1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 68 }; 69 70 #define CPU_AFFINITY_ALL -1ULL 71 72 /* 73 * Supported protocol versions in the order of probing - highest go 74 * first. 75 */ 76 static enum pci_protocol_version_t pci_protocol_versions[] = { 77 PCI_PROTOCOL_VERSION_1_4, 78 PCI_PROTOCOL_VERSION_1_3, 79 PCI_PROTOCOL_VERSION_1_2, 80 PCI_PROTOCOL_VERSION_1_1, 81 }; 82 83 #define PCI_CONFIG_MMIO_LENGTH 0x2000 84 #define CFG_PAGE_OFFSET 0x1000 85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 86 87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 88 89 #define STATUS_REVISION_MISMATCH 0xC0000059 90 91 /* space for 32bit serial number as string */ 92 #define SLOT_NAME_SIZE 11 93 94 /* 95 * Size of requestor for VMbus; the value is based on the observation 96 * that having more than one request outstanding is 'rare', and so 64 97 * should be generous in ensuring that we don't ever run out. 98 */ 99 #define HV_PCI_RQSTOR_SIZE 64 100 101 /* 102 * Message Types 103 */ 104 105 enum pci_message_type { 106 /* 107 * Version 1.1 108 */ 109 PCI_MESSAGE_BASE = 0x42490000, 110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 136 PCI_MESSAGE_MAXIMUM 137 }; 138 139 /* 140 * Structures defining the virtual PCI Express protocol. 141 */ 142 143 union pci_version { 144 struct { 145 u16 minor_version; 146 u16 major_version; 147 } parts; 148 u32 version; 149 } __packed; 150 151 /* 152 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 153 * which is all this driver does. This representation is the one used in 154 * Windows, which is what is expected when sending this back and forth with 155 * the Hyper-V parent partition. 156 */ 157 union win_slot_encoding { 158 struct { 159 u32 dev:5; 160 u32 func:3; 161 u32 reserved:24; 162 } bits; 163 u32 slot; 164 } __packed; 165 166 /* 167 * Pretty much as defined in the PCI Specifications. 168 */ 169 struct pci_function_description { 170 u16 v_id; /* vendor ID */ 171 u16 d_id; /* device ID */ 172 u8 rev; 173 u8 prog_intf; 174 u8 subclass; 175 u8 base_class; 176 u32 subsystem_id; 177 union win_slot_encoding win_slot; 178 u32 ser; /* serial number */ 179 } __packed; 180 181 enum pci_device_description_flags { 182 HV_PCI_DEVICE_FLAG_NONE = 0x0, 183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 184 }; 185 186 struct pci_function_description2 { 187 u16 v_id; /* vendor ID */ 188 u16 d_id; /* device ID */ 189 u8 rev; 190 u8 prog_intf; 191 u8 subclass; 192 u8 base_class; 193 u32 subsystem_id; 194 union win_slot_encoding win_slot; 195 u32 ser; /* serial number */ 196 u32 flags; 197 u16 virtual_numa_node; 198 u16 reserved; 199 } __packed; 200 201 /** 202 * struct hv_msi_desc 203 * @vector: IDT entry 204 * @delivery_mode: As defined in Intel's Programmer's 205 * Reference Manual, Volume 3, Chapter 8. 206 * @vector_count: Number of contiguous entries in the 207 * Interrupt Descriptor Table that are 208 * occupied by this Message-Signaled 209 * Interrupt. For "MSI", as first defined 210 * in PCI 2.2, this can be between 1 and 211 * 32. For "MSI-X," as first defined in PCI 212 * 3.0, this must be 1, as each MSI-X table 213 * entry would have its own descriptor. 214 * @reserved: Empty space 215 * @cpu_mask: All the target virtual processors. 216 */ 217 struct hv_msi_desc { 218 u8 vector; 219 u8 delivery_mode; 220 u16 vector_count; 221 u32 reserved; 222 u64 cpu_mask; 223 } __packed; 224 225 /** 226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 227 * @vector: IDT entry 228 * @delivery_mode: As defined in Intel's Programmer's 229 * Reference Manual, Volume 3, Chapter 8. 230 * @vector_count: Number of contiguous entries in the 231 * Interrupt Descriptor Table that are 232 * occupied by this Message-Signaled 233 * Interrupt. For "MSI", as first defined 234 * in PCI 2.2, this can be between 1 and 235 * 32. For "MSI-X," as first defined in PCI 236 * 3.0, this must be 1, as each MSI-X table 237 * entry would have its own descriptor. 238 * @processor_count: number of bits enabled in array. 239 * @processor_array: All the target virtual processors. 240 */ 241 struct hv_msi_desc2 { 242 u8 vector; 243 u8 delivery_mode; 244 u16 vector_count; 245 u16 processor_count; 246 u16 processor_array[32]; 247 } __packed; 248 249 /* 250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 251 * Everything is the same as in 'hv_msi_desc2' except that the size of the 252 * 'vector' field is larger to support bigger vector values. For ex: LPI 253 * vectors on ARM. 254 */ 255 struct hv_msi_desc3 { 256 u32 vector; 257 u8 delivery_mode; 258 u8 reserved; 259 u16 vector_count; 260 u16 processor_count; 261 u16 processor_array[32]; 262 } __packed; 263 264 /** 265 * struct tran_int_desc 266 * @reserved: unused, padding 267 * @vector_count: same as in hv_msi_desc 268 * @data: This is the "data payload" value that is 269 * written by the device when it generates 270 * a message-signaled interrupt, either MSI 271 * or MSI-X. 272 * @address: This is the address to which the data 273 * payload is written on interrupt 274 * generation. 275 */ 276 struct tran_int_desc { 277 u16 reserved; 278 u16 vector_count; 279 u32 data; 280 u64 address; 281 } __packed; 282 283 /* 284 * A generic message format for virtual PCI. 285 * Specific message formats are defined later in the file. 286 */ 287 288 struct pci_message { 289 u32 type; 290 } __packed; 291 292 struct pci_child_message { 293 struct pci_message message_type; 294 union win_slot_encoding wslot; 295 } __packed; 296 297 struct pci_incoming_message { 298 struct vmpacket_descriptor hdr; 299 struct pci_message message_type; 300 } __packed; 301 302 struct pci_response { 303 struct vmpacket_descriptor hdr; 304 s32 status; /* negative values are failures */ 305 } __packed; 306 307 struct pci_packet { 308 void (*completion_func)(void *context, struct pci_response *resp, 309 int resp_packet_size); 310 void *compl_ctxt; 311 312 struct pci_message message[]; 313 }; 314 315 /* 316 * Specific message types supporting the PCI protocol. 317 */ 318 319 /* 320 * Version negotiation message. Sent from the guest to the host. 321 * The guest is free to try different versions until the host 322 * accepts the version. 323 * 324 * pci_version: The protocol version requested. 325 * is_last_attempt: If TRUE, this is the last version guest will request. 326 * reservedz: Reserved field, set to zero. 327 */ 328 329 struct pci_version_request { 330 struct pci_message message_type; 331 u32 protocol_version; 332 } __packed; 333 334 /* 335 * Bus D0 Entry. This is sent from the guest to the host when the virtual 336 * bus (PCI Express port) is ready for action. 337 */ 338 339 struct pci_bus_d0_entry { 340 struct pci_message message_type; 341 u32 reserved; 342 u64 mmio_base; 343 } __packed; 344 345 struct pci_bus_relations { 346 struct pci_incoming_message incoming; 347 u32 device_count; 348 struct pci_function_description func[]; 349 } __packed; 350 351 struct pci_bus_relations2 { 352 struct pci_incoming_message incoming; 353 u32 device_count; 354 struct pci_function_description2 func[]; 355 } __packed; 356 357 struct pci_q_res_req_response { 358 struct vmpacket_descriptor hdr; 359 s32 status; /* negative values are failures */ 360 u32 probed_bar[PCI_STD_NUM_BARS]; 361 } __packed; 362 363 struct pci_set_power { 364 struct pci_message message_type; 365 union win_slot_encoding wslot; 366 u32 power_state; /* In Windows terms */ 367 u32 reserved; 368 } __packed; 369 370 struct pci_set_power_response { 371 struct vmpacket_descriptor hdr; 372 s32 status; /* negative values are failures */ 373 union win_slot_encoding wslot; 374 u32 resultant_state; /* In Windows terms */ 375 u32 reserved; 376 } __packed; 377 378 struct pci_resources_assigned { 379 struct pci_message message_type; 380 union win_slot_encoding wslot; 381 u8 memory_range[0x14][6]; /* not used here */ 382 u32 msi_descriptors; 383 u32 reserved[4]; 384 } __packed; 385 386 struct pci_resources_assigned2 { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 u8 memory_range[0x14][6]; /* not used here */ 390 u32 msi_descriptor_count; 391 u8 reserved[70]; 392 } __packed; 393 394 struct pci_create_interrupt { 395 struct pci_message message_type; 396 union win_slot_encoding wslot; 397 struct hv_msi_desc int_desc; 398 } __packed; 399 400 struct pci_create_int_response { 401 struct pci_response response; 402 u32 reserved; 403 struct tran_int_desc int_desc; 404 } __packed; 405 406 struct pci_create_interrupt2 { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 struct hv_msi_desc2 int_desc; 410 } __packed; 411 412 struct pci_create_interrupt3 { 413 struct pci_message message_type; 414 union win_slot_encoding wslot; 415 struct hv_msi_desc3 int_desc; 416 } __packed; 417 418 struct pci_delete_interrupt { 419 struct pci_message message_type; 420 union win_slot_encoding wslot; 421 struct tran_int_desc int_desc; 422 } __packed; 423 424 /* 425 * Note: the VM must pass a valid block id, wslot and bytes_requested. 426 */ 427 struct pci_read_block { 428 struct pci_message message_type; 429 u32 block_id; 430 union win_slot_encoding wslot; 431 u32 bytes_requested; 432 } __packed; 433 434 struct pci_read_block_response { 435 struct vmpacket_descriptor hdr; 436 u32 status; 437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 438 } __packed; 439 440 /* 441 * Note: the VM must pass a valid block id, wslot and byte_count. 442 */ 443 struct pci_write_block { 444 struct pci_message message_type; 445 u32 block_id; 446 union win_slot_encoding wslot; 447 u32 byte_count; 448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 449 } __packed; 450 451 struct pci_dev_inval_block { 452 struct pci_incoming_message incoming; 453 union win_slot_encoding wslot; 454 u64 block_mask; 455 } __packed; 456 457 struct pci_dev_incoming { 458 struct pci_incoming_message incoming; 459 union win_slot_encoding wslot; 460 } __packed; 461 462 struct pci_eject_response { 463 struct pci_message message_type; 464 union win_slot_encoding wslot; 465 u32 status; 466 } __packed; 467 468 static int pci_ring_size = (4 * PAGE_SIZE); 469 470 /* 471 * Driver specific state. 472 */ 473 474 enum hv_pcibus_state { 475 hv_pcibus_init = 0, 476 hv_pcibus_probed, 477 hv_pcibus_installed, 478 hv_pcibus_removing, 479 hv_pcibus_maximum 480 }; 481 482 struct hv_pcibus_device { 483 #ifdef CONFIG_X86 484 struct pci_sysdata sysdata; 485 #elif defined(CONFIG_ARM64) 486 struct pci_config_window sysdata; 487 #endif 488 struct pci_host_bridge *bridge; 489 struct fwnode_handle *fwnode; 490 /* Protocol version negotiated with the host */ 491 enum pci_protocol_version_t protocol_version; 492 enum hv_pcibus_state state; 493 struct hv_device *hdev; 494 resource_size_t low_mmio_space; 495 resource_size_t high_mmio_space; 496 struct resource *mem_config; 497 struct resource *low_mmio_res; 498 struct resource *high_mmio_res; 499 struct completion *survey_event; 500 struct pci_bus *pci_bus; 501 spinlock_t config_lock; /* Avoid two threads writing index page */ 502 spinlock_t device_list_lock; /* Protect lists below */ 503 void __iomem *cfg_addr; 504 505 struct list_head children; 506 struct list_head dr_list; 507 508 struct msi_domain_info msi_info; 509 struct irq_domain *irq_domain; 510 511 struct workqueue_struct *wq; 512 513 /* Highest slot of child device with resources allocated */ 514 int wslot_res_allocated; 515 bool use_calls; /* Use hypercalls to access mmio cfg space */ 516 }; 517 518 /* 519 * Tracks "Device Relations" messages from the host, which must be both 520 * processed in order and deferred so that they don't run in the context 521 * of the incoming packet callback. 522 */ 523 struct hv_dr_work { 524 struct work_struct wrk; 525 struct hv_pcibus_device *bus; 526 }; 527 528 struct hv_pcidev_description { 529 u16 v_id; /* vendor ID */ 530 u16 d_id; /* device ID */ 531 u8 rev; 532 u8 prog_intf; 533 u8 subclass; 534 u8 base_class; 535 u32 subsystem_id; 536 union win_slot_encoding win_slot; 537 u32 ser; /* serial number */ 538 u32 flags; 539 u16 virtual_numa_node; 540 }; 541 542 struct hv_dr_state { 543 struct list_head list_entry; 544 u32 device_count; 545 struct hv_pcidev_description func[]; 546 }; 547 548 enum hv_pcichild_state { 549 hv_pcichild_init = 0, 550 hv_pcichild_requirements, 551 hv_pcichild_resourced, 552 hv_pcichild_ejecting, 553 hv_pcichild_maximum 554 }; 555 556 struct hv_pci_dev { 557 /* List protected by pci_rescan_remove_lock */ 558 struct list_head list_entry; 559 refcount_t refs; 560 enum hv_pcichild_state state; 561 struct pci_slot *pci_slot; 562 struct hv_pcidev_description desc; 563 bool reported_missing; 564 struct hv_pcibus_device *hbus; 565 struct work_struct wrk; 566 567 void (*block_invalidate)(void *context, u64 block_mask); 568 void *invalidate_context; 569 570 /* 571 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 572 * read it back, for each of the BAR offsets within config space. 573 */ 574 u32 probed_bar[PCI_STD_NUM_BARS]; 575 }; 576 577 struct hv_pci_compl { 578 struct completion host_event; 579 s32 completion_status; 580 }; 581 582 static void hv_pci_onchannelcallback(void *context); 583 584 #ifdef CONFIG_X86 585 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 586 #define FLOW_HANDLER handle_edge_irq 587 #define FLOW_NAME "edge" 588 589 static int hv_pci_irqchip_init(void) 590 { 591 return 0; 592 } 593 594 static struct irq_domain *hv_pci_get_root_domain(void) 595 { 596 return x86_vector_domain; 597 } 598 599 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 600 { 601 struct irq_cfg *cfg = irqd_cfg(data); 602 603 return cfg->vector; 604 } 605 606 #define hv_msi_prepare pci_msi_prepare 607 608 /** 609 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current 610 * affinity. 611 * @data: Describes the IRQ 612 * 613 * Build new a destination for the MSI and make a hypercall to 614 * update the Interrupt Redirection Table. "Device Logical ID" 615 * is built out of this PCI bus's instance GUID and the function 616 * number of the device. 617 */ 618 static void hv_arch_irq_unmask(struct irq_data *data) 619 { 620 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 621 struct hv_retarget_device_interrupt *params; 622 struct tran_int_desc *int_desc; 623 struct hv_pcibus_device *hbus; 624 const struct cpumask *dest; 625 cpumask_var_t tmp; 626 struct pci_bus *pbus; 627 struct pci_dev *pdev; 628 unsigned long flags; 629 u32 var_size = 0; 630 int cpu, nr_bank; 631 u64 res; 632 633 dest = irq_data_get_effective_affinity_mask(data); 634 pdev = msi_desc_to_pci_dev(msi_desc); 635 pbus = pdev->bus; 636 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 637 int_desc = data->chip_data; 638 639 local_irq_save(flags); 640 641 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 642 memset(params, 0, sizeof(*params)); 643 params->partition_id = HV_PARTITION_ID_SELF; 644 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 645 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 646 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 647 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 648 (hbus->hdev->dev_instance.b[4] << 16) | 649 (hbus->hdev->dev_instance.b[7] << 8) | 650 (hbus->hdev->dev_instance.b[6] & 0xf8) | 651 PCI_FUNC(pdev->devfn); 652 params->int_target.vector = hv_msi_get_int_vector(data); 653 654 /* 655 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by 656 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 657 * spurious interrupt storm. Not doing so does not seem to have a 658 * negative effect (yet?). 659 */ 660 661 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 662 /* 663 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 664 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 665 * with >64 VP support. 666 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 667 * is not sufficient for this hypercall. 668 */ 669 params->int_target.flags |= 670 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 671 672 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 673 res = 1; 674 goto out; 675 } 676 677 cpumask_and(tmp, dest, cpu_online_mask); 678 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 679 free_cpumask_var(tmp); 680 681 if (nr_bank <= 0) { 682 res = 1; 683 goto out; 684 } 685 686 /* 687 * var-sized hypercall, var-size starts after vp_mask (thus 688 * vp_set.format does not count, but vp_set.valid_bank_mask 689 * does). 690 */ 691 var_size = 1 + nr_bank; 692 } else { 693 for_each_cpu_and(cpu, dest, cpu_online_mask) { 694 params->int_target.vp_mask |= 695 (1ULL << hv_cpu_number_to_vp_number(cpu)); 696 } 697 } 698 699 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 700 params, NULL); 701 702 out: 703 local_irq_restore(flags); 704 705 /* 706 * During hibernation, when a CPU is offlined, the kernel tries 707 * to move the interrupt to the remaining CPUs that haven't 708 * been offlined yet. In this case, the below hv_do_hypercall() 709 * always fails since the vmbus channel has been closed: 710 * refer to cpu_disable_common() -> fixup_irqs() -> 711 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 712 * 713 * Suppress the error message for hibernation because the failure 714 * during hibernation does not matter (at this time all the devices 715 * have been frozen). Note: the correct affinity info is still updated 716 * into the irqdata data structure in migrate_one_irq() -> 717 * irq_do_set_affinity(), so later when the VM resumes, 718 * hv_pci_restore_msi_state() is able to correctly restore the 719 * interrupt with the correct affinity. 720 */ 721 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 722 dev_err(&hbus->hdev->device, 723 "%s() failed: %#llx", __func__, res); 724 } 725 #elif defined(CONFIG_ARM64) 726 /* 727 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 728 * of room at the start to allow for SPIs to be specified through ACPI and 729 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 730 */ 731 #define HV_PCI_MSI_SPI_START 64 732 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 733 #define DELIVERY_MODE 0 734 #define FLOW_HANDLER NULL 735 #define FLOW_NAME NULL 736 #define hv_msi_prepare NULL 737 738 struct hv_pci_chip_data { 739 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 740 struct mutex map_lock; 741 }; 742 743 /* Hyper-V vPCI MSI GIC IRQ domain */ 744 static struct irq_domain *hv_msi_gic_irq_domain; 745 746 /* Hyper-V PCI MSI IRQ chip */ 747 static struct irq_chip hv_arm64_msi_irq_chip = { 748 .name = "MSI", 749 .irq_set_affinity = irq_chip_set_affinity_parent, 750 .irq_eoi = irq_chip_eoi_parent, 751 .irq_mask = irq_chip_mask_parent, 752 .irq_unmask = irq_chip_unmask_parent 753 }; 754 755 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 756 { 757 return irqd->parent_data->hwirq; 758 } 759 760 /* 761 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 762 * the bitmap. 763 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 764 * the parent domain. 765 */ 766 static void hv_pci_vec_irq_free(struct irq_domain *domain, 767 unsigned int virq, 768 unsigned int nr_bm_irqs, 769 unsigned int nr_dom_irqs) 770 { 771 struct hv_pci_chip_data *chip_data = domain->host_data; 772 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 773 int first = d->hwirq - HV_PCI_MSI_SPI_START; 774 int i; 775 776 mutex_lock(&chip_data->map_lock); 777 bitmap_release_region(chip_data->spi_map, 778 first, 779 get_count_order(nr_bm_irqs)); 780 mutex_unlock(&chip_data->map_lock); 781 for (i = 0; i < nr_dom_irqs; i++) { 782 if (i) 783 d = irq_domain_get_irq_data(domain, virq + i); 784 irq_domain_reset_irq_data(d); 785 } 786 787 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 788 } 789 790 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 791 unsigned int virq, 792 unsigned int nr_irqs) 793 { 794 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 795 } 796 797 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 798 unsigned int nr_irqs, 799 irq_hw_number_t *hwirq) 800 { 801 struct hv_pci_chip_data *chip_data = domain->host_data; 802 int index; 803 804 /* Find and allocate region from the SPI bitmap */ 805 mutex_lock(&chip_data->map_lock); 806 index = bitmap_find_free_region(chip_data->spi_map, 807 HV_PCI_MSI_SPI_NR, 808 get_count_order(nr_irqs)); 809 mutex_unlock(&chip_data->map_lock); 810 if (index < 0) 811 return -ENOSPC; 812 813 *hwirq = index + HV_PCI_MSI_SPI_START; 814 815 return 0; 816 } 817 818 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 819 unsigned int virq, 820 irq_hw_number_t hwirq) 821 { 822 struct irq_fwspec fwspec; 823 struct irq_data *d; 824 int ret; 825 826 fwspec.fwnode = domain->parent->fwnode; 827 fwspec.param_count = 2; 828 fwspec.param[0] = hwirq; 829 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 830 831 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 832 if (ret) 833 return ret; 834 835 /* 836 * Since the interrupt specifier is not coming from ACPI or DT, the 837 * trigger type will need to be set explicitly. Otherwise, it will be 838 * set to whatever is in the GIC configuration. 839 */ 840 d = irq_domain_get_irq_data(domain->parent, virq); 841 842 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 843 } 844 845 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 846 unsigned int virq, unsigned int nr_irqs, 847 void *args) 848 { 849 irq_hw_number_t hwirq; 850 unsigned int i; 851 int ret; 852 853 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 854 if (ret) 855 return ret; 856 857 for (i = 0; i < nr_irqs; i++) { 858 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 859 hwirq + i); 860 if (ret) { 861 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 862 return ret; 863 } 864 865 irq_domain_set_hwirq_and_chip(domain, virq + i, 866 hwirq + i, 867 &hv_arm64_msi_irq_chip, 868 domain->host_data); 869 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 870 } 871 872 return 0; 873 } 874 875 /* 876 * Pick the first cpu as the irq affinity that can be temporarily used for 877 * composing MSI from the hypervisor. GIC will eventually set the right 878 * affinity for the irq and the 'unmask' will retarget the interrupt to that 879 * cpu. 880 */ 881 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 882 struct irq_data *irqd, bool reserve) 883 { 884 int cpu = cpumask_first(cpu_present_mask); 885 886 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 887 888 return 0; 889 } 890 891 static const struct irq_domain_ops hv_pci_domain_ops = { 892 .alloc = hv_pci_vec_irq_domain_alloc, 893 .free = hv_pci_vec_irq_domain_free, 894 .activate = hv_pci_vec_irq_domain_activate, 895 }; 896 897 static int hv_pci_irqchip_init(void) 898 { 899 static struct hv_pci_chip_data *chip_data; 900 struct fwnode_handle *fn = NULL; 901 int ret = -ENOMEM; 902 903 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 904 if (!chip_data) 905 return ret; 906 907 mutex_init(&chip_data->map_lock); 908 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 909 if (!fn) 910 goto free_chip; 911 912 /* 913 * IRQ domain once enabled, should not be removed since there is no 914 * way to ensure that all the corresponding devices are also gone and 915 * no interrupts will be generated. 916 */ 917 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, 918 fn, &hv_pci_domain_ops, 919 chip_data); 920 921 if (!hv_msi_gic_irq_domain) { 922 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 923 goto free_chip; 924 } 925 926 return 0; 927 928 free_chip: 929 kfree(chip_data); 930 if (fn) 931 irq_domain_free_fwnode(fn); 932 933 return ret; 934 } 935 936 static struct irq_domain *hv_pci_get_root_domain(void) 937 { 938 return hv_msi_gic_irq_domain; 939 } 940 941 /* 942 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 943 * registers which Hyper-V already supports, so no hypercall needed. 944 */ 945 static void hv_arch_irq_unmask(struct irq_data *data) { } 946 #endif /* CONFIG_ARM64 */ 947 948 /** 949 * hv_pci_generic_compl() - Invoked for a completion packet 950 * @context: Set up by the sender of the packet. 951 * @resp: The response packet 952 * @resp_packet_size: Size in bytes of the packet 953 * 954 * This function is used to trigger an event and report status 955 * for any message for which the completion packet contains a 956 * status and nothing else. 957 */ 958 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 959 int resp_packet_size) 960 { 961 struct hv_pci_compl *comp_pkt = context; 962 963 comp_pkt->completion_status = resp->status; 964 complete(&comp_pkt->host_event); 965 } 966 967 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 968 u32 wslot); 969 970 static void get_pcichild(struct hv_pci_dev *hpdev) 971 { 972 refcount_inc(&hpdev->refs); 973 } 974 975 static void put_pcichild(struct hv_pci_dev *hpdev) 976 { 977 if (refcount_dec_and_test(&hpdev->refs)) 978 kfree(hpdev); 979 } 980 981 /* 982 * There is no good way to get notified from vmbus_onoffer_rescind(), 983 * so let's use polling here, since this is not a hot path. 984 */ 985 static int wait_for_response(struct hv_device *hdev, 986 struct completion *comp) 987 { 988 while (true) { 989 if (hdev->channel->rescind) { 990 dev_warn_once(&hdev->device, "The device is gone.\n"); 991 return -ENODEV; 992 } 993 994 if (wait_for_completion_timeout(comp, HZ / 10)) 995 break; 996 } 997 998 return 0; 999 } 1000 1001 /** 1002 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1003 * @devfn: The Linux representation of PCI slot 1004 * 1005 * Windows uses a slightly different representation of PCI slot. 1006 * 1007 * Return: The Windows representation 1008 */ 1009 static u32 devfn_to_wslot(int devfn) 1010 { 1011 union win_slot_encoding wslot; 1012 1013 wslot.slot = 0; 1014 wslot.bits.dev = PCI_SLOT(devfn); 1015 wslot.bits.func = PCI_FUNC(devfn); 1016 1017 return wslot.slot; 1018 } 1019 1020 /** 1021 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1022 * @wslot: The Windows representation of PCI slot 1023 * 1024 * Windows uses a slightly different representation of PCI slot. 1025 * 1026 * Return: The Linux representation 1027 */ 1028 static int wslot_to_devfn(u32 wslot) 1029 { 1030 union win_slot_encoding slot_no; 1031 1032 slot_no.slot = wslot; 1033 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1034 } 1035 1036 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1037 { 1038 struct hv_mmio_read_input *in; 1039 struct hv_mmio_read_output *out; 1040 u64 ret; 1041 1042 /* 1043 * Must be called with interrupts disabled so it is safe 1044 * to use the per-cpu input argument page. Use it for 1045 * both input and output. 1046 */ 1047 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1048 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1049 in->gpa = gpa; 1050 in->size = size; 1051 1052 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1053 if (hv_result_success(ret)) { 1054 switch (size) { 1055 case 1: 1056 *val = *(u8 *)(out->data); 1057 break; 1058 case 2: 1059 *val = *(u16 *)(out->data); 1060 break; 1061 default: 1062 *val = *(u32 *)(out->data); 1063 break; 1064 } 1065 } else 1066 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1067 ret, gpa, size); 1068 } 1069 1070 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1071 { 1072 struct hv_mmio_write_input *in; 1073 u64 ret; 1074 1075 /* 1076 * Must be called with interrupts disabled so it is safe 1077 * to use the per-cpu input argument memory. 1078 */ 1079 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1080 in->gpa = gpa; 1081 in->size = size; 1082 switch (size) { 1083 case 1: 1084 *(u8 *)(in->data) = val; 1085 break; 1086 case 2: 1087 *(u16 *)(in->data) = val; 1088 break; 1089 default: 1090 *(u32 *)(in->data) = val; 1091 break; 1092 } 1093 1094 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1095 if (!hv_result_success(ret)) 1096 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1097 ret, gpa, size); 1098 } 1099 1100 /* 1101 * PCI Configuration Space for these root PCI buses is implemented as a pair 1102 * of pages in memory-mapped I/O space. Writing to the first page chooses 1103 * the PCI function being written or read. Once the first page has been 1104 * written to, the following page maps in the entire configuration space of 1105 * the function. 1106 */ 1107 1108 /** 1109 * _hv_pcifront_read_config() - Internal PCI config read 1110 * @hpdev: The PCI driver's representation of the device 1111 * @where: Offset within config space 1112 * @size: Size of the transfer 1113 * @val: Pointer to the buffer receiving the data 1114 */ 1115 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1116 int size, u32 *val) 1117 { 1118 struct hv_pcibus_device *hbus = hpdev->hbus; 1119 struct device *dev = &hbus->hdev->device; 1120 int offset = where + CFG_PAGE_OFFSET; 1121 unsigned long flags; 1122 1123 /* 1124 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1125 */ 1126 if (where + size <= PCI_COMMAND) { 1127 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1128 } else if (where >= PCI_CLASS_REVISION && where + size <= 1129 PCI_CACHE_LINE_SIZE) { 1130 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1131 PCI_CLASS_REVISION, size); 1132 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1133 PCI_ROM_ADDRESS) { 1134 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1135 PCI_SUBSYSTEM_VENDOR_ID, size); 1136 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1137 PCI_CAPABILITY_LIST) { 1138 /* ROM BARs are unimplemented */ 1139 *val = 0; 1140 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 1141 PCI_INTERRUPT_PIN) { 1142 /* 1143 * Interrupt Line and Interrupt PIN are hard-wired to zero 1144 * because this front-end only supports message-signaled 1145 * interrupts. 1146 */ 1147 *val = 0; 1148 } else if (where + size <= CFG_PAGE_SIZE) { 1149 1150 spin_lock_irqsave(&hbus->config_lock, flags); 1151 if (hbus->use_calls) { 1152 phys_addr_t addr = hbus->mem_config->start + offset; 1153 1154 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1155 hpdev->desc.win_slot.slot); 1156 hv_pci_read_mmio(dev, addr, size, val); 1157 } else { 1158 void __iomem *addr = hbus->cfg_addr + offset; 1159 1160 /* Choose the function to be read. (See comment above) */ 1161 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1162 /* Make sure the function was chosen before reading. */ 1163 mb(); 1164 /* Read from that function's config space. */ 1165 switch (size) { 1166 case 1: 1167 *val = readb(addr); 1168 break; 1169 case 2: 1170 *val = readw(addr); 1171 break; 1172 default: 1173 *val = readl(addr); 1174 break; 1175 } 1176 /* 1177 * Make sure the read was done before we release the 1178 * spinlock allowing consecutive reads/writes. 1179 */ 1180 mb(); 1181 } 1182 spin_unlock_irqrestore(&hbus->config_lock, flags); 1183 } else { 1184 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1185 } 1186 } 1187 1188 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1189 { 1190 struct hv_pcibus_device *hbus = hpdev->hbus; 1191 struct device *dev = &hbus->hdev->device; 1192 u32 val; 1193 u16 ret; 1194 unsigned long flags; 1195 1196 spin_lock_irqsave(&hbus->config_lock, flags); 1197 1198 if (hbus->use_calls) { 1199 phys_addr_t addr = hbus->mem_config->start + 1200 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1201 1202 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1203 hpdev->desc.win_slot.slot); 1204 hv_pci_read_mmio(dev, addr, 2, &val); 1205 ret = val; /* Truncates to 16 bits */ 1206 } else { 1207 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1208 PCI_VENDOR_ID; 1209 /* Choose the function to be read. (See comment above) */ 1210 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1211 /* Make sure the function was chosen before we start reading. */ 1212 mb(); 1213 /* Read from that function's config space. */ 1214 ret = readw(addr); 1215 /* 1216 * mb() is not required here, because the 1217 * spin_unlock_irqrestore() is a barrier. 1218 */ 1219 } 1220 1221 spin_unlock_irqrestore(&hbus->config_lock, flags); 1222 1223 return ret; 1224 } 1225 1226 /** 1227 * _hv_pcifront_write_config() - Internal PCI config write 1228 * @hpdev: The PCI driver's representation of the device 1229 * @where: Offset within config space 1230 * @size: Size of the transfer 1231 * @val: The data being transferred 1232 */ 1233 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1234 int size, u32 val) 1235 { 1236 struct hv_pcibus_device *hbus = hpdev->hbus; 1237 struct device *dev = &hbus->hdev->device; 1238 int offset = where + CFG_PAGE_OFFSET; 1239 unsigned long flags; 1240 1241 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1242 where + size <= PCI_CAPABILITY_LIST) { 1243 /* SSIDs and ROM BARs are read-only */ 1244 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1245 spin_lock_irqsave(&hbus->config_lock, flags); 1246 1247 if (hbus->use_calls) { 1248 phys_addr_t addr = hbus->mem_config->start + offset; 1249 1250 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1251 hpdev->desc.win_slot.slot); 1252 hv_pci_write_mmio(dev, addr, size, val); 1253 } else { 1254 void __iomem *addr = hbus->cfg_addr + offset; 1255 1256 /* Choose the function to write. (See comment above) */ 1257 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1258 /* Make sure the function was chosen before writing. */ 1259 wmb(); 1260 /* Write to that function's config space. */ 1261 switch (size) { 1262 case 1: 1263 writeb(val, addr); 1264 break; 1265 case 2: 1266 writew(val, addr); 1267 break; 1268 default: 1269 writel(val, addr); 1270 break; 1271 } 1272 /* 1273 * Make sure the write was done before we release the 1274 * spinlock allowing consecutive reads/writes. 1275 */ 1276 mb(); 1277 } 1278 spin_unlock_irqrestore(&hbus->config_lock, flags); 1279 } else { 1280 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1281 } 1282 } 1283 1284 /** 1285 * hv_pcifront_read_config() - Read configuration space 1286 * @bus: PCI Bus structure 1287 * @devfn: Device/function 1288 * @where: Offset from base 1289 * @size: Byte/word/dword 1290 * @val: Value to be read 1291 * 1292 * Return: PCIBIOS_SUCCESSFUL on success 1293 * PCIBIOS_DEVICE_NOT_FOUND on failure 1294 */ 1295 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1296 int where, int size, u32 *val) 1297 { 1298 struct hv_pcibus_device *hbus = 1299 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1300 struct hv_pci_dev *hpdev; 1301 1302 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1303 if (!hpdev) 1304 return PCIBIOS_DEVICE_NOT_FOUND; 1305 1306 _hv_pcifront_read_config(hpdev, where, size, val); 1307 1308 put_pcichild(hpdev); 1309 return PCIBIOS_SUCCESSFUL; 1310 } 1311 1312 /** 1313 * hv_pcifront_write_config() - Write configuration space 1314 * @bus: PCI Bus structure 1315 * @devfn: Device/function 1316 * @where: Offset from base 1317 * @size: Byte/word/dword 1318 * @val: Value to be written to device 1319 * 1320 * Return: PCIBIOS_SUCCESSFUL on success 1321 * PCIBIOS_DEVICE_NOT_FOUND on failure 1322 */ 1323 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1324 int where, int size, u32 val) 1325 { 1326 struct hv_pcibus_device *hbus = 1327 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1328 struct hv_pci_dev *hpdev; 1329 1330 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1331 if (!hpdev) 1332 return PCIBIOS_DEVICE_NOT_FOUND; 1333 1334 _hv_pcifront_write_config(hpdev, where, size, val); 1335 1336 put_pcichild(hpdev); 1337 return PCIBIOS_SUCCESSFUL; 1338 } 1339 1340 /* PCIe operations */ 1341 static struct pci_ops hv_pcifront_ops = { 1342 .read = hv_pcifront_read_config, 1343 .write = hv_pcifront_write_config, 1344 }; 1345 1346 /* 1347 * Paravirtual backchannel 1348 * 1349 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1350 * communication between a VF driver and a PF driver. These 1351 * "configuration blocks" are similar in concept to PCI configuration space, 1352 * but instead of doing reads and writes in 32-bit chunks through a very slow 1353 * path, packets of up to 128 bytes can be sent or received asynchronously. 1354 * 1355 * Nearly every SR-IOV device contains just such a communications channel in 1356 * hardware, so using this one in software is usually optional. Using the 1357 * software channel, however, allows driver implementers to leverage software 1358 * tools that fuzz the communications channel looking for vulnerabilities. 1359 * 1360 * The usage model for these packets puts the responsibility for reading or 1361 * writing on the VF driver. The VF driver sends a read or a write packet, 1362 * indicating which "block" is being referred to by number. 1363 * 1364 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1365 * more of the first 64 blocks. This invalidation is delivered via a callback 1366 * supplied by the VF driver by this driver. 1367 * 1368 * No protocol is implied, except that supplied by the PF and VF drivers. 1369 */ 1370 1371 struct hv_read_config_compl { 1372 struct hv_pci_compl comp_pkt; 1373 void *buf; 1374 unsigned int len; 1375 unsigned int bytes_returned; 1376 }; 1377 1378 /** 1379 * hv_pci_read_config_compl() - Invoked when a response packet 1380 * for a read config block operation arrives. 1381 * @context: Identifies the read config operation 1382 * @resp: The response packet itself 1383 * @resp_packet_size: Size in bytes of the response packet 1384 */ 1385 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1386 int resp_packet_size) 1387 { 1388 struct hv_read_config_compl *comp = context; 1389 struct pci_read_block_response *read_resp = 1390 (struct pci_read_block_response *)resp; 1391 unsigned int data_len, hdr_len; 1392 1393 hdr_len = offsetof(struct pci_read_block_response, bytes); 1394 if (resp_packet_size < hdr_len) { 1395 comp->comp_pkt.completion_status = -1; 1396 goto out; 1397 } 1398 1399 data_len = resp_packet_size - hdr_len; 1400 if (data_len > 0 && read_resp->status == 0) { 1401 comp->bytes_returned = min(comp->len, data_len); 1402 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1403 } else { 1404 comp->bytes_returned = 0; 1405 } 1406 1407 comp->comp_pkt.completion_status = read_resp->status; 1408 out: 1409 complete(&comp->comp_pkt.host_event); 1410 } 1411 1412 /** 1413 * hv_read_config_block() - Sends a read config block request to 1414 * the back-end driver running in the Hyper-V parent partition. 1415 * @pdev: The PCI driver's representation for this device. 1416 * @buf: Buffer into which the config block will be copied. 1417 * @len: Size in bytes of buf. 1418 * @block_id: Identifies the config block which has been requested. 1419 * @bytes_returned: Size which came back from the back-end driver. 1420 * 1421 * Return: 0 on success, -errno on failure 1422 */ 1423 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1424 unsigned int len, unsigned int block_id, 1425 unsigned int *bytes_returned) 1426 { 1427 struct hv_pcibus_device *hbus = 1428 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1429 sysdata); 1430 struct { 1431 struct pci_packet pkt; 1432 char buf[sizeof(struct pci_read_block)]; 1433 } pkt; 1434 struct hv_read_config_compl comp_pkt; 1435 struct pci_read_block *read_blk; 1436 int ret; 1437 1438 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1439 return -EINVAL; 1440 1441 init_completion(&comp_pkt.comp_pkt.host_event); 1442 comp_pkt.buf = buf; 1443 comp_pkt.len = len; 1444 1445 memset(&pkt, 0, sizeof(pkt)); 1446 pkt.pkt.completion_func = hv_pci_read_config_compl; 1447 pkt.pkt.compl_ctxt = &comp_pkt; 1448 read_blk = (struct pci_read_block *)&pkt.pkt.message; 1449 read_blk->message_type.type = PCI_READ_BLOCK; 1450 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1451 read_blk->block_id = block_id; 1452 read_blk->bytes_requested = len; 1453 1454 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1455 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1456 VM_PKT_DATA_INBAND, 1457 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1458 if (ret) 1459 return ret; 1460 1461 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1462 if (ret) 1463 return ret; 1464 1465 if (comp_pkt.comp_pkt.completion_status != 0 || 1466 comp_pkt.bytes_returned == 0) { 1467 dev_err(&hbus->hdev->device, 1468 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1469 comp_pkt.comp_pkt.completion_status, 1470 comp_pkt.bytes_returned); 1471 return -EIO; 1472 } 1473 1474 *bytes_returned = comp_pkt.bytes_returned; 1475 return 0; 1476 } 1477 1478 /** 1479 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1480 * config block operation arrives. 1481 * @context: Identifies the write config operation 1482 * @resp: The response packet itself 1483 * @resp_packet_size: Size in bytes of the response packet 1484 */ 1485 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1486 int resp_packet_size) 1487 { 1488 struct hv_pci_compl *comp_pkt = context; 1489 1490 comp_pkt->completion_status = resp->status; 1491 complete(&comp_pkt->host_event); 1492 } 1493 1494 /** 1495 * hv_write_config_block() - Sends a write config block request to the 1496 * back-end driver running in the Hyper-V parent partition. 1497 * @pdev: The PCI driver's representation for this device. 1498 * @buf: Buffer from which the config block will be copied. 1499 * @len: Size in bytes of buf. 1500 * @block_id: Identifies the config block which is being written. 1501 * 1502 * Return: 0 on success, -errno on failure 1503 */ 1504 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1505 unsigned int len, unsigned int block_id) 1506 { 1507 struct hv_pcibus_device *hbus = 1508 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1509 sysdata); 1510 struct { 1511 struct pci_packet pkt; 1512 char buf[sizeof(struct pci_write_block)]; 1513 u32 reserved; 1514 } pkt; 1515 struct hv_pci_compl comp_pkt; 1516 struct pci_write_block *write_blk; 1517 u32 pkt_size; 1518 int ret; 1519 1520 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1521 return -EINVAL; 1522 1523 init_completion(&comp_pkt.host_event); 1524 1525 memset(&pkt, 0, sizeof(pkt)); 1526 pkt.pkt.completion_func = hv_pci_write_config_compl; 1527 pkt.pkt.compl_ctxt = &comp_pkt; 1528 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1529 write_blk->message_type.type = PCI_WRITE_BLOCK; 1530 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1531 write_blk->block_id = block_id; 1532 write_blk->byte_count = len; 1533 memcpy(write_blk->bytes, buf, len); 1534 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1535 /* 1536 * This quirk is required on some hosts shipped around 2018, because 1537 * these hosts don't check the pkt_size correctly (new hosts have been 1538 * fixed since early 2019). The quirk is also safe on very old hosts 1539 * and new hosts, because, on them, what really matters is the length 1540 * specified in write_blk->byte_count. 1541 */ 1542 pkt_size += sizeof(pkt.reserved); 1543 1544 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1545 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1546 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1547 if (ret) 1548 return ret; 1549 1550 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1551 if (ret) 1552 return ret; 1553 1554 if (comp_pkt.completion_status != 0) { 1555 dev_err(&hbus->hdev->device, 1556 "Write Config Block failed: 0x%x\n", 1557 comp_pkt.completion_status); 1558 return -EIO; 1559 } 1560 1561 return 0; 1562 } 1563 1564 /** 1565 * hv_register_block_invalidate() - Invoked when a config block invalidation 1566 * arrives from the back-end driver. 1567 * @pdev: The PCI driver's representation for this device. 1568 * @context: Identifies the device. 1569 * @block_invalidate: Identifies all of the blocks being invalidated. 1570 * 1571 * Return: 0 on success, -errno on failure 1572 */ 1573 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1574 void (*block_invalidate)(void *context, 1575 u64 block_mask)) 1576 { 1577 struct hv_pcibus_device *hbus = 1578 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1579 sysdata); 1580 struct hv_pci_dev *hpdev; 1581 1582 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1583 if (!hpdev) 1584 return -ENODEV; 1585 1586 hpdev->block_invalidate = block_invalidate; 1587 hpdev->invalidate_context = context; 1588 1589 put_pcichild(hpdev); 1590 return 0; 1591 1592 } 1593 1594 /* Interrupt management hooks */ 1595 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1596 struct tran_int_desc *int_desc) 1597 { 1598 struct pci_delete_interrupt *int_pkt; 1599 struct { 1600 struct pci_packet pkt; 1601 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1602 } ctxt; 1603 1604 if (!int_desc->vector_count) { 1605 kfree(int_desc); 1606 return; 1607 } 1608 memset(&ctxt, 0, sizeof(ctxt)); 1609 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1610 int_pkt->message_type.type = 1611 PCI_DELETE_INTERRUPT_MESSAGE; 1612 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1613 int_pkt->int_desc = *int_desc; 1614 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1615 0, VM_PKT_DATA_INBAND, 0); 1616 kfree(int_desc); 1617 } 1618 1619 /** 1620 * hv_msi_free() - Free the MSI. 1621 * @domain: The interrupt domain pointer 1622 * @info: Extra MSI-related context 1623 * @irq: Identifies the IRQ. 1624 * 1625 * The Hyper-V parent partition and hypervisor are tracking the 1626 * messages that are in use, keeping the interrupt redirection 1627 * table up to date. This callback sends a message that frees 1628 * the IRT entry and related tracking nonsense. 1629 */ 1630 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1631 unsigned int irq) 1632 { 1633 struct hv_pcibus_device *hbus; 1634 struct hv_pci_dev *hpdev; 1635 struct pci_dev *pdev; 1636 struct tran_int_desc *int_desc; 1637 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1638 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1639 1640 pdev = msi_desc_to_pci_dev(msi); 1641 hbus = info->data; 1642 int_desc = irq_data_get_irq_chip_data(irq_data); 1643 if (!int_desc) 1644 return; 1645 1646 irq_data->chip_data = NULL; 1647 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1648 if (!hpdev) { 1649 kfree(int_desc); 1650 return; 1651 } 1652 1653 hv_int_desc_free(hpdev, int_desc); 1654 put_pcichild(hpdev); 1655 } 1656 1657 static void hv_irq_mask(struct irq_data *data) 1658 { 1659 pci_msi_mask_irq(data); 1660 if (data->parent_data->chip->irq_mask) 1661 irq_chip_mask_parent(data); 1662 } 1663 1664 static void hv_irq_unmask(struct irq_data *data) 1665 { 1666 hv_arch_irq_unmask(data); 1667 1668 if (data->parent_data->chip->irq_unmask) 1669 irq_chip_unmask_parent(data); 1670 pci_msi_unmask_irq(data); 1671 } 1672 1673 struct compose_comp_ctxt { 1674 struct hv_pci_compl comp_pkt; 1675 struct tran_int_desc int_desc; 1676 }; 1677 1678 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1679 int resp_packet_size) 1680 { 1681 struct compose_comp_ctxt *comp_pkt = context; 1682 struct pci_create_int_response *int_resp = 1683 (struct pci_create_int_response *)resp; 1684 1685 if (resp_packet_size < sizeof(*int_resp)) { 1686 comp_pkt->comp_pkt.completion_status = -1; 1687 goto out; 1688 } 1689 comp_pkt->comp_pkt.completion_status = resp->status; 1690 comp_pkt->int_desc = int_resp->int_desc; 1691 out: 1692 complete(&comp_pkt->comp_pkt.host_event); 1693 } 1694 1695 static u32 hv_compose_msi_req_v1( 1696 struct pci_create_interrupt *int_pkt, 1697 u32 slot, u8 vector, u16 vector_count) 1698 { 1699 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1700 int_pkt->wslot.slot = slot; 1701 int_pkt->int_desc.vector = vector; 1702 int_pkt->int_desc.vector_count = vector_count; 1703 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1704 1705 /* 1706 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1707 * hv_irq_unmask(). 1708 */ 1709 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1710 1711 return sizeof(*int_pkt); 1712 } 1713 1714 /* 1715 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1716 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1717 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1718 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1719 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1720 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1721 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1722 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1723 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1724 * to spread out the pCPUs that it selects. 1725 * 1726 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1727 * to always return the same dummy vCPU, because a second call to 1728 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1729 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1730 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1731 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1732 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1733 * the same pCPU, even though the vCPUs will be spread out by later calls 1734 * to hv_irq_unmask(), but that is the best we can do now. 1735 * 1736 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1737 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1738 * enhancement is planned for a future version. With that enhancement, the 1739 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1740 * device will be spread across multiple pCPUs. 1741 */ 1742 1743 /* 1744 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1745 * by subsequent retarget in hv_irq_unmask(). 1746 */ 1747 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1748 { 1749 return cpumask_first_and(affinity, cpu_online_mask); 1750 } 1751 1752 /* 1753 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1754 */ 1755 static int hv_compose_multi_msi_req_get_cpu(void) 1756 { 1757 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1758 1759 /* -1 means starting with CPU 0 */ 1760 static int cpu_next = -1; 1761 1762 unsigned long flags; 1763 int cpu; 1764 1765 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1766 1767 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids, 1768 false); 1769 cpu = cpu_next; 1770 1771 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1772 1773 return cpu; 1774 } 1775 1776 static u32 hv_compose_msi_req_v2( 1777 struct pci_create_interrupt2 *int_pkt, int cpu, 1778 u32 slot, u8 vector, u16 vector_count) 1779 { 1780 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1781 int_pkt->wslot.slot = slot; 1782 int_pkt->int_desc.vector = vector; 1783 int_pkt->int_desc.vector_count = vector_count; 1784 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1785 int_pkt->int_desc.processor_array[0] = 1786 hv_cpu_number_to_vp_number(cpu); 1787 int_pkt->int_desc.processor_count = 1; 1788 1789 return sizeof(*int_pkt); 1790 } 1791 1792 static u32 hv_compose_msi_req_v3( 1793 struct pci_create_interrupt3 *int_pkt, int cpu, 1794 u32 slot, u32 vector, u16 vector_count) 1795 { 1796 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1797 int_pkt->wslot.slot = slot; 1798 int_pkt->int_desc.vector = vector; 1799 int_pkt->int_desc.reserved = 0; 1800 int_pkt->int_desc.vector_count = vector_count; 1801 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1802 int_pkt->int_desc.processor_array[0] = 1803 hv_cpu_number_to_vp_number(cpu); 1804 int_pkt->int_desc.processor_count = 1; 1805 1806 return sizeof(*int_pkt); 1807 } 1808 1809 /** 1810 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1811 * @data: Everything about this MSI 1812 * @msg: Buffer that is filled in by this function 1813 * 1814 * This function unpacks the IRQ looking for target CPU set, IDT 1815 * vector and mode and sends a message to the parent partition 1816 * asking for a mapping for that tuple in this partition. The 1817 * response supplies a data value and address to which that data 1818 * should be written to trigger that interrupt. 1819 */ 1820 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1821 { 1822 struct hv_pcibus_device *hbus; 1823 struct vmbus_channel *channel; 1824 struct hv_pci_dev *hpdev; 1825 struct pci_bus *pbus; 1826 struct pci_dev *pdev; 1827 const struct cpumask *dest; 1828 struct compose_comp_ctxt comp; 1829 struct tran_int_desc *int_desc; 1830 struct msi_desc *msi_desc; 1831 /* 1832 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1833 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1834 */ 1835 u16 vector_count; 1836 u32 vector; 1837 struct { 1838 struct pci_packet pci_pkt; 1839 union { 1840 struct pci_create_interrupt v1; 1841 struct pci_create_interrupt2 v2; 1842 struct pci_create_interrupt3 v3; 1843 } int_pkts; 1844 } __packed ctxt; 1845 bool multi_msi; 1846 u64 trans_id; 1847 u32 size; 1848 int ret; 1849 int cpu; 1850 1851 msi_desc = irq_data_get_msi_desc(data); 1852 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1853 msi_desc->nvec_used > 1; 1854 1855 /* Reuse the previous allocation */ 1856 if (data->chip_data && multi_msi) { 1857 int_desc = data->chip_data; 1858 msg->address_hi = int_desc->address >> 32; 1859 msg->address_lo = int_desc->address & 0xffffffff; 1860 msg->data = int_desc->data; 1861 return; 1862 } 1863 1864 pdev = msi_desc_to_pci_dev(msi_desc); 1865 dest = irq_data_get_effective_affinity_mask(data); 1866 pbus = pdev->bus; 1867 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1868 channel = hbus->hdev->channel; 1869 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1870 if (!hpdev) 1871 goto return_null_message; 1872 1873 /* Free any previous message that might have already been composed. */ 1874 if (data->chip_data && !multi_msi) { 1875 int_desc = data->chip_data; 1876 data->chip_data = NULL; 1877 hv_int_desc_free(hpdev, int_desc); 1878 } 1879 1880 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1881 if (!int_desc) 1882 goto drop_reference; 1883 1884 if (multi_msi) { 1885 /* 1886 * If this is not the first MSI of Multi MSI, we already have 1887 * a mapping. Can exit early. 1888 */ 1889 if (msi_desc->irq != data->irq) { 1890 data->chip_data = int_desc; 1891 int_desc->address = msi_desc->msg.address_lo | 1892 (u64)msi_desc->msg.address_hi << 32; 1893 int_desc->data = msi_desc->msg.data + 1894 (data->irq - msi_desc->irq); 1895 msg->address_hi = msi_desc->msg.address_hi; 1896 msg->address_lo = msi_desc->msg.address_lo; 1897 msg->data = int_desc->data; 1898 put_pcichild(hpdev); 1899 return; 1900 } 1901 /* 1902 * The vector we select here is a dummy value. The correct 1903 * value gets sent to the hypervisor in unmask(). This needs 1904 * to be aligned with the count, and also not zero. Multi-msi 1905 * is powers of 2 up to 32, so 32 will always work here. 1906 */ 1907 vector = 32; 1908 vector_count = msi_desc->nvec_used; 1909 cpu = hv_compose_multi_msi_req_get_cpu(); 1910 } else { 1911 vector = hv_msi_get_int_vector(data); 1912 vector_count = 1; 1913 cpu = hv_compose_msi_req_get_cpu(dest); 1914 } 1915 1916 /* 1917 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1918 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1919 * for better readability. 1920 */ 1921 memset(&ctxt, 0, sizeof(ctxt)); 1922 init_completion(&comp.comp_pkt.host_event); 1923 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1924 ctxt.pci_pkt.compl_ctxt = ∁ 1925 1926 switch (hbus->protocol_version) { 1927 case PCI_PROTOCOL_VERSION_1_1: 1928 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1929 hpdev->desc.win_slot.slot, 1930 (u8)vector, 1931 vector_count); 1932 break; 1933 1934 case PCI_PROTOCOL_VERSION_1_2: 1935 case PCI_PROTOCOL_VERSION_1_3: 1936 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1937 cpu, 1938 hpdev->desc.win_slot.slot, 1939 (u8)vector, 1940 vector_count); 1941 break; 1942 1943 case PCI_PROTOCOL_VERSION_1_4: 1944 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 1945 cpu, 1946 hpdev->desc.win_slot.slot, 1947 vector, 1948 vector_count); 1949 break; 1950 1951 default: 1952 /* As we only negotiate protocol versions known to this driver, 1953 * this path should never hit. However, this is it not a hot 1954 * path so we print a message to aid future updates. 1955 */ 1956 dev_err(&hbus->hdev->device, 1957 "Unexpected vPCI protocol, update driver."); 1958 goto free_int_desc; 1959 } 1960 1961 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1962 size, (unsigned long)&ctxt.pci_pkt, 1963 &trans_id, VM_PKT_DATA_INBAND, 1964 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1965 if (ret) { 1966 dev_err(&hbus->hdev->device, 1967 "Sending request for interrupt failed: 0x%x", 1968 comp.comp_pkt.completion_status); 1969 goto free_int_desc; 1970 } 1971 1972 /* 1973 * Prevents hv_pci_onchannelcallback() from running concurrently 1974 * in the tasklet. 1975 */ 1976 tasklet_disable_in_atomic(&channel->callback_event); 1977 1978 /* 1979 * Since this function is called with IRQ locks held, can't 1980 * do normal wait for completion; instead poll. 1981 */ 1982 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1983 unsigned long flags; 1984 1985 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1986 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1987 dev_err_once(&hbus->hdev->device, 1988 "the device has gone\n"); 1989 goto enable_tasklet; 1990 } 1991 1992 /* 1993 * Make sure that the ring buffer data structure doesn't get 1994 * freed while we dereference the ring buffer pointer. Test 1995 * for the channel's onchannel_callback being NULL within a 1996 * sched_lock critical section. See also the inline comments 1997 * in vmbus_reset_channel_cb(). 1998 */ 1999 spin_lock_irqsave(&channel->sched_lock, flags); 2000 if (unlikely(channel->onchannel_callback == NULL)) { 2001 spin_unlock_irqrestore(&channel->sched_lock, flags); 2002 goto enable_tasklet; 2003 } 2004 hv_pci_onchannelcallback(hbus); 2005 spin_unlock_irqrestore(&channel->sched_lock, flags); 2006 2007 if (hpdev->state == hv_pcichild_ejecting) { 2008 dev_err_once(&hbus->hdev->device, 2009 "the device is being ejected\n"); 2010 goto enable_tasklet; 2011 } 2012 2013 udelay(100); 2014 } 2015 2016 tasklet_enable(&channel->callback_event); 2017 2018 if (comp.comp_pkt.completion_status < 0) { 2019 dev_err(&hbus->hdev->device, 2020 "Request for interrupt failed: 0x%x", 2021 comp.comp_pkt.completion_status); 2022 goto free_int_desc; 2023 } 2024 2025 /* 2026 * Record the assignment so that this can be unwound later. Using 2027 * irq_set_chip_data() here would be appropriate, but the lock it takes 2028 * is already held. 2029 */ 2030 *int_desc = comp.int_desc; 2031 data->chip_data = int_desc; 2032 2033 /* Pass up the result. */ 2034 msg->address_hi = comp.int_desc.address >> 32; 2035 msg->address_lo = comp.int_desc.address & 0xffffffff; 2036 msg->data = comp.int_desc.data; 2037 2038 put_pcichild(hpdev); 2039 return; 2040 2041 enable_tasklet: 2042 tasklet_enable(&channel->callback_event); 2043 /* 2044 * The completion packet on the stack becomes invalid after 'return'; 2045 * remove the ID from the VMbus requestor if the identifier is still 2046 * mapped to/associated with the packet. (The identifier could have 2047 * been 're-used', i.e., already removed and (re-)mapped.) 2048 * 2049 * Cf. hv_pci_onchannelcallback(). 2050 */ 2051 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2052 free_int_desc: 2053 kfree(int_desc); 2054 drop_reference: 2055 put_pcichild(hpdev); 2056 return_null_message: 2057 msg->address_hi = 0; 2058 msg->address_lo = 0; 2059 msg->data = 0; 2060 } 2061 2062 /* HW Interrupt Chip Descriptor */ 2063 static struct irq_chip hv_msi_irq_chip = { 2064 .name = "Hyper-V PCIe MSI", 2065 .irq_compose_msi_msg = hv_compose_msi_msg, 2066 .irq_set_affinity = irq_chip_set_affinity_parent, 2067 #ifdef CONFIG_X86 2068 .irq_ack = irq_chip_ack_parent, 2069 #elif defined(CONFIG_ARM64) 2070 .irq_eoi = irq_chip_eoi_parent, 2071 #endif 2072 .irq_mask = hv_irq_mask, 2073 .irq_unmask = hv_irq_unmask, 2074 }; 2075 2076 static struct msi_domain_ops hv_msi_ops = { 2077 .msi_prepare = hv_msi_prepare, 2078 .msi_free = hv_msi_free, 2079 }; 2080 2081 /** 2082 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2083 * @hbus: The root PCI bus 2084 * 2085 * This function creates an IRQ domain which will be used for 2086 * interrupts from devices that have been passed through. These 2087 * devices only support MSI and MSI-X, not line-based interrupts 2088 * or simulations of line-based interrupts through PCIe's 2089 * fabric-layer messages. Because interrupts are remapped, we 2090 * can support multi-message MSI here. 2091 * 2092 * Return: '0' on success and error value on failure 2093 */ 2094 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2095 { 2096 hbus->msi_info.chip = &hv_msi_irq_chip; 2097 hbus->msi_info.ops = &hv_msi_ops; 2098 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 2099 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 2100 MSI_FLAG_PCI_MSIX); 2101 hbus->msi_info.handler = FLOW_HANDLER; 2102 hbus->msi_info.handler_name = FLOW_NAME; 2103 hbus->msi_info.data = hbus; 2104 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 2105 &hbus->msi_info, 2106 hv_pci_get_root_domain()); 2107 if (!hbus->irq_domain) { 2108 dev_err(&hbus->hdev->device, 2109 "Failed to build an MSI IRQ domain\n"); 2110 return -ENODEV; 2111 } 2112 2113 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2114 2115 return 0; 2116 } 2117 2118 /** 2119 * get_bar_size() - Get the address space consumed by a BAR 2120 * @bar_val: Value that a BAR returned after -1 was written 2121 * to it. 2122 * 2123 * This function returns the size of the BAR, rounded up to 1 2124 * page. It has to be rounded up because the hypervisor's page 2125 * table entry that maps the BAR into the VM can't specify an 2126 * offset within a page. The invariant is that the hypervisor 2127 * must place any BARs of smaller than page length at the 2128 * beginning of a page. 2129 * 2130 * Return: Size in bytes of the consumed MMIO space. 2131 */ 2132 static u64 get_bar_size(u64 bar_val) 2133 { 2134 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2135 PAGE_SIZE); 2136 } 2137 2138 /** 2139 * survey_child_resources() - Total all MMIO requirements 2140 * @hbus: Root PCI bus, as understood by this driver 2141 */ 2142 static void survey_child_resources(struct hv_pcibus_device *hbus) 2143 { 2144 struct hv_pci_dev *hpdev; 2145 resource_size_t bar_size = 0; 2146 unsigned long flags; 2147 struct completion *event; 2148 u64 bar_val; 2149 int i; 2150 2151 /* If nobody is waiting on the answer, don't compute it. */ 2152 event = xchg(&hbus->survey_event, NULL); 2153 if (!event) 2154 return; 2155 2156 /* If the answer has already been computed, go with it. */ 2157 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2158 complete(event); 2159 return; 2160 } 2161 2162 spin_lock_irqsave(&hbus->device_list_lock, flags); 2163 2164 /* 2165 * Due to an interesting quirk of the PCI spec, all memory regions 2166 * for a child device are a power of 2 in size and aligned in memory, 2167 * so it's sufficient to just add them up without tracking alignment. 2168 */ 2169 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2170 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2171 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2172 dev_err(&hbus->hdev->device, 2173 "There's an I/O BAR in this list!\n"); 2174 2175 if (hpdev->probed_bar[i] != 0) { 2176 /* 2177 * A probed BAR has all the upper bits set that 2178 * can be changed. 2179 */ 2180 2181 bar_val = hpdev->probed_bar[i]; 2182 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2183 bar_val |= 2184 ((u64)hpdev->probed_bar[++i] << 32); 2185 else 2186 bar_val |= 0xffffffff00000000ULL; 2187 2188 bar_size = get_bar_size(bar_val); 2189 2190 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2191 hbus->high_mmio_space += bar_size; 2192 else 2193 hbus->low_mmio_space += bar_size; 2194 } 2195 } 2196 } 2197 2198 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2199 complete(event); 2200 } 2201 2202 /** 2203 * prepopulate_bars() - Fill in BARs with defaults 2204 * @hbus: Root PCI bus, as understood by this driver 2205 * 2206 * The core PCI driver code seems much, much happier if the BARs 2207 * for a device have values upon first scan. So fill them in. 2208 * The algorithm below works down from large sizes to small, 2209 * attempting to pack the assignments optimally. The assumption, 2210 * enforced in other parts of the code, is that the beginning of 2211 * the memory-mapped I/O space will be aligned on the largest 2212 * BAR size. 2213 */ 2214 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2215 { 2216 resource_size_t high_size = 0; 2217 resource_size_t low_size = 0; 2218 resource_size_t high_base = 0; 2219 resource_size_t low_base = 0; 2220 resource_size_t bar_size; 2221 struct hv_pci_dev *hpdev; 2222 unsigned long flags; 2223 u64 bar_val; 2224 u32 command; 2225 bool high; 2226 int i; 2227 2228 if (hbus->low_mmio_space) { 2229 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2230 low_base = hbus->low_mmio_res->start; 2231 } 2232 2233 if (hbus->high_mmio_space) { 2234 high_size = 1ULL << 2235 (63 - __builtin_clzll(hbus->high_mmio_space)); 2236 high_base = hbus->high_mmio_res->start; 2237 } 2238 2239 spin_lock_irqsave(&hbus->device_list_lock, flags); 2240 2241 /* 2242 * Clear the memory enable bit, in case it's already set. This occurs 2243 * in the suspend path of hibernation, where the device is suspended, 2244 * resumed and suspended again: see hibernation_snapshot() and 2245 * hibernation_platform_enter(). 2246 * 2247 * If the memory enable bit is already set, Hyper-V silently ignores 2248 * the below BAR updates, and the related PCI device driver can not 2249 * work, because reading from the device register(s) always returns 2250 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2251 */ 2252 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2253 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2254 command &= ~PCI_COMMAND_MEMORY; 2255 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2256 } 2257 2258 /* Pick addresses for the BARs. */ 2259 do { 2260 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2261 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2262 bar_val = hpdev->probed_bar[i]; 2263 if (bar_val == 0) 2264 continue; 2265 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2266 if (high) { 2267 bar_val |= 2268 ((u64)hpdev->probed_bar[i + 1] 2269 << 32); 2270 } else { 2271 bar_val |= 0xffffffffULL << 32; 2272 } 2273 bar_size = get_bar_size(bar_val); 2274 if (high) { 2275 if (high_size != bar_size) { 2276 i++; 2277 continue; 2278 } 2279 _hv_pcifront_write_config(hpdev, 2280 PCI_BASE_ADDRESS_0 + (4 * i), 2281 4, 2282 (u32)(high_base & 0xffffff00)); 2283 i++; 2284 _hv_pcifront_write_config(hpdev, 2285 PCI_BASE_ADDRESS_0 + (4 * i), 2286 4, (u32)(high_base >> 32)); 2287 high_base += bar_size; 2288 } else { 2289 if (low_size != bar_size) 2290 continue; 2291 _hv_pcifront_write_config(hpdev, 2292 PCI_BASE_ADDRESS_0 + (4 * i), 2293 4, 2294 (u32)(low_base & 0xffffff00)); 2295 low_base += bar_size; 2296 } 2297 } 2298 if (high_size <= 1 && low_size <= 1) { 2299 /* 2300 * No need to set the PCI_COMMAND_MEMORY bit as 2301 * the core PCI driver doesn't require the bit 2302 * to be pre-set. Actually here we intentionally 2303 * keep the bit off so that the PCI BAR probing 2304 * in the core PCI driver doesn't cause Hyper-V 2305 * to unnecessarily unmap/map the virtual BARs 2306 * from/to the physical BARs multiple times. 2307 * This reduces the VM boot time significantly 2308 * if the BAR sizes are huge. 2309 */ 2310 break; 2311 } 2312 } 2313 2314 high_size >>= 1; 2315 low_size >>= 1; 2316 } while (high_size || low_size); 2317 2318 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2319 } 2320 2321 /* 2322 * Assign entries in sysfs pci slot directory. 2323 * 2324 * Note that this function does not need to lock the children list 2325 * because it is called from pci_devices_present_work which 2326 * is serialized with hv_eject_device_work because they are on the 2327 * same ordered workqueue. Therefore hbus->children list will not change 2328 * even when pci_create_slot sleeps. 2329 */ 2330 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2331 { 2332 struct hv_pci_dev *hpdev; 2333 char name[SLOT_NAME_SIZE]; 2334 int slot_nr; 2335 2336 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2337 if (hpdev->pci_slot) 2338 continue; 2339 2340 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2341 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2342 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2343 name, NULL); 2344 if (IS_ERR(hpdev->pci_slot)) { 2345 pr_warn("pci_create slot %s failed\n", name); 2346 hpdev->pci_slot = NULL; 2347 } 2348 } 2349 } 2350 2351 /* 2352 * Remove entries in sysfs pci slot directory. 2353 */ 2354 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2355 { 2356 struct hv_pci_dev *hpdev; 2357 2358 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2359 if (!hpdev->pci_slot) 2360 continue; 2361 pci_destroy_slot(hpdev->pci_slot); 2362 hpdev->pci_slot = NULL; 2363 } 2364 } 2365 2366 /* 2367 * Set NUMA node for the devices on the bus 2368 */ 2369 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2370 { 2371 struct pci_dev *dev; 2372 struct pci_bus *bus = hbus->bridge->bus; 2373 struct hv_pci_dev *hv_dev; 2374 2375 list_for_each_entry(dev, &bus->devices, bus_list) { 2376 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2377 if (!hv_dev) 2378 continue; 2379 2380 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2381 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2382 /* 2383 * The kernel may boot with some NUMA nodes offline 2384 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2385 * "numa=off". In those cases, adjust the host provided 2386 * NUMA node to a valid NUMA node used by the kernel. 2387 */ 2388 set_dev_node(&dev->dev, 2389 numa_map_to_online_node( 2390 hv_dev->desc.virtual_numa_node)); 2391 2392 put_pcichild(hv_dev); 2393 } 2394 } 2395 2396 /** 2397 * create_root_hv_pci_bus() - Expose a new root PCI bus 2398 * @hbus: Root PCI bus, as understood by this driver 2399 * 2400 * Return: 0 on success, -errno on failure 2401 */ 2402 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2403 { 2404 int error; 2405 struct pci_host_bridge *bridge = hbus->bridge; 2406 2407 bridge->dev.parent = &hbus->hdev->device; 2408 bridge->sysdata = &hbus->sysdata; 2409 bridge->ops = &hv_pcifront_ops; 2410 2411 error = pci_scan_root_bus_bridge(bridge); 2412 if (error) 2413 return error; 2414 2415 pci_lock_rescan_remove(); 2416 hv_pci_assign_numa_node(hbus); 2417 pci_bus_assign_resources(bridge->bus); 2418 hv_pci_assign_slots(hbus); 2419 pci_bus_add_devices(bridge->bus); 2420 pci_unlock_rescan_remove(); 2421 hbus->state = hv_pcibus_installed; 2422 return 0; 2423 } 2424 2425 struct q_res_req_compl { 2426 struct completion host_event; 2427 struct hv_pci_dev *hpdev; 2428 }; 2429 2430 /** 2431 * q_resource_requirements() - Query Resource Requirements 2432 * @context: The completion context. 2433 * @resp: The response that came from the host. 2434 * @resp_packet_size: The size in bytes of resp. 2435 * 2436 * This function is invoked on completion of a Query Resource 2437 * Requirements packet. 2438 */ 2439 static void q_resource_requirements(void *context, struct pci_response *resp, 2440 int resp_packet_size) 2441 { 2442 struct q_res_req_compl *completion = context; 2443 struct pci_q_res_req_response *q_res_req = 2444 (struct pci_q_res_req_response *)resp; 2445 s32 status; 2446 int i; 2447 2448 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2449 if (status < 0) { 2450 dev_err(&completion->hpdev->hbus->hdev->device, 2451 "query resource requirements failed: %x\n", 2452 status); 2453 } else { 2454 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2455 completion->hpdev->probed_bar[i] = 2456 q_res_req->probed_bar[i]; 2457 } 2458 } 2459 2460 complete(&completion->host_event); 2461 } 2462 2463 /** 2464 * new_pcichild_device() - Create a new child device 2465 * @hbus: The internal struct tracking this root PCI bus. 2466 * @desc: The information supplied so far from the host 2467 * about the device. 2468 * 2469 * This function creates the tracking structure for a new child 2470 * device and kicks off the process of figuring out what it is. 2471 * 2472 * Return: Pointer to the new tracking struct 2473 */ 2474 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2475 struct hv_pcidev_description *desc) 2476 { 2477 struct hv_pci_dev *hpdev; 2478 struct pci_child_message *res_req; 2479 struct q_res_req_compl comp_pkt; 2480 struct { 2481 struct pci_packet init_packet; 2482 u8 buffer[sizeof(struct pci_child_message)]; 2483 } pkt; 2484 unsigned long flags; 2485 int ret; 2486 2487 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2488 if (!hpdev) 2489 return NULL; 2490 2491 hpdev->hbus = hbus; 2492 2493 memset(&pkt, 0, sizeof(pkt)); 2494 init_completion(&comp_pkt.host_event); 2495 comp_pkt.hpdev = hpdev; 2496 pkt.init_packet.compl_ctxt = &comp_pkt; 2497 pkt.init_packet.completion_func = q_resource_requirements; 2498 res_req = (struct pci_child_message *)&pkt.init_packet.message; 2499 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2500 res_req->wslot.slot = desc->win_slot.slot; 2501 2502 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2503 sizeof(struct pci_child_message), 2504 (unsigned long)&pkt.init_packet, 2505 VM_PKT_DATA_INBAND, 2506 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2507 if (ret) 2508 goto error; 2509 2510 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2511 goto error; 2512 2513 hpdev->desc = *desc; 2514 refcount_set(&hpdev->refs, 1); 2515 get_pcichild(hpdev); 2516 spin_lock_irqsave(&hbus->device_list_lock, flags); 2517 2518 list_add_tail(&hpdev->list_entry, &hbus->children); 2519 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2520 return hpdev; 2521 2522 error: 2523 kfree(hpdev); 2524 return NULL; 2525 } 2526 2527 /** 2528 * get_pcichild_wslot() - Find device from slot 2529 * @hbus: Root PCI bus, as understood by this driver 2530 * @wslot: Location on the bus 2531 * 2532 * This function looks up a PCI device and returns the internal 2533 * representation of it. It acquires a reference on it, so that 2534 * the device won't be deleted while somebody is using it. The 2535 * caller is responsible for calling put_pcichild() to release 2536 * this reference. 2537 * 2538 * Return: Internal representation of a PCI device 2539 */ 2540 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2541 u32 wslot) 2542 { 2543 unsigned long flags; 2544 struct hv_pci_dev *iter, *hpdev = NULL; 2545 2546 spin_lock_irqsave(&hbus->device_list_lock, flags); 2547 list_for_each_entry(iter, &hbus->children, list_entry) { 2548 if (iter->desc.win_slot.slot == wslot) { 2549 hpdev = iter; 2550 get_pcichild(hpdev); 2551 break; 2552 } 2553 } 2554 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2555 2556 return hpdev; 2557 } 2558 2559 /** 2560 * pci_devices_present_work() - Handle new list of child devices 2561 * @work: Work struct embedded in struct hv_dr_work 2562 * 2563 * "Bus Relations" is the Windows term for "children of this 2564 * bus." The terminology is preserved here for people trying to 2565 * debug the interaction between Hyper-V and Linux. This 2566 * function is called when the parent partition reports a list 2567 * of functions that should be observed under this PCI Express 2568 * port (bus). 2569 * 2570 * This function updates the list, and must tolerate being 2571 * called multiple times with the same information. The typical 2572 * number of child devices is one, with very atypical cases 2573 * involving three or four, so the algorithms used here can be 2574 * simple and inefficient. 2575 * 2576 * It must also treat the omission of a previously observed device as 2577 * notification that the device no longer exists. 2578 * 2579 * Note that this function is serialized with hv_eject_device_work(), 2580 * because both are pushed to the ordered workqueue hbus->wq. 2581 */ 2582 static void pci_devices_present_work(struct work_struct *work) 2583 { 2584 u32 child_no; 2585 bool found; 2586 struct hv_pcidev_description *new_desc; 2587 struct hv_pci_dev *hpdev; 2588 struct hv_pcibus_device *hbus; 2589 struct list_head removed; 2590 struct hv_dr_work *dr_wrk; 2591 struct hv_dr_state *dr = NULL; 2592 unsigned long flags; 2593 2594 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2595 hbus = dr_wrk->bus; 2596 kfree(dr_wrk); 2597 2598 INIT_LIST_HEAD(&removed); 2599 2600 /* Pull this off the queue and process it if it was the last one. */ 2601 spin_lock_irqsave(&hbus->device_list_lock, flags); 2602 while (!list_empty(&hbus->dr_list)) { 2603 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2604 list_entry); 2605 list_del(&dr->list_entry); 2606 2607 /* Throw this away if the list still has stuff in it. */ 2608 if (!list_empty(&hbus->dr_list)) { 2609 kfree(dr); 2610 continue; 2611 } 2612 } 2613 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2614 2615 if (!dr) 2616 return; 2617 2618 /* First, mark all existing children as reported missing. */ 2619 spin_lock_irqsave(&hbus->device_list_lock, flags); 2620 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2621 hpdev->reported_missing = true; 2622 } 2623 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2624 2625 /* Next, add back any reported devices. */ 2626 for (child_no = 0; child_no < dr->device_count; child_no++) { 2627 found = false; 2628 new_desc = &dr->func[child_no]; 2629 2630 spin_lock_irqsave(&hbus->device_list_lock, flags); 2631 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2632 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2633 (hpdev->desc.v_id == new_desc->v_id) && 2634 (hpdev->desc.d_id == new_desc->d_id) && 2635 (hpdev->desc.ser == new_desc->ser)) { 2636 hpdev->reported_missing = false; 2637 found = true; 2638 } 2639 } 2640 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2641 2642 if (!found) { 2643 hpdev = new_pcichild_device(hbus, new_desc); 2644 if (!hpdev) 2645 dev_err(&hbus->hdev->device, 2646 "couldn't record a child device.\n"); 2647 } 2648 } 2649 2650 /* Move missing children to a list on the stack. */ 2651 spin_lock_irqsave(&hbus->device_list_lock, flags); 2652 do { 2653 found = false; 2654 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2655 if (hpdev->reported_missing) { 2656 found = true; 2657 put_pcichild(hpdev); 2658 list_move_tail(&hpdev->list_entry, &removed); 2659 break; 2660 } 2661 } 2662 } while (found); 2663 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2664 2665 /* Delete everything that should no longer exist. */ 2666 while (!list_empty(&removed)) { 2667 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2668 list_entry); 2669 list_del(&hpdev->list_entry); 2670 2671 if (hpdev->pci_slot) 2672 pci_destroy_slot(hpdev->pci_slot); 2673 2674 put_pcichild(hpdev); 2675 } 2676 2677 switch (hbus->state) { 2678 case hv_pcibus_installed: 2679 /* 2680 * Tell the core to rescan bus 2681 * because there may have been changes. 2682 */ 2683 pci_lock_rescan_remove(); 2684 pci_scan_child_bus(hbus->bridge->bus); 2685 hv_pci_assign_numa_node(hbus); 2686 hv_pci_assign_slots(hbus); 2687 pci_unlock_rescan_remove(); 2688 break; 2689 2690 case hv_pcibus_init: 2691 case hv_pcibus_probed: 2692 survey_child_resources(hbus); 2693 break; 2694 2695 default: 2696 break; 2697 } 2698 2699 kfree(dr); 2700 } 2701 2702 /** 2703 * hv_pci_start_relations_work() - Queue work to start device discovery 2704 * @hbus: Root PCI bus, as understood by this driver 2705 * @dr: The list of children returned from host 2706 * 2707 * Return: 0 on success, -errno on failure 2708 */ 2709 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2710 struct hv_dr_state *dr) 2711 { 2712 struct hv_dr_work *dr_wrk; 2713 unsigned long flags; 2714 bool pending_dr; 2715 2716 if (hbus->state == hv_pcibus_removing) { 2717 dev_info(&hbus->hdev->device, 2718 "PCI VMBus BUS_RELATIONS: ignored\n"); 2719 return -ENOENT; 2720 } 2721 2722 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2723 if (!dr_wrk) 2724 return -ENOMEM; 2725 2726 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2727 dr_wrk->bus = hbus; 2728 2729 spin_lock_irqsave(&hbus->device_list_lock, flags); 2730 /* 2731 * If pending_dr is true, we have already queued a work, 2732 * which will see the new dr. Otherwise, we need to 2733 * queue a new work. 2734 */ 2735 pending_dr = !list_empty(&hbus->dr_list); 2736 list_add_tail(&dr->list_entry, &hbus->dr_list); 2737 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2738 2739 if (pending_dr) 2740 kfree(dr_wrk); 2741 else 2742 queue_work(hbus->wq, &dr_wrk->wrk); 2743 2744 return 0; 2745 } 2746 2747 /** 2748 * hv_pci_devices_present() - Handle list of new children 2749 * @hbus: Root PCI bus, as understood by this driver 2750 * @relations: Packet from host listing children 2751 * 2752 * Process a new list of devices on the bus. The list of devices is 2753 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2754 * whenever a new list of devices for this bus appears. 2755 */ 2756 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2757 struct pci_bus_relations *relations) 2758 { 2759 struct hv_dr_state *dr; 2760 int i; 2761 2762 dr = kzalloc(struct_size(dr, func, relations->device_count), 2763 GFP_NOWAIT); 2764 if (!dr) 2765 return; 2766 2767 dr->device_count = relations->device_count; 2768 for (i = 0; i < dr->device_count; i++) { 2769 dr->func[i].v_id = relations->func[i].v_id; 2770 dr->func[i].d_id = relations->func[i].d_id; 2771 dr->func[i].rev = relations->func[i].rev; 2772 dr->func[i].prog_intf = relations->func[i].prog_intf; 2773 dr->func[i].subclass = relations->func[i].subclass; 2774 dr->func[i].base_class = relations->func[i].base_class; 2775 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2776 dr->func[i].win_slot = relations->func[i].win_slot; 2777 dr->func[i].ser = relations->func[i].ser; 2778 } 2779 2780 if (hv_pci_start_relations_work(hbus, dr)) 2781 kfree(dr); 2782 } 2783 2784 /** 2785 * hv_pci_devices_present2() - Handle list of new children 2786 * @hbus: Root PCI bus, as understood by this driver 2787 * @relations: Packet from host listing children 2788 * 2789 * This function is the v2 version of hv_pci_devices_present() 2790 */ 2791 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2792 struct pci_bus_relations2 *relations) 2793 { 2794 struct hv_dr_state *dr; 2795 int i; 2796 2797 dr = kzalloc(struct_size(dr, func, relations->device_count), 2798 GFP_NOWAIT); 2799 if (!dr) 2800 return; 2801 2802 dr->device_count = relations->device_count; 2803 for (i = 0; i < dr->device_count; i++) { 2804 dr->func[i].v_id = relations->func[i].v_id; 2805 dr->func[i].d_id = relations->func[i].d_id; 2806 dr->func[i].rev = relations->func[i].rev; 2807 dr->func[i].prog_intf = relations->func[i].prog_intf; 2808 dr->func[i].subclass = relations->func[i].subclass; 2809 dr->func[i].base_class = relations->func[i].base_class; 2810 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2811 dr->func[i].win_slot = relations->func[i].win_slot; 2812 dr->func[i].ser = relations->func[i].ser; 2813 dr->func[i].flags = relations->func[i].flags; 2814 dr->func[i].virtual_numa_node = 2815 relations->func[i].virtual_numa_node; 2816 } 2817 2818 if (hv_pci_start_relations_work(hbus, dr)) 2819 kfree(dr); 2820 } 2821 2822 /** 2823 * hv_eject_device_work() - Asynchronously handles ejection 2824 * @work: Work struct embedded in internal device struct 2825 * 2826 * This function handles ejecting a device. Windows will 2827 * attempt to gracefully eject a device, waiting 60 seconds to 2828 * hear back from the guest OS that this completed successfully. 2829 * If this timer expires, the device will be forcibly removed. 2830 */ 2831 static void hv_eject_device_work(struct work_struct *work) 2832 { 2833 struct pci_eject_response *ejct_pkt; 2834 struct hv_pcibus_device *hbus; 2835 struct hv_pci_dev *hpdev; 2836 struct pci_dev *pdev; 2837 unsigned long flags; 2838 int wslot; 2839 struct { 2840 struct pci_packet pkt; 2841 u8 buffer[sizeof(struct pci_eject_response)]; 2842 } ctxt; 2843 2844 hpdev = container_of(work, struct hv_pci_dev, wrk); 2845 hbus = hpdev->hbus; 2846 2847 WARN_ON(hpdev->state != hv_pcichild_ejecting); 2848 2849 /* 2850 * Ejection can come before or after the PCI bus has been set up, so 2851 * attempt to find it and tear down the bus state, if it exists. This 2852 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2853 * because hbus->bridge->bus may not exist yet. 2854 */ 2855 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2856 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2857 if (pdev) { 2858 pci_lock_rescan_remove(); 2859 pci_stop_and_remove_bus_device(pdev); 2860 pci_dev_put(pdev); 2861 pci_unlock_rescan_remove(); 2862 } 2863 2864 spin_lock_irqsave(&hbus->device_list_lock, flags); 2865 list_del(&hpdev->list_entry); 2866 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2867 2868 if (hpdev->pci_slot) 2869 pci_destroy_slot(hpdev->pci_slot); 2870 2871 memset(&ctxt, 0, sizeof(ctxt)); 2872 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2873 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2874 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2875 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2876 sizeof(*ejct_pkt), 0, 2877 VM_PKT_DATA_INBAND, 0); 2878 2879 /* For the get_pcichild() in hv_pci_eject_device() */ 2880 put_pcichild(hpdev); 2881 /* For the two refs got in new_pcichild_device() */ 2882 put_pcichild(hpdev); 2883 put_pcichild(hpdev); 2884 /* hpdev has been freed. Do not use it any more. */ 2885 } 2886 2887 /** 2888 * hv_pci_eject_device() - Handles device ejection 2889 * @hpdev: Internal device tracking struct 2890 * 2891 * This function is invoked when an ejection packet arrives. It 2892 * just schedules work so that we don't re-enter the packet 2893 * delivery code handling the ejection. 2894 */ 2895 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2896 { 2897 struct hv_pcibus_device *hbus = hpdev->hbus; 2898 struct hv_device *hdev = hbus->hdev; 2899 2900 if (hbus->state == hv_pcibus_removing) { 2901 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2902 return; 2903 } 2904 2905 hpdev->state = hv_pcichild_ejecting; 2906 get_pcichild(hpdev); 2907 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2908 queue_work(hbus->wq, &hpdev->wrk); 2909 } 2910 2911 /** 2912 * hv_pci_onchannelcallback() - Handles incoming packets 2913 * @context: Internal bus tracking struct 2914 * 2915 * This function is invoked whenever the host sends a packet to 2916 * this channel (which is private to this root PCI bus). 2917 */ 2918 static void hv_pci_onchannelcallback(void *context) 2919 { 2920 const int packet_size = 0x100; 2921 int ret; 2922 struct hv_pcibus_device *hbus = context; 2923 struct vmbus_channel *chan = hbus->hdev->channel; 2924 u32 bytes_recvd; 2925 u64 req_id, req_addr; 2926 struct vmpacket_descriptor *desc; 2927 unsigned char *buffer; 2928 int bufferlen = packet_size; 2929 struct pci_packet *comp_packet; 2930 struct pci_response *response; 2931 struct pci_incoming_message *new_message; 2932 struct pci_bus_relations *bus_rel; 2933 struct pci_bus_relations2 *bus_rel2; 2934 struct pci_dev_inval_block *inval; 2935 struct pci_dev_incoming *dev_message; 2936 struct hv_pci_dev *hpdev; 2937 unsigned long flags; 2938 2939 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2940 if (!buffer) 2941 return; 2942 2943 while (1) { 2944 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 2945 &bytes_recvd, &req_id); 2946 2947 if (ret == -ENOBUFS) { 2948 kfree(buffer); 2949 /* Handle large packet */ 2950 bufferlen = bytes_recvd; 2951 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2952 if (!buffer) 2953 return; 2954 continue; 2955 } 2956 2957 /* Zero length indicates there are no more packets. */ 2958 if (ret || !bytes_recvd) 2959 break; 2960 2961 /* 2962 * All incoming packets must be at least as large as a 2963 * response. 2964 */ 2965 if (bytes_recvd <= sizeof(struct pci_response)) 2966 continue; 2967 desc = (struct vmpacket_descriptor *)buffer; 2968 2969 switch (desc->type) { 2970 case VM_PKT_COMP: 2971 2972 lock_requestor(chan, flags); 2973 req_addr = __vmbus_request_addr_match(chan, req_id, 2974 VMBUS_RQST_ADDR_ANY); 2975 if (req_addr == VMBUS_RQST_ERROR) { 2976 unlock_requestor(chan, flags); 2977 dev_err(&hbus->hdev->device, 2978 "Invalid transaction ID %llx\n", 2979 req_id); 2980 break; 2981 } 2982 comp_packet = (struct pci_packet *)req_addr; 2983 response = (struct pci_response *)buffer; 2984 /* 2985 * Call ->completion_func() within the critical section to make 2986 * sure that the packet pointer is still valid during the call: 2987 * here 'valid' means that there's a task still waiting for the 2988 * completion, and that the packet data is still on the waiting 2989 * task's stack. Cf. hv_compose_msi_msg(). 2990 */ 2991 comp_packet->completion_func(comp_packet->compl_ctxt, 2992 response, 2993 bytes_recvd); 2994 unlock_requestor(chan, flags); 2995 break; 2996 2997 case VM_PKT_DATA_INBAND: 2998 2999 new_message = (struct pci_incoming_message *)buffer; 3000 switch (new_message->message_type.type) { 3001 case PCI_BUS_RELATIONS: 3002 3003 bus_rel = (struct pci_bus_relations *)buffer; 3004 if (bytes_recvd < sizeof(*bus_rel) || 3005 bytes_recvd < 3006 struct_size(bus_rel, func, 3007 bus_rel->device_count)) { 3008 dev_err(&hbus->hdev->device, 3009 "bus relations too small\n"); 3010 break; 3011 } 3012 3013 hv_pci_devices_present(hbus, bus_rel); 3014 break; 3015 3016 case PCI_BUS_RELATIONS2: 3017 3018 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3019 if (bytes_recvd < sizeof(*bus_rel2) || 3020 bytes_recvd < 3021 struct_size(bus_rel2, func, 3022 bus_rel2->device_count)) { 3023 dev_err(&hbus->hdev->device, 3024 "bus relations v2 too small\n"); 3025 break; 3026 } 3027 3028 hv_pci_devices_present2(hbus, bus_rel2); 3029 break; 3030 3031 case PCI_EJECT: 3032 3033 dev_message = (struct pci_dev_incoming *)buffer; 3034 if (bytes_recvd < sizeof(*dev_message)) { 3035 dev_err(&hbus->hdev->device, 3036 "eject message too small\n"); 3037 break; 3038 } 3039 hpdev = get_pcichild_wslot(hbus, 3040 dev_message->wslot.slot); 3041 if (hpdev) { 3042 hv_pci_eject_device(hpdev); 3043 put_pcichild(hpdev); 3044 } 3045 break; 3046 3047 case PCI_INVALIDATE_BLOCK: 3048 3049 inval = (struct pci_dev_inval_block *)buffer; 3050 if (bytes_recvd < sizeof(*inval)) { 3051 dev_err(&hbus->hdev->device, 3052 "invalidate message too small\n"); 3053 break; 3054 } 3055 hpdev = get_pcichild_wslot(hbus, 3056 inval->wslot.slot); 3057 if (hpdev) { 3058 if (hpdev->block_invalidate) { 3059 hpdev->block_invalidate( 3060 hpdev->invalidate_context, 3061 inval->block_mask); 3062 } 3063 put_pcichild(hpdev); 3064 } 3065 break; 3066 3067 default: 3068 dev_warn(&hbus->hdev->device, 3069 "Unimplemented protocol message %x\n", 3070 new_message->message_type.type); 3071 break; 3072 } 3073 break; 3074 3075 default: 3076 dev_err(&hbus->hdev->device, 3077 "unhandled packet type %d, tid %llx len %d\n", 3078 desc->type, req_id, bytes_recvd); 3079 break; 3080 } 3081 } 3082 3083 kfree(buffer); 3084 } 3085 3086 /** 3087 * hv_pci_protocol_negotiation() - Set up protocol 3088 * @hdev: VMBus's tracking struct for this root PCI bus. 3089 * @version: Array of supported channel protocol versions in 3090 * the order of probing - highest go first. 3091 * @num_version: Number of elements in the version array. 3092 * 3093 * This driver is intended to support running on Windows 10 3094 * (server) and later versions. It will not run on earlier 3095 * versions, as they assume that many of the operations which 3096 * Linux needs accomplished with a spinlock held were done via 3097 * asynchronous messaging via VMBus. Windows 10 increases the 3098 * surface area of PCI emulation so that these actions can take 3099 * place by suspending a virtual processor for their duration. 3100 * 3101 * This function negotiates the channel protocol version, 3102 * failing if the host doesn't support the necessary protocol 3103 * level. 3104 */ 3105 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3106 enum pci_protocol_version_t version[], 3107 int num_version) 3108 { 3109 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3110 struct pci_version_request *version_req; 3111 struct hv_pci_compl comp_pkt; 3112 struct pci_packet *pkt; 3113 int ret; 3114 int i; 3115 3116 /* 3117 * Initiate the handshake with the host and negotiate 3118 * a version that the host can support. We start with the 3119 * highest version number and go down if the host cannot 3120 * support it. 3121 */ 3122 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3123 if (!pkt) 3124 return -ENOMEM; 3125 3126 init_completion(&comp_pkt.host_event); 3127 pkt->completion_func = hv_pci_generic_compl; 3128 pkt->compl_ctxt = &comp_pkt; 3129 version_req = (struct pci_version_request *)&pkt->message; 3130 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3131 3132 for (i = 0; i < num_version; i++) { 3133 version_req->protocol_version = version[i]; 3134 ret = vmbus_sendpacket(hdev->channel, version_req, 3135 sizeof(struct pci_version_request), 3136 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3137 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3138 if (!ret) 3139 ret = wait_for_response(hdev, &comp_pkt.host_event); 3140 3141 if (ret) { 3142 dev_err(&hdev->device, 3143 "PCI Pass-through VSP failed to request version: %d", 3144 ret); 3145 goto exit; 3146 } 3147 3148 if (comp_pkt.completion_status >= 0) { 3149 hbus->protocol_version = version[i]; 3150 dev_info(&hdev->device, 3151 "PCI VMBus probing: Using version %#x\n", 3152 hbus->protocol_version); 3153 goto exit; 3154 } 3155 3156 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3157 dev_err(&hdev->device, 3158 "PCI Pass-through VSP failed version request: %#x", 3159 comp_pkt.completion_status); 3160 ret = -EPROTO; 3161 goto exit; 3162 } 3163 3164 reinit_completion(&comp_pkt.host_event); 3165 } 3166 3167 dev_err(&hdev->device, 3168 "PCI pass-through VSP failed to find supported version"); 3169 ret = -EPROTO; 3170 3171 exit: 3172 kfree(pkt); 3173 return ret; 3174 } 3175 3176 /** 3177 * hv_pci_free_bridge_windows() - Release memory regions for the 3178 * bus 3179 * @hbus: Root PCI bus, as understood by this driver 3180 */ 3181 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3182 { 3183 /* 3184 * Set the resources back to the way they looked when they 3185 * were allocated by setting IORESOURCE_BUSY again. 3186 */ 3187 3188 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3189 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3190 vmbus_free_mmio(hbus->low_mmio_res->start, 3191 resource_size(hbus->low_mmio_res)); 3192 } 3193 3194 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3195 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3196 vmbus_free_mmio(hbus->high_mmio_res->start, 3197 resource_size(hbus->high_mmio_res)); 3198 } 3199 } 3200 3201 /** 3202 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3203 * for the bus 3204 * @hbus: Root PCI bus, as understood by this driver 3205 * 3206 * This function calls vmbus_allocate_mmio(), which is itself a 3207 * bit of a compromise. Ideally, we might change the pnp layer 3208 * in the kernel such that it comprehends either PCI devices 3209 * which are "grandchildren of ACPI," with some intermediate bus 3210 * node (in this case, VMBus) or change it such that it 3211 * understands VMBus. The pnp layer, however, has been declared 3212 * deprecated, and not subject to change. 3213 * 3214 * The workaround, implemented here, is to ask VMBus to allocate 3215 * MMIO space for this bus. VMBus itself knows which ranges are 3216 * appropriate by looking at its own ACPI objects. Then, after 3217 * these ranges are claimed, they're modified to look like they 3218 * would have looked if the ACPI and pnp code had allocated 3219 * bridge windows. These descriptors have to exist in this form 3220 * in order to satisfy the code which will get invoked when the 3221 * endpoint PCI function driver calls request_mem_region() or 3222 * request_mem_region_exclusive(). 3223 * 3224 * Return: 0 on success, -errno on failure 3225 */ 3226 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3227 { 3228 resource_size_t align; 3229 int ret; 3230 3231 if (hbus->low_mmio_space) { 3232 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3233 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3234 (u64)(u32)0xffffffff, 3235 hbus->low_mmio_space, 3236 align, false); 3237 if (ret) { 3238 dev_err(&hbus->hdev->device, 3239 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3240 hbus->low_mmio_space); 3241 return ret; 3242 } 3243 3244 /* Modify this resource to become a bridge window. */ 3245 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3246 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3247 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3248 } 3249 3250 if (hbus->high_mmio_space) { 3251 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3252 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3253 0x100000000, -1, 3254 hbus->high_mmio_space, align, 3255 false); 3256 if (ret) { 3257 dev_err(&hbus->hdev->device, 3258 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3259 hbus->high_mmio_space); 3260 goto release_low_mmio; 3261 } 3262 3263 /* Modify this resource to become a bridge window. */ 3264 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3265 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3266 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3267 } 3268 3269 return 0; 3270 3271 release_low_mmio: 3272 if (hbus->low_mmio_res) { 3273 vmbus_free_mmio(hbus->low_mmio_res->start, 3274 resource_size(hbus->low_mmio_res)); 3275 } 3276 3277 return ret; 3278 } 3279 3280 /** 3281 * hv_allocate_config_window() - Find MMIO space for PCI Config 3282 * @hbus: Root PCI bus, as understood by this driver 3283 * 3284 * This function claims memory-mapped I/O space for accessing 3285 * configuration space for the functions on this bus. 3286 * 3287 * Return: 0 on success, -errno on failure 3288 */ 3289 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3290 { 3291 int ret; 3292 3293 /* 3294 * Set up a region of MMIO space to use for accessing configuration 3295 * space. 3296 */ 3297 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3298 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3299 if (ret) 3300 return ret; 3301 3302 /* 3303 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3304 * resource claims (those which cannot be overlapped) and the ranges 3305 * which are valid for the children of this bus, which are intended 3306 * to be overlapped by those children. Set the flag on this claim 3307 * meaning that this region can't be overlapped. 3308 */ 3309 3310 hbus->mem_config->flags |= IORESOURCE_BUSY; 3311 3312 return 0; 3313 } 3314 3315 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3316 { 3317 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3318 } 3319 3320 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3321 3322 /** 3323 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3324 * @hdev: VMBus's tracking struct for this root PCI bus 3325 * 3326 * Return: 0 on success, -errno on failure 3327 */ 3328 static int hv_pci_enter_d0(struct hv_device *hdev) 3329 { 3330 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3331 struct pci_bus_d0_entry *d0_entry; 3332 struct hv_pci_compl comp_pkt; 3333 struct pci_packet *pkt; 3334 int ret; 3335 3336 /* 3337 * Tell the host that the bus is ready to use, and moved into the 3338 * powered-on state. This includes telling the host which region 3339 * of memory-mapped I/O space has been chosen for configuration space 3340 * access. 3341 */ 3342 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3343 if (!pkt) 3344 return -ENOMEM; 3345 3346 init_completion(&comp_pkt.host_event); 3347 pkt->completion_func = hv_pci_generic_compl; 3348 pkt->compl_ctxt = &comp_pkt; 3349 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 3350 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3351 d0_entry->mmio_base = hbus->mem_config->start; 3352 3353 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3354 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3355 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3356 if (!ret) 3357 ret = wait_for_response(hdev, &comp_pkt.host_event); 3358 3359 if (ret) 3360 goto exit; 3361 3362 if (comp_pkt.completion_status < 0) { 3363 dev_err(&hdev->device, 3364 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3365 comp_pkt.completion_status); 3366 ret = -EPROTO; 3367 goto exit; 3368 } 3369 3370 ret = 0; 3371 3372 exit: 3373 kfree(pkt); 3374 return ret; 3375 } 3376 3377 /** 3378 * hv_pci_query_relations() - Ask host to send list of child 3379 * devices 3380 * @hdev: VMBus's tracking struct for this root PCI bus 3381 * 3382 * Return: 0 on success, -errno on failure 3383 */ 3384 static int hv_pci_query_relations(struct hv_device *hdev) 3385 { 3386 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3387 struct pci_message message; 3388 struct completion comp; 3389 int ret; 3390 3391 /* Ask the host to send along the list of child devices */ 3392 init_completion(&comp); 3393 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3394 return -ENOTEMPTY; 3395 3396 memset(&message, 0, sizeof(message)); 3397 message.type = PCI_QUERY_BUS_RELATIONS; 3398 3399 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3400 0, VM_PKT_DATA_INBAND, 0); 3401 if (!ret) 3402 ret = wait_for_response(hdev, &comp); 3403 3404 return ret; 3405 } 3406 3407 /** 3408 * hv_send_resources_allocated() - Report local resource choices 3409 * @hdev: VMBus's tracking struct for this root PCI bus 3410 * 3411 * The host OS is expecting to be sent a request as a message 3412 * which contains all the resources that the device will use. 3413 * The response contains those same resources, "translated" 3414 * which is to say, the values which should be used by the 3415 * hardware, when it delivers an interrupt. (MMIO resources are 3416 * used in local terms.) This is nice for Windows, and lines up 3417 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3418 * is deeply expecting to scan an emulated PCI configuration 3419 * space. So this message is sent here only to drive the state 3420 * machine on the host forward. 3421 * 3422 * Return: 0 on success, -errno on failure 3423 */ 3424 static int hv_send_resources_allocated(struct hv_device *hdev) 3425 { 3426 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3427 struct pci_resources_assigned *res_assigned; 3428 struct pci_resources_assigned2 *res_assigned2; 3429 struct hv_pci_compl comp_pkt; 3430 struct hv_pci_dev *hpdev; 3431 struct pci_packet *pkt; 3432 size_t size_res; 3433 int wslot; 3434 int ret; 3435 3436 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3437 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3438 3439 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3440 if (!pkt) 3441 return -ENOMEM; 3442 3443 ret = 0; 3444 3445 for (wslot = 0; wslot < 256; wslot++) { 3446 hpdev = get_pcichild_wslot(hbus, wslot); 3447 if (!hpdev) 3448 continue; 3449 3450 memset(pkt, 0, sizeof(*pkt) + size_res); 3451 init_completion(&comp_pkt.host_event); 3452 pkt->completion_func = hv_pci_generic_compl; 3453 pkt->compl_ctxt = &comp_pkt; 3454 3455 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3456 res_assigned = 3457 (struct pci_resources_assigned *)&pkt->message; 3458 res_assigned->message_type.type = 3459 PCI_RESOURCES_ASSIGNED; 3460 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3461 } else { 3462 res_assigned2 = 3463 (struct pci_resources_assigned2 *)&pkt->message; 3464 res_assigned2->message_type.type = 3465 PCI_RESOURCES_ASSIGNED2; 3466 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3467 } 3468 put_pcichild(hpdev); 3469 3470 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 3471 size_res, (unsigned long)pkt, 3472 VM_PKT_DATA_INBAND, 3473 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3474 if (!ret) 3475 ret = wait_for_response(hdev, &comp_pkt.host_event); 3476 if (ret) 3477 break; 3478 3479 if (comp_pkt.completion_status < 0) { 3480 ret = -EPROTO; 3481 dev_err(&hdev->device, 3482 "resource allocated returned 0x%x", 3483 comp_pkt.completion_status); 3484 break; 3485 } 3486 3487 hbus->wslot_res_allocated = wslot; 3488 } 3489 3490 kfree(pkt); 3491 return ret; 3492 } 3493 3494 /** 3495 * hv_send_resources_released() - Report local resources 3496 * released 3497 * @hdev: VMBus's tracking struct for this root PCI bus 3498 * 3499 * Return: 0 on success, -errno on failure 3500 */ 3501 static int hv_send_resources_released(struct hv_device *hdev) 3502 { 3503 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3504 struct pci_child_message pkt; 3505 struct hv_pci_dev *hpdev; 3506 int wslot; 3507 int ret; 3508 3509 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3510 hpdev = get_pcichild_wslot(hbus, wslot); 3511 if (!hpdev) 3512 continue; 3513 3514 memset(&pkt, 0, sizeof(pkt)); 3515 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3516 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3517 3518 put_pcichild(hpdev); 3519 3520 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3521 VM_PKT_DATA_INBAND, 0); 3522 if (ret) 3523 return ret; 3524 3525 hbus->wslot_res_allocated = wslot - 1; 3526 } 3527 3528 hbus->wslot_res_allocated = -1; 3529 3530 return 0; 3531 } 3532 3533 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3534 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3535 3536 /* 3537 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3538 * as invalid for passthrough PCI devices of this driver. 3539 */ 3540 #define HVPCI_DOM_INVALID 0 3541 3542 /** 3543 * hv_get_dom_num() - Get a valid PCI domain number 3544 * Check if the PCI domain number is in use, and return another number if 3545 * it is in use. 3546 * 3547 * @dom: Requested domain number 3548 * 3549 * return: domain number on success, HVPCI_DOM_INVALID on failure 3550 */ 3551 static u16 hv_get_dom_num(u16 dom) 3552 { 3553 unsigned int i; 3554 3555 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3556 return dom; 3557 3558 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3559 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3560 return i; 3561 } 3562 3563 return HVPCI_DOM_INVALID; 3564 } 3565 3566 /** 3567 * hv_put_dom_num() - Mark the PCI domain number as free 3568 * @dom: Domain number to be freed 3569 */ 3570 static void hv_put_dom_num(u16 dom) 3571 { 3572 clear_bit(dom, hvpci_dom_map); 3573 } 3574 3575 /** 3576 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3577 * @hdev: VMBus's tracking struct for this root PCI bus 3578 * @dev_id: Identifies the device itself 3579 * 3580 * Return: 0 on success, -errno on failure 3581 */ 3582 static int hv_pci_probe(struct hv_device *hdev, 3583 const struct hv_vmbus_device_id *dev_id) 3584 { 3585 struct pci_host_bridge *bridge; 3586 struct hv_pcibus_device *hbus; 3587 u16 dom_req, dom; 3588 char *name; 3589 bool enter_d0_retry = true; 3590 int ret; 3591 3592 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3593 if (!bridge) 3594 return -ENOMEM; 3595 3596 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); 3597 if (!hbus) 3598 return -ENOMEM; 3599 3600 hbus->bridge = bridge; 3601 hbus->state = hv_pcibus_init; 3602 hbus->wslot_res_allocated = -1; 3603 3604 /* 3605 * The PCI bus "domain" is what is called "segment" in ACPI and other 3606 * specs. Pull it from the instance ID, to get something usually 3607 * unique. In rare cases of collision, we will find out another number 3608 * not in use. 3609 * 3610 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3611 * together with this guest driver can guarantee that (1) The only 3612 * domain used by Gen1 VMs for something that looks like a physical 3613 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3614 * (2) There will be no overlap between domains (after fixing possible 3615 * collisions) in the same VM. 3616 */ 3617 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3618 dom = hv_get_dom_num(dom_req); 3619 3620 if (dom == HVPCI_DOM_INVALID) { 3621 dev_err(&hdev->device, 3622 "Unable to use dom# 0x%x or other numbers", dom_req); 3623 ret = -EINVAL; 3624 goto free_bus; 3625 } 3626 3627 if (dom != dom_req) 3628 dev_info(&hdev->device, 3629 "PCI dom# 0x%x has collision, using 0x%x", 3630 dom_req, dom); 3631 3632 hbus->bridge->domain_nr = dom; 3633 #ifdef CONFIG_X86 3634 hbus->sysdata.domain = dom; 3635 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3636 #elif defined(CONFIG_ARM64) 3637 /* 3638 * Set the PCI bus parent to be the corresponding VMbus 3639 * device. Then the VMbus device will be assigned as the 3640 * ACPI companion in pcibios_root_bridge_prepare() and 3641 * pci_dma_configure() will propagate device coherence 3642 * information to devices created on the bus. 3643 */ 3644 hbus->sysdata.parent = hdev->device.parent; 3645 hbus->use_calls = false; 3646 #endif 3647 3648 hbus->hdev = hdev; 3649 INIT_LIST_HEAD(&hbus->children); 3650 INIT_LIST_HEAD(&hbus->dr_list); 3651 spin_lock_init(&hbus->config_lock); 3652 spin_lock_init(&hbus->device_list_lock); 3653 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3654 hbus->bridge->domain_nr); 3655 if (!hbus->wq) { 3656 ret = -ENOMEM; 3657 goto free_dom; 3658 } 3659 3660 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3661 hdev->channel->request_addr_callback = vmbus_request_addr; 3662 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3663 3664 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3665 hv_pci_onchannelcallback, hbus); 3666 if (ret) 3667 goto destroy_wq; 3668 3669 hv_set_drvdata(hdev, hbus); 3670 3671 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3672 ARRAY_SIZE(pci_protocol_versions)); 3673 if (ret) 3674 goto close; 3675 3676 ret = hv_allocate_config_window(hbus); 3677 if (ret) 3678 goto close; 3679 3680 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3681 PCI_CONFIG_MMIO_LENGTH); 3682 if (!hbus->cfg_addr) { 3683 dev_err(&hdev->device, 3684 "Unable to map a virtual address for config space\n"); 3685 ret = -ENOMEM; 3686 goto free_config; 3687 } 3688 3689 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3690 if (!name) { 3691 ret = -ENOMEM; 3692 goto unmap; 3693 } 3694 3695 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3696 kfree(name); 3697 if (!hbus->fwnode) { 3698 ret = -ENOMEM; 3699 goto unmap; 3700 } 3701 3702 ret = hv_pcie_init_irq_domain(hbus); 3703 if (ret) 3704 goto free_fwnode; 3705 3706 retry: 3707 ret = hv_pci_query_relations(hdev); 3708 if (ret) 3709 goto free_irq_domain; 3710 3711 ret = hv_pci_enter_d0(hdev); 3712 /* 3713 * In certain case (Kdump) the pci device of interest was 3714 * not cleanly shut down and resource is still held on host 3715 * side, the host could return invalid device status. 3716 * We need to explicitly request host to release the resource 3717 * and try to enter D0 again. 3718 * Since the hv_pci_bus_exit() call releases structures 3719 * of all its child devices, we need to start the retry from 3720 * hv_pci_query_relations() call, requesting host to send 3721 * the synchronous child device relations message before this 3722 * information is needed in hv_send_resources_allocated() 3723 * call later. 3724 */ 3725 if (ret == -EPROTO && enter_d0_retry) { 3726 enter_d0_retry = false; 3727 3728 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3729 3730 /* 3731 * Hv_pci_bus_exit() calls hv_send_resources_released() 3732 * to free up resources of its child devices. 3733 * In the kdump kernel we need to set the 3734 * wslot_res_allocated to 255 so it scans all child 3735 * devices to release resources allocated in the 3736 * normal kernel before panic happened. 3737 */ 3738 hbus->wslot_res_allocated = 255; 3739 ret = hv_pci_bus_exit(hdev, true); 3740 3741 if (ret == 0) 3742 goto retry; 3743 3744 dev_err(&hdev->device, 3745 "Retrying D0 failed with ret %d\n", ret); 3746 } 3747 if (ret) 3748 goto free_irq_domain; 3749 3750 ret = hv_pci_allocate_bridge_windows(hbus); 3751 if (ret) 3752 goto exit_d0; 3753 3754 ret = hv_send_resources_allocated(hdev); 3755 if (ret) 3756 goto free_windows; 3757 3758 prepopulate_bars(hbus); 3759 3760 hbus->state = hv_pcibus_probed; 3761 3762 ret = create_root_hv_pci_bus(hbus); 3763 if (ret) 3764 goto free_windows; 3765 3766 return 0; 3767 3768 free_windows: 3769 hv_pci_free_bridge_windows(hbus); 3770 exit_d0: 3771 (void) hv_pci_bus_exit(hdev, true); 3772 free_irq_domain: 3773 irq_domain_remove(hbus->irq_domain); 3774 free_fwnode: 3775 irq_domain_free_fwnode(hbus->fwnode); 3776 unmap: 3777 iounmap(hbus->cfg_addr); 3778 free_config: 3779 hv_free_config_window(hbus); 3780 close: 3781 vmbus_close(hdev->channel); 3782 destroy_wq: 3783 destroy_workqueue(hbus->wq); 3784 free_dom: 3785 hv_put_dom_num(hbus->bridge->domain_nr); 3786 free_bus: 3787 kfree(hbus); 3788 return ret; 3789 } 3790 3791 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3792 { 3793 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3794 struct vmbus_channel *chan = hdev->channel; 3795 struct { 3796 struct pci_packet teardown_packet; 3797 u8 buffer[sizeof(struct pci_message)]; 3798 } pkt; 3799 struct hv_pci_compl comp_pkt; 3800 struct hv_pci_dev *hpdev, *tmp; 3801 unsigned long flags; 3802 u64 trans_id; 3803 int ret; 3804 3805 /* 3806 * After the host sends the RESCIND_CHANNEL message, it doesn't 3807 * access the per-channel ringbuffer any longer. 3808 */ 3809 if (chan->rescind) 3810 return 0; 3811 3812 if (!keep_devs) { 3813 struct list_head removed; 3814 3815 /* Move all present children to the list on stack */ 3816 INIT_LIST_HEAD(&removed); 3817 spin_lock_irqsave(&hbus->device_list_lock, flags); 3818 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3819 list_move_tail(&hpdev->list_entry, &removed); 3820 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3821 3822 /* Remove all children in the list */ 3823 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3824 list_del(&hpdev->list_entry); 3825 if (hpdev->pci_slot) 3826 pci_destroy_slot(hpdev->pci_slot); 3827 /* For the two refs got in new_pcichild_device() */ 3828 put_pcichild(hpdev); 3829 put_pcichild(hpdev); 3830 } 3831 } 3832 3833 ret = hv_send_resources_released(hdev); 3834 if (ret) { 3835 dev_err(&hdev->device, 3836 "Couldn't send resources released packet(s)\n"); 3837 return ret; 3838 } 3839 3840 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3841 init_completion(&comp_pkt.host_event); 3842 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3843 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3844 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3845 3846 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message, 3847 sizeof(struct pci_message), 3848 (unsigned long)&pkt.teardown_packet, 3849 &trans_id, VM_PKT_DATA_INBAND, 3850 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3851 if (ret) 3852 return ret; 3853 3854 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3855 /* 3856 * The completion packet on the stack becomes invalid after 3857 * 'return'; remove the ID from the VMbus requestor if the 3858 * identifier is still mapped to/associated with the packet. 3859 * 3860 * Cf. hv_pci_onchannelcallback(). 3861 */ 3862 vmbus_request_addr_match(chan, trans_id, 3863 (unsigned long)&pkt.teardown_packet); 3864 return -ETIMEDOUT; 3865 } 3866 3867 return 0; 3868 } 3869 3870 /** 3871 * hv_pci_remove() - Remove routine for this VMBus channel 3872 * @hdev: VMBus's tracking struct for this root PCI bus 3873 */ 3874 static void hv_pci_remove(struct hv_device *hdev) 3875 { 3876 struct hv_pcibus_device *hbus; 3877 3878 hbus = hv_get_drvdata(hdev); 3879 if (hbus->state == hv_pcibus_installed) { 3880 tasklet_disable(&hdev->channel->callback_event); 3881 hbus->state = hv_pcibus_removing; 3882 tasklet_enable(&hdev->channel->callback_event); 3883 destroy_workqueue(hbus->wq); 3884 hbus->wq = NULL; 3885 /* 3886 * At this point, no work is running or can be scheduled 3887 * on hbus-wq. We can't race with hv_pci_devices_present() 3888 * or hv_pci_eject_device(), it's safe to proceed. 3889 */ 3890 3891 /* Remove the bus from PCI's point of view. */ 3892 pci_lock_rescan_remove(); 3893 pci_stop_root_bus(hbus->bridge->bus); 3894 hv_pci_remove_slots(hbus); 3895 pci_remove_root_bus(hbus->bridge->bus); 3896 pci_unlock_rescan_remove(); 3897 } 3898 3899 hv_pci_bus_exit(hdev, false); 3900 3901 vmbus_close(hdev->channel); 3902 3903 iounmap(hbus->cfg_addr); 3904 hv_free_config_window(hbus); 3905 hv_pci_free_bridge_windows(hbus); 3906 irq_domain_remove(hbus->irq_domain); 3907 irq_domain_free_fwnode(hbus->fwnode); 3908 3909 hv_put_dom_num(hbus->bridge->domain_nr); 3910 3911 kfree(hbus); 3912 } 3913 3914 static int hv_pci_suspend(struct hv_device *hdev) 3915 { 3916 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3917 enum hv_pcibus_state old_state; 3918 int ret; 3919 3920 /* 3921 * hv_pci_suspend() must make sure there are no pending work items 3922 * before calling vmbus_close(), since it runs in a process context 3923 * as a callback in dpm_suspend(). When it starts to run, the channel 3924 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3925 * context, can be still running concurrently and scheduling new work 3926 * items onto hbus->wq in hv_pci_devices_present() and 3927 * hv_pci_eject_device(), and the work item handlers can access the 3928 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3929 * the work item handler pci_devices_present_work() -> 3930 * new_pcichild_device() writes to the vmbus channel. 3931 * 3932 * To eliminate the race, hv_pci_suspend() disables the channel 3933 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3934 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3935 * it knows that no new work item can be scheduled, and then it flushes 3936 * hbus->wq and safely closes the vmbus channel. 3937 */ 3938 tasklet_disable(&hdev->channel->callback_event); 3939 3940 /* Change the hbus state to prevent new work items. */ 3941 old_state = hbus->state; 3942 if (hbus->state == hv_pcibus_installed) 3943 hbus->state = hv_pcibus_removing; 3944 3945 tasklet_enable(&hdev->channel->callback_event); 3946 3947 if (old_state != hv_pcibus_installed) 3948 return -EINVAL; 3949 3950 flush_workqueue(hbus->wq); 3951 3952 ret = hv_pci_bus_exit(hdev, true); 3953 if (ret) 3954 return ret; 3955 3956 vmbus_close(hdev->channel); 3957 3958 return 0; 3959 } 3960 3961 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3962 { 3963 struct irq_data *irq_data; 3964 struct msi_desc *entry; 3965 int ret = 0; 3966 3967 msi_lock_descs(&pdev->dev); 3968 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 3969 irq_data = irq_get_irq_data(entry->irq); 3970 if (WARN_ON_ONCE(!irq_data)) { 3971 ret = -EINVAL; 3972 break; 3973 } 3974 3975 hv_compose_msi_msg(irq_data, &entry->msg); 3976 } 3977 msi_unlock_descs(&pdev->dev); 3978 3979 return ret; 3980 } 3981 3982 /* 3983 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 3984 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 3985 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 3986 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 3987 * Table entries. 3988 */ 3989 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 3990 { 3991 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 3992 } 3993 3994 static int hv_pci_resume(struct hv_device *hdev) 3995 { 3996 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3997 enum pci_protocol_version_t version[1]; 3998 int ret; 3999 4000 hbus->state = hv_pcibus_init; 4001 4002 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4003 hdev->channel->request_addr_callback = vmbus_request_addr; 4004 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4005 4006 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4007 hv_pci_onchannelcallback, hbus); 4008 if (ret) 4009 return ret; 4010 4011 /* Only use the version that was in use before hibernation. */ 4012 version[0] = hbus->protocol_version; 4013 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4014 if (ret) 4015 goto out; 4016 4017 ret = hv_pci_query_relations(hdev); 4018 if (ret) 4019 goto out; 4020 4021 ret = hv_pci_enter_d0(hdev); 4022 if (ret) 4023 goto out; 4024 4025 ret = hv_send_resources_allocated(hdev); 4026 if (ret) 4027 goto out; 4028 4029 prepopulate_bars(hbus); 4030 4031 hv_pci_restore_msi_state(hbus); 4032 4033 hbus->state = hv_pcibus_installed; 4034 return 0; 4035 out: 4036 vmbus_close(hdev->channel); 4037 return ret; 4038 } 4039 4040 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4041 /* PCI Pass-through Class ID */ 4042 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4043 { HV_PCIE_GUID, }, 4044 { }, 4045 }; 4046 4047 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4048 4049 static struct hv_driver hv_pci_drv = { 4050 .name = "hv_pci", 4051 .id_table = hv_pci_id_table, 4052 .probe = hv_pci_probe, 4053 .remove = hv_pci_remove, 4054 .suspend = hv_pci_suspend, 4055 .resume = hv_pci_resume, 4056 }; 4057 4058 static void __exit exit_hv_pci_drv(void) 4059 { 4060 vmbus_driver_unregister(&hv_pci_drv); 4061 4062 hvpci_block_ops.read_block = NULL; 4063 hvpci_block_ops.write_block = NULL; 4064 hvpci_block_ops.reg_blk_invalidate = NULL; 4065 } 4066 4067 static int __init init_hv_pci_drv(void) 4068 { 4069 int ret; 4070 4071 if (!hv_is_hyperv_initialized()) 4072 return -ENODEV; 4073 4074 ret = hv_pci_irqchip_init(); 4075 if (ret) 4076 return ret; 4077 4078 /* Set the invalid domain number's bit, so it will not be used */ 4079 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4080 4081 /* Initialize PCI block r/w interface */ 4082 hvpci_block_ops.read_block = hv_read_config_block; 4083 hvpci_block_ops.write_block = hv_write_config_block; 4084 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4085 4086 return vmbus_driver_register(&hv_pci_drv); 4087 } 4088 4089 module_init(init_hv_pci_drv); 4090 module_exit(exit_hv_pci_drv); 4091 4092 MODULE_DESCRIPTION("Hyper-V PCI"); 4093 MODULE_LICENSE("GPL v2"); 4094