1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/delay.h> 44 #include <linux/semaphore.h> 45 #include <linux/irqdomain.h> 46 #include <asm/irqdomain.h> 47 #include <asm/apic.h> 48 #include <linux/irq.h> 49 #include <linux/msi.h> 50 #include <linux/hyperv.h> 51 #include <linux/refcount.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 }; 67 68 #define CPU_AFFINITY_ALL -1ULL 69 70 /* 71 * Supported protocol versions in the order of probing - highest go 72 * first. 73 */ 74 static enum pci_protocol_version_t pci_protocol_versions[] = { 75 PCI_PROTOCOL_VERSION_1_2, 76 PCI_PROTOCOL_VERSION_1_1, 77 }; 78 79 /* 80 * Protocol version negotiated by hv_pci_protocol_negotiation(). 81 */ 82 static enum pci_protocol_version_t pci_protocol_version; 83 84 #define PCI_CONFIG_MMIO_LENGTH 0x2000 85 #define CFG_PAGE_OFFSET 0x1000 86 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 87 88 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 89 90 #define STATUS_REVISION_MISMATCH 0xC0000059 91 92 /* space for 32bit serial number as string */ 93 #define SLOT_NAME_SIZE 11 94 95 /* 96 * Message Types 97 */ 98 99 enum pci_message_type { 100 /* 101 * Version 1.1 102 */ 103 PCI_MESSAGE_BASE = 0x42490000, 104 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 105 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 106 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 107 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 108 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 109 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 110 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 111 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 112 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 113 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 114 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 115 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 116 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 117 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 118 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 119 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 120 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 121 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 122 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 123 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 124 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 125 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 126 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 127 PCI_MESSAGE_MAXIMUM 128 }; 129 130 /* 131 * Structures defining the virtual PCI Express protocol. 132 */ 133 134 union pci_version { 135 struct { 136 u16 minor_version; 137 u16 major_version; 138 } parts; 139 u32 version; 140 } __packed; 141 142 /* 143 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 144 * which is all this driver does. This representation is the one used in 145 * Windows, which is what is expected when sending this back and forth with 146 * the Hyper-V parent partition. 147 */ 148 union win_slot_encoding { 149 struct { 150 u32 dev:5; 151 u32 func:3; 152 u32 reserved:24; 153 } bits; 154 u32 slot; 155 } __packed; 156 157 /* 158 * Pretty much as defined in the PCI Specifications. 159 */ 160 struct pci_function_description { 161 u16 v_id; /* vendor ID */ 162 u16 d_id; /* device ID */ 163 u8 rev; 164 u8 prog_intf; 165 u8 subclass; 166 u8 base_class; 167 u32 subsystem_id; 168 union win_slot_encoding win_slot; 169 u32 ser; /* serial number */ 170 } __packed; 171 172 /** 173 * struct hv_msi_desc 174 * @vector: IDT entry 175 * @delivery_mode: As defined in Intel's Programmer's 176 * Reference Manual, Volume 3, Chapter 8. 177 * @vector_count: Number of contiguous entries in the 178 * Interrupt Descriptor Table that are 179 * occupied by this Message-Signaled 180 * Interrupt. For "MSI", as first defined 181 * in PCI 2.2, this can be between 1 and 182 * 32. For "MSI-X," as first defined in PCI 183 * 3.0, this must be 1, as each MSI-X table 184 * entry would have its own descriptor. 185 * @reserved: Empty space 186 * @cpu_mask: All the target virtual processors. 187 */ 188 struct hv_msi_desc { 189 u8 vector; 190 u8 delivery_mode; 191 u16 vector_count; 192 u32 reserved; 193 u64 cpu_mask; 194 } __packed; 195 196 /** 197 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 198 * @vector: IDT entry 199 * @delivery_mode: As defined in Intel's Programmer's 200 * Reference Manual, Volume 3, Chapter 8. 201 * @vector_count: Number of contiguous entries in the 202 * Interrupt Descriptor Table that are 203 * occupied by this Message-Signaled 204 * Interrupt. For "MSI", as first defined 205 * in PCI 2.2, this can be between 1 and 206 * 32. For "MSI-X," as first defined in PCI 207 * 3.0, this must be 1, as each MSI-X table 208 * entry would have its own descriptor. 209 * @processor_count: number of bits enabled in array. 210 * @processor_array: All the target virtual processors. 211 */ 212 struct hv_msi_desc2 { 213 u8 vector; 214 u8 delivery_mode; 215 u16 vector_count; 216 u16 processor_count; 217 u16 processor_array[32]; 218 } __packed; 219 220 /** 221 * struct tran_int_desc 222 * @reserved: unused, padding 223 * @vector_count: same as in hv_msi_desc 224 * @data: This is the "data payload" value that is 225 * written by the device when it generates 226 * a message-signaled interrupt, either MSI 227 * or MSI-X. 228 * @address: This is the address to which the data 229 * payload is written on interrupt 230 * generation. 231 */ 232 struct tran_int_desc { 233 u16 reserved; 234 u16 vector_count; 235 u32 data; 236 u64 address; 237 } __packed; 238 239 /* 240 * A generic message format for virtual PCI. 241 * Specific message formats are defined later in the file. 242 */ 243 244 struct pci_message { 245 u32 type; 246 } __packed; 247 248 struct pci_child_message { 249 struct pci_message message_type; 250 union win_slot_encoding wslot; 251 } __packed; 252 253 struct pci_incoming_message { 254 struct vmpacket_descriptor hdr; 255 struct pci_message message_type; 256 } __packed; 257 258 struct pci_response { 259 struct vmpacket_descriptor hdr; 260 s32 status; /* negative values are failures */ 261 } __packed; 262 263 struct pci_packet { 264 void (*completion_func)(void *context, struct pci_response *resp, 265 int resp_packet_size); 266 void *compl_ctxt; 267 268 struct pci_message message[0]; 269 }; 270 271 /* 272 * Specific message types supporting the PCI protocol. 273 */ 274 275 /* 276 * Version negotiation message. Sent from the guest to the host. 277 * The guest is free to try different versions until the host 278 * accepts the version. 279 * 280 * pci_version: The protocol version requested. 281 * is_last_attempt: If TRUE, this is the last version guest will request. 282 * reservedz: Reserved field, set to zero. 283 */ 284 285 struct pci_version_request { 286 struct pci_message message_type; 287 u32 protocol_version; 288 } __packed; 289 290 /* 291 * Bus D0 Entry. This is sent from the guest to the host when the virtual 292 * bus (PCI Express port) is ready for action. 293 */ 294 295 struct pci_bus_d0_entry { 296 struct pci_message message_type; 297 u32 reserved; 298 u64 mmio_base; 299 } __packed; 300 301 struct pci_bus_relations { 302 struct pci_incoming_message incoming; 303 u32 device_count; 304 struct pci_function_description func[0]; 305 } __packed; 306 307 struct pci_q_res_req_response { 308 struct vmpacket_descriptor hdr; 309 s32 status; /* negative values are failures */ 310 u32 probed_bar[6]; 311 } __packed; 312 313 struct pci_set_power { 314 struct pci_message message_type; 315 union win_slot_encoding wslot; 316 u32 power_state; /* In Windows terms */ 317 u32 reserved; 318 } __packed; 319 320 struct pci_set_power_response { 321 struct vmpacket_descriptor hdr; 322 s32 status; /* negative values are failures */ 323 union win_slot_encoding wslot; 324 u32 resultant_state; /* In Windows terms */ 325 u32 reserved; 326 } __packed; 327 328 struct pci_resources_assigned { 329 struct pci_message message_type; 330 union win_slot_encoding wslot; 331 u8 memory_range[0x14][6]; /* not used here */ 332 u32 msi_descriptors; 333 u32 reserved[4]; 334 } __packed; 335 336 struct pci_resources_assigned2 { 337 struct pci_message message_type; 338 union win_slot_encoding wslot; 339 u8 memory_range[0x14][6]; /* not used here */ 340 u32 msi_descriptor_count; 341 u8 reserved[70]; 342 } __packed; 343 344 struct pci_create_interrupt { 345 struct pci_message message_type; 346 union win_slot_encoding wslot; 347 struct hv_msi_desc int_desc; 348 } __packed; 349 350 struct pci_create_int_response { 351 struct pci_response response; 352 u32 reserved; 353 struct tran_int_desc int_desc; 354 } __packed; 355 356 struct pci_create_interrupt2 { 357 struct pci_message message_type; 358 union win_slot_encoding wslot; 359 struct hv_msi_desc2 int_desc; 360 } __packed; 361 362 struct pci_delete_interrupt { 363 struct pci_message message_type; 364 union win_slot_encoding wslot; 365 struct tran_int_desc int_desc; 366 } __packed; 367 368 struct pci_dev_incoming { 369 struct pci_incoming_message incoming; 370 union win_slot_encoding wslot; 371 } __packed; 372 373 struct pci_eject_response { 374 struct pci_message message_type; 375 union win_slot_encoding wslot; 376 u32 status; 377 } __packed; 378 379 static int pci_ring_size = (4 * PAGE_SIZE); 380 381 /* 382 * Definitions or interrupt steering hypercall. 383 */ 384 #define HV_PARTITION_ID_SELF ((u64)-1) 385 #define HVCALL_RETARGET_INTERRUPT 0x7e 386 387 struct hv_interrupt_entry { 388 u32 source; /* 1 for MSI(-X) */ 389 u32 reserved1; 390 u32 address; 391 u32 data; 392 }; 393 394 #define HV_VP_SET_BANK_COUNT_MAX 5 /* current implementation limit */ 395 396 struct hv_vp_set { 397 u64 format; /* 0 (HvGenericSetSparse4k) */ 398 u64 valid_banks; 399 u64 masks[HV_VP_SET_BANK_COUNT_MAX]; 400 }; 401 402 /* 403 * flags for hv_device_interrupt_target.flags 404 */ 405 #define HV_DEVICE_INTERRUPT_TARGET_MULTICAST 1 406 #define HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET 2 407 408 struct hv_device_interrupt_target { 409 u32 vector; 410 u32 flags; 411 union { 412 u64 vp_mask; 413 struct hv_vp_set vp_set; 414 }; 415 }; 416 417 struct retarget_msi_interrupt { 418 u64 partition_id; /* use "self" */ 419 u64 device_id; 420 struct hv_interrupt_entry int_entry; 421 u64 reserved2; 422 struct hv_device_interrupt_target int_target; 423 } __packed; 424 425 /* 426 * Driver specific state. 427 */ 428 429 enum hv_pcibus_state { 430 hv_pcibus_init = 0, 431 hv_pcibus_probed, 432 hv_pcibus_installed, 433 hv_pcibus_removed, 434 hv_pcibus_maximum 435 }; 436 437 struct hv_pcibus_device { 438 struct pci_sysdata sysdata; 439 enum hv_pcibus_state state; 440 refcount_t remove_lock; 441 struct hv_device *hdev; 442 resource_size_t low_mmio_space; 443 resource_size_t high_mmio_space; 444 struct resource *mem_config; 445 struct resource *low_mmio_res; 446 struct resource *high_mmio_res; 447 struct completion *survey_event; 448 struct completion remove_event; 449 struct pci_bus *pci_bus; 450 spinlock_t config_lock; /* Avoid two threads writing index page */ 451 spinlock_t device_list_lock; /* Protect lists below */ 452 void __iomem *cfg_addr; 453 454 struct list_head resources_for_children; 455 456 struct list_head children; 457 struct list_head dr_list; 458 459 struct msi_domain_info msi_info; 460 struct msi_controller msi_chip; 461 struct irq_domain *irq_domain; 462 463 /* hypercall arg, must not cross page boundary */ 464 struct retarget_msi_interrupt retarget_msi_interrupt_params; 465 466 spinlock_t retarget_msi_interrupt_lock; 467 468 struct workqueue_struct *wq; 469 }; 470 471 /* 472 * Tracks "Device Relations" messages from the host, which must be both 473 * processed in order and deferred so that they don't run in the context 474 * of the incoming packet callback. 475 */ 476 struct hv_dr_work { 477 struct work_struct wrk; 478 struct hv_pcibus_device *bus; 479 }; 480 481 struct hv_dr_state { 482 struct list_head list_entry; 483 u32 device_count; 484 struct pci_function_description func[0]; 485 }; 486 487 enum hv_pcichild_state { 488 hv_pcichild_init = 0, 489 hv_pcichild_requirements, 490 hv_pcichild_resourced, 491 hv_pcichild_ejecting, 492 hv_pcichild_maximum 493 }; 494 495 struct hv_pci_dev { 496 /* List protected by pci_rescan_remove_lock */ 497 struct list_head list_entry; 498 refcount_t refs; 499 enum hv_pcichild_state state; 500 struct pci_slot *pci_slot; 501 struct pci_function_description desc; 502 bool reported_missing; 503 struct hv_pcibus_device *hbus; 504 struct work_struct wrk; 505 506 /* 507 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 508 * read it back, for each of the BAR offsets within config space. 509 */ 510 u32 probed_bar[6]; 511 }; 512 513 struct hv_pci_compl { 514 struct completion host_event; 515 s32 completion_status; 516 }; 517 518 static void hv_pci_onchannelcallback(void *context); 519 520 /** 521 * hv_pci_generic_compl() - Invoked for a completion packet 522 * @context: Set up by the sender of the packet. 523 * @resp: The response packet 524 * @resp_packet_size: Size in bytes of the packet 525 * 526 * This function is used to trigger an event and report status 527 * for any message for which the completion packet contains a 528 * status and nothing else. 529 */ 530 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 531 int resp_packet_size) 532 { 533 struct hv_pci_compl *comp_pkt = context; 534 535 if (resp_packet_size >= offsetofend(struct pci_response, status)) 536 comp_pkt->completion_status = resp->status; 537 else 538 comp_pkt->completion_status = -1; 539 540 complete(&comp_pkt->host_event); 541 } 542 543 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 544 u32 wslot); 545 546 static void get_pcichild(struct hv_pci_dev *hpdev) 547 { 548 refcount_inc(&hpdev->refs); 549 } 550 551 static void put_pcichild(struct hv_pci_dev *hpdev) 552 { 553 if (refcount_dec_and_test(&hpdev->refs)) 554 kfree(hpdev); 555 } 556 557 static void get_hvpcibus(struct hv_pcibus_device *hv_pcibus); 558 static void put_hvpcibus(struct hv_pcibus_device *hv_pcibus); 559 560 /* 561 * There is no good way to get notified from vmbus_onoffer_rescind(), 562 * so let's use polling here, since this is not a hot path. 563 */ 564 static int wait_for_response(struct hv_device *hdev, 565 struct completion *comp) 566 { 567 while (true) { 568 if (hdev->channel->rescind) { 569 dev_warn_once(&hdev->device, "The device is gone.\n"); 570 return -ENODEV; 571 } 572 573 if (wait_for_completion_timeout(comp, HZ / 10)) 574 break; 575 } 576 577 return 0; 578 } 579 580 /** 581 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 582 * @devfn: The Linux representation of PCI slot 583 * 584 * Windows uses a slightly different representation of PCI slot. 585 * 586 * Return: The Windows representation 587 */ 588 static u32 devfn_to_wslot(int devfn) 589 { 590 union win_slot_encoding wslot; 591 592 wslot.slot = 0; 593 wslot.bits.dev = PCI_SLOT(devfn); 594 wslot.bits.func = PCI_FUNC(devfn); 595 596 return wslot.slot; 597 } 598 599 /** 600 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 601 * @wslot: The Windows representation of PCI slot 602 * 603 * Windows uses a slightly different representation of PCI slot. 604 * 605 * Return: The Linux representation 606 */ 607 static int wslot_to_devfn(u32 wslot) 608 { 609 union win_slot_encoding slot_no; 610 611 slot_no.slot = wslot; 612 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 613 } 614 615 /* 616 * PCI Configuration Space for these root PCI buses is implemented as a pair 617 * of pages in memory-mapped I/O space. Writing to the first page chooses 618 * the PCI function being written or read. Once the first page has been 619 * written to, the following page maps in the entire configuration space of 620 * the function. 621 */ 622 623 /** 624 * _hv_pcifront_read_config() - Internal PCI config read 625 * @hpdev: The PCI driver's representation of the device 626 * @where: Offset within config space 627 * @size: Size of the transfer 628 * @val: Pointer to the buffer receiving the data 629 */ 630 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 631 int size, u32 *val) 632 { 633 unsigned long flags; 634 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 635 636 /* 637 * If the attempt is to read the IDs or the ROM BAR, simulate that. 638 */ 639 if (where + size <= PCI_COMMAND) { 640 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 641 } else if (where >= PCI_CLASS_REVISION && where + size <= 642 PCI_CACHE_LINE_SIZE) { 643 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 644 PCI_CLASS_REVISION, size); 645 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 646 PCI_ROM_ADDRESS) { 647 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 648 PCI_SUBSYSTEM_VENDOR_ID, size); 649 } else if (where >= PCI_ROM_ADDRESS && where + size <= 650 PCI_CAPABILITY_LIST) { 651 /* ROM BARs are unimplemented */ 652 *val = 0; 653 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 654 PCI_INTERRUPT_PIN) { 655 /* 656 * Interrupt Line and Interrupt PIN are hard-wired to zero 657 * because this front-end only supports message-signaled 658 * interrupts. 659 */ 660 *val = 0; 661 } else if (where + size <= CFG_PAGE_SIZE) { 662 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 663 /* Choose the function to be read. (See comment above) */ 664 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 665 /* Make sure the function was chosen before we start reading. */ 666 mb(); 667 /* Read from that function's config space. */ 668 switch (size) { 669 case 1: 670 *val = readb(addr); 671 break; 672 case 2: 673 *val = readw(addr); 674 break; 675 default: 676 *val = readl(addr); 677 break; 678 } 679 /* 680 * Make sure the read was done before we release the spinlock 681 * allowing consecutive reads/writes. 682 */ 683 mb(); 684 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 685 } else { 686 dev_err(&hpdev->hbus->hdev->device, 687 "Attempt to read beyond a function's config space.\n"); 688 } 689 } 690 691 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 692 { 693 u16 ret; 694 unsigned long flags; 695 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + 696 PCI_VENDOR_ID; 697 698 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 699 700 /* Choose the function to be read. (See comment above) */ 701 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 702 /* Make sure the function was chosen before we start reading. */ 703 mb(); 704 /* Read from that function's config space. */ 705 ret = readw(addr); 706 /* 707 * mb() is not required here, because the spin_unlock_irqrestore() 708 * is a barrier. 709 */ 710 711 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 712 713 return ret; 714 } 715 716 /** 717 * _hv_pcifront_write_config() - Internal PCI config write 718 * @hpdev: The PCI driver's representation of the device 719 * @where: Offset within config space 720 * @size: Size of the transfer 721 * @val: The data being transferred 722 */ 723 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 724 int size, u32 val) 725 { 726 unsigned long flags; 727 void __iomem *addr = hpdev->hbus->cfg_addr + CFG_PAGE_OFFSET + where; 728 729 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 730 where + size <= PCI_CAPABILITY_LIST) { 731 /* SSIDs and ROM BARs are read-only */ 732 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 733 spin_lock_irqsave(&hpdev->hbus->config_lock, flags); 734 /* Choose the function to be written. (See comment above) */ 735 writel(hpdev->desc.win_slot.slot, hpdev->hbus->cfg_addr); 736 /* Make sure the function was chosen before we start writing. */ 737 wmb(); 738 /* Write to that function's config space. */ 739 switch (size) { 740 case 1: 741 writeb(val, addr); 742 break; 743 case 2: 744 writew(val, addr); 745 break; 746 default: 747 writel(val, addr); 748 break; 749 } 750 /* 751 * Make sure the write was done before we release the spinlock 752 * allowing consecutive reads/writes. 753 */ 754 mb(); 755 spin_unlock_irqrestore(&hpdev->hbus->config_lock, flags); 756 } else { 757 dev_err(&hpdev->hbus->hdev->device, 758 "Attempt to write beyond a function's config space.\n"); 759 } 760 } 761 762 /** 763 * hv_pcifront_read_config() - Read configuration space 764 * @bus: PCI Bus structure 765 * @devfn: Device/function 766 * @where: Offset from base 767 * @size: Byte/word/dword 768 * @val: Value to be read 769 * 770 * Return: PCIBIOS_SUCCESSFUL on success 771 * PCIBIOS_DEVICE_NOT_FOUND on failure 772 */ 773 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 774 int where, int size, u32 *val) 775 { 776 struct hv_pcibus_device *hbus = 777 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 778 struct hv_pci_dev *hpdev; 779 780 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 781 if (!hpdev) 782 return PCIBIOS_DEVICE_NOT_FOUND; 783 784 _hv_pcifront_read_config(hpdev, where, size, val); 785 786 put_pcichild(hpdev); 787 return PCIBIOS_SUCCESSFUL; 788 } 789 790 /** 791 * hv_pcifront_write_config() - Write configuration space 792 * @bus: PCI Bus structure 793 * @devfn: Device/function 794 * @where: Offset from base 795 * @size: Byte/word/dword 796 * @val: Value to be written to device 797 * 798 * Return: PCIBIOS_SUCCESSFUL on success 799 * PCIBIOS_DEVICE_NOT_FOUND on failure 800 */ 801 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 802 int where, int size, u32 val) 803 { 804 struct hv_pcibus_device *hbus = 805 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 806 struct hv_pci_dev *hpdev; 807 808 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 809 if (!hpdev) 810 return PCIBIOS_DEVICE_NOT_FOUND; 811 812 _hv_pcifront_write_config(hpdev, where, size, val); 813 814 put_pcichild(hpdev); 815 return PCIBIOS_SUCCESSFUL; 816 } 817 818 /* PCIe operations */ 819 static struct pci_ops hv_pcifront_ops = { 820 .read = hv_pcifront_read_config, 821 .write = hv_pcifront_write_config, 822 }; 823 824 /* Interrupt management hooks */ 825 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 826 struct tran_int_desc *int_desc) 827 { 828 struct pci_delete_interrupt *int_pkt; 829 struct { 830 struct pci_packet pkt; 831 u8 buffer[sizeof(struct pci_delete_interrupt)]; 832 } ctxt; 833 834 memset(&ctxt, 0, sizeof(ctxt)); 835 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 836 int_pkt->message_type.type = 837 PCI_DELETE_INTERRUPT_MESSAGE; 838 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 839 int_pkt->int_desc = *int_desc; 840 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 841 (unsigned long)&ctxt.pkt, VM_PKT_DATA_INBAND, 0); 842 kfree(int_desc); 843 } 844 845 /** 846 * hv_msi_free() - Free the MSI. 847 * @domain: The interrupt domain pointer 848 * @info: Extra MSI-related context 849 * @irq: Identifies the IRQ. 850 * 851 * The Hyper-V parent partition and hypervisor are tracking the 852 * messages that are in use, keeping the interrupt redirection 853 * table up to date. This callback sends a message that frees 854 * the IRT entry and related tracking nonsense. 855 */ 856 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 857 unsigned int irq) 858 { 859 struct hv_pcibus_device *hbus; 860 struct hv_pci_dev *hpdev; 861 struct pci_dev *pdev; 862 struct tran_int_desc *int_desc; 863 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 864 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 865 866 pdev = msi_desc_to_pci_dev(msi); 867 hbus = info->data; 868 int_desc = irq_data_get_irq_chip_data(irq_data); 869 if (!int_desc) 870 return; 871 872 irq_data->chip_data = NULL; 873 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 874 if (!hpdev) { 875 kfree(int_desc); 876 return; 877 } 878 879 hv_int_desc_free(hpdev, int_desc); 880 put_pcichild(hpdev); 881 } 882 883 static int hv_set_affinity(struct irq_data *data, const struct cpumask *dest, 884 bool force) 885 { 886 struct irq_data *parent = data->parent_data; 887 888 return parent->chip->irq_set_affinity(parent, dest, force); 889 } 890 891 static void hv_irq_mask(struct irq_data *data) 892 { 893 pci_msi_mask_irq(data); 894 } 895 896 /** 897 * hv_irq_unmask() - "Unmask" the IRQ by setting its current 898 * affinity. 899 * @data: Describes the IRQ 900 * 901 * Build new a destination for the MSI and make a hypercall to 902 * update the Interrupt Redirection Table. "Device Logical ID" 903 * is built out of this PCI bus's instance GUID and the function 904 * number of the device. 905 */ 906 static void hv_irq_unmask(struct irq_data *data) 907 { 908 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 909 struct irq_cfg *cfg = irqd_cfg(data); 910 struct retarget_msi_interrupt *params; 911 struct hv_pcibus_device *hbus; 912 struct cpumask *dest; 913 struct pci_bus *pbus; 914 struct pci_dev *pdev; 915 unsigned long flags; 916 u32 var_size = 0; 917 int cpu_vmbus; 918 int cpu; 919 u64 res; 920 921 dest = irq_data_get_effective_affinity_mask(data); 922 pdev = msi_desc_to_pci_dev(msi_desc); 923 pbus = pdev->bus; 924 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 925 926 spin_lock_irqsave(&hbus->retarget_msi_interrupt_lock, flags); 927 928 params = &hbus->retarget_msi_interrupt_params; 929 memset(params, 0, sizeof(*params)); 930 params->partition_id = HV_PARTITION_ID_SELF; 931 params->int_entry.source = 1; /* MSI(-X) */ 932 params->int_entry.address = msi_desc->msg.address_lo; 933 params->int_entry.data = msi_desc->msg.data; 934 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 935 (hbus->hdev->dev_instance.b[4] << 16) | 936 (hbus->hdev->dev_instance.b[7] << 8) | 937 (hbus->hdev->dev_instance.b[6] & 0xf8) | 938 PCI_FUNC(pdev->devfn); 939 params->int_target.vector = cfg->vector; 940 941 /* 942 * Honoring apic->irq_delivery_mode set to dest_Fixed by 943 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 944 * spurious interrupt storm. Not doing so does not seem to have a 945 * negative effect (yet?). 946 */ 947 948 if (pci_protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 949 /* 950 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 951 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 952 * with >64 VP support. 953 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 954 * is not sufficient for this hypercall. 955 */ 956 params->int_target.flags |= 957 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 958 params->int_target.vp_set.valid_banks = 959 (1ull << HV_VP_SET_BANK_COUNT_MAX) - 1; 960 961 /* 962 * var-sized hypercall, var-size starts after vp_mask (thus 963 * vp_set.format does not count, but vp_set.valid_banks does). 964 */ 965 var_size = 1 + HV_VP_SET_BANK_COUNT_MAX; 966 967 for_each_cpu_and(cpu, dest, cpu_online_mask) { 968 cpu_vmbus = hv_cpu_number_to_vp_number(cpu); 969 970 if (cpu_vmbus >= HV_VP_SET_BANK_COUNT_MAX * 64) { 971 dev_err(&hbus->hdev->device, 972 "too high CPU %d", cpu_vmbus); 973 res = 1; 974 goto exit_unlock; 975 } 976 977 params->int_target.vp_set.masks[cpu_vmbus / 64] |= 978 (1ULL << (cpu_vmbus & 63)); 979 } 980 } else { 981 for_each_cpu_and(cpu, dest, cpu_online_mask) { 982 params->int_target.vp_mask |= 983 (1ULL << hv_cpu_number_to_vp_number(cpu)); 984 } 985 } 986 987 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 988 params, NULL); 989 990 exit_unlock: 991 spin_unlock_irqrestore(&hbus->retarget_msi_interrupt_lock, flags); 992 993 if (res) { 994 dev_err(&hbus->hdev->device, 995 "%s() failed: %#llx", __func__, res); 996 return; 997 } 998 999 pci_msi_unmask_irq(data); 1000 } 1001 1002 struct compose_comp_ctxt { 1003 struct hv_pci_compl comp_pkt; 1004 struct tran_int_desc int_desc; 1005 }; 1006 1007 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1008 int resp_packet_size) 1009 { 1010 struct compose_comp_ctxt *comp_pkt = context; 1011 struct pci_create_int_response *int_resp = 1012 (struct pci_create_int_response *)resp; 1013 1014 comp_pkt->comp_pkt.completion_status = resp->status; 1015 comp_pkt->int_desc = int_resp->int_desc; 1016 complete(&comp_pkt->comp_pkt.host_event); 1017 } 1018 1019 static u32 hv_compose_msi_req_v1( 1020 struct pci_create_interrupt *int_pkt, struct cpumask *affinity, 1021 u32 slot, u8 vector) 1022 { 1023 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1024 int_pkt->wslot.slot = slot; 1025 int_pkt->int_desc.vector = vector; 1026 int_pkt->int_desc.vector_count = 1; 1027 int_pkt->int_desc.delivery_mode = dest_Fixed; 1028 1029 /* 1030 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1031 * hv_irq_unmask(). 1032 */ 1033 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1034 1035 return sizeof(*int_pkt); 1036 } 1037 1038 static u32 hv_compose_msi_req_v2( 1039 struct pci_create_interrupt2 *int_pkt, struct cpumask *affinity, 1040 u32 slot, u8 vector) 1041 { 1042 int cpu; 1043 1044 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1045 int_pkt->wslot.slot = slot; 1046 int_pkt->int_desc.vector = vector; 1047 int_pkt->int_desc.vector_count = 1; 1048 int_pkt->int_desc.delivery_mode = dest_Fixed; 1049 1050 /* 1051 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1052 * by subsequent retarget in hv_irq_unmask(). 1053 */ 1054 cpu = cpumask_first_and(affinity, cpu_online_mask); 1055 int_pkt->int_desc.processor_array[0] = 1056 hv_cpu_number_to_vp_number(cpu); 1057 int_pkt->int_desc.processor_count = 1; 1058 1059 return sizeof(*int_pkt); 1060 } 1061 1062 /** 1063 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1064 * @data: Everything about this MSI 1065 * @msg: Buffer that is filled in by this function 1066 * 1067 * This function unpacks the IRQ looking for target CPU set, IDT 1068 * vector and mode and sends a message to the parent partition 1069 * asking for a mapping for that tuple in this partition. The 1070 * response supplies a data value and address to which that data 1071 * should be written to trigger that interrupt. 1072 */ 1073 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1074 { 1075 struct irq_cfg *cfg = irqd_cfg(data); 1076 struct hv_pcibus_device *hbus; 1077 struct hv_pci_dev *hpdev; 1078 struct pci_bus *pbus; 1079 struct pci_dev *pdev; 1080 struct cpumask *dest; 1081 unsigned long flags; 1082 struct compose_comp_ctxt comp; 1083 struct tran_int_desc *int_desc; 1084 struct { 1085 struct pci_packet pci_pkt; 1086 union { 1087 struct pci_create_interrupt v1; 1088 struct pci_create_interrupt2 v2; 1089 } int_pkts; 1090 } __packed ctxt; 1091 1092 u32 size; 1093 int ret; 1094 1095 pdev = msi_desc_to_pci_dev(irq_data_get_msi_desc(data)); 1096 dest = irq_data_get_effective_affinity_mask(data); 1097 pbus = pdev->bus; 1098 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1099 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1100 if (!hpdev) 1101 goto return_null_message; 1102 1103 /* Free any previous message that might have already been composed. */ 1104 if (data->chip_data) { 1105 int_desc = data->chip_data; 1106 data->chip_data = NULL; 1107 hv_int_desc_free(hpdev, int_desc); 1108 } 1109 1110 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1111 if (!int_desc) 1112 goto drop_reference; 1113 1114 memset(&ctxt, 0, sizeof(ctxt)); 1115 init_completion(&comp.comp_pkt.host_event); 1116 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1117 ctxt.pci_pkt.compl_ctxt = ∁ 1118 1119 switch (pci_protocol_version) { 1120 case PCI_PROTOCOL_VERSION_1_1: 1121 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1122 dest, 1123 hpdev->desc.win_slot.slot, 1124 cfg->vector); 1125 break; 1126 1127 case PCI_PROTOCOL_VERSION_1_2: 1128 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1129 dest, 1130 hpdev->desc.win_slot.slot, 1131 cfg->vector); 1132 break; 1133 1134 default: 1135 /* As we only negotiate protocol versions known to this driver, 1136 * this path should never hit. However, this is it not a hot 1137 * path so we print a message to aid future updates. 1138 */ 1139 dev_err(&hbus->hdev->device, 1140 "Unexpected vPCI protocol, update driver."); 1141 goto free_int_desc; 1142 } 1143 1144 ret = vmbus_sendpacket(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1145 size, (unsigned long)&ctxt.pci_pkt, 1146 VM_PKT_DATA_INBAND, 1147 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1148 if (ret) { 1149 dev_err(&hbus->hdev->device, 1150 "Sending request for interrupt failed: 0x%x", 1151 comp.comp_pkt.completion_status); 1152 goto free_int_desc; 1153 } 1154 1155 /* 1156 * Since this function is called with IRQ locks held, can't 1157 * do normal wait for completion; instead poll. 1158 */ 1159 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1160 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1161 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1162 dev_err_once(&hbus->hdev->device, 1163 "the device has gone\n"); 1164 goto free_int_desc; 1165 } 1166 1167 /* 1168 * When the higher level interrupt code calls us with 1169 * interrupt disabled, we must poll the channel by calling 1170 * the channel callback directly when channel->target_cpu is 1171 * the current CPU. When the higher level interrupt code 1172 * calls us with interrupt enabled, let's add the 1173 * local_irq_save()/restore() to avoid race: 1174 * hv_pci_onchannelcallback() can also run in tasklet. 1175 */ 1176 local_irq_save(flags); 1177 1178 if (hbus->hdev->channel->target_cpu == smp_processor_id()) 1179 hv_pci_onchannelcallback(hbus); 1180 1181 local_irq_restore(flags); 1182 1183 if (hpdev->state == hv_pcichild_ejecting) { 1184 dev_err_once(&hbus->hdev->device, 1185 "the device is being ejected\n"); 1186 goto free_int_desc; 1187 } 1188 1189 udelay(100); 1190 } 1191 1192 if (comp.comp_pkt.completion_status < 0) { 1193 dev_err(&hbus->hdev->device, 1194 "Request for interrupt failed: 0x%x", 1195 comp.comp_pkt.completion_status); 1196 goto free_int_desc; 1197 } 1198 1199 /* 1200 * Record the assignment so that this can be unwound later. Using 1201 * irq_set_chip_data() here would be appropriate, but the lock it takes 1202 * is already held. 1203 */ 1204 *int_desc = comp.int_desc; 1205 data->chip_data = int_desc; 1206 1207 /* Pass up the result. */ 1208 msg->address_hi = comp.int_desc.address >> 32; 1209 msg->address_lo = comp.int_desc.address & 0xffffffff; 1210 msg->data = comp.int_desc.data; 1211 1212 put_pcichild(hpdev); 1213 return; 1214 1215 free_int_desc: 1216 kfree(int_desc); 1217 drop_reference: 1218 put_pcichild(hpdev); 1219 return_null_message: 1220 msg->address_hi = 0; 1221 msg->address_lo = 0; 1222 msg->data = 0; 1223 } 1224 1225 /* HW Interrupt Chip Descriptor */ 1226 static struct irq_chip hv_msi_irq_chip = { 1227 .name = "Hyper-V PCIe MSI", 1228 .irq_compose_msi_msg = hv_compose_msi_msg, 1229 .irq_set_affinity = hv_set_affinity, 1230 .irq_ack = irq_chip_ack_parent, 1231 .irq_mask = hv_irq_mask, 1232 .irq_unmask = hv_irq_unmask, 1233 }; 1234 1235 static irq_hw_number_t hv_msi_domain_ops_get_hwirq(struct msi_domain_info *info, 1236 msi_alloc_info_t *arg) 1237 { 1238 return arg->msi_hwirq; 1239 } 1240 1241 static struct msi_domain_ops hv_msi_ops = { 1242 .get_hwirq = hv_msi_domain_ops_get_hwirq, 1243 .msi_prepare = pci_msi_prepare, 1244 .set_desc = pci_msi_set_desc, 1245 .msi_free = hv_msi_free, 1246 }; 1247 1248 /** 1249 * hv_pcie_init_irq_domain() - Initialize IRQ domain 1250 * @hbus: The root PCI bus 1251 * 1252 * This function creates an IRQ domain which will be used for 1253 * interrupts from devices that have been passed through. These 1254 * devices only support MSI and MSI-X, not line-based interrupts 1255 * or simulations of line-based interrupts through PCIe's 1256 * fabric-layer messages. Because interrupts are remapped, we 1257 * can support multi-message MSI here. 1258 * 1259 * Return: '0' on success and error value on failure 1260 */ 1261 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 1262 { 1263 hbus->msi_info.chip = &hv_msi_irq_chip; 1264 hbus->msi_info.ops = &hv_msi_ops; 1265 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 1266 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 1267 MSI_FLAG_PCI_MSIX); 1268 hbus->msi_info.handler = handle_edge_irq; 1269 hbus->msi_info.handler_name = "edge"; 1270 hbus->msi_info.data = hbus; 1271 hbus->irq_domain = pci_msi_create_irq_domain(hbus->sysdata.fwnode, 1272 &hbus->msi_info, 1273 x86_vector_domain); 1274 if (!hbus->irq_domain) { 1275 dev_err(&hbus->hdev->device, 1276 "Failed to build an MSI IRQ domain\n"); 1277 return -ENODEV; 1278 } 1279 1280 return 0; 1281 } 1282 1283 /** 1284 * get_bar_size() - Get the address space consumed by a BAR 1285 * @bar_val: Value that a BAR returned after -1 was written 1286 * to it. 1287 * 1288 * This function returns the size of the BAR, rounded up to 1 1289 * page. It has to be rounded up because the hypervisor's page 1290 * table entry that maps the BAR into the VM can't specify an 1291 * offset within a page. The invariant is that the hypervisor 1292 * must place any BARs of smaller than page length at the 1293 * beginning of a page. 1294 * 1295 * Return: Size in bytes of the consumed MMIO space. 1296 */ 1297 static u64 get_bar_size(u64 bar_val) 1298 { 1299 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 1300 PAGE_SIZE); 1301 } 1302 1303 /** 1304 * survey_child_resources() - Total all MMIO requirements 1305 * @hbus: Root PCI bus, as understood by this driver 1306 */ 1307 static void survey_child_resources(struct hv_pcibus_device *hbus) 1308 { 1309 struct hv_pci_dev *hpdev; 1310 resource_size_t bar_size = 0; 1311 unsigned long flags; 1312 struct completion *event; 1313 u64 bar_val; 1314 int i; 1315 1316 /* If nobody is waiting on the answer, don't compute it. */ 1317 event = xchg(&hbus->survey_event, NULL); 1318 if (!event) 1319 return; 1320 1321 /* If the answer has already been computed, go with it. */ 1322 if (hbus->low_mmio_space || hbus->high_mmio_space) { 1323 complete(event); 1324 return; 1325 } 1326 1327 spin_lock_irqsave(&hbus->device_list_lock, flags); 1328 1329 /* 1330 * Due to an interesting quirk of the PCI spec, all memory regions 1331 * for a child device are a power of 2 in size and aligned in memory, 1332 * so it's sufficient to just add them up without tracking alignment. 1333 */ 1334 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1335 for (i = 0; i < 6; i++) { 1336 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 1337 dev_err(&hbus->hdev->device, 1338 "There's an I/O BAR in this list!\n"); 1339 1340 if (hpdev->probed_bar[i] != 0) { 1341 /* 1342 * A probed BAR has all the upper bits set that 1343 * can be changed. 1344 */ 1345 1346 bar_val = hpdev->probed_bar[i]; 1347 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1348 bar_val |= 1349 ((u64)hpdev->probed_bar[++i] << 32); 1350 else 1351 bar_val |= 0xffffffff00000000ULL; 1352 1353 bar_size = get_bar_size(bar_val); 1354 1355 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 1356 hbus->high_mmio_space += bar_size; 1357 else 1358 hbus->low_mmio_space += bar_size; 1359 } 1360 } 1361 } 1362 1363 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1364 complete(event); 1365 } 1366 1367 /** 1368 * prepopulate_bars() - Fill in BARs with defaults 1369 * @hbus: Root PCI bus, as understood by this driver 1370 * 1371 * The core PCI driver code seems much, much happier if the BARs 1372 * for a device have values upon first scan. So fill them in. 1373 * The algorithm below works down from large sizes to small, 1374 * attempting to pack the assignments optimally. The assumption, 1375 * enforced in other parts of the code, is that the beginning of 1376 * the memory-mapped I/O space will be aligned on the largest 1377 * BAR size. 1378 */ 1379 static void prepopulate_bars(struct hv_pcibus_device *hbus) 1380 { 1381 resource_size_t high_size = 0; 1382 resource_size_t low_size = 0; 1383 resource_size_t high_base = 0; 1384 resource_size_t low_base = 0; 1385 resource_size_t bar_size; 1386 struct hv_pci_dev *hpdev; 1387 unsigned long flags; 1388 u64 bar_val; 1389 u32 command; 1390 bool high; 1391 int i; 1392 1393 if (hbus->low_mmio_space) { 1394 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 1395 low_base = hbus->low_mmio_res->start; 1396 } 1397 1398 if (hbus->high_mmio_space) { 1399 high_size = 1ULL << 1400 (63 - __builtin_clzll(hbus->high_mmio_space)); 1401 high_base = hbus->high_mmio_res->start; 1402 } 1403 1404 spin_lock_irqsave(&hbus->device_list_lock, flags); 1405 1406 /* Pick addresses for the BARs. */ 1407 do { 1408 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1409 for (i = 0; i < 6; i++) { 1410 bar_val = hpdev->probed_bar[i]; 1411 if (bar_val == 0) 1412 continue; 1413 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 1414 if (high) { 1415 bar_val |= 1416 ((u64)hpdev->probed_bar[i + 1] 1417 << 32); 1418 } else { 1419 bar_val |= 0xffffffffULL << 32; 1420 } 1421 bar_size = get_bar_size(bar_val); 1422 if (high) { 1423 if (high_size != bar_size) { 1424 i++; 1425 continue; 1426 } 1427 _hv_pcifront_write_config(hpdev, 1428 PCI_BASE_ADDRESS_0 + (4 * i), 1429 4, 1430 (u32)(high_base & 0xffffff00)); 1431 i++; 1432 _hv_pcifront_write_config(hpdev, 1433 PCI_BASE_ADDRESS_0 + (4 * i), 1434 4, (u32)(high_base >> 32)); 1435 high_base += bar_size; 1436 } else { 1437 if (low_size != bar_size) 1438 continue; 1439 _hv_pcifront_write_config(hpdev, 1440 PCI_BASE_ADDRESS_0 + (4 * i), 1441 4, 1442 (u32)(low_base & 0xffffff00)); 1443 low_base += bar_size; 1444 } 1445 } 1446 if (high_size <= 1 && low_size <= 1) { 1447 /* Set the memory enable bit. */ 1448 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, 1449 &command); 1450 command |= PCI_COMMAND_MEMORY; 1451 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, 1452 command); 1453 break; 1454 } 1455 } 1456 1457 high_size >>= 1; 1458 low_size >>= 1; 1459 } while (high_size || low_size); 1460 1461 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1462 } 1463 1464 /* 1465 * Assign entries in sysfs pci slot directory. 1466 * 1467 * Note that this function does not need to lock the children list 1468 * because it is called from pci_devices_present_work which 1469 * is serialized with hv_eject_device_work because they are on the 1470 * same ordered workqueue. Therefore hbus->children list will not change 1471 * even when pci_create_slot sleeps. 1472 */ 1473 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 1474 { 1475 struct hv_pci_dev *hpdev; 1476 char name[SLOT_NAME_SIZE]; 1477 int slot_nr; 1478 1479 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1480 if (hpdev->pci_slot) 1481 continue; 1482 1483 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 1484 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 1485 hpdev->pci_slot = pci_create_slot(hbus->pci_bus, slot_nr, 1486 name, NULL); 1487 if (!hpdev->pci_slot) 1488 pr_warn("pci_create slot %s failed\n", name); 1489 } 1490 } 1491 1492 /** 1493 * create_root_hv_pci_bus() - Expose a new root PCI bus 1494 * @hbus: Root PCI bus, as understood by this driver 1495 * 1496 * Return: 0 on success, -errno on failure 1497 */ 1498 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 1499 { 1500 /* Register the device */ 1501 hbus->pci_bus = pci_create_root_bus(&hbus->hdev->device, 1502 0, /* bus number is always zero */ 1503 &hv_pcifront_ops, 1504 &hbus->sysdata, 1505 &hbus->resources_for_children); 1506 if (!hbus->pci_bus) 1507 return -ENODEV; 1508 1509 hbus->pci_bus->msi = &hbus->msi_chip; 1510 hbus->pci_bus->msi->dev = &hbus->hdev->device; 1511 1512 pci_lock_rescan_remove(); 1513 pci_scan_child_bus(hbus->pci_bus); 1514 pci_bus_assign_resources(hbus->pci_bus); 1515 hv_pci_assign_slots(hbus); 1516 pci_bus_add_devices(hbus->pci_bus); 1517 pci_unlock_rescan_remove(); 1518 hbus->state = hv_pcibus_installed; 1519 return 0; 1520 } 1521 1522 struct q_res_req_compl { 1523 struct completion host_event; 1524 struct hv_pci_dev *hpdev; 1525 }; 1526 1527 /** 1528 * q_resource_requirements() - Query Resource Requirements 1529 * @context: The completion context. 1530 * @resp: The response that came from the host. 1531 * @resp_packet_size: The size in bytes of resp. 1532 * 1533 * This function is invoked on completion of a Query Resource 1534 * Requirements packet. 1535 */ 1536 static void q_resource_requirements(void *context, struct pci_response *resp, 1537 int resp_packet_size) 1538 { 1539 struct q_res_req_compl *completion = context; 1540 struct pci_q_res_req_response *q_res_req = 1541 (struct pci_q_res_req_response *)resp; 1542 int i; 1543 1544 if (resp->status < 0) { 1545 dev_err(&completion->hpdev->hbus->hdev->device, 1546 "query resource requirements failed: %x\n", 1547 resp->status); 1548 } else { 1549 for (i = 0; i < 6; i++) { 1550 completion->hpdev->probed_bar[i] = 1551 q_res_req->probed_bar[i]; 1552 } 1553 } 1554 1555 complete(&completion->host_event); 1556 } 1557 1558 /** 1559 * new_pcichild_device() - Create a new child device 1560 * @hbus: The internal struct tracking this root PCI bus. 1561 * @desc: The information supplied so far from the host 1562 * about the device. 1563 * 1564 * This function creates the tracking structure for a new child 1565 * device and kicks off the process of figuring out what it is. 1566 * 1567 * Return: Pointer to the new tracking struct 1568 */ 1569 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 1570 struct pci_function_description *desc) 1571 { 1572 struct hv_pci_dev *hpdev; 1573 struct pci_child_message *res_req; 1574 struct q_res_req_compl comp_pkt; 1575 struct { 1576 struct pci_packet init_packet; 1577 u8 buffer[sizeof(struct pci_child_message)]; 1578 } pkt; 1579 unsigned long flags; 1580 int ret; 1581 1582 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 1583 if (!hpdev) 1584 return NULL; 1585 1586 hpdev->hbus = hbus; 1587 1588 memset(&pkt, 0, sizeof(pkt)); 1589 init_completion(&comp_pkt.host_event); 1590 comp_pkt.hpdev = hpdev; 1591 pkt.init_packet.compl_ctxt = &comp_pkt; 1592 pkt.init_packet.completion_func = q_resource_requirements; 1593 res_req = (struct pci_child_message *)&pkt.init_packet.message; 1594 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 1595 res_req->wslot.slot = desc->win_slot.slot; 1596 1597 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 1598 sizeof(struct pci_child_message), 1599 (unsigned long)&pkt.init_packet, 1600 VM_PKT_DATA_INBAND, 1601 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1602 if (ret) 1603 goto error; 1604 1605 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 1606 goto error; 1607 1608 hpdev->desc = *desc; 1609 refcount_set(&hpdev->refs, 1); 1610 get_pcichild(hpdev); 1611 spin_lock_irqsave(&hbus->device_list_lock, flags); 1612 1613 list_add_tail(&hpdev->list_entry, &hbus->children); 1614 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1615 return hpdev; 1616 1617 error: 1618 kfree(hpdev); 1619 return NULL; 1620 } 1621 1622 /** 1623 * get_pcichild_wslot() - Find device from slot 1624 * @hbus: Root PCI bus, as understood by this driver 1625 * @wslot: Location on the bus 1626 * 1627 * This function looks up a PCI device and returns the internal 1628 * representation of it. It acquires a reference on it, so that 1629 * the device won't be deleted while somebody is using it. The 1630 * caller is responsible for calling put_pcichild() to release 1631 * this reference. 1632 * 1633 * Return: Internal representation of a PCI device 1634 */ 1635 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1636 u32 wslot) 1637 { 1638 unsigned long flags; 1639 struct hv_pci_dev *iter, *hpdev = NULL; 1640 1641 spin_lock_irqsave(&hbus->device_list_lock, flags); 1642 list_for_each_entry(iter, &hbus->children, list_entry) { 1643 if (iter->desc.win_slot.slot == wslot) { 1644 hpdev = iter; 1645 get_pcichild(hpdev); 1646 break; 1647 } 1648 } 1649 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1650 1651 return hpdev; 1652 } 1653 1654 /** 1655 * pci_devices_present_work() - Handle new list of child devices 1656 * @work: Work struct embedded in struct hv_dr_work 1657 * 1658 * "Bus Relations" is the Windows term for "children of this 1659 * bus." The terminology is preserved here for people trying to 1660 * debug the interaction between Hyper-V and Linux. This 1661 * function is called when the parent partition reports a list 1662 * of functions that should be observed under this PCI Express 1663 * port (bus). 1664 * 1665 * This function updates the list, and must tolerate being 1666 * called multiple times with the same information. The typical 1667 * number of child devices is one, with very atypical cases 1668 * involving three or four, so the algorithms used here can be 1669 * simple and inefficient. 1670 * 1671 * It must also treat the omission of a previously observed device as 1672 * notification that the device no longer exists. 1673 * 1674 * Note that this function is serialized with hv_eject_device_work(), 1675 * because both are pushed to the ordered workqueue hbus->wq. 1676 */ 1677 static void pci_devices_present_work(struct work_struct *work) 1678 { 1679 u32 child_no; 1680 bool found; 1681 struct pci_function_description *new_desc; 1682 struct hv_pci_dev *hpdev; 1683 struct hv_pcibus_device *hbus; 1684 struct list_head removed; 1685 struct hv_dr_work *dr_wrk; 1686 struct hv_dr_state *dr = NULL; 1687 unsigned long flags; 1688 1689 dr_wrk = container_of(work, struct hv_dr_work, wrk); 1690 hbus = dr_wrk->bus; 1691 kfree(dr_wrk); 1692 1693 INIT_LIST_HEAD(&removed); 1694 1695 /* Pull this off the queue and process it if it was the last one. */ 1696 spin_lock_irqsave(&hbus->device_list_lock, flags); 1697 while (!list_empty(&hbus->dr_list)) { 1698 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 1699 list_entry); 1700 list_del(&dr->list_entry); 1701 1702 /* Throw this away if the list still has stuff in it. */ 1703 if (!list_empty(&hbus->dr_list)) { 1704 kfree(dr); 1705 continue; 1706 } 1707 } 1708 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1709 1710 if (!dr) { 1711 put_hvpcibus(hbus); 1712 return; 1713 } 1714 1715 /* First, mark all existing children as reported missing. */ 1716 spin_lock_irqsave(&hbus->device_list_lock, flags); 1717 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1718 hpdev->reported_missing = true; 1719 } 1720 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1721 1722 /* Next, add back any reported devices. */ 1723 for (child_no = 0; child_no < dr->device_count; child_no++) { 1724 found = false; 1725 new_desc = &dr->func[child_no]; 1726 1727 spin_lock_irqsave(&hbus->device_list_lock, flags); 1728 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1729 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 1730 (hpdev->desc.v_id == new_desc->v_id) && 1731 (hpdev->desc.d_id == new_desc->d_id) && 1732 (hpdev->desc.ser == new_desc->ser)) { 1733 hpdev->reported_missing = false; 1734 found = true; 1735 } 1736 } 1737 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1738 1739 if (!found) { 1740 hpdev = new_pcichild_device(hbus, new_desc); 1741 if (!hpdev) 1742 dev_err(&hbus->hdev->device, 1743 "couldn't record a child device.\n"); 1744 } 1745 } 1746 1747 /* Move missing children to a list on the stack. */ 1748 spin_lock_irqsave(&hbus->device_list_lock, flags); 1749 do { 1750 found = false; 1751 list_for_each_entry(hpdev, &hbus->children, list_entry) { 1752 if (hpdev->reported_missing) { 1753 found = true; 1754 put_pcichild(hpdev); 1755 list_move_tail(&hpdev->list_entry, &removed); 1756 break; 1757 } 1758 } 1759 } while (found); 1760 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1761 1762 /* Delete everything that should no longer exist. */ 1763 while (!list_empty(&removed)) { 1764 hpdev = list_first_entry(&removed, struct hv_pci_dev, 1765 list_entry); 1766 list_del(&hpdev->list_entry); 1767 put_pcichild(hpdev); 1768 } 1769 1770 switch (hbus->state) { 1771 case hv_pcibus_installed: 1772 /* 1773 * Tell the core to rescan bus 1774 * because there may have been changes. 1775 */ 1776 pci_lock_rescan_remove(); 1777 pci_scan_child_bus(hbus->pci_bus); 1778 hv_pci_assign_slots(hbus); 1779 pci_unlock_rescan_remove(); 1780 break; 1781 1782 case hv_pcibus_init: 1783 case hv_pcibus_probed: 1784 survey_child_resources(hbus); 1785 break; 1786 1787 default: 1788 break; 1789 } 1790 1791 put_hvpcibus(hbus); 1792 kfree(dr); 1793 } 1794 1795 /** 1796 * hv_pci_devices_present() - Handles list of new children 1797 * @hbus: Root PCI bus, as understood by this driver 1798 * @relations: Packet from host listing children 1799 * 1800 * This function is invoked whenever a new list of devices for 1801 * this bus appears. 1802 */ 1803 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 1804 struct pci_bus_relations *relations) 1805 { 1806 struct hv_dr_state *dr; 1807 struct hv_dr_work *dr_wrk; 1808 unsigned long flags; 1809 bool pending_dr; 1810 1811 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 1812 if (!dr_wrk) 1813 return; 1814 1815 dr = kzalloc(offsetof(struct hv_dr_state, func) + 1816 (sizeof(struct pci_function_description) * 1817 (relations->device_count)), GFP_NOWAIT); 1818 if (!dr) { 1819 kfree(dr_wrk); 1820 return; 1821 } 1822 1823 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 1824 dr_wrk->bus = hbus; 1825 dr->device_count = relations->device_count; 1826 if (dr->device_count != 0) { 1827 memcpy(dr->func, relations->func, 1828 sizeof(struct pci_function_description) * 1829 dr->device_count); 1830 } 1831 1832 spin_lock_irqsave(&hbus->device_list_lock, flags); 1833 /* 1834 * If pending_dr is true, we have already queued a work, 1835 * which will see the new dr. Otherwise, we need to 1836 * queue a new work. 1837 */ 1838 pending_dr = !list_empty(&hbus->dr_list); 1839 list_add_tail(&dr->list_entry, &hbus->dr_list); 1840 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 1841 1842 if (pending_dr) { 1843 kfree(dr_wrk); 1844 } else { 1845 get_hvpcibus(hbus); 1846 queue_work(hbus->wq, &dr_wrk->wrk); 1847 } 1848 } 1849 1850 /** 1851 * hv_eject_device_work() - Asynchronously handles ejection 1852 * @work: Work struct embedded in internal device struct 1853 * 1854 * This function handles ejecting a device. Windows will 1855 * attempt to gracefully eject a device, waiting 60 seconds to 1856 * hear back from the guest OS that this completed successfully. 1857 * If this timer expires, the device will be forcibly removed. 1858 */ 1859 static void hv_eject_device_work(struct work_struct *work) 1860 { 1861 struct pci_eject_response *ejct_pkt; 1862 struct hv_pci_dev *hpdev; 1863 struct pci_dev *pdev; 1864 unsigned long flags; 1865 int wslot; 1866 struct { 1867 struct pci_packet pkt; 1868 u8 buffer[sizeof(struct pci_eject_response)]; 1869 } ctxt; 1870 1871 hpdev = container_of(work, struct hv_pci_dev, wrk); 1872 1873 WARN_ON(hpdev->state != hv_pcichild_ejecting); 1874 1875 /* 1876 * Ejection can come before or after the PCI bus has been set up, so 1877 * attempt to find it and tear down the bus state, if it exists. This 1878 * must be done without constructs like pci_domain_nr(hbus->pci_bus) 1879 * because hbus->pci_bus may not exist yet. 1880 */ 1881 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 1882 pdev = pci_get_domain_bus_and_slot(hpdev->hbus->sysdata.domain, 0, 1883 wslot); 1884 if (pdev) { 1885 pci_lock_rescan_remove(); 1886 pci_stop_and_remove_bus_device(pdev); 1887 pci_dev_put(pdev); 1888 pci_unlock_rescan_remove(); 1889 } 1890 1891 spin_lock_irqsave(&hpdev->hbus->device_list_lock, flags); 1892 list_del(&hpdev->list_entry); 1893 spin_unlock_irqrestore(&hpdev->hbus->device_list_lock, flags); 1894 1895 if (hpdev->pci_slot) 1896 pci_destroy_slot(hpdev->pci_slot); 1897 1898 memset(&ctxt, 0, sizeof(ctxt)); 1899 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 1900 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 1901 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1902 vmbus_sendpacket(hpdev->hbus->hdev->channel, ejct_pkt, 1903 sizeof(*ejct_pkt), (unsigned long)&ctxt.pkt, 1904 VM_PKT_DATA_INBAND, 0); 1905 1906 put_pcichild(hpdev); 1907 put_pcichild(hpdev); 1908 put_hvpcibus(hpdev->hbus); 1909 } 1910 1911 /** 1912 * hv_pci_eject_device() - Handles device ejection 1913 * @hpdev: Internal device tracking struct 1914 * 1915 * This function is invoked when an ejection packet arrives. It 1916 * just schedules work so that we don't re-enter the packet 1917 * delivery code handling the ejection. 1918 */ 1919 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 1920 { 1921 hpdev->state = hv_pcichild_ejecting; 1922 get_pcichild(hpdev); 1923 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 1924 get_hvpcibus(hpdev->hbus); 1925 queue_work(hpdev->hbus->wq, &hpdev->wrk); 1926 } 1927 1928 /** 1929 * hv_pci_onchannelcallback() - Handles incoming packets 1930 * @context: Internal bus tracking struct 1931 * 1932 * This function is invoked whenever the host sends a packet to 1933 * this channel (which is private to this root PCI bus). 1934 */ 1935 static void hv_pci_onchannelcallback(void *context) 1936 { 1937 const int packet_size = 0x100; 1938 int ret; 1939 struct hv_pcibus_device *hbus = context; 1940 u32 bytes_recvd; 1941 u64 req_id; 1942 struct vmpacket_descriptor *desc; 1943 unsigned char *buffer; 1944 int bufferlen = packet_size; 1945 struct pci_packet *comp_packet; 1946 struct pci_response *response; 1947 struct pci_incoming_message *new_message; 1948 struct pci_bus_relations *bus_rel; 1949 struct pci_dev_incoming *dev_message; 1950 struct hv_pci_dev *hpdev; 1951 1952 buffer = kmalloc(bufferlen, GFP_ATOMIC); 1953 if (!buffer) 1954 return; 1955 1956 while (1) { 1957 ret = vmbus_recvpacket_raw(hbus->hdev->channel, buffer, 1958 bufferlen, &bytes_recvd, &req_id); 1959 1960 if (ret == -ENOBUFS) { 1961 kfree(buffer); 1962 /* Handle large packet */ 1963 bufferlen = bytes_recvd; 1964 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 1965 if (!buffer) 1966 return; 1967 continue; 1968 } 1969 1970 /* Zero length indicates there are no more packets. */ 1971 if (ret || !bytes_recvd) 1972 break; 1973 1974 /* 1975 * All incoming packets must be at least as large as a 1976 * response. 1977 */ 1978 if (bytes_recvd <= sizeof(struct pci_response)) 1979 continue; 1980 desc = (struct vmpacket_descriptor *)buffer; 1981 1982 switch (desc->type) { 1983 case VM_PKT_COMP: 1984 1985 /* 1986 * The host is trusted, and thus it's safe to interpret 1987 * this transaction ID as a pointer. 1988 */ 1989 comp_packet = (struct pci_packet *)req_id; 1990 response = (struct pci_response *)buffer; 1991 comp_packet->completion_func(comp_packet->compl_ctxt, 1992 response, 1993 bytes_recvd); 1994 break; 1995 1996 case VM_PKT_DATA_INBAND: 1997 1998 new_message = (struct pci_incoming_message *)buffer; 1999 switch (new_message->message_type.type) { 2000 case PCI_BUS_RELATIONS: 2001 2002 bus_rel = (struct pci_bus_relations *)buffer; 2003 if (bytes_recvd < 2004 offsetof(struct pci_bus_relations, func) + 2005 (sizeof(struct pci_function_description) * 2006 (bus_rel->device_count))) { 2007 dev_err(&hbus->hdev->device, 2008 "bus relations too small\n"); 2009 break; 2010 } 2011 2012 hv_pci_devices_present(hbus, bus_rel); 2013 break; 2014 2015 case PCI_EJECT: 2016 2017 dev_message = (struct pci_dev_incoming *)buffer; 2018 hpdev = get_pcichild_wslot(hbus, 2019 dev_message->wslot.slot); 2020 if (hpdev) { 2021 hv_pci_eject_device(hpdev); 2022 put_pcichild(hpdev); 2023 } 2024 break; 2025 2026 default: 2027 dev_warn(&hbus->hdev->device, 2028 "Unimplemented protocol message %x\n", 2029 new_message->message_type.type); 2030 break; 2031 } 2032 break; 2033 2034 default: 2035 dev_err(&hbus->hdev->device, 2036 "unhandled packet type %d, tid %llx len %d\n", 2037 desc->type, req_id, bytes_recvd); 2038 break; 2039 } 2040 } 2041 2042 kfree(buffer); 2043 } 2044 2045 /** 2046 * hv_pci_protocol_negotiation() - Set up protocol 2047 * @hdev: VMBus's tracking struct for this root PCI bus 2048 * 2049 * This driver is intended to support running on Windows 10 2050 * (server) and later versions. It will not run on earlier 2051 * versions, as they assume that many of the operations which 2052 * Linux needs accomplished with a spinlock held were done via 2053 * asynchronous messaging via VMBus. Windows 10 increases the 2054 * surface area of PCI emulation so that these actions can take 2055 * place by suspending a virtual processor for their duration. 2056 * 2057 * This function negotiates the channel protocol version, 2058 * failing if the host doesn't support the necessary protocol 2059 * level. 2060 */ 2061 static int hv_pci_protocol_negotiation(struct hv_device *hdev) 2062 { 2063 struct pci_version_request *version_req; 2064 struct hv_pci_compl comp_pkt; 2065 struct pci_packet *pkt; 2066 int ret; 2067 int i; 2068 2069 /* 2070 * Initiate the handshake with the host and negotiate 2071 * a version that the host can support. We start with the 2072 * highest version number and go down if the host cannot 2073 * support it. 2074 */ 2075 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 2076 if (!pkt) 2077 return -ENOMEM; 2078 2079 init_completion(&comp_pkt.host_event); 2080 pkt->completion_func = hv_pci_generic_compl; 2081 pkt->compl_ctxt = &comp_pkt; 2082 version_req = (struct pci_version_request *)&pkt->message; 2083 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 2084 2085 for (i = 0; i < ARRAY_SIZE(pci_protocol_versions); i++) { 2086 version_req->protocol_version = pci_protocol_versions[i]; 2087 ret = vmbus_sendpacket(hdev->channel, version_req, 2088 sizeof(struct pci_version_request), 2089 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2090 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2091 if (!ret) 2092 ret = wait_for_response(hdev, &comp_pkt.host_event); 2093 2094 if (ret) { 2095 dev_err(&hdev->device, 2096 "PCI Pass-through VSP failed to request version: %d", 2097 ret); 2098 goto exit; 2099 } 2100 2101 if (comp_pkt.completion_status >= 0) { 2102 pci_protocol_version = pci_protocol_versions[i]; 2103 dev_info(&hdev->device, 2104 "PCI VMBus probing: Using version %#x\n", 2105 pci_protocol_version); 2106 goto exit; 2107 } 2108 2109 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 2110 dev_err(&hdev->device, 2111 "PCI Pass-through VSP failed version request: %#x", 2112 comp_pkt.completion_status); 2113 ret = -EPROTO; 2114 goto exit; 2115 } 2116 2117 reinit_completion(&comp_pkt.host_event); 2118 } 2119 2120 dev_err(&hdev->device, 2121 "PCI pass-through VSP failed to find supported version"); 2122 ret = -EPROTO; 2123 2124 exit: 2125 kfree(pkt); 2126 return ret; 2127 } 2128 2129 /** 2130 * hv_pci_free_bridge_windows() - Release memory regions for the 2131 * bus 2132 * @hbus: Root PCI bus, as understood by this driver 2133 */ 2134 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 2135 { 2136 /* 2137 * Set the resources back to the way they looked when they 2138 * were allocated by setting IORESOURCE_BUSY again. 2139 */ 2140 2141 if (hbus->low_mmio_space && hbus->low_mmio_res) { 2142 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 2143 vmbus_free_mmio(hbus->low_mmio_res->start, 2144 resource_size(hbus->low_mmio_res)); 2145 } 2146 2147 if (hbus->high_mmio_space && hbus->high_mmio_res) { 2148 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 2149 vmbus_free_mmio(hbus->high_mmio_res->start, 2150 resource_size(hbus->high_mmio_res)); 2151 } 2152 } 2153 2154 /** 2155 * hv_pci_allocate_bridge_windows() - Allocate memory regions 2156 * for the bus 2157 * @hbus: Root PCI bus, as understood by this driver 2158 * 2159 * This function calls vmbus_allocate_mmio(), which is itself a 2160 * bit of a compromise. Ideally, we might change the pnp layer 2161 * in the kernel such that it comprehends either PCI devices 2162 * which are "grandchildren of ACPI," with some intermediate bus 2163 * node (in this case, VMBus) or change it such that it 2164 * understands VMBus. The pnp layer, however, has been declared 2165 * deprecated, and not subject to change. 2166 * 2167 * The workaround, implemented here, is to ask VMBus to allocate 2168 * MMIO space for this bus. VMBus itself knows which ranges are 2169 * appropriate by looking at its own ACPI objects. Then, after 2170 * these ranges are claimed, they're modified to look like they 2171 * would have looked if the ACPI and pnp code had allocated 2172 * bridge windows. These descriptors have to exist in this form 2173 * in order to satisfy the code which will get invoked when the 2174 * endpoint PCI function driver calls request_mem_region() or 2175 * request_mem_region_exclusive(). 2176 * 2177 * Return: 0 on success, -errno on failure 2178 */ 2179 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 2180 { 2181 resource_size_t align; 2182 int ret; 2183 2184 if (hbus->low_mmio_space) { 2185 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2186 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 2187 (u64)(u32)0xffffffff, 2188 hbus->low_mmio_space, 2189 align, false); 2190 if (ret) { 2191 dev_err(&hbus->hdev->device, 2192 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 2193 hbus->low_mmio_space); 2194 return ret; 2195 } 2196 2197 /* Modify this resource to become a bridge window. */ 2198 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 2199 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 2200 pci_add_resource(&hbus->resources_for_children, 2201 hbus->low_mmio_res); 2202 } 2203 2204 if (hbus->high_mmio_space) { 2205 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 2206 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 2207 0x100000000, -1, 2208 hbus->high_mmio_space, align, 2209 false); 2210 if (ret) { 2211 dev_err(&hbus->hdev->device, 2212 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 2213 hbus->high_mmio_space); 2214 goto release_low_mmio; 2215 } 2216 2217 /* Modify this resource to become a bridge window. */ 2218 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 2219 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 2220 pci_add_resource(&hbus->resources_for_children, 2221 hbus->high_mmio_res); 2222 } 2223 2224 return 0; 2225 2226 release_low_mmio: 2227 if (hbus->low_mmio_res) { 2228 vmbus_free_mmio(hbus->low_mmio_res->start, 2229 resource_size(hbus->low_mmio_res)); 2230 } 2231 2232 return ret; 2233 } 2234 2235 /** 2236 * hv_allocate_config_window() - Find MMIO space for PCI Config 2237 * @hbus: Root PCI bus, as understood by this driver 2238 * 2239 * This function claims memory-mapped I/O space for accessing 2240 * configuration space for the functions on this bus. 2241 * 2242 * Return: 0 on success, -errno on failure 2243 */ 2244 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 2245 { 2246 int ret; 2247 2248 /* 2249 * Set up a region of MMIO space to use for accessing configuration 2250 * space. 2251 */ 2252 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 2253 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 2254 if (ret) 2255 return ret; 2256 2257 /* 2258 * vmbus_allocate_mmio() gets used for allocating both device endpoint 2259 * resource claims (those which cannot be overlapped) and the ranges 2260 * which are valid for the children of this bus, which are intended 2261 * to be overlapped by those children. Set the flag on this claim 2262 * meaning that this region can't be overlapped. 2263 */ 2264 2265 hbus->mem_config->flags |= IORESOURCE_BUSY; 2266 2267 return 0; 2268 } 2269 2270 static void hv_free_config_window(struct hv_pcibus_device *hbus) 2271 { 2272 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 2273 } 2274 2275 /** 2276 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 2277 * @hdev: VMBus's tracking struct for this root PCI bus 2278 * 2279 * Return: 0 on success, -errno on failure 2280 */ 2281 static int hv_pci_enter_d0(struct hv_device *hdev) 2282 { 2283 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2284 struct pci_bus_d0_entry *d0_entry; 2285 struct hv_pci_compl comp_pkt; 2286 struct pci_packet *pkt; 2287 int ret; 2288 2289 /* 2290 * Tell the host that the bus is ready to use, and moved into the 2291 * powered-on state. This includes telling the host which region 2292 * of memory-mapped I/O space has been chosen for configuration space 2293 * access. 2294 */ 2295 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 2296 if (!pkt) 2297 return -ENOMEM; 2298 2299 init_completion(&comp_pkt.host_event); 2300 pkt->completion_func = hv_pci_generic_compl; 2301 pkt->compl_ctxt = &comp_pkt; 2302 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 2303 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 2304 d0_entry->mmio_base = hbus->mem_config->start; 2305 2306 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 2307 (unsigned long)pkt, VM_PKT_DATA_INBAND, 2308 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2309 if (!ret) 2310 ret = wait_for_response(hdev, &comp_pkt.host_event); 2311 2312 if (ret) 2313 goto exit; 2314 2315 if (comp_pkt.completion_status < 0) { 2316 dev_err(&hdev->device, 2317 "PCI Pass-through VSP failed D0 Entry with status %x\n", 2318 comp_pkt.completion_status); 2319 ret = -EPROTO; 2320 goto exit; 2321 } 2322 2323 ret = 0; 2324 2325 exit: 2326 kfree(pkt); 2327 return ret; 2328 } 2329 2330 /** 2331 * hv_pci_query_relations() - Ask host to send list of child 2332 * devices 2333 * @hdev: VMBus's tracking struct for this root PCI bus 2334 * 2335 * Return: 0 on success, -errno on failure 2336 */ 2337 static int hv_pci_query_relations(struct hv_device *hdev) 2338 { 2339 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2340 struct pci_message message; 2341 struct completion comp; 2342 int ret; 2343 2344 /* Ask the host to send along the list of child devices */ 2345 init_completion(&comp); 2346 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 2347 return -ENOTEMPTY; 2348 2349 memset(&message, 0, sizeof(message)); 2350 message.type = PCI_QUERY_BUS_RELATIONS; 2351 2352 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 2353 0, VM_PKT_DATA_INBAND, 0); 2354 if (!ret) 2355 ret = wait_for_response(hdev, &comp); 2356 2357 return ret; 2358 } 2359 2360 /** 2361 * hv_send_resources_allocated() - Report local resource choices 2362 * @hdev: VMBus's tracking struct for this root PCI bus 2363 * 2364 * The host OS is expecting to be sent a request as a message 2365 * which contains all the resources that the device will use. 2366 * The response contains those same resources, "translated" 2367 * which is to say, the values which should be used by the 2368 * hardware, when it delivers an interrupt. (MMIO resources are 2369 * used in local terms.) This is nice for Windows, and lines up 2370 * with the FDO/PDO split, which doesn't exist in Linux. Linux 2371 * is deeply expecting to scan an emulated PCI configuration 2372 * space. So this message is sent here only to drive the state 2373 * machine on the host forward. 2374 * 2375 * Return: 0 on success, -errno on failure 2376 */ 2377 static int hv_send_resources_allocated(struct hv_device *hdev) 2378 { 2379 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2380 struct pci_resources_assigned *res_assigned; 2381 struct pci_resources_assigned2 *res_assigned2; 2382 struct hv_pci_compl comp_pkt; 2383 struct hv_pci_dev *hpdev; 2384 struct pci_packet *pkt; 2385 size_t size_res; 2386 u32 wslot; 2387 int ret; 2388 2389 size_res = (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) 2390 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 2391 2392 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 2393 if (!pkt) 2394 return -ENOMEM; 2395 2396 ret = 0; 2397 2398 for (wslot = 0; wslot < 256; wslot++) { 2399 hpdev = get_pcichild_wslot(hbus, wslot); 2400 if (!hpdev) 2401 continue; 2402 2403 memset(pkt, 0, sizeof(*pkt) + size_res); 2404 init_completion(&comp_pkt.host_event); 2405 pkt->completion_func = hv_pci_generic_compl; 2406 pkt->compl_ctxt = &comp_pkt; 2407 2408 if (pci_protocol_version < PCI_PROTOCOL_VERSION_1_2) { 2409 res_assigned = 2410 (struct pci_resources_assigned *)&pkt->message; 2411 res_assigned->message_type.type = 2412 PCI_RESOURCES_ASSIGNED; 2413 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 2414 } else { 2415 res_assigned2 = 2416 (struct pci_resources_assigned2 *)&pkt->message; 2417 res_assigned2->message_type.type = 2418 PCI_RESOURCES_ASSIGNED2; 2419 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 2420 } 2421 put_pcichild(hpdev); 2422 2423 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 2424 size_res, (unsigned long)pkt, 2425 VM_PKT_DATA_INBAND, 2426 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2427 if (!ret) 2428 ret = wait_for_response(hdev, &comp_pkt.host_event); 2429 if (ret) 2430 break; 2431 2432 if (comp_pkt.completion_status < 0) { 2433 ret = -EPROTO; 2434 dev_err(&hdev->device, 2435 "resource allocated returned 0x%x", 2436 comp_pkt.completion_status); 2437 break; 2438 } 2439 } 2440 2441 kfree(pkt); 2442 return ret; 2443 } 2444 2445 /** 2446 * hv_send_resources_released() - Report local resources 2447 * released 2448 * @hdev: VMBus's tracking struct for this root PCI bus 2449 * 2450 * Return: 0 on success, -errno on failure 2451 */ 2452 static int hv_send_resources_released(struct hv_device *hdev) 2453 { 2454 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2455 struct pci_child_message pkt; 2456 struct hv_pci_dev *hpdev; 2457 u32 wslot; 2458 int ret; 2459 2460 for (wslot = 0; wslot < 256; wslot++) { 2461 hpdev = get_pcichild_wslot(hbus, wslot); 2462 if (!hpdev) 2463 continue; 2464 2465 memset(&pkt, 0, sizeof(pkt)); 2466 pkt.message_type.type = PCI_RESOURCES_RELEASED; 2467 pkt.wslot.slot = hpdev->desc.win_slot.slot; 2468 2469 put_pcichild(hpdev); 2470 2471 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 2472 VM_PKT_DATA_INBAND, 0); 2473 if (ret) 2474 return ret; 2475 } 2476 2477 return 0; 2478 } 2479 2480 static void get_hvpcibus(struct hv_pcibus_device *hbus) 2481 { 2482 refcount_inc(&hbus->remove_lock); 2483 } 2484 2485 static void put_hvpcibus(struct hv_pcibus_device *hbus) 2486 { 2487 if (refcount_dec_and_test(&hbus->remove_lock)) 2488 complete(&hbus->remove_event); 2489 } 2490 2491 /** 2492 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 2493 * @hdev: VMBus's tracking struct for this root PCI bus 2494 * @dev_id: Identifies the device itself 2495 * 2496 * Return: 0 on success, -errno on failure 2497 */ 2498 static int hv_pci_probe(struct hv_device *hdev, 2499 const struct hv_vmbus_device_id *dev_id) 2500 { 2501 struct hv_pcibus_device *hbus; 2502 int ret; 2503 2504 /* 2505 * hv_pcibus_device contains the hypercall arguments for retargeting in 2506 * hv_irq_unmask(). Those must not cross a page boundary. 2507 */ 2508 BUILD_BUG_ON(sizeof(*hbus) > PAGE_SIZE); 2509 2510 hbus = (struct hv_pcibus_device *)get_zeroed_page(GFP_KERNEL); 2511 if (!hbus) 2512 return -ENOMEM; 2513 hbus->state = hv_pcibus_init; 2514 2515 /* 2516 * The PCI bus "domain" is what is called "segment" in ACPI and 2517 * other specs. Pull it from the instance ID, to get something 2518 * unique. Bytes 8 and 9 are what is used in Windows guests, so 2519 * do the same thing for consistency. Note that, since this code 2520 * only runs in a Hyper-V VM, Hyper-V can (and does) guarantee 2521 * that (1) the only domain in use for something that looks like 2522 * a physical PCI bus (which is actually emulated by the 2523 * hypervisor) is domain 0 and (2) there will be no overlap 2524 * between domains derived from these instance IDs in the same 2525 * VM. 2526 */ 2527 hbus->sysdata.domain = hdev->dev_instance.b[9] | 2528 hdev->dev_instance.b[8] << 8; 2529 2530 hbus->hdev = hdev; 2531 refcount_set(&hbus->remove_lock, 1); 2532 INIT_LIST_HEAD(&hbus->children); 2533 INIT_LIST_HEAD(&hbus->dr_list); 2534 INIT_LIST_HEAD(&hbus->resources_for_children); 2535 spin_lock_init(&hbus->config_lock); 2536 spin_lock_init(&hbus->device_list_lock); 2537 spin_lock_init(&hbus->retarget_msi_interrupt_lock); 2538 init_completion(&hbus->remove_event); 2539 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 2540 hbus->sysdata.domain); 2541 if (!hbus->wq) { 2542 ret = -ENOMEM; 2543 goto free_bus; 2544 } 2545 2546 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 2547 hv_pci_onchannelcallback, hbus); 2548 if (ret) 2549 goto destroy_wq; 2550 2551 hv_set_drvdata(hdev, hbus); 2552 2553 ret = hv_pci_protocol_negotiation(hdev); 2554 if (ret) 2555 goto close; 2556 2557 ret = hv_allocate_config_window(hbus); 2558 if (ret) 2559 goto close; 2560 2561 hbus->cfg_addr = ioremap(hbus->mem_config->start, 2562 PCI_CONFIG_MMIO_LENGTH); 2563 if (!hbus->cfg_addr) { 2564 dev_err(&hdev->device, 2565 "Unable to map a virtual address for config space\n"); 2566 ret = -ENOMEM; 2567 goto free_config; 2568 } 2569 2570 hbus->sysdata.fwnode = irq_domain_alloc_fwnode(hbus); 2571 if (!hbus->sysdata.fwnode) { 2572 ret = -ENOMEM; 2573 goto unmap; 2574 } 2575 2576 ret = hv_pcie_init_irq_domain(hbus); 2577 if (ret) 2578 goto free_fwnode; 2579 2580 ret = hv_pci_query_relations(hdev); 2581 if (ret) 2582 goto free_irq_domain; 2583 2584 ret = hv_pci_enter_d0(hdev); 2585 if (ret) 2586 goto free_irq_domain; 2587 2588 ret = hv_pci_allocate_bridge_windows(hbus); 2589 if (ret) 2590 goto free_irq_domain; 2591 2592 ret = hv_send_resources_allocated(hdev); 2593 if (ret) 2594 goto free_windows; 2595 2596 prepopulate_bars(hbus); 2597 2598 hbus->state = hv_pcibus_probed; 2599 2600 ret = create_root_hv_pci_bus(hbus); 2601 if (ret) 2602 goto free_windows; 2603 2604 return 0; 2605 2606 free_windows: 2607 hv_pci_free_bridge_windows(hbus); 2608 free_irq_domain: 2609 irq_domain_remove(hbus->irq_domain); 2610 free_fwnode: 2611 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2612 unmap: 2613 iounmap(hbus->cfg_addr); 2614 free_config: 2615 hv_free_config_window(hbus); 2616 close: 2617 vmbus_close(hdev->channel); 2618 destroy_wq: 2619 destroy_workqueue(hbus->wq); 2620 free_bus: 2621 free_page((unsigned long)hbus); 2622 return ret; 2623 } 2624 2625 static void hv_pci_bus_exit(struct hv_device *hdev) 2626 { 2627 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 2628 struct { 2629 struct pci_packet teardown_packet; 2630 u8 buffer[sizeof(struct pci_message)]; 2631 } pkt; 2632 struct pci_bus_relations relations; 2633 struct hv_pci_compl comp_pkt; 2634 int ret; 2635 2636 /* 2637 * After the host sends the RESCIND_CHANNEL message, it doesn't 2638 * access the per-channel ringbuffer any longer. 2639 */ 2640 if (hdev->channel->rescind) 2641 return; 2642 2643 /* Delete any children which might still exist. */ 2644 memset(&relations, 0, sizeof(relations)); 2645 hv_pci_devices_present(hbus, &relations); 2646 2647 ret = hv_send_resources_released(hdev); 2648 if (ret) 2649 dev_err(&hdev->device, 2650 "Couldn't send resources released packet(s)\n"); 2651 2652 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 2653 init_completion(&comp_pkt.host_event); 2654 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 2655 pkt.teardown_packet.compl_ctxt = &comp_pkt; 2656 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 2657 2658 ret = vmbus_sendpacket(hdev->channel, &pkt.teardown_packet.message, 2659 sizeof(struct pci_message), 2660 (unsigned long)&pkt.teardown_packet, 2661 VM_PKT_DATA_INBAND, 2662 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2663 if (!ret) 2664 wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ); 2665 } 2666 2667 /** 2668 * hv_pci_remove() - Remove routine for this VMBus channel 2669 * @hdev: VMBus's tracking struct for this root PCI bus 2670 * 2671 * Return: 0 on success, -errno on failure 2672 */ 2673 static int hv_pci_remove(struct hv_device *hdev) 2674 { 2675 struct hv_pcibus_device *hbus; 2676 2677 hbus = hv_get_drvdata(hdev); 2678 if (hbus->state == hv_pcibus_installed) { 2679 /* Remove the bus from PCI's point of view. */ 2680 pci_lock_rescan_remove(); 2681 pci_stop_root_bus(hbus->pci_bus); 2682 pci_remove_root_bus(hbus->pci_bus); 2683 pci_unlock_rescan_remove(); 2684 hbus->state = hv_pcibus_removed; 2685 } 2686 2687 hv_pci_bus_exit(hdev); 2688 2689 vmbus_close(hdev->channel); 2690 2691 iounmap(hbus->cfg_addr); 2692 hv_free_config_window(hbus); 2693 pci_free_resource_list(&hbus->resources_for_children); 2694 hv_pci_free_bridge_windows(hbus); 2695 irq_domain_remove(hbus->irq_domain); 2696 irq_domain_free_fwnode(hbus->sysdata.fwnode); 2697 put_hvpcibus(hbus); 2698 wait_for_completion(&hbus->remove_event); 2699 destroy_workqueue(hbus->wq); 2700 free_page((unsigned long)hbus); 2701 return 0; 2702 } 2703 2704 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 2705 /* PCI Pass-through Class ID */ 2706 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 2707 { HV_PCIE_GUID, }, 2708 { }, 2709 }; 2710 2711 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 2712 2713 static struct hv_driver hv_pci_drv = { 2714 .name = "hv_pci", 2715 .id_table = hv_pci_id_table, 2716 .probe = hv_pci_probe, 2717 .remove = hv_pci_remove, 2718 }; 2719 2720 static void __exit exit_hv_pci_drv(void) 2721 { 2722 vmbus_driver_unregister(&hv_pci_drv); 2723 } 2724 2725 static int __init init_hv_pci_drv(void) 2726 { 2727 return vmbus_driver_register(&hv_pci_drv); 2728 } 2729 2730 module_init(init_hv_pci_drv); 2731 module_exit(exit_hv_pci_drv); 2732 2733 MODULE_DESCRIPTION("Hyper-V PCI"); 2734 MODULE_LICENSE("GPL v2"); 2735