { 594 struct irq_cfg *cfg = irqd_cfg(data); 595 596 return cfg->vector; 597 } 598 599 #define hv_msi_prepare pci_msi_prepare 600 601 /** 602 * hv_irq_retarget_interrupt() - "Unmask" the IRQ by setting its current 603 * affinity. 604 * @data: Describes the IRQ 605 * 606 * Build new a destination for the MSI and make a hypercall to 607 * update the Interrupt Redirection Table. "Device Logical ID" 608 * is built out of this PCI bus's instance GUID and the function 609 * number of the device. 610 */ 611 static void hv_irq_retarget_interrupt(struct irq_data *data) 612 { 613 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 614 struct hv_retarget_device_interrupt *params; 615 struct tran_int_desc *int_desc; 616 struct hv_pcibus_device *hbus; 617 const struct cpumask *dest; 618 cpumask_var_t tmp; 619 struct pci_bus *pbus; 620 struct pci_dev *pdev; 621 unsigned long flags; 622 u32 var_size = 0; 623 int cpu, nr_bank; 624 u64 res; 625 626 dest = irq_data_get_effective_affinity_mask(data); 627 pdev = msi_desc_to_pci_dev(msi_desc); 628 pbus = pdev->bus; 629 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 630 int_desc = data->chip_data; 631 if (!int_desc) { 632 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", 633 __func__, data->irq); 634 return; 635 } 636 637 local_irq_save(flags); 638 639 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 640 memset(params, 0, sizeof(*params)); 641 params->partition_id = HV_PARTITION_ID_SELF; 642 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 643 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 644 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 645 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 646 (hbus->hdev->dev_instance.b[4] << 16) | 647 (hbus->hdev->dev_instance.b[7] << 8) | 648 (hbus->hdev->dev_instance.b[6] & 0xf8) | 649 PCI_FUNC(pdev->devfn); 650 params->int_target.vector = hv_msi_get_int_vector(data); 651 652 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 653 /* 654 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 655 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 656 * with >64 VP support. 657 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 658 * is not sufficient for this hypercall. 659 */ 660 params->int_target.flags |= 661 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 662 663 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 664 res = 1; 665 goto out; 666 } 667 668 cpumask_and(tmp, dest, cpu_online_mask); 669 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 670 free_cpumask_var(tmp); 671 672 if (nr_bank <= 0) { 673 res = 1; 674 goto out; 675 } 676 677 /* 678 * var-sized hypercall, var-size starts after vp_mask (thus 679 * vp_set.format does not count, but vp_set.valid_bank_mask 680 * does). 681 */ 682 var_size = 1 + nr_bank; 683 } else { 684 for_each_cpu_and(cpu, dest, cpu_online_mask) { 685 params->int_target.vp_mask |= 686 (1ULL << hv_cpu_number_to_vp_number(cpu)); 687 } 688 } 689 690 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 691 params, NULL); 692 693 out: 694 local_irq_restore(flags); 695 696 /* 697 * During hibernation, when a CPU is offlined, the kernel tries 698 * to move the interrupt to the remaining CPUs that haven't 699 * been offlined yet. In this case, the below hv_do_hypercall() 700 * always fails since the vmbus channel has been closed: 701 * refer to cpu_disable_common() -> fixup_irqs() -> 702 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 703 * 704 * Suppress the error message for hibernation because the failure 705 * during hibernation does not matter (at this time all the devices 706 * have been frozen). Note: the correct affinity info is still updated 707 * into the irqdata data structure in migrate_one_irq() -> 708 * irq_do_set_affinity(), so later when the VM resumes, 709 * hv_pci_restore_msi_state() is able to correctly restore the 710 * interrupt with the correct affinity. 711 */ 712 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 713 dev_err(&hbus->hdev->device, 714 "%s() failed: %#llx", __func__, res); 715 } 716 717 static void hv_arch_irq_unmask(struct irq_data *data) 718 { 719 if (hv_root_partition()) 720 /* 721 * In case of the nested root partition, the nested hypervisor 722 * is taking care of interrupt remapping and thus the 723 * MAP_DEVICE_INTERRUPT hypercall is required instead of 724 * RETARGET_INTERRUPT. 725 */ 726 (void)hv_map_msi_interrupt(data, NULL); 727 else 728 hv_irq_retarget_interrupt(data); 729 } 730 #elif defined(CONFIG_ARM64) 731 /* 732 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 733 * of room at the start to allow for SPIs to be specified through ACPI and 734 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 735 */ 736 #define HV_PCI_MSI_SPI_START 64 737 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 738 #define DELIVERY_MODE 0 739 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_EOI 740 #define hv_msi_prepare NULL 741 742 struct hv_pci_chip_data { 743 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 744 struct mutex map_lock; 745 }; 746 747 /* Hyper-V vPCI MSI GIC IRQ domain */ 748 static struct irq_domain *hv_msi_gic_irq_domain; 749 750 /* Hyper-V PCI MSI IRQ chip */ 751 static struct irq_chip hv_arm64_msi_irq_chip = { 752 .name = "MSI", 753 .irq_set_affinity = irq_chip_set_affinity_parent, 754 .irq_eoi = irq_chip_eoi_parent, 755 .irq_mask = irq_chip_mask_parent, 756 .irq_unmask = irq_chip_unmask_parent 757 }; 758 759 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 760 { 761 return irqd->parent_data->hwirq; 762 } 763 764 /* 765 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 766 * the bitmap. 767 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 768 * the parent domain. 769 */ 770 static void hv_pci_vec_irq_free(struct irq_domain *domain, 771 unsigned int virq, 772 unsigned int nr_bm_irqs, 773 unsigned int nr_dom_irqs) 774 { 775 struct hv_pci_chip_data *chip_data = domain->host_data; 776 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 777 int first = d->hwirq - HV_PCI_MSI_SPI_START; 778 int i; 779 780 mutex_lock(&chip_data->map_lock); 781 bitmap_release_region(chip_data->spi_map, 782 first, 783 get_count_order(nr_bm_irqs)); 784 mutex_unlock(&chip_data->map_lock); 785 for (i = 0; i < nr_dom_irqs; i++) { 786 if (i) 787 d = irq_domain_get_irq_data(domain, virq + i); 788 irq_domain_reset_irq_data(d); 789 } 790 791 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 792 } 793 794 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 795 unsigned int virq, 796 unsigned int nr_irqs) 797 { 798 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 799 } 800 801 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 802 unsigned int nr_irqs, 803 irq_hw_number_t *hwirq) 804 { 805 struct hv_pci_chip_data *chip_data = domain->host_data; 806 int index; 807 808 /* Find and allocate region from the SPI bitmap */ 809 mutex_lock(&chip_data->map_lock); 810 index = bitmap_find_free_region(chip_data->spi_map, 811 HV_PCI_MSI_SPI_NR, 812 get_count_order(nr_irqs)); 813 mutex_unlock(&chip_data->map_lock); 814 if (index < 0) 815 return -ENOSPC; 816 817 *hwirq = index + HV_PCI_MSI_SPI_START; 818 819 return 0; 820 } 821 822 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 823 unsigned int virq, 824 irq_hw_number_t hwirq) 825 { 826 struct irq_fwspec fwspec; 827 struct irq_data *d; 828 int ret; 829 830 fwspec.fwnode = domain->parent->fwnode; 831 if (is_of_node(fwspec.fwnode)) { 832 /* SPI lines for OF translations start at offset 32 */ 833 fwspec.param_count = 3; 834 fwspec.param[0] = 0; 835 fwspec.param[1] = hwirq - 32; 836 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 837 } else { 838 fwspec.param_count = 2; 839 fwspec.param[0] = hwirq; 840 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 841 } 842 843 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 844 if (ret) 845 return ret; 846 847 /* 848 * Since the interrupt specifier is not coming from ACPI or DT, the 849 * trigger type will need to be set explicitly. Otherwise, it will be 850 * set to whatever is in the GIC configuration. 851 */ 852 d = irq_domain_get_irq_data(domain->parent, virq); 853 854 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 855 } 856 857 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 858 unsigned int virq, unsigned int nr_irqs, 859 void *args) 860 { 861 irq_hw_number_t hwirq; 862 unsigned int i; 863 int ret; 864 865 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 866 if (ret) 867 return ret; 868 869 for (i = 0; i < nr_irqs; i++) { 870 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 871 hwirq + i); 872 if (ret) { 873 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 874 return ret; 875 } 876 877 irq_domain_set_hwirq_and_chip(domain, virq + i, 878 hwirq + i, 879 &hv_arm64_msi_irq_chip, 880 domain->host_data); 881 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 882 } 883 884 return 0; 885 } 886 887 /* 888 * Pick the first cpu as the irq affinity that can be temporarily used for 889 * composing MSI from the hypervisor. GIC will eventually set the right 890 * affinity for the irq and the 'unmask' will retarget the interrupt to that 891 * cpu. 892 */ 893 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 894 struct irq_data *irqd, bool reserve) 895 { 896 int cpu = cpumask_first(cpu_present_mask); 897 898 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 899 900 return 0; 901 } 902 903 static const struct irq_domain_ops hv_pci_domain_ops = { 904 .alloc = hv_pci_vec_irq_domain_alloc, 905 .free = hv_pci_vec_irq_domain_free, 906 .activate = hv_pci_vec_irq_domain_activate, 907 }; 908 909 #ifdef CONFIG_OF 910 911 static struct irq_domain *hv_pci_of_irq_domain_parent(void) 912 { 913 struct device_node *parent; 914 struct irq_domain *domain; 915 916 parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node); 917 if (!parent) 918 return NULL; 919 domain = irq_find_host(parent); 920 of_node_put(parent); 921 922 return domain; 923 } 924 925 #endif 926 927 #ifdef CONFIG_ACPI 928 929 static struct irq_domain *hv_pci_acpi_irq_domain_parent(void) 930 { 931 acpi_gsi_domain_disp_fn gsi_domain_disp_fn; 932 933 gsi_domain_disp_fn = acpi_get_gsi_dispatcher(); 934 if (!gsi_domain_disp_fn) 935 return NULL; 936 return irq_find_matching_fwnode(gsi_domain_disp_fn(0), 937 DOMAIN_BUS_ANY); 938 } 939 940 #endif 941 942 static int hv_pci_irqchip_init(void) 943 { 944 static struct hv_pci_chip_data *chip_data; 945 struct fwnode_handle *fn = NULL; 946 struct irq_domain *irq_domain_parent = NULL; 947 int ret = -ENOMEM; 948 949 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 950 if (!chip_data) 951 return ret; 952 953 mutex_init(&chip_data->map_lock); 954 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 955 if (!fn) 956 goto free_chip; 957 958 /* 959 * IRQ domain once enabled, should not be removed since there is no 960 * way to ensure that all the corresponding devices are also gone and 961 * no interrupts will be generated. 962 */ 963 #ifdef CONFIG_ACPI 964 if (!acpi_disabled) 965 irq_domain_parent = hv_pci_acpi_irq_domain_parent(); 966 #endif 967 #ifdef CONFIG_OF 968 if (!irq_domain_parent) 969 irq_domain_parent = hv_pci_of_irq_domain_parent(); 970 #endif 971 if (!irq_domain_parent) { 972 WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n"); 973 ret = -EINVAL; 974 goto free_chip; 975 } 976 977 hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0, 978 HV_PCI_MSI_SPI_NR, 979 fn, &hv_pci_domain_ops, 980 chip_data); 981 982 if (!hv_msi_gic_irq_domain) { 983 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 984 goto free_chip; 985 } 986 987 return 0; 988 989 free_chip: 990 kfree(chip_data); 991 if (fn) 992 irq_domain_free_fwnode(fn); 993 994 return ret; 995 } 996 997 static struct irq_domain *hv_pci_get_root_domain(void) 998 { 999 return hv_msi_gic_irq_domain; 1000 } 1001 1002 /* 1003 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 1004 * registers which Hyper-V already supports, so no hypercall needed. 1005 */ 1006 static void hv_arch_irq_unmask(struct irq_data *data) { } 1007 #endif /* CONFIG_ARM64 */ 1008 1009 /** 1010 * hv_pci_generic_compl() - Invoked for a completion packet 1011 * @context: Set up by the sender of the packet. 1012 * @resp: The response packet 1013 * @resp_packet_size: Size in bytes of the packet 1014 * 1015 * This function is used to trigger an event and report status 1016 * for any message for which the completion packet contains a 1017 * status and nothing else. 1018 */ 1019 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 1020 int resp_packet_size) 1021 { 1022 struct hv_pci_compl *comp_pkt = context; 1023 1024 comp_pkt->completion_status = resp->status; 1025 complete(&comp_pkt->host_event); 1026 } 1027 1028 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1029 u32 wslot); 1030 1031 static void get_pcichild(struct hv_pci_dev *hpdev) 1032 { 1033 refcount_inc(&hpdev->refs); 1034 } 1035 1036 static void put_pcichild(struct hv_pci_dev *hpdev) 1037 { 1038 if (refcount_dec_and_test(&hpdev->refs)) 1039 kfree(hpdev); 1040 } 1041 1042 /* 1043 * There is no good way to get notified from vmbus_onoffer_rescind(), 1044 * so let's use polling here, since this is not a hot path. 1045 */ 1046 static int wait_for_response(struct hv_device *hdev, 1047 struct completion *comp) 1048 { 1049 while (true) { 1050 if (hdev->channel->rescind) { 1051 dev_warn_once(&hdev->device, "The device is gone.\n"); 1052 return -ENODEV; 1053 } 1054 1055 if (wait_for_completion_timeout(comp, HZ / 10)) 1056 break; 1057 } 1058 1059 return 0; 1060 } 1061 1062 /** 1063 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1064 * @devfn: The Linux representation of PCI slot 1065 * 1066 * Windows uses a slightly different representation of PCI slot. 1067 * 1068 * Return: The Windows representation 1069 */ 1070 static u32 devfn_to_wslot(int devfn) 1071 { 1072 union win_slot_encoding wslot; 1073 1074 wslot.slot = 0; 1075 wslot.bits.dev = PCI_SLOT(devfn); 1076 wslot.bits.func = PCI_FUNC(devfn); 1077 1078 return wslot.slot; 1079 } 1080 1081 /** 1082 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1083 * @wslot: The Windows representation of PCI slot 1084 * 1085 * Windows uses a slightly different representation of PCI slot. 1086 * 1087 * Return: The Linux representation 1088 */ 1089 static int wslot_to_devfn(u32 wslot) 1090 { 1091 union win_slot_encoding slot_no; 1092 1093 slot_no.slot = wslot; 1094 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1095 } 1096 1097 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1098 { 1099 struct hv_mmio_read_input *in; 1100 struct hv_mmio_read_output *out; 1101 u64 ret; 1102 1103 /* 1104 * Must be called with interrupts disabled so it is safe 1105 * to use the per-cpu input argument page. Use it for 1106 * both input and output. 1107 */ 1108 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1109 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1110 in->gpa = gpa; 1111 in->size = size; 1112 1113 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1114 if (hv_result_success(ret)) { 1115 switch (size) { 1116 case 1: 1117 *val = *(u8 *)(out->data); 1118 break; 1119 case 2: 1120 *val = *(u16 *)(out->data); 1121 break; 1122 default: 1123 *val = *(u32 *)(out->data); 1124 break; 1125 } 1126 } else 1127 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1128 ret, gpa, size); 1129 } 1130 1131 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1132 { 1133 struct hv_mmio_write_input *in; 1134 u64 ret; 1135 1136 /* 1137 * Must be called with interrupts disabled so it is safe 1138 * to use the per-cpu input argument memory. 1139 */ 1140 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1141 in->gpa = gpa; 1142 in->size = size; 1143 switch (size) { 1144 case 1: 1145 *(u8 *)(in->data) = val; 1146 break; 1147 case 2: 1148 *(u16 *)(in->data) = val; 1149 break; 1150 default: 1151 *(u32 *)(in->data) = val; 1152 break; 1153 } 1154 1155 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1156 if (!hv_result_success(ret)) 1157 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1158 ret, gpa, size); 1159 } 1160 1161 /* 1162 * PCI Configuration Space for these root PCI buses is implemented as a pair 1163 * of pages in memory-mapped I/O space. Writing to the first page chooses 1164 * the PCI function being written or read. Once the first page has been 1165 * written to, the following page maps in the entire configuration space of 1166 * the function. 1167 */ 1168 1169 /** 1170 * _hv_pcifront_read_config() - Internal PCI config read 1171 * @hpdev: The PCI driver's representation of the device 1172 * @where: Offset within config space 1173 * @size: Size of the transfer 1174 * @val: Pointer to the buffer receiving the data 1175 */ 1176 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1177 int size, u32 *val) 1178 { 1179 struct hv_pcibus_device *hbus = hpdev->hbus; 1180 struct device *dev = &hbus->hdev->device; 1181 int offset = where + CFG_PAGE_OFFSET; 1182 unsigned long flags; 1183 1184 /* 1185 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1186 */ 1187 if (where + size <= PCI_COMMAND) { 1188 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1189 } else if (where >= PCI_CLASS_REVISION && where + size <= 1190 PCI_CACHE_LINE_SIZE) { 1191 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1192 PCI_CLASS_REVISION, size); 1193 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1194 PCI_ROM_ADDRESS) { 1195 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1196 PCI_SUBSYSTEM_VENDOR_ID, size); 1197 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1198 PCI_CAPABILITY_LIST) { 1199 /* ROM BARs are unimplemented */ 1200 *val = 0; 1201 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) || 1202 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) { 1203 /* 1204 * Interrupt Line and Interrupt PIN are hard-wired to zero 1205 * because this front-end only supports message-signaled 1206 * interrupts. 1207 */ 1208 *val = 0; 1209 } else if (where + size <= CFG_PAGE_SIZE) { 1210 1211 spin_lock_irqsave(&hbus->config_lock, flags); 1212 if (hbus->use_calls) { 1213 phys_addr_t addr = hbus->mem_config->start + offset; 1214 1215 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1216 hpdev->desc.win_slot.slot); 1217 hv_pci_read_mmio(dev, addr, size, val); 1218 } else { 1219 void __iomem *addr = hbus->cfg_addr + offset; 1220 1221 /* Choose the function to be read. (See comment above) */ 1222 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1223 /* Make sure the function was chosen before reading. */ 1224 mb(); 1225 /* Read from that function's config space. */ 1226 switch (size) { 1227 case 1: 1228 *val = readb(addr); 1229 break; 1230 case 2: 1231 *val = readw(addr); 1232 break; 1233 default: 1234 *val = readl(addr); 1235 break; 1236 } 1237 /* 1238 * Make sure the read was done before we release the 1239 * spinlock allowing consecutive reads/writes. 1240 */ 1241 mb(); 1242 } 1243 spin_unlock_irqrestore(&hbus->config_lock, flags); 1244 } else { 1245 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1246 } 1247 } 1248 1249 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1250 { 1251 struct hv_pcibus_device *hbus = hpdev->hbus; 1252 struct device *dev = &hbus->hdev->device; 1253 u32 val; 1254 u16 ret; 1255 unsigned long flags; 1256 1257 spin_lock_irqsave(&hbus->config_lock, flags); 1258 1259 if (hbus->use_calls) { 1260 phys_addr_t addr = hbus->mem_config->start + 1261 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1262 1263 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1264 hpdev->desc.win_slot.slot); 1265 hv_pci_read_mmio(dev, addr, 2, &val); 1266 ret = val; /* Truncates to 16 bits */ 1267 } else { 1268 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1269 PCI_VENDOR_ID; 1270 /* Choose the function to be read. (See comment above) */ 1271 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1272 /* Make sure the function was chosen before we start reading. */ 1273 mb(); 1274 /* Read from that function's config space. */ 1275 ret = readw(addr); 1276 /* 1277 * mb() is not required here, because the 1278 * spin_unlock_irqrestore() is a barrier. 1279 */ 1280 } 1281 1282 spin_unlock_irqrestore(&hbus->config_lock, flags); 1283 1284 return ret; 1285 } 1286 1287 /** 1288 * _hv_pcifront_write_config() - Internal PCI config write 1289 * @hpdev: The PCI driver's representation of the device 1290 * @where: Offset within config space 1291 * @size: Size of the transfer 1292 * @val: The data being transferred 1293 */ 1294 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1295 int size, u32 val) 1296 { 1297 struct hv_pcibus_device *hbus = hpdev->hbus; 1298 struct device *dev = &hbus->hdev->device; 1299 int offset = where + CFG_PAGE_OFFSET; 1300 unsigned long flags; 1301 1302 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1303 where + size <= PCI_CAPABILITY_LIST) { 1304 /* SSIDs and ROM BARs are read-only */ 1305 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1306 spin_lock_irqsave(&hbus->config_lock, flags); 1307 1308 if (hbus->use_calls) { 1309 phys_addr_t addr = hbus->mem_config->start + offset; 1310 1311 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1312 hpdev->desc.win_slot.slot); 1313 hv_pci_write_mmio(dev, addr, size, val); 1314 } else { 1315 void __iomem *addr = hbus->cfg_addr + offset; 1316 1317 /* Choose the function to write. (See comment above) */ 1318 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1319 /* Make sure the function was chosen before writing. */ 1320 wmb(); 1321 /* Write to that function's config space. */ 1322 switch (size) { 1323 case 1: 1324 writeb(val, addr); 1325 break; 1326 case 2: 1327 writew(val, addr); 1328 break; 1329 default: 1330 writel(val, addr); 1331 break; 1332 } 1333 /* 1334 * Make sure the write was done before we release the 1335 * spinlock allowing consecutive reads/writes. 1336 */ 1337 mb(); 1338 } 1339 spin_unlock_irqrestore(&hbus->config_lock, flags); 1340 } else { 1341 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1342 } 1343 } 1344 1345 /** 1346 * hv_pcifront_read_config() - Read configuration space 1347 * @bus: PCI Bus structure 1348 * @devfn: Device/function 1349 * @where: Offset from base 1350 * @size: Byte/word/dword 1351 * @val: Value to be read 1352 * 1353 * Return: PCIBIOS_SUCCESSFUL on success 1354 * PCIBIOS_DEVICE_NOT_FOUND on failure 1355 */ 1356 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1357 int where, int size, u32 *val) 1358 { 1359 struct hv_pcibus_device *hbus = 1360 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1361 struct hv_pci_dev *hpdev; 1362 1363 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1364 if (!hpdev) 1365 return PCIBIOS_DEVICE_NOT_FOUND; 1366 1367 _hv_pcifront_read_config(hpdev, where, size, val); 1368 1369 put_pcichild(hpdev); 1370 return PCIBIOS_SUCCESSFUL; 1371 } 1372 1373 /** 1374 * hv_pcifront_write_config() - Write configuration space 1375 * @bus: PCI Bus structure 1376 * @devfn: Device/function 1377 * @where: Offset from base 1378 * @size: Byte/word/dword 1379 * @val: Value to be written to device 1380 * 1381 * Return: PCIBIOS_SUCCESSFUL on success 1382 * PCIBIOS_DEVICE_NOT_FOUND on failure 1383 */ 1384 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1385 int where, int size, u32 val) 1386 { 1387 struct hv_pcibus_device *hbus = 1388 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1389 struct hv_pci_dev *hpdev; 1390 1391 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1392 if (!hpdev) 1393 return PCIBIOS_DEVICE_NOT_FOUND; 1394 1395 _hv_pcifront_write_config(hpdev, where, size, val); 1396 1397 put_pcichild(hpdev); 1398 return PCIBIOS_SUCCESSFUL; 1399 } 1400 1401 /* PCIe operations */ 1402 static struct pci_ops hv_pcifront_ops = { 1403 .read = hv_pcifront_read_config, 1404 .write = hv_pcifront_write_config, 1405 }; 1406 1407 /* 1408 * Paravirtual backchannel 1409 * 1410 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1411 * communication between a VF driver and a PF driver. These 1412 * "configuration blocks" are similar in concept to PCI configuration space, 1413 * but instead of doing reads and writes in 32-bit chunks through a very slow 1414 * path, packets of up to 128 bytes can be sent or received asynchronously. 1415 * 1416 * Nearly every SR-IOV device contains just such a communications channel in 1417 * hardware, so using this one in software is usually optional. Using the 1418 * software channel, however, allows driver implementers to leverage software 1419 * tools that fuzz the communications channel looking for vulnerabilities. 1420 * 1421 * The usage model for these packets puts the responsibility for reading or 1422 * writing on the VF driver. The VF driver sends a read or a write packet, 1423 * indicating which "block" is being referred to by number. 1424 * 1425 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1426 * more of the first 64 blocks. This invalidation is delivered via a callback 1427 * supplied to the VF driver by this driver. 1428 * 1429 * No protocol is implied, except that supplied by the PF and VF drivers. 1430 */ 1431 1432 struct hv_read_config_compl { 1433 struct hv_pci_compl comp_pkt; 1434 void *buf; 1435 unsigned int len; 1436 unsigned int bytes_returned; 1437 }; 1438 1439 /** 1440 * hv_pci_read_config_compl() - Invoked when a response packet 1441 * for a read config block operation arrives. 1442 * @context: Identifies the read config operation 1443 * @resp: The response packet itself 1444 * @resp_packet_size: Size in bytes of the response packet 1445 */ 1446 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1447 int resp_packet_size) 1448 { 1449 struct hv_read_config_compl *comp = context; 1450 struct pci_read_block_response *read_resp = 1451 (struct pci_read_block_response *)resp; 1452 unsigned int data_len, hdr_len; 1453 1454 hdr_len = offsetof(struct pci_read_block_response, bytes); 1455 if (resp_packet_size < hdr_len) { 1456 comp->comp_pkt.completion_status = -1; 1457 goto out; 1458 } 1459 1460 data_len = resp_packet_size - hdr_len; 1461 if (data_len > 0 && read_resp->status == 0) { 1462 comp->bytes_returned = min(comp->len, data_len); 1463 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1464 } else { 1465 comp->bytes_returned = 0; 1466 } 1467 1468 comp->comp_pkt.completion_status = read_resp->status; 1469 out: 1470 complete(&comp->comp_pkt.host_event); 1471 } 1472 1473 /** 1474 * hv_read_config_block() - Sends a read config block request to 1475 * the back-end driver running in the Hyper-V parent partition. 1476 * @pdev: The PCI driver's representation for this device. 1477 * @buf: Buffer into which the config block will be copied. 1478 * @len: Size in bytes of buf. 1479 * @block_id: Identifies the config block which has been requested. 1480 * @bytes_returned: Size which came back from the back-end driver. 1481 * 1482 * Return: 0 on success, -errno on failure 1483 */ 1484 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1485 unsigned int len, unsigned int block_id, 1486 unsigned int *bytes_returned) 1487 { 1488 struct hv_pcibus_device *hbus = 1489 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1490 sysdata); 1491 struct { 1492 struct pci_packet pkt; 1493 char buf[sizeof(struct pci_read_block)]; 1494 } pkt; 1495 struct hv_read_config_compl comp_pkt; 1496 struct pci_read_block *read_blk; 1497 int ret; 1498 1499 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1500 return -EINVAL; 1501 1502 init_completion(&comp_pkt.comp_pkt.host_event); 1503 comp_pkt.buf = buf; 1504 comp_pkt.len = len; 1505 1506 memset(&pkt, 0, sizeof(pkt)); 1507 pkt.pkt.completion_func = hv_pci_read_config_compl; 1508 pkt.pkt.compl_ctxt = &comp_pkt; 1509 read_blk = (struct pci_read_block *)pkt.buf; 1510 read_blk->message_type.type = PCI_READ_BLOCK; 1511 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1512 read_blk->block_id = block_id; 1513 read_blk->bytes_requested = len; 1514 1515 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1516 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1517 VM_PKT_DATA_INBAND, 1518 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1519 if (ret) 1520 return ret; 1521 1522 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1523 if (ret) 1524 return ret; 1525 1526 if (comp_pkt.comp_pkt.completion_status != 0 || 1527 comp_pkt.bytes_returned == 0) { 1528 dev_err(&hbus->hdev->device, 1529 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1530 comp_pkt.comp_pkt.completion_status, 1531 comp_pkt.bytes_returned); 1532 return -EIO; 1533 } 1534 1535 *bytes_returned = comp_pkt.bytes_returned; 1536 return 0; 1537 } 1538 1539 /** 1540 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1541 * config block operation arrives. 1542 * @context: Identifies the write config operation 1543 * @resp: The response packet itself 1544 * @resp_packet_size: Size in bytes of the response packet 1545 */ 1546 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1547 int resp_packet_size) 1548 { 1549 struct hv_pci_compl *comp_pkt = context; 1550 1551 comp_pkt->completion_status = resp->status; 1552 complete(&comp_pkt->host_event); 1553 } 1554 1555 /** 1556 * hv_write_config_block() - Sends a write config block request to the 1557 * back-end driver running in the Hyper-V parent partition. 1558 * @pdev: The PCI driver's representation for this device. 1559 * @buf: Buffer from which the config block will be copied. 1560 * @len: Size in bytes of buf. 1561 * @block_id: Identifies the config block which is being written. 1562 * 1563 * Return: 0 on success, -errno on failure 1564 */ 1565 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1566 unsigned int len, unsigned int block_id) 1567 { 1568 struct hv_pcibus_device *hbus = 1569 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1570 sysdata); 1571 struct { 1572 struct pci_packet pkt; 1573 char buf[sizeof(struct pci_write_block)]; 1574 u32 reserved; 1575 } pkt; 1576 struct hv_pci_compl comp_pkt; 1577 struct pci_write_block *write_blk; 1578 u32 pkt_size; 1579 int ret; 1580 1581 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1582 return -EINVAL; 1583 1584 init_completion(&comp_pkt.host_event); 1585 1586 memset(&pkt, 0, sizeof(pkt)); 1587 pkt.pkt.completion_func = hv_pci_write_config_compl; 1588 pkt.pkt.compl_ctxt = &comp_pkt; 1589 write_blk = (struct pci_write_block *)pkt.buf; 1590 write_blk->message_type.type = PCI_WRITE_BLOCK; 1591 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1592 write_blk->block_id = block_id; 1593 write_blk->byte_count = len; 1594 memcpy(write_blk->bytes, buf, len); 1595 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1596 /* 1597 * This quirk is required on some hosts shipped around 2018, because 1598 * these hosts don't check the pkt_size correctly (new hosts have been 1599 * fixed since early 2019). The quirk is also safe on very old hosts 1600 * and new hosts, because, on them, what really matters is the length 1601 * specified in write_blk->byte_count. 1602 */ 1603 pkt_size += sizeof(pkt.reserved); 1604 1605 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1606 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1607 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1608 if (ret) 1609 return ret; 1610 1611 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1612 if (ret) 1613 return ret; 1614 1615 if (comp_pkt.completion_status != 0) { 1616 dev_err(&hbus->hdev->device, 1617 "Write Config Block failed: 0x%x\n", 1618 comp_pkt.completion_status); 1619 return -EIO; 1620 } 1621 1622 return 0; 1623 } 1624 1625 /** 1626 * hv_register_block_invalidate() - Invoked when a config block invalidation 1627 * arrives from the back-end driver. 1628 * @pdev: The PCI driver's representation for this device. 1629 * @context: Identifies the device. 1630 * @block_invalidate: Identifies all of the blocks being invalidated. 1631 * 1632 * Return: 0 on success, -errno on failure 1633 */ 1634 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1635 void (*block_invalidate)(void *context, 1636 u64 block_mask)) 1637 { 1638 struct hv_pcibus_device *hbus = 1639 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1640 sysdata); 1641 struct hv_pci_dev *hpdev; 1642 1643 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1644 if (!hpdev) 1645 return -ENODEV; 1646 1647 hpdev->block_invalidate = block_invalidate; 1648 hpdev->invalidate_context = context; 1649 1650 put_pcichild(hpdev); 1651 return 0; 1652 1653 } 1654 1655 /* Interrupt management hooks */ 1656 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1657 struct tran_int_desc *int_desc) 1658 { 1659 struct pci_delete_interrupt *int_pkt; 1660 struct { 1661 struct pci_packet pkt; 1662 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1663 } ctxt; 1664 1665 if (!int_desc->vector_count) { 1666 kfree(int_desc); 1667 return; 1668 } 1669 memset(&ctxt, 0, sizeof(ctxt)); 1670 int_pkt = (struct pci_delete_interrupt *)ctxt.buffer; 1671 int_pkt->message_type.type = 1672 PCI_DELETE_INTERRUPT_MESSAGE; 1673 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1674 int_pkt->int_desc = *int_desc; 1675 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1676 0, VM_PKT_DATA_INBAND, 0); 1677 kfree(int_desc); 1678 } 1679 1680 /** 1681 * hv_msi_free() - Free the MSI. 1682 * @domain: The interrupt domain pointer 1683 * @irq: Identifies the IRQ. 1684 * 1685 * The Hyper-V parent partition and hypervisor are tracking the 1686 * messages that are in use, keeping the interrupt redirection 1687 * table up to date. This callback sends a message that frees 1688 * the IRT entry and related tracking nonsense. 1689 */ 1690 static void hv_msi_free(struct irq_domain *domain, unsigned int irq) 1691 { 1692 struct hv_pcibus_device *hbus; 1693 struct hv_pci_dev *hpdev; 1694 struct pci_dev *pdev; 1695 struct tran_int_desc *int_desc; 1696 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1697 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1698 1699 pdev = msi_desc_to_pci_dev(msi); 1700 hbus = domain->host_data; 1701 int_desc = irq_data_get_irq_chip_data(irq_data); 1702 if (!int_desc) 1703 return; 1704 1705 irq_data->chip_data = NULL; 1706 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1707 if (!hpdev) { 1708 kfree(int_desc); 1709 return; 1710 } 1711 1712 hv_int_desc_free(hpdev, int_desc); 1713 put_pcichild(hpdev); 1714 } 1715 1716 static void hv_irq_mask(struct irq_data *data) 1717 { 1718 if (data->parent_data->chip->irq_mask) 1719 irq_chip_mask_parent(data); 1720 } 1721 1722 static void hv_irq_unmask(struct irq_data *data) 1723 { 1724 hv_arch_irq_unmask(data); 1725 1726 if (data->parent_data->chip->irq_unmask) 1727 irq_chip_unmask_parent(data); 1728 } 1729 1730 struct compose_comp_ctxt { 1731 struct hv_pci_compl comp_pkt; 1732 struct tran_int_desc int_desc; 1733 }; 1734 1735 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1736 int resp_packet_size) 1737 { 1738 struct compose_comp_ctxt *comp_pkt = context; 1739 struct pci_create_int_response *int_resp = 1740 (struct pci_create_int_response *)resp; 1741 1742 if (resp_packet_size < sizeof(*int_resp)) { 1743 comp_pkt->comp_pkt.completion_status = -1; 1744 goto out; 1745 } 1746 comp_pkt->comp_pkt.completion_status = resp->status; 1747 comp_pkt->int_desc = int_resp->int_desc; 1748 out: 1749 complete(&comp_pkt->comp_pkt.host_event); 1750 } 1751 1752 static u32 hv_compose_msi_req_v1( 1753 struct pci_create_interrupt *int_pkt, 1754 u32 slot, u8 vector, u16 vector_count) 1755 { 1756 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1757 int_pkt->wslot.slot = slot; 1758 int_pkt->int_desc.vector = vector; 1759 int_pkt->int_desc.vector_count = vector_count; 1760 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1761 1762 /* 1763 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1764 * hv_irq_unmask(). 1765 */ 1766 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1767 1768 return sizeof(*int_pkt); 1769 } 1770 1771 /* 1772 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1773 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1774 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1775 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1776 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1777 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1778 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1779 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1780 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1781 * to spread out the pCPUs that it selects. 1782 * 1783 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1784 * to always return the same dummy vCPU, because a second call to 1785 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1786 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1787 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1788 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1789 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1790 * the same pCPU, even though the vCPUs will be spread out by later calls 1791 * to hv_irq_unmask(), but that is the best we can do now. 1792 * 1793 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1794 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1795 * enhancement is planned for a future version. With that enhancement, the 1796 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1797 * device will be spread across multiple pCPUs. 1798 */ 1799 1800 /* 1801 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1802 * by subsequent retarget in hv_irq_unmask(). 1803 */ 1804 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1805 { 1806 return cpumask_first_and(affinity, cpu_online_mask); 1807 } 1808 1809 /* 1810 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1811 */ 1812 static int hv_compose_multi_msi_req_get_cpu(void) 1813 { 1814 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1815 1816 /* -1 means starting with CPU 0 */ 1817 static int cpu_next = -1; 1818 1819 unsigned long flags; 1820 int cpu; 1821 1822 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1823 1824 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask); 1825 cpu = cpu_next; 1826 1827 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1828 1829 return cpu; 1830 } 1831 1832 static u32 hv_compose_msi_req_v2( 1833 struct pci_create_interrupt2 *int_pkt, int cpu, 1834 u32 slot, u8 vector, u16 vector_count) 1835 { 1836 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1837 int_pkt->wslot.slot = slot; 1838 int_pkt->int_desc.vector = vector; 1839 int_pkt->int_desc.vector_count = vector_count; 1840 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1841 int_pkt->int_desc.processor_array[0] = 1842 hv_cpu_number_to_vp_number(cpu); 1843 int_pkt->int_desc.processor_count = 1; 1844 1845 return sizeof(*int_pkt); 1846 } 1847 1848 static u32 hv_compose_msi_req_v3( 1849 struct pci_create_interrupt3 *int_pkt, int cpu, 1850 u32 slot, u32 vector, u16 vector_count) 1851 { 1852 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1853 int_pkt->wslot.slot = slot; 1854 int_pkt->int_desc.vector = vector; 1855 int_pkt->int_desc.reserved = 0; 1856 int_pkt->int_desc.vector_count = vector_count; 1857 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1858 int_pkt->int_desc.processor_array[0] = 1859 hv_cpu_number_to_vp_number(cpu); 1860 int_pkt->int_desc.processor_count = 1; 1861 1862 return sizeof(*int_pkt); 1863 } 1864 1865 /** 1866 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1867 * @data: Everything about this MSI 1868 * @msg: Buffer that is filled in by this function 1869 * 1870 * This function unpacks the IRQ looking for target CPU set, IDT 1871 * vector and mode and sends a message to the parent partition 1872 * asking for a mapping for that tuple in this partition. The 1873 * response supplies a data value and address to which that data 1874 * should be written to trigger that interrupt. 1875 */ 1876 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1877 { 1878 struct hv_pcibus_device *hbus; 1879 struct vmbus_channel *channel; 1880 struct hv_pci_dev *hpdev; 1881 struct pci_bus *pbus; 1882 struct pci_dev *pdev; 1883 const struct cpumask *dest; 1884 struct compose_comp_ctxt comp; 1885 struct tran_int_desc *int_desc; 1886 struct msi_desc *msi_desc; 1887 /* 1888 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1889 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1890 */ 1891 u16 vector_count; 1892 u32 vector; 1893 struct { 1894 struct pci_packet pci_pkt; 1895 union { 1896 struct pci_create_interrupt v1; 1897 struct pci_create_interrupt2 v2; 1898 struct pci_create_interrupt3 v3; 1899 } int_pkts; 1900 } __packed ctxt; 1901 bool multi_msi; 1902 u64 trans_id; 1903 u32 size; 1904 int ret; 1905 int cpu; 1906 1907 msi_desc = irq_data_get_msi_desc(data); 1908 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1909 msi_desc->nvec_used > 1; 1910 1911 /* Reuse the previous allocation */ 1912 if (data->chip_data && multi_msi) { 1913 int_desc = data->chip_data; 1914 msg->address_hi = int_desc->address >> 32; 1915 msg->address_lo = int_desc->address & 0xffffffff; 1916 msg->data = int_desc->data; 1917 return; 1918 } 1919 1920 pdev = msi_desc_to_pci_dev(msi_desc); 1921 dest = irq_data_get_effective_affinity_mask(data); 1922 pbus = pdev->bus; 1923 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1924 channel = hbus->hdev->channel; 1925 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1926 if (!hpdev) 1927 goto return_null_message; 1928 1929 /* Free any previous message that might have already been composed. */ 1930 if (data->chip_data && !multi_msi) { 1931 int_desc = data->chip_data; 1932 data->chip_data = NULL; 1933 hv_int_desc_free(hpdev, int_desc); 1934 } 1935 1936 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1937 if (!int_desc) 1938 goto drop_reference; 1939 1940 if (multi_msi) { 1941 /* 1942 * If this is not the first MSI of Multi MSI, we already have 1943 * a mapping. Can exit early. 1944 */ 1945 if (msi_desc->irq != data->irq) { 1946 data->chip_data = int_desc; 1947 int_desc->address = msi_desc->msg.address_lo | 1948 (u64)msi_desc->msg.address_hi << 32; 1949 int_desc->data = msi_desc->msg.data + 1950 (data->irq - msi_desc->irq); 1951 msg->address_hi = msi_desc->msg.address_hi; 1952 msg->address_lo = msi_desc->msg.address_lo; 1953 msg->data = int_desc->data; 1954 put_pcichild(hpdev); 1955 return; 1956 } 1957 /* 1958 * The vector we select here is a dummy value. The correct 1959 * value gets sent to the hypervisor in unmask(). This needs 1960 * to be aligned with the count, and also not zero. Multi-msi 1961 * is powers of 2 up to 32, so 32 will always work here. 1962 */ 1963 vector = 32; 1964 vector_count = msi_desc->nvec_used; 1965 cpu = hv_compose_multi_msi_req_get_cpu(); 1966 } else { 1967 vector = hv_msi_get_int_vector(data); 1968 vector_count = 1; 1969 cpu = hv_compose_msi_req_get_cpu(dest); 1970 } 1971 1972 /* 1973 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1974 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1975 * for better readability. 1976 */ 1977 memset(&ctxt, 0, sizeof(ctxt)); 1978 init_completion(&comp.comp_pkt.host_event); 1979 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1980 ctxt.pci_pkt.compl_ctxt = ∁ 1981 1982 switch (hbus->protocol_version) { 1983 case PCI_PROTOCOL_VERSION_1_1: 1984 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1985 hpdev->desc.win_slot.slot, 1986 (u8)vector, 1987 vector_count); 1988 break; 1989 1990 case PCI_PROTOCOL_VERSION_1_2: 1991 case PCI_PROTOCOL_VERSION_1_3: 1992 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1993 cpu, 1994 hpdev->desc.win_slot.slot, 1995 (u8)vector, 1996 vector_count); 1997 break; 1998 1999 case PCI_PROTOCOL_VERSION_1_4: 2000 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 2001 cpu, 2002 hpdev->desc.win_slot.slot, 2003 vector, 2004 vector_count); 2005 break; 2006 2007 default: 2008 /* As we only negotiate protocol versions known to this driver, 2009 * this path should never hit. However, this is it not a hot 2010 * path so we print a message to aid future updates. 2011 */ 2012 dev_err(&hbus->hdev->device, 2013 "Unexpected vPCI protocol, update driver."); 2014 goto free_int_desc; 2015 } 2016 2017 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 2018 size, (unsigned long)&ctxt.pci_pkt, 2019 &trans_id, VM_PKT_DATA_INBAND, 2020 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2021 if (ret) { 2022 dev_err(&hbus->hdev->device, 2023 "Sending request for interrupt failed: 0x%x", 2024 comp.comp_pkt.completion_status); 2025 goto free_int_desc; 2026 } 2027 2028 /* 2029 * Prevents hv_pci_onchannelcallback() from running concurrently 2030 * in the tasklet. 2031 */ 2032 tasklet_disable_in_atomic(&channel->callback_event); 2033 2034 /* 2035 * Since this function is called with IRQ locks held, can't 2036 * do normal wait for completion; instead poll. 2037 */ 2038 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 2039 unsigned long flags; 2040 2041 /* 0xFFFF means an invalid PCI VENDOR ID. */ 2042 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 2043 dev_err_once(&hbus->hdev->device, 2044 "the device has gone\n"); 2045 goto enable_tasklet; 2046 } 2047 2048 /* 2049 * Make sure that the ring buffer data structure doesn't get 2050 * freed while we dereference the ring buffer pointer. Test 2051 * for the channel's onchannel_callback being NULL within a 2052 * sched_lock critical section. See also the inline comments 2053 * in vmbus_reset_channel_cb(). 2054 */ 2055 spin_lock_irqsave(&channel->sched_lock, flags); 2056 if (unlikely(channel->onchannel_callback == NULL)) { 2057 spin_unlock_irqrestore(&channel->sched_lock, flags); 2058 goto enable_tasklet; 2059 } 2060 hv_pci_onchannelcallback(hbus); 2061 spin_unlock_irqrestore(&channel->sched_lock, flags); 2062 2063 udelay(100); 2064 } 2065 2066 tasklet_enable(&channel->callback_event); 2067 2068 if (comp.comp_pkt.completion_status < 0) { 2069 dev_err(&hbus->hdev->device, 2070 "Request for interrupt failed: 0x%x", 2071 comp.comp_pkt.completion_status); 2072 goto free_int_desc; 2073 } 2074 2075 /* 2076 * Record the assignment so that this can be unwound later. Using 2077 * irq_set_chip_data() here would be appropriate, but the lock it takes 2078 * is already held. 2079 */ 2080 *int_desc = comp.int_desc; 2081 data->chip_data = int_desc; 2082 2083 /* Pass up the result. */ 2084 msg->address_hi = comp.int_desc.address >> 32; 2085 msg->address_lo = comp.int_desc.address & 0xffffffff; 2086 msg->data = comp.int_desc.data; 2087 2088 put_pcichild(hpdev); 2089 return; 2090 2091 enable_tasklet: 2092 tasklet_enable(&channel->callback_event); 2093 /* 2094 * The completion packet on the stack becomes invalid after 'return'; 2095 * remove the ID from the VMbus requestor if the identifier is still 2096 * mapped to/associated with the packet. (The identifier could have 2097 * been 're-used', i.e., already removed and (re-)mapped.) 2098 * 2099 * Cf. hv_pci_onchannelcallback(). 2100 */ 2101 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2102 free_int_desc: 2103 kfree(int_desc); 2104 drop_reference: 2105 put_pcichild(hpdev); 2106 return_null_message: 2107 msg->address_hi = 0; 2108 msg->address_lo = 0; 2109 msg->data = 0; 2110 } 2111 2112 static bool hv_pcie_init_dev_msi_info(struct device *dev, struct irq_domain *domain, 2113 struct irq_domain *real_parent, struct msi_domain_info *info) 2114 { 2115 struct irq_chip *chip = info->chip; 2116 2117 if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info)) 2118 return false; 2119 2120 info->ops->msi_prepare = hv_msi_prepare; 2121 2122 chip->irq_set_affinity = irq_chip_set_affinity_parent; 2123 2124 if (IS_ENABLED(CONFIG_X86)) 2125 chip->flags |= IRQCHIP_MOVE_DEFERRED; 2126 2127 return true; 2128 } 2129 2130 #define HV_PCIE_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | \ 2131 MSI_FLAG_USE_DEF_CHIP_OPS | \ 2132 MSI_FLAG_PCI_MSI_MASK_PARENT) 2133 #define HV_PCIE_MSI_FLAGS_SUPPORTED (MSI_FLAG_MULTI_PCI_MSI | \ 2134 MSI_FLAG_PCI_MSIX | \ 2135 MSI_FLAG_PCI_MSIX_ALLOC_DYN | \ 2136 MSI_GENERIC_FLAGS_MASK) 2137 2138 static const struct msi_parent_ops hv_pcie_msi_parent_ops = { 2139 .required_flags = HV_PCIE_MSI_FLAGS_REQUIRED, 2140 .supported_flags = HV_PCIE_MSI_FLAGS_SUPPORTED, 2141 .bus_select_token = DOMAIN_BUS_PCI_MSI, 2142 .chip_flags = HV_MSI_CHIP_FLAGS, 2143 .prefix = "HV-", 2144 .init_dev_msi_info = hv_pcie_init_dev_msi_info, 2145 }; 2146 2147 /* HW Interrupt Chip Descriptor */ 2148 static struct irq_chip hv_msi_irq_chip = { 2149 .name = "Hyper-V PCIe MSI", 2150 .irq_compose_msi_msg = hv_compose_msi_msg, 2151 .irq_set_affinity = irq_chip_set_affinity_parent, 2152 .irq_ack = irq_chip_ack_parent, 2153 .irq_eoi = irq_chip_eoi_parent, 2154 .irq_mask = hv_irq_mask, 2155 .irq_unmask = hv_irq_unmask, 2156 }; 2157 2158 static int hv_pcie_domain_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs, 2159 void *arg) 2160 { 2161 /* 2162 * TODO: Allocating and populating struct tran_int_desc in hv_compose_msi_msg() 2163 * should be moved here. 2164 */ 2165 int ret; 2166 2167 ret = irq_domain_alloc_irqs_parent(d, virq, nr_irqs, arg); 2168 if (ret < 0) 2169 return ret; 2170 2171 for (int i = 0; i < nr_irqs; i++) { 2172 irq_domain_set_hwirq_and_chip(d, virq + i, 0, &hv_msi_irq_chip, NULL); 2173 if (IS_ENABLED(CONFIG_X86)) 2174 __irq_set_handler(virq + i, handle_edge_irq, 0, "edge"); 2175 } 2176 2177 return 0; 2178 } 2179 2180 static void hv_pcie_domain_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) 2181 { 2182 for (int i = 0; i < nr_irqs; i++) 2183 hv_msi_free(d, virq + i); 2184 2185 irq_domain_free_irqs_top(d, virq, nr_irqs); 2186 } 2187 2188 static const struct irq_domain_ops hv_pcie_domain_ops = { 2189 .alloc = hv_pcie_domain_alloc, 2190 .free = hv_pcie_domain_free, 2191 }; 2192 2193 /** 2194 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2195 * @hbus: The root PCI bus 2196 * 2197 * This function creates an IRQ domain which will be used for 2198 * interrupts from devices that have been passed through. These 2199 * devices only support MSI and MSI-X, not line-based interrupts 2200 * or simulations of line-based interrupts through PCIe's 2201 * fabric-layer messages. Because interrupts are remapped, we 2202 * can support multi-message MSI here. 2203 * 2204 * Return: '0' on success and error value on failure 2205 */ 2206 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2207 { 2208 struct irq_domain_info info = { 2209 .fwnode = hbus->fwnode, 2210 .ops = &hv_pcie_domain_ops, 2211 .host_data = hbus, 2212 .parent = hv_pci_get_root_domain(), 2213 }; 2214 2215 hbus->irq_domain = msi_create_parent_irq_domain(&info, &hv_pcie_msi_parent_ops); 2216 if (!hbus->irq_domain) { 2217 dev_err(&hbus->hdev->device, 2218 "Failed to build an MSI IRQ domain\n"); 2219 return -ENODEV; 2220 } 2221 2222 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2223 2224 return 0; 2225 } 2226 2227 /** 2228 * get_bar_size() - Get the address space consumed by a BAR 2229 * @bar_val: Value that a BAR returned after -1 was written 2230 * to it. 2231 * 2232 * This function returns the size of the BAR, rounded up to 1 2233 * page. It has to be rounded up because the hypervisor's page 2234 * table entry that maps the BAR into the VM can't specify an 2235 * offset within a page. The invariant is that the hypervisor 2236 * must place any BARs of smaller than page length at the 2237 * beginning of a page. 2238 * 2239 * Return: Size in bytes of the consumed MMIO space. 2240 */ 2241 static u64 get_bar_size(u64 bar_val) 2242 { 2243 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2244 PAGE_SIZE); 2245 } 2246 2247 /** 2248 * survey_child_resources() - Total all MMIO requirements 2249 * @hbus: Root PCI bus, as understood by this driver 2250 */ 2251 static void survey_child_resources(struct hv_pcibus_device *hbus) 2252 { 2253 struct hv_pci_dev *hpdev; 2254 resource_size_t bar_size = 0; 2255 unsigned long flags; 2256 struct completion *event; 2257 u64 bar_val; 2258 int i; 2259 2260 /* If nobody is waiting on the answer, don't compute it. */ 2261 event = xchg(&hbus->survey_event, NULL); 2262 if (!event) 2263 return; 2264 2265 /* If the answer has already been computed, go with it. */ 2266 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2267 complete(event); 2268 return; 2269 } 2270 2271 spin_lock_irqsave(&hbus->device_list_lock, flags); 2272 2273 /* 2274 * Due to an interesting quirk of the PCI spec, all memory regions 2275 * for a child device are a power of 2 in size and aligned in memory, 2276 * so it's sufficient to just add them up without tracking alignment. 2277 */ 2278 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2279 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2280 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2281 dev_err(&hbus->hdev->device, 2282 "There's an I/O BAR in this list!\n"); 2283 2284 if (hpdev->probed_bar[i] != 0) { 2285 /* 2286 * A probed BAR has all the upper bits set that 2287 * can be changed. 2288 */ 2289 2290 bar_val = hpdev->probed_bar[i]; 2291 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2292 bar_val |= 2293 ((u64)hpdev->probed_bar[++i] << 32); 2294 else 2295 bar_val |= 0xffffffff00000000ULL; 2296 2297 bar_size = get_bar_size(bar_val); 2298 2299 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2300 hbus->high_mmio_space += bar_size; 2301 else 2302 hbus->low_mmio_space += bar_size; 2303 } 2304 } 2305 } 2306 2307 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2308 complete(event); 2309 } 2310 2311 /** 2312 * prepopulate_bars() - Fill in BARs with defaults 2313 * @hbus: Root PCI bus, as understood by this driver 2314 * 2315 * The core PCI driver code seems much, much happier if the BARs 2316 * for a device have values upon first scan. So fill them in. 2317 * The algorithm below works down from large sizes to small, 2318 * attempting to pack the assignments optimally. The assumption, 2319 * enforced in other parts of the code, is that the beginning of 2320 * the memory-mapped I/O space will be aligned on the largest 2321 * BAR size. 2322 */ 2323 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2324 { 2325 resource_size_t high_size = 0; 2326 resource_size_t low_size = 0; 2327 resource_size_t high_base = 0; 2328 resource_size_t low_base = 0; 2329 resource_size_t bar_size; 2330 struct hv_pci_dev *hpdev; 2331 unsigned long flags; 2332 u64 bar_val; 2333 u32 command; 2334 bool high; 2335 int i; 2336 2337 if (hbus->low_mmio_space) { 2338 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2339 low_base = hbus->low_mmio_res->start; 2340 } 2341 2342 if (hbus->high_mmio_space) { 2343 high_size = 1ULL << 2344 (63 - __builtin_clzll(hbus->high_mmio_space)); 2345 high_base = hbus->high_mmio_res->start; 2346 } 2347 2348 spin_lock_irqsave(&hbus->device_list_lock, flags); 2349 2350 /* 2351 * Clear the memory enable bit, in case it's already set. This occurs 2352 * in the suspend path of hibernation, where the device is suspended, 2353 * resumed and suspended again: see hibernation_snapshot() and 2354 * hibernation_platform_enter(). 2355 * 2356 * If the memory enable bit is already set, Hyper-V silently ignores 2357 * the below BAR updates, and the related PCI device driver can not 2358 * work, because reading from the device register(s) always returns 2359 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2360 */ 2361 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2362 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2363 command &= ~PCI_COMMAND_MEMORY; 2364 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2365 } 2366 2367 /* Pick addresses for the BARs. */ 2368 do { 2369 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2370 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2371 bar_val = hpdev->probed_bar[i]; 2372 if (bar_val == 0) 2373 continue; 2374 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2375 if (high) { 2376 bar_val |= 2377 ((u64)hpdev->probed_bar[i + 1] 2378 << 32); 2379 } else { 2380 bar_val |= 0xffffffffULL << 32; 2381 } 2382 bar_size = get_bar_size(bar_val); 2383 if (high) { 2384 if (high_size != bar_size) { 2385 i++; 2386 continue; 2387 } 2388 _hv_pcifront_write_config(hpdev, 2389 PCI_BASE_ADDRESS_0 + (4 * i), 2390 4, 2391 (u32)(high_base & 0xffffff00)); 2392 i++; 2393 _hv_pcifront_write_config(hpdev, 2394 PCI_BASE_ADDRESS_0 + (4 * i), 2395 4, (u32)(high_base >> 32)); 2396 high_base += bar_size; 2397 } else { 2398 if (low_size != bar_size) 2399 continue; 2400 _hv_pcifront_write_config(hpdev, 2401 PCI_BASE_ADDRESS_0 + (4 * i), 2402 4, 2403 (u32)(low_base & 0xffffff00)); 2404 low_base += bar_size; 2405 } 2406 } 2407 if (high_size <= 1 && low_size <= 1) { 2408 /* 2409 * No need to set the PCI_COMMAND_MEMORY bit as 2410 * the core PCI driver doesn't require the bit 2411 * to be pre-set. Actually here we intentionally 2412 * keep the bit off so that the PCI BAR probing 2413 * in the core PCI driver doesn't cause Hyper-V 2414 * to unnecessarily unmap/map the virtual BARs 2415 * from/to the physical BARs multiple times. 2416 * This reduces the VM boot time significantly 2417 * if the BAR sizes are huge. 2418 */ 2419 break; 2420 } 2421 } 2422 2423 high_size >>= 1; 2424 low_size >>= 1; 2425 } while (high_size || low_size); 2426 2427 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2428 } 2429 2430 /* 2431 * Assign entries in sysfs pci slot directory. 2432 * 2433 * Note that this function does not need to lock the children list 2434 * because it is called from pci_devices_present_work which 2435 * is serialized with hv_eject_device_work because they are on the 2436 * same ordered workqueue. Therefore hbus->children list will not change 2437 * even when pci_create_slot sleeps. 2438 */ 2439 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2440 { 2441 struct hv_pci_dev *hpdev; 2442 char name[SLOT_NAME_SIZE]; 2443 int slot_nr; 2444 2445 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2446 if (hpdev->pci_slot) 2447 continue; 2448 2449 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2450 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2451 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2452 name, NULL); 2453 if (IS_ERR(hpdev->pci_slot)) { 2454 pr_warn("pci_create slot %s failed\n", name); 2455 hpdev->pci_slot = NULL; 2456 } 2457 } 2458 } 2459 2460 /* 2461 * Remove entries in sysfs pci slot directory. 2462 */ 2463 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2464 { 2465 struct hv_pci_dev *hpdev; 2466 2467 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2468 if (!hpdev->pci_slot) 2469 continue; 2470 pci_destroy_slot(hpdev->pci_slot); 2471 hpdev->pci_slot = NULL; 2472 } 2473 } 2474 2475 /* 2476 * Set NUMA node for the devices on the bus 2477 */ 2478 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2479 { 2480 struct pci_dev *dev; 2481 struct pci_bus *bus = hbus->bridge->bus; 2482 struct hv_pci_dev *hv_dev; 2483 2484 list_for_each_entry(dev, &bus->devices, bus_list) { 2485 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2486 if (!hv_dev) 2487 continue; 2488 2489 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2490 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2491 /* 2492 * The kernel may boot with some NUMA nodes offline 2493 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2494 * "numa=off". In those cases, adjust the host provided 2495 * NUMA node to a valid NUMA node used by the kernel. 2496 */ 2497 set_dev_node(&dev->dev, 2498 numa_map_to_online_node( 2499 hv_dev->desc.virtual_numa_node)); 2500 2501 put_pcichild(hv_dev); 2502 } 2503 } 2504 2505 /** 2506 * create_root_hv_pci_bus() - Expose a new root PCI bus 2507 * @hbus: Root PCI bus, as understood by this driver 2508 * 2509 * Return: 0 on success, -errno on failure 2510 */ 2511 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2512 { 2513 int error; 2514 struct pci_host_bridge *bridge = hbus->bridge; 2515 2516 bridge->dev.parent = &hbus->hdev->device; 2517 bridge->sysdata = &hbus->sysdata; 2518 bridge->ops = &hv_pcifront_ops; 2519 2520 error = pci_scan_root_bus_bridge(bridge); 2521 if (error) 2522 return error; 2523 2524 pci_lock_rescan_remove(); 2525 hv_pci_assign_numa_node(hbus); 2526 pci_bus_assign_resources(bridge->bus); 2527 hv_pci_assign_slots(hbus); 2528 pci_bus_add_devices(bridge->bus); 2529 pci_unlock_rescan_remove(); 2530 hbus->state = hv_pcibus_installed; 2531 return 0; 2532 } 2533 2534 struct q_res_req_compl { 2535 struct completion host_event; 2536 struct hv_pci_dev *hpdev; 2537 }; 2538 2539 /** 2540 * q_resource_requirements() - Query Resource Requirements 2541 * @context: The completion context. 2542 * @resp: The response that came from the host. 2543 * @resp_packet_size: The size in bytes of resp. 2544 * 2545 * This function is invoked on completion of a Query Resource 2546 * Requirements packet. 2547 */ 2548 static void q_resource_requirements(void *context, struct pci_response *resp, 2549 int resp_packet_size) 2550 { 2551 struct q_res_req_compl *completion = context; 2552 struct pci_q_res_req_response *q_res_req = 2553 (struct pci_q_res_req_response *)resp; 2554 s32 status; 2555 int i; 2556 2557 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2558 if (status < 0) { 2559 dev_err(&completion->hpdev->hbus->hdev->device, 2560 "query resource requirements failed: %x\n", 2561 status); 2562 } else { 2563 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2564 completion->hpdev->probed_bar[i] = 2565 q_res_req->probed_bar[i]; 2566 } 2567 } 2568 2569 complete(&completion->host_event); 2570 } 2571 2572 /** 2573 * new_pcichild_device() - Create a new child device 2574 * @hbus: The internal struct tracking this root PCI bus. 2575 * @desc: The information supplied so far from the host 2576 * about the device. 2577 * 2578 * This function creates the tracking structure for a new child 2579 * device and kicks off the process of figuring out what it is. 2580 * 2581 * Return: Pointer to the new tracking struct 2582 */ 2583 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2584 struct hv_pcidev_description *desc) 2585 { 2586 struct hv_pci_dev *hpdev; 2587 struct pci_child_message *res_req; 2588 struct q_res_req_compl comp_pkt; 2589 struct { 2590 struct pci_packet init_packet; 2591 u8 buffer[sizeof(struct pci_child_message)]; 2592 } pkt; 2593 unsigned long flags; 2594 int ret; 2595 2596 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2597 if (!hpdev) 2598 return NULL; 2599 2600 hpdev->hbus = hbus; 2601 2602 memset(&pkt, 0, sizeof(pkt)); 2603 init_completion(&comp_pkt.host_event); 2604 comp_pkt.hpdev = hpdev; 2605 pkt.init_packet.compl_ctxt = &comp_pkt; 2606 pkt.init_packet.completion_func = q_resource_requirements; 2607 res_req = (struct pci_child_message *)pkt.buffer; 2608 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2609 res_req->wslot.slot = desc->win_slot.slot; 2610 2611 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2612 sizeof(struct pci_child_message), 2613 (unsigned long)&pkt.init_packet, 2614 VM_PKT_DATA_INBAND, 2615 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2616 if (ret) 2617 goto error; 2618 2619 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2620 goto error; 2621 2622 hpdev->desc = *desc; 2623 refcount_set(&hpdev->refs, 1); 2624 get_pcichild(hpdev); 2625 spin_lock_irqsave(&hbus->device_list_lock, flags); 2626 2627 list_add_tail(&hpdev->list_entry, &hbus->children); 2628 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2629 return hpdev; 2630 2631 error: 2632 kfree(hpdev); 2633 return NULL; 2634 } 2635 2636 /** 2637 * get_pcichild_wslot() - Find device from slot 2638 * @hbus: Root PCI bus, as understood by this driver 2639 * @wslot: Location on the bus 2640 * 2641 * This function looks up a PCI device and returns the internal 2642 * representation of it. It acquires a reference on it, so that 2643 * the device won't be deleted while somebody is using it. The 2644 * caller is responsible for calling put_pcichild() to release 2645 * this reference. 2646 * 2647 * Return: Internal representation of a PCI device 2648 */ 2649 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2650 u32 wslot) 2651 { 2652 unsigned long flags; 2653 struct hv_pci_dev *iter, *hpdev = NULL; 2654 2655 spin_lock_irqsave(&hbus->device_list_lock, flags); 2656 list_for_each_entry(iter, &hbus->children, list_entry) { 2657 if (iter->desc.win_slot.slot == wslot) { 2658 hpdev = iter; 2659 get_pcichild(hpdev); 2660 break; 2661 } 2662 } 2663 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2664 2665 return hpdev; 2666 } 2667 2668 /** 2669 * pci_devices_present_work() - Handle new list of child devices 2670 * @work: Work struct embedded in struct hv_dr_work 2671 * 2672 * "Bus Relations" is the Windows term for "children of this 2673 * bus." The terminology is preserved here for people trying to 2674 * debug the interaction between Hyper-V and Linux. This 2675 * function is called when the parent partition reports a list 2676 * of functions that should be observed under this PCI Express 2677 * port (bus). 2678 * 2679 * This function updates the list, and must tolerate being 2680 * called multiple times with the same information. The typical 2681 * number of child devices is one, with very atypical cases 2682 * involving three or four, so the algorithms used here can be 2683 * simple and inefficient. 2684 * 2685 * It must also treat the omission of a previously observed device as 2686 * notification that the device no longer exists. 2687 * 2688 * Note that this function is serialized with hv_eject_device_work(), 2689 * because both are pushed to the ordered workqueue hbus->wq. 2690 */ 2691 static void pci_devices_present_work(struct work_struct *work) 2692 { 2693 u32 child_no; 2694 bool found; 2695 struct hv_pcidev_description *new_desc; 2696 struct hv_pci_dev *hpdev; 2697 struct hv_pcibus_device *hbus; 2698 struct list_head removed; 2699 struct hv_dr_work *dr_wrk; 2700 struct hv_dr_state *dr = NULL; 2701 unsigned long flags; 2702 2703 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2704 hbus = dr_wrk->bus; 2705 kfree(dr_wrk); 2706 2707 INIT_LIST_HEAD(&removed); 2708 2709 /* Pull this off the queue and process it if it was the last one. */ 2710 spin_lock_irqsave(&hbus->device_list_lock, flags); 2711 while (!list_empty(&hbus->dr_list)) { 2712 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2713 list_entry); 2714 list_del(&dr->list_entry); 2715 2716 /* Throw this away if the list still has stuff in it. */ 2717 if (!list_empty(&hbus->dr_list)) { 2718 kfree(dr); 2719 continue; 2720 } 2721 } 2722 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2723 2724 if (!dr) 2725 return; 2726 2727 mutex_lock(&hbus->state_lock); 2728 2729 /* First, mark all existing children as reported missing. */ 2730 spin_lock_irqsave(&hbus->device_list_lock, flags); 2731 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2732 hpdev->reported_missing = true; 2733 } 2734 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2735 2736 /* Next, add back any reported devices. */ 2737 for (child_no = 0; child_no < dr->device_count; child_no++) { 2738 found = false; 2739 new_desc = &dr->func[child_no]; 2740 2741 spin_lock_irqsave(&hbus->device_list_lock, flags); 2742 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2743 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2744 (hpdev->desc.v_id == new_desc->v_id) && 2745 (hpdev->desc.d_id == new_desc->d_id) && 2746 (hpdev->desc.ser == new_desc->ser)) { 2747 hpdev->reported_missing = false; 2748 found = true; 2749 } 2750 } 2751 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2752 2753 if (!found) { 2754 hpdev = new_pcichild_device(hbus, new_desc); 2755 if (!hpdev) 2756 dev_err(&hbus->hdev->device, 2757 "couldn't record a child device.\n"); 2758 } 2759 } 2760 2761 /* Move missing children to a list on the stack. */ 2762 spin_lock_irqsave(&hbus->device_list_lock, flags); 2763 do { 2764 found = false; 2765 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2766 if (hpdev->reported_missing) { 2767 found = true; 2768 put_pcichild(hpdev); 2769 list_move_tail(&hpdev->list_entry, &removed); 2770 break; 2771 } 2772 } 2773 } while (found); 2774 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2775 2776 /* Delete everything that should no longer exist. */ 2777 while (!list_empty(&removed)) { 2778 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2779 list_entry); 2780 list_del(&hpdev->list_entry); 2781 2782 if (hpdev->pci_slot) 2783 pci_destroy_slot(hpdev->pci_slot); 2784 2785 put_pcichild(hpdev); 2786 } 2787 2788 switch (hbus->state) { 2789 case hv_pcibus_installed: 2790 /* 2791 * Tell the core to rescan bus 2792 * because there may have been changes. 2793 */ 2794 pci_lock_rescan_remove(); 2795 pci_scan_child_bus(hbus->bridge->bus); 2796 hv_pci_assign_numa_node(hbus); 2797 hv_pci_assign_slots(hbus); 2798 pci_unlock_rescan_remove(); 2799 break; 2800 2801 case hv_pcibus_init: 2802 case hv_pcibus_probed: 2803 survey_child_resources(hbus); 2804 break; 2805 2806 default: 2807 break; 2808 } 2809 2810 mutex_unlock(&hbus->state_lock); 2811 2812 kfree(dr); 2813 } 2814 2815 /** 2816 * hv_pci_start_relations_work() - Queue work to start device discovery 2817 * @hbus: Root PCI bus, as understood by this driver 2818 * @dr: The list of children returned from host 2819 * 2820 * Return: 0 on success, -errno on failure 2821 */ 2822 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2823 struct hv_dr_state *dr) 2824 { 2825 struct hv_dr_work *dr_wrk; 2826 unsigned long flags; 2827 bool pending_dr; 2828 2829 if (hbus->state == hv_pcibus_removing) { 2830 dev_info(&hbus->hdev->device, 2831 "PCI VMBus BUS_RELATIONS: ignored\n"); 2832 return -ENOENT; 2833 } 2834 2835 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2836 if (!dr_wrk) 2837 return -ENOMEM; 2838 2839 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2840 dr_wrk->bus = hbus; 2841 2842 spin_lock_irqsave(&hbus->device_list_lock, flags); 2843 /* 2844 * If pending_dr is true, we have already queued a work, 2845 * which will see the new dr. Otherwise, we need to 2846 * queue a new work. 2847 */ 2848 pending_dr = !list_empty(&hbus->dr_list); 2849 list_add_tail(&dr->list_entry, &hbus->dr_list); 2850 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2851 2852 if (pending_dr) 2853 kfree(dr_wrk); 2854 else 2855 queue_work(hbus->wq, &dr_wrk->wrk); 2856 2857 return 0; 2858 } 2859 2860 /** 2861 * hv_pci_devices_present() - Handle list of new children 2862 * @hbus: Root PCI bus, as understood by this driver 2863 * @relations: Packet from host listing children 2864 * 2865 * Process a new list of devices on the bus. The list of devices is 2866 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2867 * whenever a new list of devices for this bus appears. 2868 */ 2869 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2870 struct pci_bus_relations *relations) 2871 { 2872 struct hv_dr_state *dr; 2873 int i; 2874 2875 dr = kzalloc(struct_size(dr, func, relations->device_count), 2876 GFP_NOWAIT); 2877 if (!dr) 2878 return; 2879 2880 dr->device_count = relations->device_count; 2881 for (i = 0; i < dr->device_count; i++) { 2882 dr->func[i].v_id = relations->func[i].v_id; 2883 dr->func[i].d_id = relations->func[i].d_id; 2884 dr->func[i].rev = relations->func[i].rev; 2885 dr->func[i].prog_intf = relations->func[i].prog_intf; 2886 dr->func[i].subclass = relations->func[i].subclass; 2887 dr->func[i].base_class = relations->func[i].base_class; 2888 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2889 dr->func[i].win_slot = relations->func[i].win_slot; 2890 dr->func[i].ser = relations->func[i].ser; 2891 } 2892 2893 if (hv_pci_start_relations_work(hbus, dr)) 2894 kfree(dr); 2895 } 2896 2897 /** 2898 * hv_pci_devices_present2() - Handle list of new children 2899 * @hbus: Root PCI bus, as understood by this driver 2900 * @relations: Packet from host listing children 2901 * 2902 * This function is the v2 version of hv_pci_devices_present() 2903 */ 2904 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2905 struct pci_bus_relations2 *relations) 2906 { 2907 struct hv_dr_state *dr; 2908 int i; 2909 2910 dr = kzalloc(struct_size(dr, func, relations->device_count), 2911 GFP_NOWAIT); 2912 if (!dr) 2913 return; 2914 2915 dr->device_count = relations->device_count; 2916 for (i = 0; i < dr->device_count; i++) { 2917 dr->func[i].v_id = relations->func[i].v_id; 2918 dr->func[i].d_id = relations->func[i].d_id; 2919 dr->func[i].rev = relations->func[i].rev; 2920 dr->func[i].prog_intf = relations->func[i].prog_intf; 2921 dr->func[i].subclass = relations->func[i].subclass; 2922 dr->func[i].base_class = relations->func[i].base_class; 2923 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2924 dr->func[i].win_slot = relations->func[i].win_slot; 2925 dr->func[i].ser = relations->func[i].ser; 2926 dr->func[i].flags = relations->func[i].flags; 2927 dr->func[i].virtual_numa_node = 2928 relations->func[i].virtual_numa_node; 2929 } 2930 2931 if (hv_pci_start_relations_work(hbus, dr)) 2932 kfree(dr); 2933 } 2934 2935 /** 2936 * hv_eject_device_work() - Asynchronously handles ejection 2937 * @work: Work struct embedded in internal device struct 2938 * 2939 * This function handles ejecting a device. Windows will 2940 * attempt to gracefully eject a device, waiting 60 seconds to 2941 * hear back from the guest OS that this completed successfully. 2942 * If this timer expires, the device will be forcibly removed. 2943 */ 2944 static void hv_eject_device_work(struct work_struct *work) 2945 { 2946 struct pci_eject_response *ejct_pkt; 2947 struct hv_pcibus_device *hbus; 2948 struct hv_pci_dev *hpdev; 2949 struct pci_dev *pdev; 2950 unsigned long flags; 2951 int wslot; 2952 struct { 2953 struct pci_packet pkt; 2954 u8 buffer[sizeof(struct pci_eject_response)]; 2955 } ctxt; 2956 2957 hpdev = container_of(work, struct hv_pci_dev, wrk); 2958 hbus = hpdev->hbus; 2959 2960 mutex_lock(&hbus->state_lock); 2961 2962 /* 2963 * Ejection can come before or after the PCI bus has been set up, so 2964 * attempt to find it and tear down the bus state, if it exists. This 2965 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2966 * because hbus->bridge->bus may not exist yet. 2967 */ 2968 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2969 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2970 if (pdev) { 2971 pci_lock_rescan_remove(); 2972 pci_stop_and_remove_bus_device(pdev); 2973 pci_dev_put(pdev); 2974 pci_unlock_rescan_remove(); 2975 } 2976 2977 spin_lock_irqsave(&hbus->device_list_lock, flags); 2978 list_del(&hpdev->list_entry); 2979 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2980 2981 if (hpdev->pci_slot) 2982 pci_destroy_slot(hpdev->pci_slot); 2983 2984 memset(&ctxt, 0, sizeof(ctxt)); 2985 ejct_pkt = (struct pci_eject_response *)ctxt.buffer; 2986 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2987 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2988 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2989 sizeof(*ejct_pkt), 0, 2990 VM_PKT_DATA_INBAND, 0); 2991 2992 /* For the get_pcichild() in hv_pci_eject_device() */ 2993 put_pcichild(hpdev); 2994 /* For the two refs got in new_pcichild_device() */ 2995 put_pcichild(hpdev); 2996 put_pcichild(hpdev); 2997 /* hpdev has been freed. Do not use it any more. */ 2998 2999 mutex_unlock(&hbus->state_lock); 3000 } 3001 3002 /** 3003 * hv_pci_eject_device() - Handles device ejection 3004 * @hpdev: Internal device tracking struct 3005 * 3006 * This function is invoked when an ejection packet arrives. It 3007 * just schedules work so that we don't re-enter the packet 3008 * delivery code handling the ejection. 3009 */ 3010 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 3011 { 3012 struct hv_pcibus_device *hbus = hpdev->hbus; 3013 struct hv_device *hdev = hbus->hdev; 3014 3015 if (hbus->state == hv_pcibus_removing) { 3016 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 3017 return; 3018 } 3019 3020 get_pcichild(hpdev); 3021 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 3022 queue_work(hbus->wq, &hpdev->wrk); 3023 } 3024 3025 /** 3026 * hv_pci_onchannelcallback() - Handles incoming packets 3027 * @context: Internal bus tracking struct 3028 * 3029 * This function is invoked whenever the host sends a packet to 3030 * this channel (which is private to this root PCI bus). 3031 */ 3032 static void hv_pci_onchannelcallback(void *context) 3033 { 3034 const int packet_size = 0x100; 3035 int ret; 3036 struct hv_pcibus_device *hbus = context; 3037 struct vmbus_channel *chan = hbus->hdev->channel; 3038 u32 bytes_recvd; 3039 u64 req_id, req_addr; 3040 struct vmpacket_descriptor *desc; 3041 unsigned char *buffer; 3042 int bufferlen = packet_size; 3043 struct pci_packet *comp_packet; 3044 struct pci_response *response; 3045 struct pci_incoming_message *new_message; 3046 struct pci_bus_relations *bus_rel; 3047 struct pci_bus_relations2 *bus_rel2; 3048 struct pci_dev_inval_block *inval; 3049 struct pci_dev_incoming *dev_message; 3050 struct hv_pci_dev *hpdev; 3051 unsigned long flags; 3052 3053 buffer = kmalloc(bufferlen, GFP_ATOMIC); 3054 if (!buffer) 3055 return; 3056 3057 while (1) { 3058 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 3059 &bytes_recvd, &req_id); 3060 3061 if (ret == -ENOBUFS) { 3062 kfree(buffer); 3063 /* Handle large packet */ 3064 bufferlen = bytes_recvd; 3065 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 3066 if (!buffer) 3067 return; 3068 continue; 3069 } 3070 3071 /* Zero length indicates there are no more packets. */ 3072 if (ret || !bytes_recvd) 3073 break; 3074 3075 /* 3076 * All incoming packets must be at least as large as a 3077 * response. 3078 */ 3079 if (bytes_recvd <= sizeof(struct pci_response)) 3080 continue; 3081 desc = (struct vmpacket_descriptor *)buffer; 3082 3083 switch (desc->type) { 3084 case VM_PKT_COMP: 3085 3086 lock_requestor(chan, flags); 3087 req_addr = __vmbus_request_addr_match(chan, req_id, 3088 VMBUS_RQST_ADDR_ANY); 3089 if (req_addr == VMBUS_RQST_ERROR) { 3090 unlock_requestor(chan, flags); 3091 dev_err(&hbus->hdev->device, 3092 "Invalid transaction ID %llx\n", 3093 req_id); 3094 break; 3095 } 3096 comp_packet = (struct pci_packet *)req_addr; 3097 response = (struct pci_response *)buffer; 3098 /* 3099 * Call ->completion_func() within the critical section to make 3100 * sure that the packet pointer is still valid during the call: 3101 * here 'valid' means that there's a task still waiting for the 3102 * completion, and that the packet data is still on the waiting 3103 * task's stack. Cf. hv_compose_msi_msg(). 3104 */ 3105 comp_packet->completion_func(comp_packet->compl_ctxt, 3106 response, 3107 bytes_recvd); 3108 unlock_requestor(chan, flags); 3109 break; 3110 3111 case VM_PKT_DATA_INBAND: 3112 3113 new_message = (struct pci_incoming_message *)buffer; 3114 switch (new_message->message_type.type) { 3115 case PCI_BUS_RELATIONS: 3116 3117 bus_rel = (struct pci_bus_relations *)buffer; 3118 if (bytes_recvd < sizeof(*bus_rel) || 3119 bytes_recvd < 3120 struct_size(bus_rel, func, 3121 bus_rel->device_count)) { 3122 dev_err(&hbus->hdev->device, 3123 "bus relations too small\n"); 3124 break; 3125 } 3126 3127 hv_pci_devices_present(hbus, bus_rel); 3128 break; 3129 3130 case PCI_BUS_RELATIONS2: 3131 3132 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3133 if (bytes_recvd < sizeof(*bus_rel2) || 3134 bytes_recvd < 3135 struct_size(bus_rel2, func, 3136 bus_rel2->device_count)) { 3137 dev_err(&hbus->hdev->device, 3138 "bus relations v2 too small\n"); 3139 break; 3140 } 3141 3142 hv_pci_devices_present2(hbus, bus_rel2); 3143 break; 3144 3145 case PCI_EJECT: 3146 3147 dev_message = (struct pci_dev_incoming *)buffer; 3148 if (bytes_recvd < sizeof(*dev_message)) { 3149 dev_err(&hbus->hdev->device, 3150 "eject message too small\n"); 3151 break; 3152 } 3153 hpdev = get_pcichild_wslot(hbus, 3154 dev_message->wslot.slot); 3155 if (hpdev) { 3156 hv_pci_eject_device(hpdev); 3157 put_pcichild(hpdev); 3158 } 3159 break; 3160 3161 case PCI_INVALIDATE_BLOCK: 3162 3163 inval = (struct pci_dev_inval_block *)buffer; 3164 if (bytes_recvd < sizeof(*inval)) { 3165 dev_err(&hbus->hdev->device, 3166 "invalidate message too small\n"); 3167 break; 3168 } 3169 hpdev = get_pcichild_wslot(hbus, 3170 inval->wslot.slot); 3171 if (hpdev) { 3172 if (hpdev->block_invalidate) { 3173 hpdev->block_invalidate( 3174 hpdev->invalidate_context, 3175 inval->block_mask); 3176 } 3177 put_pcichild(hpdev); 3178 } 3179 break; 3180 3181 default: 3182 dev_warn(&hbus->hdev->device, 3183 "Unimplemented protocol message %x\n", 3184 new_message->message_type.type); 3185 break; 3186 } 3187 break; 3188 3189 default: 3190 dev_err(&hbus->hdev->device, 3191 "unhandled packet type %d, tid %llx len %d\n", 3192 desc->type, req_id, bytes_recvd); 3193 break; 3194 } 3195 } 3196 3197 kfree(buffer); 3198 } 3199 3200 /** 3201 * hv_pci_protocol_negotiation() - Set up protocol 3202 * @hdev: VMBus's tracking struct for this root PCI bus. 3203 * @version: Array of supported channel protocol versions in 3204 * the order of probing - highest go first. 3205 * @num_version: Number of elements in the version array. 3206 * 3207 * This driver is intended to support running on Windows 10 3208 * (server) and later versions. It will not run on earlier 3209 * versions, as they assume that many of the operations which 3210 * Linux needs accomplished with a spinlock held were done via 3211 * asynchronous messaging via VMBus. Windows 10 increases the 3212 * surface area of PCI emulation so that these actions can take 3213 * place by suspending a virtual processor for their duration. 3214 * 3215 * This function negotiates the channel protocol version, 3216 * failing if the host doesn't support the necessary protocol 3217 * level. 3218 */ 3219 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3220 enum pci_protocol_version_t version[], 3221 int num_version) 3222 { 3223 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3224 struct pci_version_request *version_req; 3225 struct hv_pci_compl comp_pkt; 3226 struct pci_packet *pkt; 3227 int ret; 3228 int i; 3229 3230 /* 3231 * Initiate the handshake with the host and negotiate 3232 * a version that the host can support. We start with the 3233 * highest version number and go down if the host cannot 3234 * support it. 3235 */ 3236 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3237 if (!pkt) 3238 return -ENOMEM; 3239 3240 init_completion(&comp_pkt.host_event); 3241 pkt->completion_func = hv_pci_generic_compl; 3242 pkt->compl_ctxt = &comp_pkt; 3243 version_req = (struct pci_version_request *)(pkt + 1); 3244 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3245 3246 for (i = 0; i < num_version; i++) { 3247 version_req->protocol_version = version[i]; 3248 ret = vmbus_sendpacket(hdev->channel, version_req, 3249 sizeof(struct pci_version_request), 3250 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3251 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3252 if (!ret) 3253 ret = wait_for_response(hdev, &comp_pkt.host_event); 3254 3255 if (ret) { 3256 dev_err(&hdev->device, 3257 "PCI Pass-through VSP failed to request version: %d", 3258 ret); 3259 goto exit; 3260 } 3261 3262 if (comp_pkt.completion_status >= 0) { 3263 hbus->protocol_version = version[i]; 3264 dev_info(&hdev->device, 3265 "PCI VMBus probing: Using version %#x\n", 3266 hbus->protocol_version); 3267 goto exit; 3268 } 3269 3270 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3271 dev_err(&hdev->device, 3272 "PCI Pass-through VSP failed version request: %#x", 3273 comp_pkt.completion_status); 3274 ret = -EPROTO; 3275 goto exit; 3276 } 3277 3278 reinit_completion(&comp_pkt.host_event); 3279 } 3280 3281 dev_err(&hdev->device, 3282 "PCI pass-through VSP failed to find supported version"); 3283 ret = -EPROTO; 3284 3285 exit: 3286 kfree(pkt); 3287 return ret; 3288 } 3289 3290 /** 3291 * hv_pci_free_bridge_windows() - Release memory regions for the 3292 * bus 3293 * @hbus: Root PCI bus, as understood by this driver 3294 */ 3295 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3296 { 3297 /* 3298 * Set the resources back to the way they looked when they 3299 * were allocated by setting IORESOURCE_BUSY again. 3300 */ 3301 3302 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3303 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3304 vmbus_free_mmio(hbus->low_mmio_res->start, 3305 resource_size(hbus->low_mmio_res)); 3306 } 3307 3308 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3309 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3310 vmbus_free_mmio(hbus->high_mmio_res->start, 3311 resource_size(hbus->high_mmio_res)); 3312 } 3313 } 3314 3315 /** 3316 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3317 * for the bus 3318 * @hbus: Root PCI bus, as understood by this driver 3319 * 3320 * This function calls vmbus_allocate_mmio(), which is itself a 3321 * bit of a compromise. Ideally, we might change the pnp layer 3322 * in the kernel such that it comprehends either PCI devices 3323 * which are "grandchildren of ACPI," with some intermediate bus 3324 * node (in this case, VMBus) or change it such that it 3325 * understands VMBus. The pnp layer, however, has been declared 3326 * deprecated, and not subject to change. 3327 * 3328 * The workaround, implemented here, is to ask VMBus to allocate 3329 * MMIO space for this bus. VMBus itself knows which ranges are 3330 * appropriate by looking at its own ACPI objects. Then, after 3331 * these ranges are claimed, they're modified to look like they 3332 * would have looked if the ACPI and pnp code had allocated 3333 * bridge windows. These descriptors have to exist in this form 3334 * in order to satisfy the code which will get invoked when the 3335 * endpoint PCI function driver calls request_mem_region() or 3336 * request_mem_region_exclusive(). 3337 * 3338 * Return: 0 on success, -errno on failure 3339 */ 3340 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3341 { 3342 resource_size_t align; 3343 int ret; 3344 3345 if (hbus->low_mmio_space) { 3346 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3347 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3348 (u64)(u32)0xffffffff, 3349 hbus->low_mmio_space, 3350 align, false); 3351 if (ret) { 3352 dev_err(&hbus->hdev->device, 3353 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3354 hbus->low_mmio_space); 3355 return ret; 3356 } 3357 3358 /* Modify this resource to become a bridge window. */ 3359 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3360 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3361 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3362 } 3363 3364 if (hbus->high_mmio_space) { 3365 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3366 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3367 0x100000000, -1, 3368 hbus->high_mmio_space, align, 3369 false); 3370 if (ret) { 3371 dev_err(&hbus->hdev->device, 3372 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3373 hbus->high_mmio_space); 3374 goto release_low_mmio; 3375 } 3376 3377 /* Modify this resource to become a bridge window. */ 3378 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3379 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3380 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3381 } 3382 3383 return 0; 3384 3385 release_low_mmio: 3386 if (hbus->low_mmio_res) { 3387 vmbus_free_mmio(hbus->low_mmio_res->start, 3388 resource_size(hbus->low_mmio_res)); 3389 } 3390 3391 return ret; 3392 } 3393 3394 /** 3395 * hv_allocate_config_window() - Find MMIO space for PCI Config 3396 * @hbus: Root PCI bus, as understood by this driver 3397 * 3398 * This function claims memory-mapped I/O space for accessing 3399 * configuration space for the functions on this bus. 3400 * 3401 * Return: 0 on success, -errno on failure 3402 */ 3403 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3404 { 3405 int ret; 3406 3407 /* 3408 * Set up a region of MMIO space to use for accessing configuration 3409 * space. 3410 */ 3411 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3412 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3413 if (ret) 3414 return ret; 3415 3416 /* 3417 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3418 * resource claims (those which cannot be overlapped) and the ranges 3419 * which are valid for the children of this bus, which are intended 3420 * to be overlapped by those children. Set the flag on this claim 3421 * meaning that this region can't be overlapped. 3422 */ 3423 3424 hbus->mem_config->flags |= IORESOURCE_BUSY; 3425 3426 return 0; 3427 } 3428 3429 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3430 { 3431 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3432 } 3433 3434 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3435 3436 /** 3437 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3438 * @hdev: VMBus's tracking struct for this root PCI bus 3439 * 3440 * Return: 0 on success, -errno on failure 3441 */ 3442 static int hv_pci_enter_d0(struct hv_device *hdev) 3443 { 3444 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3445 struct pci_bus_d0_entry *d0_entry; 3446 struct hv_pci_compl comp_pkt; 3447 struct pci_packet *pkt; 3448 bool retry = true; 3449 int ret; 3450 3451 enter_d0_retry: 3452 /* 3453 * Tell the host that the bus is ready to use, and moved into the 3454 * powered-on state. This includes telling the host which region 3455 * of memory-mapped I/O space has been chosen for configuration space 3456 * access. 3457 */ 3458 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3459 if (!pkt) 3460 return -ENOMEM; 3461 3462 init_completion(&comp_pkt.host_event); 3463 pkt->completion_func = hv_pci_generic_compl; 3464 pkt->compl_ctxt = &comp_pkt; 3465 d0_entry = (struct pci_bus_d0_entry *)(pkt + 1); 3466 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3467 d0_entry->mmio_base = hbus->mem_config->start; 3468 3469 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3470 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3471 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3472 if (!ret) 3473 ret = wait_for_response(hdev, &comp_pkt.host_event); 3474 3475 if (ret) 3476 goto exit; 3477 3478 /* 3479 * In certain case (Kdump) the pci device of interest was 3480 * not cleanly shut down and resource is still held on host 3481 * side, the host could return invalid device status. 3482 * We need to explicitly request host to release the resource 3483 * and try to enter D0 again. 3484 */ 3485 if (comp_pkt.completion_status < 0 && retry) { 3486 retry = false; 3487 3488 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3489 3490 /* 3491 * Hv_pci_bus_exit() calls hv_send_resource_released() 3492 * to free up resources of its child devices. 3493 * In the kdump kernel we need to set the 3494 * wslot_res_allocated to 255 so it scans all child 3495 * devices to release resources allocated in the 3496 * normal kernel before panic happened. 3497 */ 3498 hbus->wslot_res_allocated = 255; 3499 3500 ret = hv_pci_bus_exit(hdev, true); 3501 3502 if (ret == 0) { 3503 kfree(pkt); 3504 goto enter_d0_retry; 3505 } 3506 dev_err(&hdev->device, 3507 "Retrying D0 failed with ret %d\n", ret); 3508 } 3509 3510 if (comp_pkt.completion_status < 0) { 3511 dev_err(&hdev->device, 3512 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3513 comp_pkt.completion_status); 3514 ret = -EPROTO; 3515 goto exit; 3516 } 3517 3518 ret = 0; 3519 3520 exit: 3521 kfree(pkt); 3522 return ret; 3523 } 3524 3525 /** 3526 * hv_pci_query_relations() - Ask host to send list of child 3527 * devices 3528 * @hdev: VMBus's tracking struct for this root PCI bus 3529 * 3530 * Return: 0 on success, -errno on failure 3531 */ 3532 static int hv_pci_query_relations(struct hv_device *hdev) 3533 { 3534 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3535 struct pci_message message; 3536 struct completion comp; 3537 int ret; 3538 3539 /* Ask the host to send along the list of child devices */ 3540 init_completion(&comp); 3541 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3542 return -ENOTEMPTY; 3543 3544 memset(&message, 0, sizeof(message)); 3545 message.type = PCI_QUERY_BUS_RELATIONS; 3546 3547 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3548 0, VM_PKT_DATA_INBAND, 0); 3549 if (!ret) 3550 ret = wait_for_response(hdev, &comp); 3551 3552 /* 3553 * In the case of fast device addition/removal, it's possible that 3554 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we 3555 * already got a PCI_BUS_RELATIONS* message from the host and the 3556 * channel callback already scheduled a work to hbus->wq, which can be 3557 * running pci_devices_present_work() -> survey_child_resources() -> 3558 * complete(&hbus->survey_event), even after hv_pci_query_relations() 3559 * exits and the stack variable 'comp' is no longer valid; as a result, 3560 * a hang or a page fault may happen when the complete() calls 3561 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from 3562 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is 3563 * -ENODEV, there can't be any more work item scheduled to hbus->wq 3564 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> 3565 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> 3566 * channel->rescind = true. 3567 */ 3568 flush_workqueue(hbus->wq); 3569 3570 return ret; 3571 } 3572 3573 /** 3574 * hv_send_resources_allocated() - Report local resource choices 3575 * @hdev: VMBus's tracking struct for this root PCI bus 3576 * 3577 * The host OS is expecting to be sent a request as a message 3578 * which contains all the resources that the device will use. 3579 * The response contains those same resources, "translated" 3580 * which is to say, the values which should be used by the 3581 * hardware, when it delivers an interrupt. (MMIO resources are 3582 * used in local terms.) This is nice for Windows, and lines up 3583 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3584 * is deeply expecting to scan an emulated PCI configuration 3585 * space. So this message is sent here only to drive the state 3586 * machine on the host forward. 3587 * 3588 * Return: 0 on success, -errno on failure 3589 */ 3590 static int hv_send_resources_allocated(struct hv_device *hdev) 3591 { 3592 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3593 struct pci_resources_assigned *res_assigned; 3594 struct pci_resources_assigned2 *res_assigned2; 3595 struct hv_pci_compl comp_pkt; 3596 struct hv_pci_dev *hpdev; 3597 struct pci_packet *pkt; 3598 size_t size_res; 3599 int wslot; 3600 int ret; 3601 3602 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3603 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3604 3605 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3606 if (!pkt) 3607 return -ENOMEM; 3608 3609 ret = 0; 3610 3611 for (wslot = 0; wslot < 256; wslot++) { 3612 hpdev = get_pcichild_wslot(hbus, wslot); 3613 if (!hpdev) 3614 continue; 3615 3616 memset(pkt, 0, sizeof(*pkt) + size_res); 3617 init_completion(&comp_pkt.host_event); 3618 pkt->completion_func = hv_pci_generic_compl; 3619 pkt->compl_ctxt = &comp_pkt; 3620 3621 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3622 res_assigned = 3623 (struct pci_resources_assigned *)(pkt + 1); 3624 res_assigned->message_type.type = 3625 PCI_RESOURCES_ASSIGNED; 3626 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3627 } else { 3628 res_assigned2 = 3629 (struct pci_resources_assigned2 *)(pkt + 1); 3630 res_assigned2->message_type.type = 3631 PCI_RESOURCES_ASSIGNED2; 3632 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3633 } 3634 put_pcichild(hpdev); 3635 3636 ret = vmbus_sendpacket(hdev->channel, pkt + 1, 3637 size_res, (unsigned long)pkt, 3638 VM_PKT_DATA_INBAND, 3639 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3640 if (!ret) 3641 ret = wait_for_response(hdev, &comp_pkt.host_event); 3642 if (ret) 3643 break; 3644 3645 if (comp_pkt.completion_status < 0) { 3646 ret = -EPROTO; 3647 dev_err(&hdev->device, 3648 "resource allocated returned 0x%x", 3649 comp_pkt.completion_status); 3650 break; 3651 } 3652 3653 hbus->wslot_res_allocated = wslot; 3654 } 3655 3656 kfree(pkt); 3657 return ret; 3658 } 3659 3660 /** 3661 * hv_send_resources_released() - Report local resources 3662 * released 3663 * @hdev: VMBus's tracking struct for this root PCI bus 3664 * 3665 * Return: 0 on success, -errno on failure 3666 */ 3667 static int hv_send_resources_released(struct hv_device *hdev) 3668 { 3669 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3670 struct pci_child_message pkt; 3671 struct hv_pci_dev *hpdev; 3672 int wslot; 3673 int ret; 3674 3675 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3676 hpdev = get_pcichild_wslot(hbus, wslot); 3677 if (!hpdev) 3678 continue; 3679 3680 memset(&pkt, 0, sizeof(pkt)); 3681 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3682 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3683 3684 put_pcichild(hpdev); 3685 3686 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3687 VM_PKT_DATA_INBAND, 0); 3688 if (ret) 3689 return ret; 3690 3691 hbus->wslot_res_allocated = wslot - 1; 3692 } 3693 3694 hbus->wslot_res_allocated = -1; 3695 3696 return 0; 3697 } 3698 3699 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3700 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3701 3702 /* 3703 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3704 * as invalid for passthrough PCI devices of this driver. 3705 */ 3706 #define HVPCI_DOM_INVALID 0 3707 3708 /** 3709 * hv_get_dom_num() - Get a valid PCI domain number 3710 * Check if the PCI domain number is in use, and return another number if 3711 * it is in use. 3712 * 3713 * @dom: Requested domain number 3714 * 3715 * return: domain number on success, HVPCI_DOM_INVALID on failure 3716 */ 3717 static u16 hv_get_dom_num(u16 dom) 3718 { 3719 unsigned int i; 3720 3721 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3722 return dom; 3723 3724 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3725 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3726 return i; 3727 } 3728 3729 return HVPCI_DOM_INVALID; 3730 } 3731 3732 /** 3733 * hv_put_dom_num() - Mark the PCI domain number as free 3734 * @dom: Domain number to be freed 3735 */ 3736 static void hv_put_dom_num(u16 dom) 3737 { 3738 clear_bit(dom, hvpci_dom_map); 3739 } 3740 3741 /** 3742 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3743 * @hdev: VMBus's tracking struct for this root PCI bus 3744 * @dev_id: Identifies the device itself 3745 * 3746 * Return: 0 on success, -errno on failure 3747 */ 3748 static int hv_pci_probe(struct hv_device *hdev, 3749 const struct hv_vmbus_device_id *dev_id) 3750 { 3751 struct pci_host_bridge *bridge; 3752 struct hv_pcibus_device *hbus; 3753 u16 dom_req, dom; 3754 char *name; 3755 int ret; 3756 3757 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3758 if (!bridge) 3759 return -ENOMEM; 3760 3761 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); 3762 if (!hbus) 3763 return -ENOMEM; 3764 3765 hbus->bridge = bridge; 3766 mutex_init(&hbus->state_lock); 3767 hbus->state = hv_pcibus_init; 3768 hbus->wslot_res_allocated = -1; 3769 3770 /* 3771 * The PCI bus "domain" is what is called "segment" in ACPI and other 3772 * specs. Pull it from the instance ID, to get something usually 3773 * unique. In rare cases of collision, we will find out another number 3774 * not in use. 3775 * 3776 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3777 * together with this guest driver can guarantee that (1) The only 3778 * domain used by Gen1 VMs for something that looks like a physical 3779 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3780 * (2) There will be no overlap between domains (after fixing possible 3781 * collisions) in the same VM. 3782 */ 3783 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3784 dom = hv_get_dom_num(dom_req); 3785 3786 if (dom == HVPCI_DOM_INVALID) { 3787 dev_err(&hdev->device, 3788 "Unable to use dom# 0x%x or other numbers", dom_req); 3789 ret = -EINVAL; 3790 goto free_bus; 3791 } 3792 3793 if (dom != dom_req) 3794 dev_info(&hdev->device, 3795 "PCI dom# 0x%x has collision, using 0x%x", 3796 dom_req, dom); 3797 3798 hbus->bridge->domain_nr = dom; 3799 #ifdef CONFIG_X86 3800 hbus->sysdata.domain = dom; 3801 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3802 #elif defined(CONFIG_ARM64) 3803 /* 3804 * Set the PCI bus parent to be the corresponding VMbus 3805 * device. Then the VMbus device will be assigned as the 3806 * ACPI companion in pcibios_root_bridge_prepare() and 3807 * pci_dma_configure() will propagate device coherence 3808 * information to devices created on the bus. 3809 */ 3810 hbus->sysdata.parent = hdev->device.parent; 3811 hbus->use_calls = false; 3812 #endif 3813 3814 hbus->hdev = hdev; 3815 INIT_LIST_HEAD(&hbus->children); 3816 INIT_LIST_HEAD(&hbus->dr_list); 3817 spin_lock_init(&hbus->config_lock); 3818 spin_lock_init(&hbus->device_list_lock); 3819 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3820 hbus->bridge->domain_nr); 3821 if (!hbus->wq) { 3822 ret = -ENOMEM; 3823 goto free_dom; 3824 } 3825 3826 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3827 hdev->channel->request_addr_callback = vmbus_request_addr; 3828 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3829 3830 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3831 hv_pci_onchannelcallback, hbus); 3832 if (ret) 3833 goto destroy_wq; 3834 3835 hv_set_drvdata(hdev, hbus); 3836 3837 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3838 ARRAY_SIZE(pci_protocol_versions)); 3839 if (ret) 3840 goto close; 3841 3842 ret = hv_allocate_config_window(hbus); 3843 if (ret) 3844 goto close; 3845 3846 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3847 PCI_CONFIG_MMIO_LENGTH); 3848 if (!hbus->cfg_addr) { 3849 dev_err(&hdev->device, 3850 "Unable to map a virtual address for config space\n"); 3851 ret = -ENOMEM; 3852 goto free_config; 3853 } 3854 3855 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3856 if (!name) { 3857 ret = -ENOMEM; 3858 goto unmap; 3859 } 3860 3861 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3862 kfree(name); 3863 if (!hbus->fwnode) { 3864 ret = -ENOMEM; 3865 goto unmap; 3866 } 3867 3868 ret = hv_pcie_init_irq_domain(hbus); 3869 if (ret) 3870 goto free_fwnode; 3871 3872 ret = hv_pci_query_relations(hdev); 3873 if (ret) 3874 goto free_irq_domain; 3875 3876 mutex_lock(&hbus->state_lock); 3877 3878 ret = hv_pci_enter_d0(hdev); 3879 if (ret) 3880 goto release_state_lock; 3881 3882 ret = hv_pci_allocate_bridge_windows(hbus); 3883 if (ret) 3884 goto exit_d0; 3885 3886 ret = hv_send_resources_allocated(hdev); 3887 if (ret) 3888 goto free_windows; 3889 3890 prepopulate_bars(hbus); 3891 3892 hbus->state = hv_pcibus_probed; 3893 3894 ret = create_root_hv_pci_bus(hbus); 3895 if (ret) 3896 goto free_windows; 3897 3898 mutex_unlock(&hbus->state_lock); 3899 return 0; 3900 3901 free_windows: 3902 hv_pci_free_bridge_windows(hbus); 3903 exit_d0: 3904 (void) hv_pci_bus_exit(hdev, true); 3905 release_state_lock: 3906 mutex_unlock(&hbus->state_lock); 3907 free_irq_domain: 3908 irq_domain_remove(hbus->irq_domain); 3909 free_fwnode: 3910 irq_domain_free_fwnode(hbus->fwnode); 3911 unmap: 3912 iounmap(hbus->cfg_addr); 3913 free_config: 3914 hv_free_config_window(hbus); 3915 close: 3916 vmbus_close(hdev->channel); 3917 destroy_wq: 3918 destroy_workqueue(hbus->wq); 3919 free_dom: 3920 hv_put_dom_num(hbus->bridge->domain_nr); 3921 free_bus: 3922 kfree(hbus); 3923 return ret; 3924 } 3925 3926 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3927 { 3928 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3929 struct vmbus_channel *chan = hdev->channel; 3930 struct { 3931 struct pci_packet teardown_packet; 3932 u8 buffer[sizeof(struct pci_message)]; 3933 } pkt; 3934 struct pci_message *msg; 3935 struct hv_pci_compl comp_pkt; 3936 struct hv_pci_dev *hpdev, *tmp; 3937 unsigned long flags; 3938 u64 trans_id; 3939 int ret; 3940 3941 /* 3942 * After the host sends the RESCIND_CHANNEL message, it doesn't 3943 * access the per-channel ringbuffer any longer. 3944 */ 3945 if (chan->rescind) 3946 return 0; 3947 3948 if (!keep_devs) { 3949 struct list_head removed; 3950 3951 /* Move all present children to the list on stack */ 3952 INIT_LIST_HEAD(&removed); 3953 spin_lock_irqsave(&hbus->device_list_lock, flags); 3954 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3955 list_move_tail(&hpdev->list_entry, &removed); 3956 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3957 3958 /* Remove all children in the list */ 3959 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3960 list_del(&hpdev->list_entry); 3961 if (hpdev->pci_slot) 3962 pci_destroy_slot(hpdev->pci_slot); 3963 /* For the two refs got in new_pcichild_device() */ 3964 put_pcichild(hpdev); 3965 put_pcichild(hpdev); 3966 } 3967 } 3968 3969 ret = hv_send_resources_released(hdev); 3970 if (ret) { 3971 dev_err(&hdev->device, 3972 "Couldn't send resources released packet(s)\n"); 3973 return ret; 3974 } 3975 3976 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3977 init_completion(&comp_pkt.host_event); 3978 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3979 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3980 msg = (struct pci_message *)pkt.buffer; 3981 msg->type = PCI_BUS_D0EXIT; 3982 3983 ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg), 3984 (unsigned long)&pkt.teardown_packet, 3985 &trans_id, VM_PKT_DATA_INBAND, 3986 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3987 if (ret) 3988 return ret; 3989 3990 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3991 /* 3992 * The completion packet on the stack becomes invalid after 3993 * 'return'; remove the ID from the VMbus requestor if the 3994 * identifier is still mapped to/associated with the packet. 3995 * 3996 * Cf. hv_pci_onchannelcallback(). 3997 */ 3998 vmbus_request_addr_match(chan, trans_id, 3999 (unsigned long)&pkt.teardown_packet); 4000 return -ETIMEDOUT; 4001 } 4002 4003 return 0; 4004 } 4005 4006 /** 4007 * hv_pci_remove() - Remove routine for this VMBus channel 4008 * @hdev: VMBus's tracking struct for this root PCI bus 4009 */ 4010 static void hv_pci_remove(struct hv_device *hdev) 4011 { 4012 struct hv_pcibus_device *hbus; 4013 4014 hbus = hv_get_drvdata(hdev); 4015 if (hbus->state == hv_pcibus_installed) { 4016 tasklet_disable(&hdev->channel->callback_event); 4017 hbus->state = hv_pcibus_removing; 4018 tasklet_enable(&hdev->channel->callback_event); 4019 destroy_workqueue(hbus->wq); 4020 hbus->wq = NULL; 4021 /* 4022 * At this point, no work is running or can be scheduled 4023 * on hbus-wq. We can't race with hv_pci_devices_present() 4024 * or hv_pci_eject_device(), it's safe to proceed. 4025 */ 4026 4027 /* Remove the bus from PCI's point of view. */ 4028 pci_lock_rescan_remove(); 4029 pci_stop_root_bus(hbus->bridge->bus); 4030 hv_pci_remove_slots(hbus); 4031 pci_remove_root_bus(hbus->bridge->bus); 4032 pci_unlock_rescan_remove(); 4033 } 4034 4035 hv_pci_bus_exit(hdev, false); 4036 4037 vmbus_close(hdev->channel); 4038 4039 iounmap(hbus->cfg_addr); 4040 hv_free_config_window(hbus); 4041 hv_pci_free_bridge_windows(hbus); 4042 irq_domain_remove(hbus->irq_domain); 4043 irq_domain_free_fwnode(hbus->fwnode); 4044 4045 hv_put_dom_num(hbus->bridge->domain_nr); 4046 4047 kfree(hbus); 4048 } 4049 4050 static int hv_pci_suspend(struct hv_device *hdev) 4051 { 4052 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4053 enum hv_pcibus_state old_state; 4054 int ret; 4055 4056 /* 4057 * hv_pci_suspend() must make sure there are no pending work items 4058 * before calling vmbus_close(), since it runs in a process context 4059 * as a callback in dpm_suspend(). When it starts to run, the channel 4060 * callback hv_pci_onchannelcallback(), which runs in a tasklet 4061 * context, can be still running concurrently and scheduling new work 4062 * items onto hbus->wq in hv_pci_devices_present() and 4063 * hv_pci_eject_device(), and the work item handlers can access the 4064 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 4065 * the work item handler pci_devices_present_work() -> 4066 * new_pcichild_device() writes to the vmbus channel. 4067 * 4068 * To eliminate the race, hv_pci_suspend() disables the channel 4069 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 4070 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 4071 * it knows that no new work item can be scheduled, and then it flushes 4072 * hbus->wq and safely closes the vmbus channel. 4073 */ 4074 tasklet_disable(&hdev->channel->callback_event); 4075 4076 /* Change the hbus state to prevent new work items. */ 4077 old_state = hbus->state; 4078 if (hbus->state == hv_pcibus_installed) 4079 hbus->state = hv_pcibus_removing; 4080 4081 tasklet_enable(&hdev->channel->callback_event); 4082 4083 if (old_state != hv_pcibus_installed) 4084 return -EINVAL; 4085 4086 flush_workqueue(hbus->wq); 4087 4088 ret = hv_pci_bus_exit(hdev, true); 4089 if (ret) 4090 return ret; 4091 4092 vmbus_close(hdev->channel); 4093 4094 return 0; 4095 } 4096 4097 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 4098 { 4099 struct irq_data *irq_data; 4100 struct msi_desc *entry; 4101 4102 if (!pdev->msi_enabled && !pdev->msix_enabled) 4103 return 0; 4104 4105 guard(msi_descs_lock)(&pdev->dev); 4106 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 4107 irq_data = irq_get_irq_data(entry->irq); 4108 if (WARN_ON_ONCE(!irq_data)) 4109 return -EINVAL; 4110 hv_compose_msi_msg(irq_data, &entry->msg); 4111 } 4112 return 0; 4113 } 4114 4115 /* 4116 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 4117 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 4118 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 4119 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 4120 * Table entries. 4121 */ 4122 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 4123 { 4124 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 4125 } 4126 4127 static int hv_pci_resume(struct hv_device *hdev) 4128 { 4129 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4130 enum pci_protocol_version_t version[1]; 4131 int ret; 4132 4133 hbus->state = hv_pcibus_init; 4134 4135 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4136 hdev->channel->request_addr_callback = vmbus_request_addr; 4137 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4138 4139 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4140 hv_pci_onchannelcallback, hbus); 4141 if (ret) 4142 return ret; 4143 4144 /* Only use the version that was in use before hibernation. */ 4145 version[0] = hbus->protocol_version; 4146 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4147 if (ret) 4148 goto out; 4149 4150 ret = hv_pci_query_relations(hdev); 4151 if (ret) 4152 goto out; 4153 4154 mutex_lock(&hbus->state_lock); 4155 4156 ret = hv_pci_enter_d0(hdev); 4157 if (ret) 4158 goto release_state_lock; 4159 4160 ret = hv_send_resources_allocated(hdev); 4161 if (ret) 4162 goto release_state_lock; 4163 4164 prepopulate_bars(hbus); 4165 4166 hv_pci_restore_msi_state(hbus); 4167 4168 hbus->state = hv_pcibus_installed; 4169 mutex_unlock(&hbus->state_lock); 4170 return 0; 4171 4172 release_state_lock: 4173 mutex_unlock(&hbus->state_lock); 4174 out: 4175 vmbus_close(hdev->channel); 4176 return ret; 4177 } 4178 4179 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4180 /* PCI Pass-through Class ID */ 4181 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4182 { HV_PCIE_GUID, }, 4183 { }, 4184 }; 4185 4186 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4187 4188 static struct hv_driver hv_pci_drv = { 4189 .name = "hv_pci", 4190 .id_table = hv_pci_id_table, 4191 .probe = hv_pci_probe, 4192 .remove = hv_pci_remove, 4193 .suspend = hv_pci_suspend, 4194 .resume = hv_pci_resume, 4195 }; 4196 4197 static void __exit exit_hv_pci_drv(void) 4198 { 4199 vmbus_driver_unregister(&hv_pci_drv); 4200 4201 hvpci_block_ops.read_block = NULL; 4202 hvpci_block_ops.write_block = NULL; 4203 hvpci_block_ops.reg_blk_invalidate = NULL; 4204 } 4205 4206 static int __init init_hv_pci_drv(void) 4207 { 4208 int ret; 4209 4210 if (!hv_is_hyperv_initialized()) 4211 return -ENODEV; 4212 4213 if (hv_root_partition() && !hv_nested) 4214 return -ENODEV; 4215 4216 ret = hv_pci_irqchip_init(); 4217 if (ret) 4218 return ret; 4219 4220 /* Set the invalid domain number's bit, so it will not be used */ 4221 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4222 4223 /* Initialize PCI block r/w interface */ 4224 hvpci_block_ops.read_block = hv_read_config_block; 4225 hvpci_block_ops.write_block = hv_write_config_block; 4226 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4227 4228 return vmbus_driver_register(&hv_pci_drv); 4229 } 4230 4231 module_init(init_hv_pci_drv); 4232 module_exit(exit_hv_pci_drv); 4233 4234 MODULE_DESCRIPTION("Hyper-V PCI"); 4235 MODULE_LICENSE("GPL v2"); 4236