1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/irqchip/irq-msi-lib.h> 48 #include <linux/msi.h> 49 #include <linux/hyperv.h> 50 #include <linux/refcount.h> 51 #include <linux/irqdomain.h> 52 #include <linux/acpi.h> 53 #include <linux/sizes.h> 54 #include <linux/of_irq.h> 55 #include <asm/mshyperv.h> 56 57 /* 58 * Protocol versions. The low word is the minor version, the high word the 59 * major version. 60 */ 61 62 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 63 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 64 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 65 66 enum pci_protocol_version_t { 67 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 68 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 69 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 70 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 71 }; 72 73 #define CPU_AFFINITY_ALL -1ULL 74 75 /* 76 * Supported protocol versions in the order of probing - highest go 77 * first. 78 */ 79 static enum pci_protocol_version_t pci_protocol_versions[] = { 80 PCI_PROTOCOL_VERSION_1_4, 81 PCI_PROTOCOL_VERSION_1_3, 82 PCI_PROTOCOL_VERSION_1_2, 83 PCI_PROTOCOL_VERSION_1_1, 84 }; 85 86 #define PCI_CONFIG_MMIO_LENGTH 0x2000 87 #define CFG_PAGE_OFFSET 0x1000 88 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 89 90 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 91 92 #define STATUS_REVISION_MISMATCH 0xC0000059 93 94 /* space for 32bit serial number as string */ 95 #define SLOT_NAME_SIZE 11 96 97 /* 98 * Size of requestor for VMbus; the value is based on the observation 99 * that having more than one request outstanding is 'rare', and so 64 100 * should be generous in ensuring that we don't ever run out. 101 */ 102 #define HV_PCI_RQSTOR_SIZE 64 103 104 /* 105 * Message Types 106 */ 107 108 enum pci_message_type { 109 /* 110 * Version 1.1 111 */ 112 PCI_MESSAGE_BASE = 0x42490000, 113 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 114 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 115 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 116 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 117 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 118 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 119 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 120 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 121 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 122 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 123 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 124 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 125 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 126 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 127 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 128 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 129 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 130 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 131 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 132 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 133 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 134 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 135 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 136 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 137 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 138 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 139 PCI_MESSAGE_MAXIMUM 140 }; 141 142 /* 143 * Structures defining the virtual PCI Express protocol. 144 */ 145 146 union pci_version { 147 struct { 148 u16 minor_version; 149 u16 major_version; 150 } parts; 151 u32 version; 152 } __packed; 153 154 /* 155 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 156 * which is all this driver does. This representation is the one used in 157 * Windows, which is what is expected when sending this back and forth with 158 * the Hyper-V parent partition. 159 */ 160 union win_slot_encoding { 161 struct { 162 u32 dev:5; 163 u32 func:3; 164 u32 reserved:24; 165 } bits; 166 u32 slot; 167 } __packed; 168 169 /* 170 * Pretty much as defined in the PCI Specifications. 171 */ 172 struct pci_function_description { 173 u16 v_id; /* vendor ID */ 174 u16 d_id; /* device ID */ 175 u8 rev; 176 u8 prog_intf; 177 u8 subclass; 178 u8 base_class; 179 u32 subsystem_id; 180 union win_slot_encoding win_slot; 181 u32 ser; /* serial number */ 182 } __packed; 183 184 enum pci_device_description_flags { 185 HV_PCI_DEVICE_FLAG_NONE = 0x0, 186 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 187 }; 188 189 struct pci_function_description2 { 190 u16 v_id; /* vendor ID */ 191 u16 d_id; /* device ID */ 192 u8 rev; 193 u8 prog_intf; 194 u8 subclass; 195 u8 base_class; 196 u32 subsystem_id; 197 union win_slot_encoding win_slot; 198 u32 ser; /* serial number */ 199 u32 flags; 200 u16 virtual_numa_node; 201 u16 reserved; 202 } __packed; 203 204 /** 205 * struct hv_msi_desc 206 * @vector: IDT entry 207 * @delivery_mode: As defined in Intel's Programmer's 208 * Reference Manual, Volume 3, Chapter 8. 209 * @vector_count: Number of contiguous entries in the 210 * Interrupt Descriptor Table that are 211 * occupied by this Message-Signaled 212 * Interrupt. For "MSI", as first defined 213 * in PCI 2.2, this can be between 1 and 214 * 32. For "MSI-X," as first defined in PCI 215 * 3.0, this must be 1, as each MSI-X table 216 * entry would have its own descriptor. 217 * @reserved: Empty space 218 * @cpu_mask: All the target virtual processors. 219 */ 220 struct hv_msi_desc { 221 u8 vector; 222 u8 delivery_mode; 223 u16 vector_count; 224 u32 reserved; 225 u64 cpu_mask; 226 } __packed; 227 228 /** 229 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 230 * @vector: IDT entry 231 * @delivery_mode: As defined in Intel's Programmer's 232 * Reference Manual, Volume 3, Chapter 8. 233 * @vector_count: Number of contiguous entries in the 234 * Interrupt Descriptor Table that are 235 * occupied by this Message-Signaled 236 * Interrupt. For "MSI", as first defined 237 * in PCI 2.2, this can be between 1 and 238 * 32. For "MSI-X," as first defined in PCI 239 * 3.0, this must be 1, as each MSI-X table 240 * entry would have its own descriptor. 241 * @processor_count: number of bits enabled in array. 242 * @processor_array: All the target virtual processors. 243 */ 244 struct hv_msi_desc2 { 245 u8 vector; 246 u8 delivery_mode; 247 u16 vector_count; 248 u16 processor_count; 249 u16 processor_array[32]; 250 } __packed; 251 252 /* 253 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 254 * Everything is the same as in 'hv_msi_desc2' except that the size of the 255 * 'vector' field is larger to support bigger vector values. For ex: LPI 256 * vectors on ARM. 257 */ 258 struct hv_msi_desc3 { 259 u32 vector; 260 u8 delivery_mode; 261 u8 reserved; 262 u16 vector_count; 263 u16 processor_count; 264 u16 processor_array[32]; 265 } __packed; 266 267 /** 268 * struct tran_int_desc 269 * @reserved: unused, padding 270 * @vector_count: same as in hv_msi_desc 271 * @data: This is the "data payload" value that is 272 * written by the device when it generates 273 * a message-signaled interrupt, either MSI 274 * or MSI-X. 275 * @address: This is the address to which the data 276 * payload is written on interrupt 277 * generation. 278 */ 279 struct tran_int_desc { 280 u16 reserved; 281 u16 vector_count; 282 u32 data; 283 u64 address; 284 } __packed; 285 286 /* 287 * A generic message format for virtual PCI. 288 * Specific message formats are defined later in the file. 289 */ 290 291 struct pci_message { 292 u32 type; 293 } __packed; 294 295 struct pci_child_message { 296 struct pci_message message_type; 297 union win_slot_encoding wslot; 298 } __packed; 299 300 struct pci_incoming_message { 301 struct vmpacket_descriptor hdr; 302 struct pci_message message_type; 303 } __packed; 304 305 struct pci_response { 306 struct vmpacket_descriptor hdr; 307 s32 status; /* negative values are failures */ 308 } __packed; 309 310 struct pci_packet { 311 void (*completion_func)(void *context, struct pci_response *resp, 312 int resp_packet_size); 313 void *compl_ctxt; 314 }; 315 316 /* 317 * Specific message types supporting the PCI protocol. 318 */ 319 320 /* 321 * Version negotiation message. Sent from the guest to the host. 322 * The guest is free to try different versions until the host 323 * accepts the version. 324 * 325 * pci_version: The protocol version requested. 326 * is_last_attempt: If TRUE, this is the last version guest will request. 327 * reservedz: Reserved field, set to zero. 328 */ 329 330 struct pci_version_request { 331 struct pci_message message_type; 332 u32 protocol_version; 333 } __packed; 334 335 /* 336 * Bus D0 Entry. This is sent from the guest to the host when the virtual 337 * bus (PCI Express port) is ready for action. 338 */ 339 340 struct pci_bus_d0_entry { 341 struct pci_message message_type; 342 u32 reserved; 343 u64 mmio_base; 344 } __packed; 345 346 struct pci_bus_relations { 347 struct pci_incoming_message incoming; 348 u32 device_count; 349 struct pci_function_description func[]; 350 } __packed; 351 352 struct pci_bus_relations2 { 353 struct pci_incoming_message incoming; 354 u32 device_count; 355 struct pci_function_description2 func[]; 356 } __packed; 357 358 struct pci_q_res_req_response { 359 struct vmpacket_descriptor hdr; 360 s32 status; /* negative values are failures */ 361 u32 probed_bar[PCI_STD_NUM_BARS]; 362 } __packed; 363 364 struct pci_set_power { 365 struct pci_message message_type; 366 union win_slot_encoding wslot; 367 u32 power_state; /* In Windows terms */ 368 u32 reserved; 369 } __packed; 370 371 struct pci_set_power_response { 372 struct vmpacket_descriptor hdr; 373 s32 status; /* negative values are failures */ 374 union win_slot_encoding wslot; 375 u32 resultant_state; /* In Windows terms */ 376 u32 reserved; 377 } __packed; 378 379 struct pci_resources_assigned { 380 struct pci_message message_type; 381 union win_slot_encoding wslot; 382 u8 memory_range[0x14][6]; /* not used here */ 383 u32 msi_descriptors; 384 u32 reserved[4]; 385 } __packed; 386 387 struct pci_resources_assigned2 { 388 struct pci_message message_type; 389 union win_slot_encoding wslot; 390 u8 memory_range[0x14][6]; /* not used here */ 391 u32 msi_descriptor_count; 392 u8 reserved[70]; 393 } __packed; 394 395 struct pci_create_interrupt { 396 struct pci_message message_type; 397 union win_slot_encoding wslot; 398 struct hv_msi_desc int_desc; 399 } __packed; 400 401 struct pci_create_int_response { 402 struct pci_response response; 403 u32 reserved; 404 struct tran_int_desc int_desc; 405 } __packed; 406 407 struct pci_create_interrupt2 { 408 struct pci_message message_type; 409 union win_slot_encoding wslot; 410 struct hv_msi_desc2 int_desc; 411 } __packed; 412 413 struct pci_create_interrupt3 { 414 struct pci_message message_type; 415 union win_slot_encoding wslot; 416 struct hv_msi_desc3 int_desc; 417 } __packed; 418 419 struct pci_delete_interrupt { 420 struct pci_message message_type; 421 union win_slot_encoding wslot; 422 struct tran_int_desc int_desc; 423 } __packed; 424 425 /* 426 * Note: the VM must pass a valid block id, wslot and bytes_requested. 427 */ 428 struct pci_read_block { 429 struct pci_message message_type; 430 u32 block_id; 431 union win_slot_encoding wslot; 432 u32 bytes_requested; 433 } __packed; 434 435 struct pci_read_block_response { 436 struct vmpacket_descriptor hdr; 437 u32 status; 438 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 439 } __packed; 440 441 /* 442 * Note: the VM must pass a valid block id, wslot and byte_count. 443 */ 444 struct pci_write_block { 445 struct pci_message message_type; 446 u32 block_id; 447 union win_slot_encoding wslot; 448 u32 byte_count; 449 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 450 } __packed; 451 452 struct pci_dev_inval_block { 453 struct pci_incoming_message incoming; 454 union win_slot_encoding wslot; 455 u64 block_mask; 456 } __packed; 457 458 struct pci_dev_incoming { 459 struct pci_incoming_message incoming; 460 union win_slot_encoding wslot; 461 } __packed; 462 463 struct pci_eject_response { 464 struct pci_message message_type; 465 union win_slot_encoding wslot; 466 u32 status; 467 } __packed; 468 469 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K); 470 471 /* 472 * Driver specific state. 473 */ 474 475 enum hv_pcibus_state { 476 hv_pcibus_init = 0, 477 hv_pcibus_probed, 478 hv_pcibus_installed, 479 hv_pcibus_removing, 480 hv_pcibus_maximum 481 }; 482 483 struct hv_pcibus_device { 484 #ifdef CONFIG_X86 485 struct pci_sysdata sysdata; 486 #elif defined(CONFIG_ARM64) 487 struct pci_config_window sysdata; 488 #endif 489 struct pci_host_bridge *bridge; 490 struct fwnode_handle *fwnode; 491 /* Protocol version negotiated with the host */ 492 enum pci_protocol_version_t protocol_version; 493 494 struct mutex state_lock; 495 enum hv_pcibus_state state; 496 497 struct hv_device *hdev; 498 resource_size_t low_mmio_space; 499 resource_size_t high_mmio_space; 500 struct resource *mem_config; 501 struct resource *low_mmio_res; 502 struct resource *high_mmio_res; 503 struct completion *survey_event; 504 struct pci_bus *pci_bus; 505 spinlock_t config_lock; /* Avoid two threads writing index page */ 506 spinlock_t device_list_lock; /* Protect lists below */ 507 void __iomem *cfg_addr; 508 509 struct list_head children; 510 struct list_head dr_list; 511 512 struct irq_domain *irq_domain; 513 514 struct workqueue_struct *wq; 515 516 /* Highest slot of child device with resources allocated */ 517 int wslot_res_allocated; 518 bool use_calls; /* Use hypercalls to access mmio cfg space */ 519 }; 520 521 /* 522 * Tracks "Device Relations" messages from the host, which must be both 523 * processed in order and deferred so that they don't run in the context 524 * of the incoming packet callback. 525 */ 526 struct hv_dr_work { 527 struct work_struct wrk; 528 struct hv_pcibus_device *bus; 529 }; 530 531 struct hv_pcidev_description { 532 u16 v_id; /* vendor ID */ 533 u16 d_id; /* device ID */ 534 u8 rev; 535 u8 prog_intf; 536 u8 subclass; 537 u8 base_class; 538 u32 subsystem_id; 539 union win_slot_encoding win_slot; 540 u32 ser; /* serial number */ 541 u32 flags; 542 u16 virtual_numa_node; 543 }; 544 545 struct hv_dr_state { 546 struct list_head list_entry; 547 u32 device_count; 548 struct hv_pcidev_description func[] __counted_by(device_count); 549 }; 550 551 struct hv_pci_dev { 552 /* List protected by pci_rescan_remove_lock */ 553 struct list_head list_entry; 554 refcount_t refs; 555 struct pci_slot *pci_slot; 556 struct hv_pcidev_description desc; 557 bool reported_missing; 558 struct hv_pcibus_device *hbus; 559 struct work_struct wrk; 560 561 void (*block_invalidate)(void *context, u64 block_mask); 562 void *invalidate_context; 563 564 /* 565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 566 * read it back, for each of the BAR offsets within config space. 567 */ 568 u32 probed_bar[PCI_STD_NUM_BARS]; 569 }; 570 571 struct hv_pci_compl { 572 struct completion host_event; 573 s32 completion_status; 574 }; 575 576 static void hv_pci_onchannelcallback(void *context); 577 578 #ifdef CONFIG_X86 579 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 580 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_ACK 581 582 static int hv_pci_irqchip_init(void) 583 { 584 return 0; 585 } 586 587 static struct irq_domain *hv_pci_get_root_domain(void) 588 { 589 return x86_vector_domain; 590 } 591 592 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 593 { 594 struct irq_cfg *cfg = irqd_cfg(data); 595 596 return cfg->vector; 597 } 598 599 #define hv_msi_prepare pci_msi_prepare 600 601 /** 602 * hv_irq_retarget_interrupt() - "Unmask" the IRQ by setting its current 603 * affinity. 604 * @data: Describes the IRQ 605 * 606 * Build new a destination for the MSI and make a hypercall to 607 * update the Interrupt Redirection Table. "Device Logical ID" 608 * is built out of this PCI bus's instance GUID and the function 609 * number of the device. 610 */ 611 static void hv_irq_retarget_interrupt(struct irq_data *data) 612 { 613 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 614 struct hv_retarget_device_interrupt *params; 615 struct tran_int_desc *int_desc; 616 struct hv_pcibus_device *hbus; 617 const struct cpumask *dest; 618 cpumask_var_t tmp; 619 struct pci_bus *pbus; 620 struct pci_dev *pdev; 621 unsigned long flags; 622 u32 var_size = 0; 623 int cpu, nr_bank; 624 u64 res; 625 626 dest = irq_data_get_effective_affinity_mask(data); 627 pdev = msi_desc_to_pci_dev(msi_desc); 628 pbus = pdev->bus; 629 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 630 int_desc = data->chip_data; 631 if (!int_desc) { 632 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", 633 __func__, data->irq); 634 return; 635 } 636 637 local_irq_save(flags); 638 639 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 640 memset(params, 0, sizeof(*params)); 641 params->partition_id = HV_PARTITION_ID_SELF; 642 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 643 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 644 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 645 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 646 (hbus->hdev->dev_instance.b[4] << 16) | 647 (hbus->hdev->dev_instance.b[7] << 8) | 648 (hbus->hdev->dev_instance.b[6] & 0xf8) | 649 PCI_FUNC(pdev->devfn); 650 params->int_target.vector = hv_msi_get_int_vector(data); 651 652 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 653 /* 654 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 655 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 656 * with >64 VP support. 657 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 658 * is not sufficient for this hypercall. 659 */ 660 params->int_target.flags |= 661 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 662 663 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 664 res = 1; 665 goto out; 666 } 667 668 cpumask_and(tmp, dest, cpu_online_mask); 669 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 670 free_cpumask_var(tmp); 671 672 if (nr_bank <= 0) { 673 res = 1; 674 goto out; 675 } 676 677 /* 678 * var-sized hypercall, var-size starts after vp_mask (thus 679 * vp_set.format does not count, but vp_set.valid_bank_mask 680 * does). 681 */ 682 var_size = 1 + nr_bank; 683 } else { 684 for_each_cpu_and(cpu, dest, cpu_online_mask) { 685 params->int_target.vp_mask |= 686 (1ULL << hv_cpu_number_to_vp_number(cpu)); 687 } 688 } 689 690 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 691 params, NULL); 692 693 out: 694 local_irq_restore(flags); 695 696 /* 697 * During hibernation, when a CPU is offlined, the kernel tries 698 * to move the interrupt to the remaining CPUs that haven't 699 * been offlined yet. In this case, the below hv_do_hypercall() 700 * always fails since the vmbus channel has been closed: 701 * refer to cpu_disable_common() -> fixup_irqs() -> 702 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 703 * 704 * Suppress the error message for hibernation because the failure 705 * during hibernation does not matter (at this time all the devices 706 * have been frozen). Note: the correct affinity info is still updated 707 * into the irqdata data structure in migrate_one_irq() -> 708 * irq_do_set_affinity(), so later when the VM resumes, 709 * hv_pci_restore_msi_state() is able to correctly restore the 710 * interrupt with the correct affinity. 711 */ 712 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 713 dev_err(&hbus->hdev->device, 714 "%s() failed: %#llx", __func__, res); 715 } 716 717 static void hv_arch_irq_unmask(struct irq_data *data) 718 { 719 if (hv_root_partition()) 720 /* 721 * In case of the nested root partition, the nested hypervisor 722 * is taking care of interrupt remapping and thus the 723 * MAP_DEVICE_INTERRUPT hypercall is required instead of 724 * RETARGET_INTERRUPT. 725 */ 726 (void)hv_map_msi_interrupt(data, NULL); 727 else 728 hv_irq_retarget_interrupt(data); 729 } 730 #elif defined(CONFIG_ARM64) 731 /* 732 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 733 * of room at the start to allow for SPIs to be specified through ACPI and 734 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 735 */ 736 #define HV_PCI_MSI_SPI_START 64 737 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 738 #define DELIVERY_MODE 0 739 #define HV_MSI_CHIP_FLAGS MSI_CHIP_FLAG_SET_EOI 740 #define hv_msi_prepare NULL 741 742 struct hv_pci_chip_data { 743 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 744 struct mutex map_lock; 745 }; 746 747 /* Hyper-V vPCI MSI GIC IRQ domain */ 748 static struct irq_domain *hv_msi_gic_irq_domain; 749 750 /* Hyper-V PCI MSI IRQ chip */ 751 static struct irq_chip hv_arm64_msi_irq_chip = { 752 .name = "MSI", 753 .irq_set_affinity = irq_chip_set_affinity_parent, 754 .irq_eoi = irq_chip_eoi_parent, 755 .irq_mask = irq_chip_mask_parent, 756 .irq_unmask = irq_chip_unmask_parent 757 }; 758 759 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 760 { 761 return irqd->parent_data->hwirq; 762 } 763 764 /* 765 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 766 * the bitmap. 767 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 768 * the parent domain. 769 */ 770 static void hv_pci_vec_irq_free(struct irq_domain *domain, 771 unsigned int virq, 772 unsigned int nr_bm_irqs, 773 unsigned int nr_dom_irqs) 774 { 775 struct hv_pci_chip_data *chip_data = domain->host_data; 776 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 777 int first = d->hwirq - HV_PCI_MSI_SPI_START; 778 int i; 779 780 mutex_lock(&chip_data->map_lock); 781 bitmap_release_region(chip_data->spi_map, 782 first, 783 get_count_order(nr_bm_irqs)); 784 mutex_unlock(&chip_data->map_lock); 785 for (i = 0; i < nr_dom_irqs; i++) { 786 if (i) 787 d = irq_domain_get_irq_data(domain, virq + i); 788 irq_domain_reset_irq_data(d); 789 } 790 791 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 792 } 793 794 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 795 unsigned int virq, 796 unsigned int nr_irqs) 797 { 798 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 799 } 800 801 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 802 unsigned int nr_irqs, 803 irq_hw_number_t *hwirq) 804 { 805 struct hv_pci_chip_data *chip_data = domain->host_data; 806 int index; 807 808 /* Find and allocate region from the SPI bitmap */ 809 mutex_lock(&chip_data->map_lock); 810 index = bitmap_find_free_region(chip_data->spi_map, 811 HV_PCI_MSI_SPI_NR, 812 get_count_order(nr_irqs)); 813 mutex_unlock(&chip_data->map_lock); 814 if (index < 0) 815 return -ENOSPC; 816 817 *hwirq = index + HV_PCI_MSI_SPI_START; 818 819 return 0; 820 } 821 822 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 823 unsigned int virq, 824 irq_hw_number_t hwirq) 825 { 826 struct irq_fwspec fwspec; 827 struct irq_data *d; 828 int ret; 829 830 fwspec.fwnode = domain->parent->fwnode; 831 if (is_of_node(fwspec.fwnode)) { 832 /* SPI lines for OF translations start at offset 32 */ 833 fwspec.param_count = 3; 834 fwspec.param[0] = 0; 835 fwspec.param[1] = hwirq - 32; 836 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 837 } else { 838 fwspec.param_count = 2; 839 fwspec.param[0] = hwirq; 840 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 841 } 842 843 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 844 if (ret) 845 return ret; 846 847 /* 848 * Since the interrupt specifier is not coming from ACPI or DT, the 849 * trigger type will need to be set explicitly. Otherwise, it will be 850 * set to whatever is in the GIC configuration. 851 */ 852 d = irq_domain_get_irq_data(domain->parent, virq); 853 854 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 855 } 856 857 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 858 unsigned int virq, unsigned int nr_irqs, 859 void *args) 860 { 861 irq_hw_number_t hwirq; 862 unsigned int i; 863 int ret; 864 865 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 866 if (ret) 867 return ret; 868 869 for (i = 0; i < nr_irqs; i++) { 870 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 871 hwirq + i); 872 if (ret) { 873 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 874 return ret; 875 } 876 877 irq_domain_set_hwirq_and_chip(domain, virq + i, 878 hwirq + i, 879 &hv_arm64_msi_irq_chip, 880 domain->host_data); 881 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 882 } 883 884 return 0; 885 } 886 887 /* 888 * Pick the first cpu as the irq affinity that can be temporarily used for 889 * composing MSI from the hypervisor. GIC will eventually set the right 890 * affinity for the irq and the 'unmask' will retarget the interrupt to that 891 * cpu. 892 */ 893 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 894 struct irq_data *irqd, bool reserve) 895 { 896 int cpu = cpumask_first(cpu_present_mask); 897 898 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 899 900 return 0; 901 } 902 903 static const struct irq_domain_ops hv_pci_domain_ops = { 904 .alloc = hv_pci_vec_irq_domain_alloc, 905 .free = hv_pci_vec_irq_domain_free, 906 .activate = hv_pci_vec_irq_domain_activate, 907 }; 908 909 #ifdef CONFIG_OF 910 911 static struct irq_domain *hv_pci_of_irq_domain_parent(void) 912 { 913 struct device_node *parent; 914 struct irq_domain *domain; 915 916 parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node); 917 if (!parent) 918 return NULL; 919 domain = irq_find_host(parent); 920 of_node_put(parent); 921 922 return domain; 923 } 924 925 #endif 926 927 #ifdef CONFIG_ACPI 928 929 static struct irq_domain *hv_pci_acpi_irq_domain_parent(void) 930 { 931 acpi_gsi_domain_disp_fn gsi_domain_disp_fn; 932 933 gsi_domain_disp_fn = acpi_get_gsi_dispatcher(); 934 if (!gsi_domain_disp_fn) 935 return NULL; 936 return irq_find_matching_fwnode(gsi_domain_disp_fn(0), 937 DOMAIN_BUS_ANY); 938 } 939 940 #endif 941 942 static int hv_pci_irqchip_init(void) 943 { 944 static struct hv_pci_chip_data *chip_data; 945 struct fwnode_handle *fn = NULL; 946 struct irq_domain *irq_domain_parent = NULL; 947 int ret = -ENOMEM; 948 949 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 950 if (!chip_data) 951 return ret; 952 953 mutex_init(&chip_data->map_lock); 954 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 955 if (!fn) 956 goto free_chip; 957 958 /* 959 * IRQ domain once enabled, should not be removed since there is no 960 * way to ensure that all the corresponding devices are also gone and 961 * no interrupts will be generated. 962 */ 963 #ifdef CONFIG_ACPI 964 if (!acpi_disabled) 965 irq_domain_parent = hv_pci_acpi_irq_domain_parent(); 966 #endif 967 #ifdef CONFIG_OF 968 if (!irq_domain_parent) 969 irq_domain_parent = hv_pci_of_irq_domain_parent(); 970 #endif 971 if (!irq_domain_parent) { 972 WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n"); 973 ret = -EINVAL; 974 goto free_chip; 975 } 976 977 hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0, 978 HV_PCI_MSI_SPI_NR, 979 fn, &hv_pci_domain_ops, 980 chip_data); 981 982 if (!hv_msi_gic_irq_domain) { 983 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 984 goto free_chip; 985 } 986 987 return 0; 988 989 free_chip: 990 kfree(chip_data); 991 if (fn) 992 irq_domain_free_fwnode(fn); 993 994 return ret; 995 } 996 997 static struct irq_domain *hv_pci_get_root_domain(void) 998 { 999 return hv_msi_gic_irq_domain; 1000 } 1001 1002 /* 1003 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 1004 * registers which Hyper-V already supports, so no hypercall needed. 1005 */ 1006 static void hv_arch_irq_unmask(struct irq_data *data) { } 1007 #endif /* CONFIG_ARM64 */ 1008 1009 /** 1010 * hv_pci_generic_compl() - Invoked for a completion packet 1011 * @context: Set up by the sender of the packet. 1012 * @resp: The response packet 1013 * @resp_packet_size: Size in bytes of the packet 1014 * 1015 * This function is used to trigger an event and report status 1016 * for any message for which the completion packet contains a 1017 * status and nothing else. 1018 */ 1019 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 1020 int resp_packet_size) 1021 { 1022 struct hv_pci_compl *comp_pkt = context; 1023 1024 comp_pkt->completion_status = resp->status; 1025 complete(&comp_pkt->host_event); 1026 } 1027 1028 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1029 u32 wslot); 1030 1031 static void get_pcichild(struct hv_pci_dev *hpdev) 1032 { 1033 refcount_inc(&hpdev->refs); 1034 } 1035 1036 static void put_pcichild(struct hv_pci_dev *hpdev) 1037 { 1038 if (refcount_dec_and_test(&hpdev->refs)) 1039 kfree(hpdev); 1040 } 1041 1042 /* 1043 * There is no good way to get notified from vmbus_onoffer_rescind(), 1044 * so let's use polling here, since this is not a hot path. 1045 */ 1046 static int wait_for_response(struct hv_device *hdev, 1047 struct completion *comp) 1048 { 1049 while (true) { 1050 if (hdev->channel->rescind) { 1051 dev_warn_once(&hdev->device, "The device is gone.\n"); 1052 return -ENODEV; 1053 } 1054 1055 if (wait_for_completion_timeout(comp, HZ / 10)) 1056 break; 1057 } 1058 1059 return 0; 1060 } 1061 1062 /** 1063 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1064 * @devfn: The Linux representation of PCI slot 1065 * 1066 * Windows uses a slightly different representation of PCI slot. 1067 * 1068 * Return: The Windows representation 1069 */ 1070 static u32 devfn_to_wslot(int devfn) 1071 { 1072 union win_slot_encoding wslot; 1073 1074 wslot.slot = 0; 1075 wslot.bits.dev = PCI_SLOT(devfn); 1076 wslot.bits.func = PCI_FUNC(devfn); 1077 1078 return wslot.slot; 1079 } 1080 1081 /** 1082 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1083 * @wslot: The Windows representation of PCI slot 1084 * 1085 * Windows uses a slightly different representation of PCI slot. 1086 * 1087 * Return: The Linux representation 1088 */ 1089 static int wslot_to_devfn(u32 wslot) 1090 { 1091 union win_slot_encoding slot_no; 1092 1093 slot_no.slot = wslot; 1094 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1095 } 1096 1097 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1098 { 1099 struct hv_mmio_read_input *in; 1100 struct hv_mmio_read_output *out; 1101 u64 ret; 1102 1103 /* 1104 * Must be called with interrupts disabled so it is safe 1105 * to use the per-cpu input argument page. Use it for 1106 * both input and output. 1107 */ 1108 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1109 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1110 in->gpa = gpa; 1111 in->size = size; 1112 1113 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1114 if (hv_result_success(ret)) { 1115 switch (size) { 1116 case 1: 1117 *val = *(u8 *)(out->data); 1118 break; 1119 case 2: 1120 *val = *(u16 *)(out->data); 1121 break; 1122 default: 1123 *val = *(u32 *)(out->data); 1124 break; 1125 } 1126 } else 1127 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1128 ret, gpa, size); 1129 } 1130 1131 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1132 { 1133 struct hv_mmio_write_input *in; 1134 u64 ret; 1135 1136 /* 1137 * Must be called with interrupts disabled so it is safe 1138 * to use the per-cpu input argument memory. 1139 */ 1140 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1141 in->gpa = gpa; 1142 in->size = size; 1143 switch (size) { 1144 case 1: 1145 *(u8 *)(in->data) = val; 1146 break; 1147 case 2: 1148 *(u16 *)(in->data) = val; 1149 break; 1150 default: 1151 *(u32 *)(in->data) = val; 1152 break; 1153 } 1154 1155 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1156 if (!hv_result_success(ret)) 1157 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1158 ret, gpa, size); 1159 } 1160 1161 /* 1162 * PCI Configuration Space for these root PCI buses is implemented as a pair 1163 * of pages in memory-mapped I/O space. Writing to the first page chooses 1164 * the PCI function being written or read. Once the first page has been 1165 * written to, the following page maps in the entire configuration space of 1166 * the function. 1167 */ 1168 1169 /** 1170 * _hv_pcifront_read_config() - Internal PCI config read 1171 * @hpdev: The PCI driver's representation of the device 1172 * @where: Offset within config space 1173 * @size: Size of the transfer 1174 * @val: Pointer to the buffer receiving the data 1175 */ 1176 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1177 int size, u32 *val) 1178 { 1179 struct hv_pcibus_device *hbus = hpdev->hbus; 1180 struct device *dev = &hbus->hdev->device; 1181 int offset = where + CFG_PAGE_OFFSET; 1182 unsigned long flags; 1183 1184 /* 1185 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1186 */ 1187 if (where + size <= PCI_COMMAND) { 1188 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1189 } else if (where >= PCI_CLASS_REVISION && where + size <= 1190 PCI_CACHE_LINE_SIZE) { 1191 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1192 PCI_CLASS_REVISION, size); 1193 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1194 PCI_ROM_ADDRESS) { 1195 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1196 PCI_SUBSYSTEM_VENDOR_ID, size); 1197 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1198 PCI_CAPABILITY_LIST) { 1199 /* ROM BARs are unimplemented */ 1200 *val = 0; 1201 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) || 1202 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) { 1203 /* 1204 * Interrupt Line and Interrupt PIN are hard-wired to zero 1205 * because this front-end only supports message-signaled 1206 * interrupts. 1207 */ 1208 *val = 0; 1209 } else if (where + size <= CFG_PAGE_SIZE) { 1210 1211 spin_lock_irqsave(&hbus->config_lock, flags); 1212 if (hbus->use_calls) { 1213 phys_addr_t addr = hbus->mem_config->start + offset; 1214 1215 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1216 hpdev->desc.win_slot.slot); 1217 hv_pci_read_mmio(dev, addr, size, val); 1218 } else { 1219 void __iomem *addr = hbus->cfg_addr + offset; 1220 1221 /* Choose the function to be read. (See comment above) */ 1222 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1223 /* Make sure the function was chosen before reading. */ 1224 mb(); 1225 /* Read from that function's config space. */ 1226 switch (size) { 1227 case 1: 1228 *val = readb(addr); 1229 break; 1230 case 2: 1231 *val = readw(addr); 1232 break; 1233 default: 1234 *val = readl(addr); 1235 break; 1236 } 1237 /* 1238 * Make sure the read was done before we release the 1239 * spinlock allowing consecutive reads/writes. 1240 */ 1241 mb(); 1242 } 1243 spin_unlock_irqrestore(&hbus->config_lock, flags); 1244 } else { 1245 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1246 } 1247 } 1248 1249 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1250 { 1251 struct hv_pcibus_device *hbus = hpdev->hbus; 1252 struct device *dev = &hbus->hdev->device; 1253 u32 val; 1254 u16 ret; 1255 unsigned long flags; 1256 1257 spin_lock_irqsave(&hbus->config_lock, flags); 1258 1259 if (hbus->use_calls) { 1260 phys_addr_t addr = hbus->mem_config->start + 1261 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1262 1263 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1264 hpdev->desc.win_slot.slot); 1265 hv_pci_read_mmio(dev, addr, 2, &val); 1266 ret = val; /* Truncates to 16 bits */ 1267 } else { 1268 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1269 PCI_VENDOR_ID; 1270 /* Choose the function to be read. (See comment above) */ 1271 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1272 /* Make sure the function was chosen before we start reading. */ 1273 mb(); 1274 /* Read from that function's config space. */ 1275 ret = readw(addr); 1276 /* 1277 * mb() is not required here, because the 1278 * spin_unlock_irqrestore() is a barrier. 1279 */ 1280 } 1281 1282 spin_unlock_irqrestore(&hbus->config_lock, flags); 1283 1284 return ret; 1285 } 1286 1287 /** 1288 * _hv_pcifront_write_config() - Internal PCI config write 1289 * @hpdev: The PCI driver's representation of the device 1290 * @where: Offset within config space 1291 * @size: Size of the transfer 1292 * @val: The data being transferred 1293 */ 1294 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1295 int size, u32 val) 1296 { 1297 struct hv_pcibus_device *hbus = hpdev->hbus; 1298 struct device *dev = &hbus->hdev->device; 1299 int offset = where + CFG_PAGE_OFFSET; 1300 unsigned long flags; 1301 1302 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1303 where + size <= PCI_CAPABILITY_LIST) { 1304 /* SSIDs and ROM BARs are read-only */ 1305 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1306 spin_lock_irqsave(&hbus->config_lock, flags); 1307 1308 if (hbus->use_calls) { 1309 phys_addr_t addr = hbus->mem_config->start + offset; 1310 1311 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1312 hpdev->desc.win_slot.slot); 1313 hv_pci_write_mmio(dev, addr, size, val); 1314 } else { 1315 void __iomem *addr = hbus->cfg_addr + offset; 1316 1317 /* Choose the function to write. (See comment above) */ 1318 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1319 /* Make sure the function was chosen before writing. */ 1320 wmb(); 1321 /* Write to that function's config space. */ 1322 switch (size) { 1323 case 1: 1324 writeb(val, addr); 1325 break; 1326 case 2: 1327 writew(val, addr); 1328 break; 1329 default: 1330 writel(val, addr); 1331 break; 1332 } 1333 /* 1334 * Make sure the write was done before we release the 1335 * spinlock allowing consecutive reads/writes. 1336 */ 1337 mb(); 1338 } 1339 spin_unlock_irqrestore(&hbus->config_lock, flags); 1340 } else { 1341 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1342 } 1343 } 1344 1345 /** 1346 * hv_pcifront_read_config() - Read configuration space 1347 * @bus: PCI Bus structure 1348 * @devfn: Device/function 1349 * @where: Offset from base 1350 * @size: Byte/word/dword 1351 * @val: Value to be read 1352 * 1353 * Return: PCIBIOS_SUCCESSFUL on success 1354 * PCIBIOS_DEVICE_NOT_FOUND on failure 1355 */ 1356 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1357 int where, int size, u32 *val) 1358 { 1359 struct hv_pcibus_device *hbus = 1360 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1361 struct hv_pci_dev *hpdev; 1362 1363 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1364 if (!hpdev) 1365 return PCIBIOS_DEVICE_NOT_FOUND; 1366 1367 _hv_pcifront_read_config(hpdev, where, size, val); 1368 1369 put_pcichild(hpdev); 1370 return PCIBIOS_SUCCESSFUL; 1371 } 1372 1373 /** 1374 * hv_pcifront_write_config() - Write configuration space 1375 * @bus: PCI Bus structure 1376 * @devfn: Device/function 1377 * @where: Offset from base 1378 * @size: Byte/word/dword 1379 * @val: Value to be written to device 1380 * 1381 * Return: PCIBIOS_SUCCESSFUL on success 1382 * PCIBIOS_DEVICE_NOT_FOUND on failure 1383 */ 1384 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1385 int where, int size, u32 val) 1386 { 1387 struct hv_pcibus_device *hbus = 1388 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1389 struct hv_pci_dev *hpdev; 1390 1391 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1392 if (!hpdev) 1393 return PCIBIOS_DEVICE_NOT_FOUND; 1394 1395 _hv_pcifront_write_config(hpdev, where, size, val); 1396 1397 put_pcichild(hpdev); 1398 return PCIBIOS_SUCCESSFUL; 1399 } 1400 1401 /* PCIe operations */ 1402 static struct pci_ops hv_pcifront_ops = { 1403 .read = hv_pcifront_read_config, 1404 .write = hv_pcifront_write_config, 1405 }; 1406 1407 /* 1408 * Paravirtual backchannel 1409 * 1410 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1411 * communication between a VF driver and a PF driver. These 1412 * "configuration blocks" are similar in concept to PCI configuration space, 1413 * but instead of doing reads and writes in 32-bit chunks through a very slow 1414 * path, packets of up to 128 bytes can be sent or received asynchronously. 1415 * 1416 * Nearly every SR-IOV device contains just such a communications channel in 1417 * hardware, so using this one in software is usually optional. Using the 1418 * software channel, however, allows driver implementers to leverage software 1419 * tools that fuzz the communications channel looking for vulnerabilities. 1420 * 1421 * The usage model for these packets puts the responsibility for reading or 1422 * writing on the VF driver. The VF driver sends a read or a write packet, 1423 * indicating which "block" is being referred to by number. 1424 * 1425 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1426 * more of the first 64 blocks. This invalidation is delivered via a callback 1427 * supplied to the VF driver by this driver. 1428 * 1429 * No protocol is implied, except that supplied by the PF and VF drivers. 1430 */ 1431 1432 struct hv_read_config_compl { 1433 struct hv_pci_compl comp_pkt; 1434 void *buf; 1435 unsigned int len; 1436 unsigned int bytes_returned; 1437 }; 1438 1439 /** 1440 * hv_pci_read_config_compl() - Invoked when a response packet 1441 * for a read config block operation arrives. 1442 * @context: Identifies the read config operation 1443 * @resp: The response packet itself 1444 * @resp_packet_size: Size in bytes of the response packet 1445 */ 1446 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1447 int resp_packet_size) 1448 { 1449 struct hv_read_config_compl *comp = context; 1450 struct pci_read_block_response *read_resp = 1451 (struct pci_read_block_response *)resp; 1452 unsigned int data_len, hdr_len; 1453 1454 hdr_len = offsetof(struct pci_read_block_response, bytes); 1455 if (resp_packet_size < hdr_len) { 1456 comp->comp_pkt.completion_status = -1; 1457 goto out; 1458 } 1459 1460 data_len = resp_packet_size - hdr_len; 1461 if (data_len > 0 && read_resp->status == 0) { 1462 comp->bytes_returned = min(comp->len, data_len); 1463 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1464 } else { 1465 comp->bytes_returned = 0; 1466 } 1467 1468 comp->comp_pkt.completion_status = read_resp->status; 1469 out: 1470 complete(&comp->comp_pkt.host_event); 1471 } 1472 1473 /** 1474 * hv_read_config_block() - Sends a read config block request to 1475 * the back-end driver running in the Hyper-V parent partition. 1476 * @pdev: The PCI driver's representation for this device. 1477 * @buf: Buffer into which the config block will be copied. 1478 * @len: Size in bytes of buf. 1479 * @block_id: Identifies the config block which has been requested. 1480 * @bytes_returned: Size which came back from the back-end driver. 1481 * 1482 * Return: 0 on success, -errno on failure 1483 */ 1484 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1485 unsigned int len, unsigned int block_id, 1486 unsigned int *bytes_returned) 1487 { 1488 struct hv_pcibus_device *hbus = 1489 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1490 sysdata); 1491 struct { 1492 struct pci_packet pkt; 1493 char buf[sizeof(struct pci_read_block)]; 1494 } pkt; 1495 struct hv_read_config_compl comp_pkt; 1496 struct pci_read_block *read_blk; 1497 int ret; 1498 1499 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1500 return -EINVAL; 1501 1502 init_completion(&comp_pkt.comp_pkt.host_event); 1503 comp_pkt.buf = buf; 1504 comp_pkt.len = len; 1505 1506 memset(&pkt, 0, sizeof(pkt)); 1507 pkt.pkt.completion_func = hv_pci_read_config_compl; 1508 pkt.pkt.compl_ctxt = &comp_pkt; 1509 read_blk = (struct pci_read_block *)pkt.buf; 1510 read_blk->message_type.type = PCI_READ_BLOCK; 1511 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1512 read_blk->block_id = block_id; 1513 read_blk->bytes_requested = len; 1514 1515 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1516 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1517 VM_PKT_DATA_INBAND, 1518 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1519 if (ret) 1520 return ret; 1521 1522 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1523 if (ret) 1524 return ret; 1525 1526 if (comp_pkt.comp_pkt.completion_status != 0 || 1527 comp_pkt.bytes_returned == 0) { 1528 dev_err(&hbus->hdev->device, 1529 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1530 comp_pkt.comp_pkt.completion_status, 1531 comp_pkt.bytes_returned); 1532 return -EIO; 1533 } 1534 1535 *bytes_returned = comp_pkt.bytes_returned; 1536 return 0; 1537 } 1538 1539 /** 1540 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1541 * config block operation arrives. 1542 * @context: Identifies the write config operation 1543 * @resp: The response packet itself 1544 * @resp_packet_size: Size in bytes of the response packet 1545 */ 1546 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1547 int resp_packet_size) 1548 { 1549 struct hv_pci_compl *comp_pkt = context; 1550 1551 comp_pkt->completion_status = resp->status; 1552 complete(&comp_pkt->host_event); 1553 } 1554 1555 /** 1556 * hv_write_config_block() - Sends a write config block request to the 1557 * back-end driver running in the Hyper-V parent partition. 1558 * @pdev: The PCI driver's representation for this device. 1559 * @buf: Buffer from which the config block will be copied. 1560 * @len: Size in bytes of buf. 1561 * @block_id: Identifies the config block which is being written. 1562 * 1563 * Return: 0 on success, -errno on failure 1564 */ 1565 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1566 unsigned int len, unsigned int block_id) 1567 { 1568 struct hv_pcibus_device *hbus = 1569 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1570 sysdata); 1571 struct { 1572 struct pci_packet pkt; 1573 char buf[sizeof(struct pci_write_block)]; 1574 u32 reserved; 1575 } pkt; 1576 struct hv_pci_compl comp_pkt; 1577 struct pci_write_block *write_blk; 1578 u32 pkt_size; 1579 int ret; 1580 1581 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1582 return -EINVAL; 1583 1584 init_completion(&comp_pkt.host_event); 1585 1586 memset(&pkt, 0, sizeof(pkt)); 1587 pkt.pkt.completion_func = hv_pci_write_config_compl; 1588 pkt.pkt.compl_ctxt = &comp_pkt; 1589 write_blk = (struct pci_write_block *)pkt.buf; 1590 write_blk->message_type.type = PCI_WRITE_BLOCK; 1591 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1592 write_blk->block_id = block_id; 1593 write_blk->byte_count = len; 1594 memcpy(write_blk->bytes, buf, len); 1595 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1596 /* 1597 * This quirk is required on some hosts shipped around 2018, because 1598 * these hosts don't check the pkt_size correctly (new hosts have been 1599 * fixed since early 2019). The quirk is also safe on very old hosts 1600 * and new hosts, because, on them, what really matters is the length 1601 * specified in write_blk->byte_count. 1602 */ 1603 pkt_size += sizeof(pkt.reserved); 1604 1605 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1606 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1607 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1608 if (ret) 1609 return ret; 1610 1611 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1612 if (ret) 1613 return ret; 1614 1615 if (comp_pkt.completion_status != 0) { 1616 dev_err(&hbus->hdev->device, 1617 "Write Config Block failed: 0x%x\n", 1618 comp_pkt.completion_status); 1619 return -EIO; 1620 } 1621 1622 return 0; 1623 } 1624 1625 /** 1626 * hv_register_block_invalidate() - Invoked when a config block invalidation 1627 * arrives from the back-end driver. 1628 * @pdev: The PCI driver's representation for this device. 1629 * @context: Identifies the device. 1630 * @block_invalidate: Identifies all of the blocks being invalidated. 1631 * 1632 * Return: 0 on success, -errno on failure 1633 */ 1634 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1635 void (*block_invalidate)(void *context, 1636 u64 block_mask)) 1637 { 1638 struct hv_pcibus_device *hbus = 1639 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1640 sysdata); 1641 struct hv_pci_dev *hpdev; 1642 1643 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1644 if (!hpdev) 1645 return -ENODEV; 1646 1647 hpdev->block_invalidate = block_invalidate; 1648 hpdev->invalidate_context = context; 1649 1650 put_pcichild(hpdev); 1651 return 0; 1652 1653 } 1654 1655 /* Interrupt management hooks */ 1656 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1657 struct tran_int_desc *int_desc) 1658 { 1659 struct pci_delete_interrupt *int_pkt; 1660 struct { 1661 struct pci_packet pkt; 1662 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1663 } ctxt; 1664 1665 if (!int_desc->vector_count) { 1666 kfree(int_desc); 1667 return; 1668 } 1669 memset(&ctxt, 0, sizeof(ctxt)); 1670 int_pkt = (struct pci_delete_interrupt *)ctxt.buffer; 1671 int_pkt->message_type.type = 1672 PCI_DELETE_INTERRUPT_MESSAGE; 1673 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1674 int_pkt->int_desc = *int_desc; 1675 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1676 0, VM_PKT_DATA_INBAND, 0); 1677 kfree(int_desc); 1678 } 1679 1680 /** 1681 * hv_msi_free() - Free the MSI. 1682 * @domain: The interrupt domain pointer 1683 * @info: Extra MSI-related context 1684 * @irq: Identifies the IRQ. 1685 * 1686 * The Hyper-V parent partition and hypervisor are tracking the 1687 * messages that are in use, keeping the interrupt redirection 1688 * table up to date. This callback sends a message that frees 1689 * the IRT entry and related tracking nonsense. 1690 */ 1691 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1692 unsigned int irq) 1693 { 1694 struct hv_pcibus_device *hbus; 1695 struct hv_pci_dev *hpdev; 1696 struct pci_dev *pdev; 1697 struct tran_int_desc *int_desc; 1698 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1699 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1700 1701 pdev = msi_desc_to_pci_dev(msi); 1702 hbus = domain->host_data; 1703 int_desc = irq_data_get_irq_chip_data(irq_data); 1704 if (!int_desc) 1705 return; 1706 1707 irq_data->chip_data = NULL; 1708 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1709 if (!hpdev) { 1710 kfree(int_desc); 1711 return; 1712 } 1713 1714 hv_int_desc_free(hpdev, int_desc); 1715 put_pcichild(hpdev); 1716 } 1717 1718 static void hv_irq_mask(struct irq_data *data) 1719 { 1720 if (data->parent_data->chip->irq_mask) 1721 irq_chip_mask_parent(data); 1722 } 1723 1724 static void hv_irq_unmask(struct irq_data *data) 1725 { 1726 hv_arch_irq_unmask(data); 1727 1728 if (data->parent_data->chip->irq_unmask) 1729 irq_chip_unmask_parent(data); 1730 } 1731 1732 struct compose_comp_ctxt { 1733 struct hv_pci_compl comp_pkt; 1734 struct tran_int_desc int_desc; 1735 }; 1736 1737 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1738 int resp_packet_size) 1739 { 1740 struct compose_comp_ctxt *comp_pkt = context; 1741 struct pci_create_int_response *int_resp = 1742 (struct pci_create_int_response *)resp; 1743 1744 if (resp_packet_size < sizeof(*int_resp)) { 1745 comp_pkt->comp_pkt.completion_status = -1; 1746 goto out; 1747 } 1748 comp_pkt->comp_pkt.completion_status = resp->status; 1749 comp_pkt->int_desc = int_resp->int_desc; 1750 out: 1751 complete(&comp_pkt->comp_pkt.host_event); 1752 } 1753 1754 static u32 hv_compose_msi_req_v1( 1755 struct pci_create_interrupt *int_pkt, 1756 u32 slot, u8 vector, u16 vector_count) 1757 { 1758 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1759 int_pkt->wslot.slot = slot; 1760 int_pkt->int_desc.vector = vector; 1761 int_pkt->int_desc.vector_count = vector_count; 1762 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1763 1764 /* 1765 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1766 * hv_irq_unmask(). 1767 */ 1768 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1769 1770 return sizeof(*int_pkt); 1771 } 1772 1773 /* 1774 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1775 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1776 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1777 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1778 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1779 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1780 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1781 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1782 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1783 * to spread out the pCPUs that it selects. 1784 * 1785 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1786 * to always return the same dummy vCPU, because a second call to 1787 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1788 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1789 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1790 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1791 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1792 * the same pCPU, even though the vCPUs will be spread out by later calls 1793 * to hv_irq_unmask(), but that is the best we can do now. 1794 * 1795 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1796 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1797 * enhancement is planned for a future version. With that enhancement, the 1798 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1799 * device will be spread across multiple pCPUs. 1800 */ 1801 1802 /* 1803 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1804 * by subsequent retarget in hv_irq_unmask(). 1805 */ 1806 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1807 { 1808 return cpumask_first_and(affinity, cpu_online_mask); 1809 } 1810 1811 /* 1812 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1813 */ 1814 static int hv_compose_multi_msi_req_get_cpu(void) 1815 { 1816 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1817 1818 /* -1 means starting with CPU 0 */ 1819 static int cpu_next = -1; 1820 1821 unsigned long flags; 1822 int cpu; 1823 1824 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1825 1826 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask); 1827 cpu = cpu_next; 1828 1829 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1830 1831 return cpu; 1832 } 1833 1834 static u32 hv_compose_msi_req_v2( 1835 struct pci_create_interrupt2 *int_pkt, int cpu, 1836 u32 slot, u8 vector, u16 vector_count) 1837 { 1838 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1839 int_pkt->wslot.slot = slot; 1840 int_pkt->int_desc.vector = vector; 1841 int_pkt->int_desc.vector_count = vector_count; 1842 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1843 int_pkt->int_desc.processor_array[0] = 1844 hv_cpu_number_to_vp_number(cpu); 1845 int_pkt->int_desc.processor_count = 1; 1846 1847 return sizeof(*int_pkt); 1848 } 1849 1850 static u32 hv_compose_msi_req_v3( 1851 struct pci_create_interrupt3 *int_pkt, int cpu, 1852 u32 slot, u32 vector, u16 vector_count) 1853 { 1854 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1855 int_pkt->wslot.slot = slot; 1856 int_pkt->int_desc.vector = vector; 1857 int_pkt->int_desc.reserved = 0; 1858 int_pkt->int_desc.vector_count = vector_count; 1859 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1860 int_pkt->int_desc.processor_array[0] = 1861 hv_cpu_number_to_vp_number(cpu); 1862 int_pkt->int_desc.processor_count = 1; 1863 1864 return sizeof(*int_pkt); 1865 } 1866 1867 /** 1868 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1869 * @data: Everything about this MSI 1870 * @msg: Buffer that is filled in by this function 1871 * 1872 * This function unpacks the IRQ looking for target CPU set, IDT 1873 * vector and mode and sends a message to the parent partition 1874 * asking for a mapping for that tuple in this partition. The 1875 * response supplies a data value and address to which that data 1876 * should be written to trigger that interrupt. 1877 */ 1878 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1879 { 1880 struct hv_pcibus_device *hbus; 1881 struct vmbus_channel *channel; 1882 struct hv_pci_dev *hpdev; 1883 struct pci_bus *pbus; 1884 struct pci_dev *pdev; 1885 const struct cpumask *dest; 1886 struct compose_comp_ctxt comp; 1887 struct tran_int_desc *int_desc; 1888 struct msi_desc *msi_desc; 1889 /* 1890 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1891 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1892 */ 1893 u16 vector_count; 1894 u32 vector; 1895 struct { 1896 struct pci_packet pci_pkt; 1897 union { 1898 struct pci_create_interrupt v1; 1899 struct pci_create_interrupt2 v2; 1900 struct pci_create_interrupt3 v3; 1901 } int_pkts; 1902 } __packed ctxt; 1903 bool multi_msi; 1904 u64 trans_id; 1905 u32 size; 1906 int ret; 1907 int cpu; 1908 1909 msi_desc = irq_data_get_msi_desc(data); 1910 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1911 msi_desc->nvec_used > 1; 1912 1913 /* Reuse the previous allocation */ 1914 if (data->chip_data && multi_msi) { 1915 int_desc = data->chip_data; 1916 msg->address_hi = int_desc->address >> 32; 1917 msg->address_lo = int_desc->address & 0xffffffff; 1918 msg->data = int_desc->data; 1919 return; 1920 } 1921 1922 pdev = msi_desc_to_pci_dev(msi_desc); 1923 dest = irq_data_get_effective_affinity_mask(data); 1924 pbus = pdev->bus; 1925 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1926 channel = hbus->hdev->channel; 1927 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1928 if (!hpdev) 1929 goto return_null_message; 1930 1931 /* Free any previous message that might have already been composed. */ 1932 if (data->chip_data && !multi_msi) { 1933 int_desc = data->chip_data; 1934 data->chip_data = NULL; 1935 hv_int_desc_free(hpdev, int_desc); 1936 } 1937 1938 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1939 if (!int_desc) 1940 goto drop_reference; 1941 1942 if (multi_msi) { 1943 /* 1944 * If this is not the first MSI of Multi MSI, we already have 1945 * a mapping. Can exit early. 1946 */ 1947 if (msi_desc->irq != data->irq) { 1948 data->chip_data = int_desc; 1949 int_desc->address = msi_desc->msg.address_lo | 1950 (u64)msi_desc->msg.address_hi << 32; 1951 int_desc->data = msi_desc->msg.data + 1952 (data->irq - msi_desc->irq); 1953 msg->address_hi = msi_desc->msg.address_hi; 1954 msg->address_lo = msi_desc->msg.address_lo; 1955 msg->data = int_desc->data; 1956 put_pcichild(hpdev); 1957 return; 1958 } 1959 /* 1960 * The vector we select here is a dummy value. The correct 1961 * value gets sent to the hypervisor in unmask(). This needs 1962 * to be aligned with the count, and also not zero. Multi-msi 1963 * is powers of 2 up to 32, so 32 will always work here. 1964 */ 1965 vector = 32; 1966 vector_count = msi_desc->nvec_used; 1967 cpu = hv_compose_multi_msi_req_get_cpu(); 1968 } else { 1969 vector = hv_msi_get_int_vector(data); 1970 vector_count = 1; 1971 cpu = hv_compose_msi_req_get_cpu(dest); 1972 } 1973 1974 /* 1975 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1976 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1977 * for better readability. 1978 */ 1979 memset(&ctxt, 0, sizeof(ctxt)); 1980 init_completion(&comp.comp_pkt.host_event); 1981 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1982 ctxt.pci_pkt.compl_ctxt = ∁ 1983 1984 switch (hbus->protocol_version) { 1985 case PCI_PROTOCOL_VERSION_1_1: 1986 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1987 hpdev->desc.win_slot.slot, 1988 (u8)vector, 1989 vector_count); 1990 break; 1991 1992 case PCI_PROTOCOL_VERSION_1_2: 1993 case PCI_PROTOCOL_VERSION_1_3: 1994 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1995 cpu, 1996 hpdev->desc.win_slot.slot, 1997 (u8)vector, 1998 vector_count); 1999 break; 2000 2001 case PCI_PROTOCOL_VERSION_1_4: 2002 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 2003 cpu, 2004 hpdev->desc.win_slot.slot, 2005 vector, 2006 vector_count); 2007 break; 2008 2009 default: 2010 /* As we only negotiate protocol versions known to this driver, 2011 * this path should never hit. However, this is it not a hot 2012 * path so we print a message to aid future updates. 2013 */ 2014 dev_err(&hbus->hdev->device, 2015 "Unexpected vPCI protocol, update driver."); 2016 goto free_int_desc; 2017 } 2018 2019 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 2020 size, (unsigned long)&ctxt.pci_pkt, 2021 &trans_id, VM_PKT_DATA_INBAND, 2022 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2023 if (ret) { 2024 dev_err(&hbus->hdev->device, 2025 "Sending request for interrupt failed: 0x%x", 2026 comp.comp_pkt.completion_status); 2027 goto free_int_desc; 2028 } 2029 2030 /* 2031 * Prevents hv_pci_onchannelcallback() from running concurrently 2032 * in the tasklet. 2033 */ 2034 tasklet_disable_in_atomic(&channel->callback_event); 2035 2036 /* 2037 * Since this function is called with IRQ locks held, can't 2038 * do normal wait for completion; instead poll. 2039 */ 2040 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 2041 unsigned long flags; 2042 2043 /* 0xFFFF means an invalid PCI VENDOR ID. */ 2044 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 2045 dev_err_once(&hbus->hdev->device, 2046 "the device has gone\n"); 2047 goto enable_tasklet; 2048 } 2049 2050 /* 2051 * Make sure that the ring buffer data structure doesn't get 2052 * freed while we dereference the ring buffer pointer. Test 2053 * for the channel's onchannel_callback being NULL within a 2054 * sched_lock critical section. See also the inline comments 2055 * in vmbus_reset_channel_cb(). 2056 */ 2057 spin_lock_irqsave(&channel->sched_lock, flags); 2058 if (unlikely(channel->onchannel_callback == NULL)) { 2059 spin_unlock_irqrestore(&channel->sched_lock, flags); 2060 goto enable_tasklet; 2061 } 2062 hv_pci_onchannelcallback(hbus); 2063 spin_unlock_irqrestore(&channel->sched_lock, flags); 2064 2065 udelay(100); 2066 } 2067 2068 tasklet_enable(&channel->callback_event); 2069 2070 if (comp.comp_pkt.completion_status < 0) { 2071 dev_err(&hbus->hdev->device, 2072 "Request for interrupt failed: 0x%x", 2073 comp.comp_pkt.completion_status); 2074 goto free_int_desc; 2075 } 2076 2077 /* 2078 * Record the assignment so that this can be unwound later. Using 2079 * irq_set_chip_data() here would be appropriate, but the lock it takes 2080 * is already held. 2081 */ 2082 *int_desc = comp.int_desc; 2083 data->chip_data = int_desc; 2084 2085 /* Pass up the result. */ 2086 msg->address_hi = comp.int_desc.address >> 32; 2087 msg->address_lo = comp.int_desc.address & 0xffffffff; 2088 msg->data = comp.int_desc.data; 2089 2090 put_pcichild(hpdev); 2091 return; 2092 2093 enable_tasklet: 2094 tasklet_enable(&channel->callback_event); 2095 /* 2096 * The completion packet on the stack becomes invalid after 'return'; 2097 * remove the ID from the VMbus requestor if the identifier is still 2098 * mapped to/associated with the packet. (The identifier could have 2099 * been 're-used', i.e., already removed and (re-)mapped.) 2100 * 2101 * Cf. hv_pci_onchannelcallback(). 2102 */ 2103 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2104 free_int_desc: 2105 kfree(int_desc); 2106 drop_reference: 2107 put_pcichild(hpdev); 2108 return_null_message: 2109 msg->address_hi = 0; 2110 msg->address_lo = 0; 2111 msg->data = 0; 2112 } 2113 2114 static bool hv_pcie_init_dev_msi_info(struct device *dev, struct irq_domain *domain, 2115 struct irq_domain *real_parent, struct msi_domain_info *info) 2116 { 2117 struct irq_chip *chip = info->chip; 2118 2119 if (!msi_lib_init_dev_msi_info(dev, domain, real_parent, info)) 2120 return false; 2121 2122 info->ops->msi_prepare = hv_msi_prepare; 2123 2124 chip->irq_set_affinity = irq_chip_set_affinity_parent; 2125 2126 if (IS_ENABLED(CONFIG_X86)) 2127 chip->flags |= IRQCHIP_MOVE_DEFERRED; 2128 2129 return true; 2130 } 2131 2132 #define HV_PCIE_MSI_FLAGS_REQUIRED (MSI_FLAG_USE_DEF_DOM_OPS | \ 2133 MSI_FLAG_USE_DEF_CHIP_OPS | \ 2134 MSI_FLAG_PCI_MSI_MASK_PARENT) 2135 #define HV_PCIE_MSI_FLAGS_SUPPORTED (MSI_FLAG_MULTI_PCI_MSI | \ 2136 MSI_FLAG_PCI_MSIX | \ 2137 MSI_FLAG_PCI_MSIX_ALLOC_DYN | \ 2138 MSI_GENERIC_FLAGS_MASK) 2139 2140 static const struct msi_parent_ops hv_pcie_msi_parent_ops = { 2141 .required_flags = HV_PCIE_MSI_FLAGS_REQUIRED, 2142 .supported_flags = HV_PCIE_MSI_FLAGS_SUPPORTED, 2143 .bus_select_token = DOMAIN_BUS_PCI_MSI, 2144 .chip_flags = HV_MSI_CHIP_FLAGS, 2145 .prefix = "HV-", 2146 .init_dev_msi_info = hv_pcie_init_dev_msi_info, 2147 }; 2148 2149 /* HW Interrupt Chip Descriptor */ 2150 static struct irq_chip hv_msi_irq_chip = { 2151 .name = "Hyper-V PCIe MSI", 2152 .irq_compose_msi_msg = hv_compose_msi_msg, 2153 .irq_set_affinity = irq_chip_set_affinity_parent, 2154 .irq_ack = irq_chip_ack_parent, 2155 .irq_eoi = irq_chip_eoi_parent, 2156 .irq_mask = hv_irq_mask, 2157 .irq_unmask = hv_irq_unmask, 2158 }; 2159 2160 static int hv_pcie_domain_alloc(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs, 2161 void *arg) 2162 { 2163 /* 2164 * TODO: Allocating and populating struct tran_int_desc in hv_compose_msi_msg() 2165 * should be moved here. 2166 */ 2167 int ret; 2168 2169 ret = irq_domain_alloc_irqs_parent(d, virq, nr_irqs, arg); 2170 if (ret < 0) 2171 return ret; 2172 2173 for (int i = 0; i < nr_irqs; i++) { 2174 irq_domain_set_hwirq_and_chip(d, virq + i, 0, &hv_msi_irq_chip, NULL); 2175 if (IS_ENABLED(CONFIG_X86)) 2176 __irq_set_handler(virq + i, handle_edge_irq, 0, "edge"); 2177 } 2178 2179 return 0; 2180 } 2181 2182 static void hv_pcie_domain_free(struct irq_domain *d, unsigned int virq, unsigned int nr_irqs) 2183 { 2184 struct msi_domain_info *info = d->host_data; 2185 2186 for (int i = 0; i < nr_irqs; i++) 2187 hv_msi_free(d, info, virq + i); 2188 2189 irq_domain_free_irqs_top(d, virq, nr_irqs); 2190 } 2191 2192 static const struct irq_domain_ops hv_pcie_domain_ops = { 2193 .alloc = hv_pcie_domain_alloc, 2194 .free = hv_pcie_domain_free, 2195 }; 2196 2197 /** 2198 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2199 * @hbus: The root PCI bus 2200 * 2201 * This function creates an IRQ domain which will be used for 2202 * interrupts from devices that have been passed through. These 2203 * devices only support MSI and MSI-X, not line-based interrupts 2204 * or simulations of line-based interrupts through PCIe's 2205 * fabric-layer messages. Because interrupts are remapped, we 2206 * can support multi-message MSI here. 2207 * 2208 * Return: '0' on success and error value on failure 2209 */ 2210 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2211 { 2212 struct irq_domain_info info = { 2213 .fwnode = hbus->fwnode, 2214 .ops = &hv_pcie_domain_ops, 2215 .host_data = hbus, 2216 .parent = hv_pci_get_root_domain(), 2217 }; 2218 2219 hbus->irq_domain = msi_create_parent_irq_domain(&info, &hv_pcie_msi_parent_ops); 2220 if (!hbus->irq_domain) { 2221 dev_err(&hbus->hdev->device, 2222 "Failed to build an MSI IRQ domain\n"); 2223 return -ENODEV; 2224 } 2225 2226 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2227 2228 return 0; 2229 } 2230 2231 /** 2232 * get_bar_size() - Get the address space consumed by a BAR 2233 * @bar_val: Value that a BAR returned after -1 was written 2234 * to it. 2235 * 2236 * This function returns the size of the BAR, rounded up to 1 2237 * page. It has to be rounded up because the hypervisor's page 2238 * table entry that maps the BAR into the VM can't specify an 2239 * offset within a page. The invariant is that the hypervisor 2240 * must place any BARs of smaller than page length at the 2241 * beginning of a page. 2242 * 2243 * Return: Size in bytes of the consumed MMIO space. 2244 */ 2245 static u64 get_bar_size(u64 bar_val) 2246 { 2247 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2248 PAGE_SIZE); 2249 } 2250 2251 /** 2252 * survey_child_resources() - Total all MMIO requirements 2253 * @hbus: Root PCI bus, as understood by this driver 2254 */ 2255 static void survey_child_resources(struct hv_pcibus_device *hbus) 2256 { 2257 struct hv_pci_dev *hpdev; 2258 resource_size_t bar_size = 0; 2259 unsigned long flags; 2260 struct completion *event; 2261 u64 bar_val; 2262 int i; 2263 2264 /* If nobody is waiting on the answer, don't compute it. */ 2265 event = xchg(&hbus->survey_event, NULL); 2266 if (!event) 2267 return; 2268 2269 /* If the answer has already been computed, go with it. */ 2270 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2271 complete(event); 2272 return; 2273 } 2274 2275 spin_lock_irqsave(&hbus->device_list_lock, flags); 2276 2277 /* 2278 * Due to an interesting quirk of the PCI spec, all memory regions 2279 * for a child device are a power of 2 in size and aligned in memory, 2280 * so it's sufficient to just add them up without tracking alignment. 2281 */ 2282 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2283 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2284 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2285 dev_err(&hbus->hdev->device, 2286 "There's an I/O BAR in this list!\n"); 2287 2288 if (hpdev->probed_bar[i] != 0) { 2289 /* 2290 * A probed BAR has all the upper bits set that 2291 * can be changed. 2292 */ 2293 2294 bar_val = hpdev->probed_bar[i]; 2295 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2296 bar_val |= 2297 ((u64)hpdev->probed_bar[++i] << 32); 2298 else 2299 bar_val |= 0xffffffff00000000ULL; 2300 2301 bar_size = get_bar_size(bar_val); 2302 2303 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2304 hbus->high_mmio_space += bar_size; 2305 else 2306 hbus->low_mmio_space += bar_size; 2307 } 2308 } 2309 } 2310 2311 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2312 complete(event); 2313 } 2314 2315 /** 2316 * prepopulate_bars() - Fill in BARs with defaults 2317 * @hbus: Root PCI bus, as understood by this driver 2318 * 2319 * The core PCI driver code seems much, much happier if the BARs 2320 * for a device have values upon first scan. So fill them in. 2321 * The algorithm below works down from large sizes to small, 2322 * attempting to pack the assignments optimally. The assumption, 2323 * enforced in other parts of the code, is that the beginning of 2324 * the memory-mapped I/O space will be aligned on the largest 2325 * BAR size. 2326 */ 2327 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2328 { 2329 resource_size_t high_size = 0; 2330 resource_size_t low_size = 0; 2331 resource_size_t high_base = 0; 2332 resource_size_t low_base = 0; 2333 resource_size_t bar_size; 2334 struct hv_pci_dev *hpdev; 2335 unsigned long flags; 2336 u64 bar_val; 2337 u32 command; 2338 bool high; 2339 int i; 2340 2341 if (hbus->low_mmio_space) { 2342 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2343 low_base = hbus->low_mmio_res->start; 2344 } 2345 2346 if (hbus->high_mmio_space) { 2347 high_size = 1ULL << 2348 (63 - __builtin_clzll(hbus->high_mmio_space)); 2349 high_base = hbus->high_mmio_res->start; 2350 } 2351 2352 spin_lock_irqsave(&hbus->device_list_lock, flags); 2353 2354 /* 2355 * Clear the memory enable bit, in case it's already set. This occurs 2356 * in the suspend path of hibernation, where the device is suspended, 2357 * resumed and suspended again: see hibernation_snapshot() and 2358 * hibernation_platform_enter(). 2359 * 2360 * If the memory enable bit is already set, Hyper-V silently ignores 2361 * the below BAR updates, and the related PCI device driver can not 2362 * work, because reading from the device register(s) always returns 2363 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2364 */ 2365 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2366 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2367 command &= ~PCI_COMMAND_MEMORY; 2368 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2369 } 2370 2371 /* Pick addresses for the BARs. */ 2372 do { 2373 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2374 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2375 bar_val = hpdev->probed_bar[i]; 2376 if (bar_val == 0) 2377 continue; 2378 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2379 if (high) { 2380 bar_val |= 2381 ((u64)hpdev->probed_bar[i + 1] 2382 << 32); 2383 } else { 2384 bar_val |= 0xffffffffULL << 32; 2385 } 2386 bar_size = get_bar_size(bar_val); 2387 if (high) { 2388 if (high_size != bar_size) { 2389 i++; 2390 continue; 2391 } 2392 _hv_pcifront_write_config(hpdev, 2393 PCI_BASE_ADDRESS_0 + (4 * i), 2394 4, 2395 (u32)(high_base & 0xffffff00)); 2396 i++; 2397 _hv_pcifront_write_config(hpdev, 2398 PCI_BASE_ADDRESS_0 + (4 * i), 2399 4, (u32)(high_base >> 32)); 2400 high_base += bar_size; 2401 } else { 2402 if (low_size != bar_size) 2403 continue; 2404 _hv_pcifront_write_config(hpdev, 2405 PCI_BASE_ADDRESS_0 + (4 * i), 2406 4, 2407 (u32)(low_base & 0xffffff00)); 2408 low_base += bar_size; 2409 } 2410 } 2411 if (high_size <= 1 && low_size <= 1) { 2412 /* 2413 * No need to set the PCI_COMMAND_MEMORY bit as 2414 * the core PCI driver doesn't require the bit 2415 * to be pre-set. Actually here we intentionally 2416 * keep the bit off so that the PCI BAR probing 2417 * in the core PCI driver doesn't cause Hyper-V 2418 * to unnecessarily unmap/map the virtual BARs 2419 * from/to the physical BARs multiple times. 2420 * This reduces the VM boot time significantly 2421 * if the BAR sizes are huge. 2422 */ 2423 break; 2424 } 2425 } 2426 2427 high_size >>= 1; 2428 low_size >>= 1; 2429 } while (high_size || low_size); 2430 2431 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2432 } 2433 2434 /* 2435 * Assign entries in sysfs pci slot directory. 2436 * 2437 * Note that this function does not need to lock the children list 2438 * because it is called from pci_devices_present_work which 2439 * is serialized with hv_eject_device_work because they are on the 2440 * same ordered workqueue. Therefore hbus->children list will not change 2441 * even when pci_create_slot sleeps. 2442 */ 2443 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2444 { 2445 struct hv_pci_dev *hpdev; 2446 char name[SLOT_NAME_SIZE]; 2447 int slot_nr; 2448 2449 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2450 if (hpdev->pci_slot) 2451 continue; 2452 2453 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2454 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2455 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2456 name, NULL); 2457 if (IS_ERR(hpdev->pci_slot)) { 2458 pr_warn("pci_create slot %s failed\n", name); 2459 hpdev->pci_slot = NULL; 2460 } 2461 } 2462 } 2463 2464 /* 2465 * Remove entries in sysfs pci slot directory. 2466 */ 2467 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2468 { 2469 struct hv_pci_dev *hpdev; 2470 2471 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2472 if (!hpdev->pci_slot) 2473 continue; 2474 pci_destroy_slot(hpdev->pci_slot); 2475 hpdev->pci_slot = NULL; 2476 } 2477 } 2478 2479 /* 2480 * Set NUMA node for the devices on the bus 2481 */ 2482 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2483 { 2484 struct pci_dev *dev; 2485 struct pci_bus *bus = hbus->bridge->bus; 2486 struct hv_pci_dev *hv_dev; 2487 2488 list_for_each_entry(dev, &bus->devices, bus_list) { 2489 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2490 if (!hv_dev) 2491 continue; 2492 2493 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2494 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2495 /* 2496 * The kernel may boot with some NUMA nodes offline 2497 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2498 * "numa=off". In those cases, adjust the host provided 2499 * NUMA node to a valid NUMA node used by the kernel. 2500 */ 2501 set_dev_node(&dev->dev, 2502 numa_map_to_online_node( 2503 hv_dev->desc.virtual_numa_node)); 2504 2505 put_pcichild(hv_dev); 2506 } 2507 } 2508 2509 /** 2510 * create_root_hv_pci_bus() - Expose a new root PCI bus 2511 * @hbus: Root PCI bus, as understood by this driver 2512 * 2513 * Return: 0 on success, -errno on failure 2514 */ 2515 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2516 { 2517 int error; 2518 struct pci_host_bridge *bridge = hbus->bridge; 2519 2520 bridge->dev.parent = &hbus->hdev->device; 2521 bridge->sysdata = &hbus->sysdata; 2522 bridge->ops = &hv_pcifront_ops; 2523 2524 error = pci_scan_root_bus_bridge(bridge); 2525 if (error) 2526 return error; 2527 2528 pci_lock_rescan_remove(); 2529 hv_pci_assign_numa_node(hbus); 2530 pci_bus_assign_resources(bridge->bus); 2531 hv_pci_assign_slots(hbus); 2532 pci_bus_add_devices(bridge->bus); 2533 pci_unlock_rescan_remove(); 2534 hbus->state = hv_pcibus_installed; 2535 return 0; 2536 } 2537 2538 struct q_res_req_compl { 2539 struct completion host_event; 2540 struct hv_pci_dev *hpdev; 2541 }; 2542 2543 /** 2544 * q_resource_requirements() - Query Resource Requirements 2545 * @context: The completion context. 2546 * @resp: The response that came from the host. 2547 * @resp_packet_size: The size in bytes of resp. 2548 * 2549 * This function is invoked on completion of a Query Resource 2550 * Requirements packet. 2551 */ 2552 static void q_resource_requirements(void *context, struct pci_response *resp, 2553 int resp_packet_size) 2554 { 2555 struct q_res_req_compl *completion = context; 2556 struct pci_q_res_req_response *q_res_req = 2557 (struct pci_q_res_req_response *)resp; 2558 s32 status; 2559 int i; 2560 2561 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2562 if (status < 0) { 2563 dev_err(&completion->hpdev->hbus->hdev->device, 2564 "query resource requirements failed: %x\n", 2565 status); 2566 } else { 2567 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2568 completion->hpdev->probed_bar[i] = 2569 q_res_req->probed_bar[i]; 2570 } 2571 } 2572 2573 complete(&completion->host_event); 2574 } 2575 2576 /** 2577 * new_pcichild_device() - Create a new child device 2578 * @hbus: The internal struct tracking this root PCI bus. 2579 * @desc: The information supplied so far from the host 2580 * about the device. 2581 * 2582 * This function creates the tracking structure for a new child 2583 * device and kicks off the process of figuring out what it is. 2584 * 2585 * Return: Pointer to the new tracking struct 2586 */ 2587 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2588 struct hv_pcidev_description *desc) 2589 { 2590 struct hv_pci_dev *hpdev; 2591 struct pci_child_message *res_req; 2592 struct q_res_req_compl comp_pkt; 2593 struct { 2594 struct pci_packet init_packet; 2595 u8 buffer[sizeof(struct pci_child_message)]; 2596 } pkt; 2597 unsigned long flags; 2598 int ret; 2599 2600 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2601 if (!hpdev) 2602 return NULL; 2603 2604 hpdev->hbus = hbus; 2605 2606 memset(&pkt, 0, sizeof(pkt)); 2607 init_completion(&comp_pkt.host_event); 2608 comp_pkt.hpdev = hpdev; 2609 pkt.init_packet.compl_ctxt = &comp_pkt; 2610 pkt.init_packet.completion_func = q_resource_requirements; 2611 res_req = (struct pci_child_message *)pkt.buffer; 2612 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2613 res_req->wslot.slot = desc->win_slot.slot; 2614 2615 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2616 sizeof(struct pci_child_message), 2617 (unsigned long)&pkt.init_packet, 2618 VM_PKT_DATA_INBAND, 2619 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2620 if (ret) 2621 goto error; 2622 2623 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2624 goto error; 2625 2626 hpdev->desc = *desc; 2627 refcount_set(&hpdev->refs, 1); 2628 get_pcichild(hpdev); 2629 spin_lock_irqsave(&hbus->device_list_lock, flags); 2630 2631 list_add_tail(&hpdev->list_entry, &hbus->children); 2632 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2633 return hpdev; 2634 2635 error: 2636 kfree(hpdev); 2637 return NULL; 2638 } 2639 2640 /** 2641 * get_pcichild_wslot() - Find device from slot 2642 * @hbus: Root PCI bus, as understood by this driver 2643 * @wslot: Location on the bus 2644 * 2645 * This function looks up a PCI device and returns the internal 2646 * representation of it. It acquires a reference on it, so that 2647 * the device won't be deleted while somebody is using it. The 2648 * caller is responsible for calling put_pcichild() to release 2649 * this reference. 2650 * 2651 * Return: Internal representation of a PCI device 2652 */ 2653 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2654 u32 wslot) 2655 { 2656 unsigned long flags; 2657 struct hv_pci_dev *iter, *hpdev = NULL; 2658 2659 spin_lock_irqsave(&hbus->device_list_lock, flags); 2660 list_for_each_entry(iter, &hbus->children, list_entry) { 2661 if (iter->desc.win_slot.slot == wslot) { 2662 hpdev = iter; 2663 get_pcichild(hpdev); 2664 break; 2665 } 2666 } 2667 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2668 2669 return hpdev; 2670 } 2671 2672 /** 2673 * pci_devices_present_work() - Handle new list of child devices 2674 * @work: Work struct embedded in struct hv_dr_work 2675 * 2676 * "Bus Relations" is the Windows term for "children of this 2677 * bus." The terminology is preserved here for people trying to 2678 * debug the interaction between Hyper-V and Linux. This 2679 * function is called when the parent partition reports a list 2680 * of functions that should be observed under this PCI Express 2681 * port (bus). 2682 * 2683 * This function updates the list, and must tolerate being 2684 * called multiple times with the same information. The typical 2685 * number of child devices is one, with very atypical cases 2686 * involving three or four, so the algorithms used here can be 2687 * simple and inefficient. 2688 * 2689 * It must also treat the omission of a previously observed device as 2690 * notification that the device no longer exists. 2691 * 2692 * Note that this function is serialized with hv_eject_device_work(), 2693 * because both are pushed to the ordered workqueue hbus->wq. 2694 */ 2695 static void pci_devices_present_work(struct work_struct *work) 2696 { 2697 u32 child_no; 2698 bool found; 2699 struct hv_pcidev_description *new_desc; 2700 struct hv_pci_dev *hpdev; 2701 struct hv_pcibus_device *hbus; 2702 struct list_head removed; 2703 struct hv_dr_work *dr_wrk; 2704 struct hv_dr_state *dr = NULL; 2705 unsigned long flags; 2706 2707 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2708 hbus = dr_wrk->bus; 2709 kfree(dr_wrk); 2710 2711 INIT_LIST_HEAD(&removed); 2712 2713 /* Pull this off the queue and process it if it was the last one. */ 2714 spin_lock_irqsave(&hbus->device_list_lock, flags); 2715 while (!list_empty(&hbus->dr_list)) { 2716 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2717 list_entry); 2718 list_del(&dr->list_entry); 2719 2720 /* Throw this away if the list still has stuff in it. */ 2721 if (!list_empty(&hbus->dr_list)) { 2722 kfree(dr); 2723 continue; 2724 } 2725 } 2726 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2727 2728 if (!dr) 2729 return; 2730 2731 mutex_lock(&hbus->state_lock); 2732 2733 /* First, mark all existing children as reported missing. */ 2734 spin_lock_irqsave(&hbus->device_list_lock, flags); 2735 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2736 hpdev->reported_missing = true; 2737 } 2738 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2739 2740 /* Next, add back any reported devices. */ 2741 for (child_no = 0; child_no < dr->device_count; child_no++) { 2742 found = false; 2743 new_desc = &dr->func[child_no]; 2744 2745 spin_lock_irqsave(&hbus->device_list_lock, flags); 2746 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2747 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2748 (hpdev->desc.v_id == new_desc->v_id) && 2749 (hpdev->desc.d_id == new_desc->d_id) && 2750 (hpdev->desc.ser == new_desc->ser)) { 2751 hpdev->reported_missing = false; 2752 found = true; 2753 } 2754 } 2755 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2756 2757 if (!found) { 2758 hpdev = new_pcichild_device(hbus, new_desc); 2759 if (!hpdev) 2760 dev_err(&hbus->hdev->device, 2761 "couldn't record a child device.\n"); 2762 } 2763 } 2764 2765 /* Move missing children to a list on the stack. */ 2766 spin_lock_irqsave(&hbus->device_list_lock, flags); 2767 do { 2768 found = false; 2769 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2770 if (hpdev->reported_missing) { 2771 found = true; 2772 put_pcichild(hpdev); 2773 list_move_tail(&hpdev->list_entry, &removed); 2774 break; 2775 } 2776 } 2777 } while (found); 2778 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2779 2780 /* Delete everything that should no longer exist. */ 2781 while (!list_empty(&removed)) { 2782 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2783 list_entry); 2784 list_del(&hpdev->list_entry); 2785 2786 if (hpdev->pci_slot) 2787 pci_destroy_slot(hpdev->pci_slot); 2788 2789 put_pcichild(hpdev); 2790 } 2791 2792 switch (hbus->state) { 2793 case hv_pcibus_installed: 2794 /* 2795 * Tell the core to rescan bus 2796 * because there may have been changes. 2797 */ 2798 pci_lock_rescan_remove(); 2799 pci_scan_child_bus(hbus->bridge->bus); 2800 hv_pci_assign_numa_node(hbus); 2801 hv_pci_assign_slots(hbus); 2802 pci_unlock_rescan_remove(); 2803 break; 2804 2805 case hv_pcibus_init: 2806 case hv_pcibus_probed: 2807 survey_child_resources(hbus); 2808 break; 2809 2810 default: 2811 break; 2812 } 2813 2814 mutex_unlock(&hbus->state_lock); 2815 2816 kfree(dr); 2817 } 2818 2819 /** 2820 * hv_pci_start_relations_work() - Queue work to start device discovery 2821 * @hbus: Root PCI bus, as understood by this driver 2822 * @dr: The list of children returned from host 2823 * 2824 * Return: 0 on success, -errno on failure 2825 */ 2826 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2827 struct hv_dr_state *dr) 2828 { 2829 struct hv_dr_work *dr_wrk; 2830 unsigned long flags; 2831 bool pending_dr; 2832 2833 if (hbus->state == hv_pcibus_removing) { 2834 dev_info(&hbus->hdev->device, 2835 "PCI VMBus BUS_RELATIONS: ignored\n"); 2836 return -ENOENT; 2837 } 2838 2839 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2840 if (!dr_wrk) 2841 return -ENOMEM; 2842 2843 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2844 dr_wrk->bus = hbus; 2845 2846 spin_lock_irqsave(&hbus->device_list_lock, flags); 2847 /* 2848 * If pending_dr is true, we have already queued a work, 2849 * which will see the new dr. Otherwise, we need to 2850 * queue a new work. 2851 */ 2852 pending_dr = !list_empty(&hbus->dr_list); 2853 list_add_tail(&dr->list_entry, &hbus->dr_list); 2854 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2855 2856 if (pending_dr) 2857 kfree(dr_wrk); 2858 else 2859 queue_work(hbus->wq, &dr_wrk->wrk); 2860 2861 return 0; 2862 } 2863 2864 /** 2865 * hv_pci_devices_present() - Handle list of new children 2866 * @hbus: Root PCI bus, as understood by this driver 2867 * @relations: Packet from host listing children 2868 * 2869 * Process a new list of devices on the bus. The list of devices is 2870 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2871 * whenever a new list of devices for this bus appears. 2872 */ 2873 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2874 struct pci_bus_relations *relations) 2875 { 2876 struct hv_dr_state *dr; 2877 int i; 2878 2879 dr = kzalloc(struct_size(dr, func, relations->device_count), 2880 GFP_NOWAIT); 2881 if (!dr) 2882 return; 2883 2884 dr->device_count = relations->device_count; 2885 for (i = 0; i < dr->device_count; i++) { 2886 dr->func[i].v_id = relations->func[i].v_id; 2887 dr->func[i].d_id = relations->func[i].d_id; 2888 dr->func[i].rev = relations->func[i].rev; 2889 dr->func[i].prog_intf = relations->func[i].prog_intf; 2890 dr->func[i].subclass = relations->func[i].subclass; 2891 dr->func[i].base_class = relations->func[i].base_class; 2892 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2893 dr->func[i].win_slot = relations->func[i].win_slot; 2894 dr->func[i].ser = relations->func[i].ser; 2895 } 2896 2897 if (hv_pci_start_relations_work(hbus, dr)) 2898 kfree(dr); 2899 } 2900 2901 /** 2902 * hv_pci_devices_present2() - Handle list of new children 2903 * @hbus: Root PCI bus, as understood by this driver 2904 * @relations: Packet from host listing children 2905 * 2906 * This function is the v2 version of hv_pci_devices_present() 2907 */ 2908 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2909 struct pci_bus_relations2 *relations) 2910 { 2911 struct hv_dr_state *dr; 2912 int i; 2913 2914 dr = kzalloc(struct_size(dr, func, relations->device_count), 2915 GFP_NOWAIT); 2916 if (!dr) 2917 return; 2918 2919 dr->device_count = relations->device_count; 2920 for (i = 0; i < dr->device_count; i++) { 2921 dr->func[i].v_id = relations->func[i].v_id; 2922 dr->func[i].d_id = relations->func[i].d_id; 2923 dr->func[i].rev = relations->func[i].rev; 2924 dr->func[i].prog_intf = relations->func[i].prog_intf; 2925 dr->func[i].subclass = relations->func[i].subclass; 2926 dr->func[i].base_class = relations->func[i].base_class; 2927 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2928 dr->func[i].win_slot = relations->func[i].win_slot; 2929 dr->func[i].ser = relations->func[i].ser; 2930 dr->func[i].flags = relations->func[i].flags; 2931 dr->func[i].virtual_numa_node = 2932 relations->func[i].virtual_numa_node; 2933 } 2934 2935 if (hv_pci_start_relations_work(hbus, dr)) 2936 kfree(dr); 2937 } 2938 2939 /** 2940 * hv_eject_device_work() - Asynchronously handles ejection 2941 * @work: Work struct embedded in internal device struct 2942 * 2943 * This function handles ejecting a device. Windows will 2944 * attempt to gracefully eject a device, waiting 60 seconds to 2945 * hear back from the guest OS that this completed successfully. 2946 * If this timer expires, the device will be forcibly removed. 2947 */ 2948 static void hv_eject_device_work(struct work_struct *work) 2949 { 2950 struct pci_eject_response *ejct_pkt; 2951 struct hv_pcibus_device *hbus; 2952 struct hv_pci_dev *hpdev; 2953 struct pci_dev *pdev; 2954 unsigned long flags; 2955 int wslot; 2956 struct { 2957 struct pci_packet pkt; 2958 u8 buffer[sizeof(struct pci_eject_response)]; 2959 } ctxt; 2960 2961 hpdev = container_of(work, struct hv_pci_dev, wrk); 2962 hbus = hpdev->hbus; 2963 2964 mutex_lock(&hbus->state_lock); 2965 2966 /* 2967 * Ejection can come before or after the PCI bus has been set up, so 2968 * attempt to find it and tear down the bus state, if it exists. This 2969 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2970 * because hbus->bridge->bus may not exist yet. 2971 */ 2972 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2973 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2974 if (pdev) { 2975 pci_lock_rescan_remove(); 2976 pci_stop_and_remove_bus_device(pdev); 2977 pci_dev_put(pdev); 2978 pci_unlock_rescan_remove(); 2979 } 2980 2981 spin_lock_irqsave(&hbus->device_list_lock, flags); 2982 list_del(&hpdev->list_entry); 2983 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2984 2985 if (hpdev->pci_slot) 2986 pci_destroy_slot(hpdev->pci_slot); 2987 2988 memset(&ctxt, 0, sizeof(ctxt)); 2989 ejct_pkt = (struct pci_eject_response *)ctxt.buffer; 2990 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2991 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2992 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2993 sizeof(*ejct_pkt), 0, 2994 VM_PKT_DATA_INBAND, 0); 2995 2996 /* For the get_pcichild() in hv_pci_eject_device() */ 2997 put_pcichild(hpdev); 2998 /* For the two refs got in new_pcichild_device() */ 2999 put_pcichild(hpdev); 3000 put_pcichild(hpdev); 3001 /* hpdev has been freed. Do not use it any more. */ 3002 3003 mutex_unlock(&hbus->state_lock); 3004 } 3005 3006 /** 3007 * hv_pci_eject_device() - Handles device ejection 3008 * @hpdev: Internal device tracking struct 3009 * 3010 * This function is invoked when an ejection packet arrives. It 3011 * just schedules work so that we don't re-enter the packet 3012 * delivery code handling the ejection. 3013 */ 3014 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 3015 { 3016 struct hv_pcibus_device *hbus = hpdev->hbus; 3017 struct hv_device *hdev = hbus->hdev; 3018 3019 if (hbus->state == hv_pcibus_removing) { 3020 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 3021 return; 3022 } 3023 3024 get_pcichild(hpdev); 3025 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 3026 queue_work(hbus->wq, &hpdev->wrk); 3027 } 3028 3029 /** 3030 * hv_pci_onchannelcallback() - Handles incoming packets 3031 * @context: Internal bus tracking struct 3032 * 3033 * This function is invoked whenever the host sends a packet to 3034 * this channel (which is private to this root PCI bus). 3035 */ 3036 static void hv_pci_onchannelcallback(void *context) 3037 { 3038 const int packet_size = 0x100; 3039 int ret; 3040 struct hv_pcibus_device *hbus = context; 3041 struct vmbus_channel *chan = hbus->hdev->channel; 3042 u32 bytes_recvd; 3043 u64 req_id, req_addr; 3044 struct vmpacket_descriptor *desc; 3045 unsigned char *buffer; 3046 int bufferlen = packet_size; 3047 struct pci_packet *comp_packet; 3048 struct pci_response *response; 3049 struct pci_incoming_message *new_message; 3050 struct pci_bus_relations *bus_rel; 3051 struct pci_bus_relations2 *bus_rel2; 3052 struct pci_dev_inval_block *inval; 3053 struct pci_dev_incoming *dev_message; 3054 struct hv_pci_dev *hpdev; 3055 unsigned long flags; 3056 3057 buffer = kmalloc(bufferlen, GFP_ATOMIC); 3058 if (!buffer) 3059 return; 3060 3061 while (1) { 3062 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 3063 &bytes_recvd, &req_id); 3064 3065 if (ret == -ENOBUFS) { 3066 kfree(buffer); 3067 /* Handle large packet */ 3068 bufferlen = bytes_recvd; 3069 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 3070 if (!buffer) 3071 return; 3072 continue; 3073 } 3074 3075 /* Zero length indicates there are no more packets. */ 3076 if (ret || !bytes_recvd) 3077 break; 3078 3079 /* 3080 * All incoming packets must be at least as large as a 3081 * response. 3082 */ 3083 if (bytes_recvd <= sizeof(struct pci_response)) 3084 continue; 3085 desc = (struct vmpacket_descriptor *)buffer; 3086 3087 switch (desc->type) { 3088 case VM_PKT_COMP: 3089 3090 lock_requestor(chan, flags); 3091 req_addr = __vmbus_request_addr_match(chan, req_id, 3092 VMBUS_RQST_ADDR_ANY); 3093 if (req_addr == VMBUS_RQST_ERROR) { 3094 unlock_requestor(chan, flags); 3095 dev_err(&hbus->hdev->device, 3096 "Invalid transaction ID %llx\n", 3097 req_id); 3098 break; 3099 } 3100 comp_packet = (struct pci_packet *)req_addr; 3101 response = (struct pci_response *)buffer; 3102 /* 3103 * Call ->completion_func() within the critical section to make 3104 * sure that the packet pointer is still valid during the call: 3105 * here 'valid' means that there's a task still waiting for the 3106 * completion, and that the packet data is still on the waiting 3107 * task's stack. Cf. hv_compose_msi_msg(). 3108 */ 3109 comp_packet->completion_func(comp_packet->compl_ctxt, 3110 response, 3111 bytes_recvd); 3112 unlock_requestor(chan, flags); 3113 break; 3114 3115 case VM_PKT_DATA_INBAND: 3116 3117 new_message = (struct pci_incoming_message *)buffer; 3118 switch (new_message->message_type.type) { 3119 case PCI_BUS_RELATIONS: 3120 3121 bus_rel = (struct pci_bus_relations *)buffer; 3122 if (bytes_recvd < sizeof(*bus_rel) || 3123 bytes_recvd < 3124 struct_size(bus_rel, func, 3125 bus_rel->device_count)) { 3126 dev_err(&hbus->hdev->device, 3127 "bus relations too small\n"); 3128 break; 3129 } 3130 3131 hv_pci_devices_present(hbus, bus_rel); 3132 break; 3133 3134 case PCI_BUS_RELATIONS2: 3135 3136 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3137 if (bytes_recvd < sizeof(*bus_rel2) || 3138 bytes_recvd < 3139 struct_size(bus_rel2, func, 3140 bus_rel2->device_count)) { 3141 dev_err(&hbus->hdev->device, 3142 "bus relations v2 too small\n"); 3143 break; 3144 } 3145 3146 hv_pci_devices_present2(hbus, bus_rel2); 3147 break; 3148 3149 case PCI_EJECT: 3150 3151 dev_message = (struct pci_dev_incoming *)buffer; 3152 if (bytes_recvd < sizeof(*dev_message)) { 3153 dev_err(&hbus->hdev->device, 3154 "eject message too small\n"); 3155 break; 3156 } 3157 hpdev = get_pcichild_wslot(hbus, 3158 dev_message->wslot.slot); 3159 if (hpdev) { 3160 hv_pci_eject_device(hpdev); 3161 put_pcichild(hpdev); 3162 } 3163 break; 3164 3165 case PCI_INVALIDATE_BLOCK: 3166 3167 inval = (struct pci_dev_inval_block *)buffer; 3168 if (bytes_recvd < sizeof(*inval)) { 3169 dev_err(&hbus->hdev->device, 3170 "invalidate message too small\n"); 3171 break; 3172 } 3173 hpdev = get_pcichild_wslot(hbus, 3174 inval->wslot.slot); 3175 if (hpdev) { 3176 if (hpdev->block_invalidate) { 3177 hpdev->block_invalidate( 3178 hpdev->invalidate_context, 3179 inval->block_mask); 3180 } 3181 put_pcichild(hpdev); 3182 } 3183 break; 3184 3185 default: 3186 dev_warn(&hbus->hdev->device, 3187 "Unimplemented protocol message %x\n", 3188 new_message->message_type.type); 3189 break; 3190 } 3191 break; 3192 3193 default: 3194 dev_err(&hbus->hdev->device, 3195 "unhandled packet type %d, tid %llx len %d\n", 3196 desc->type, req_id, bytes_recvd); 3197 break; 3198 } 3199 } 3200 3201 kfree(buffer); 3202 } 3203 3204 /** 3205 * hv_pci_protocol_negotiation() - Set up protocol 3206 * @hdev: VMBus's tracking struct for this root PCI bus. 3207 * @version: Array of supported channel protocol versions in 3208 * the order of probing - highest go first. 3209 * @num_version: Number of elements in the version array. 3210 * 3211 * This driver is intended to support running on Windows 10 3212 * (server) and later versions. It will not run on earlier 3213 * versions, as they assume that many of the operations which 3214 * Linux needs accomplished with a spinlock held were done via 3215 * asynchronous messaging via VMBus. Windows 10 increases the 3216 * surface area of PCI emulation so that these actions can take 3217 * place by suspending a virtual processor for their duration. 3218 * 3219 * This function negotiates the channel protocol version, 3220 * failing if the host doesn't support the necessary protocol 3221 * level. 3222 */ 3223 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3224 enum pci_protocol_version_t version[], 3225 int num_version) 3226 { 3227 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3228 struct pci_version_request *version_req; 3229 struct hv_pci_compl comp_pkt; 3230 struct pci_packet *pkt; 3231 int ret; 3232 int i; 3233 3234 /* 3235 * Initiate the handshake with the host and negotiate 3236 * a version that the host can support. We start with the 3237 * highest version number and go down if the host cannot 3238 * support it. 3239 */ 3240 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3241 if (!pkt) 3242 return -ENOMEM; 3243 3244 init_completion(&comp_pkt.host_event); 3245 pkt->completion_func = hv_pci_generic_compl; 3246 pkt->compl_ctxt = &comp_pkt; 3247 version_req = (struct pci_version_request *)(pkt + 1); 3248 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3249 3250 for (i = 0; i < num_version; i++) { 3251 version_req->protocol_version = version[i]; 3252 ret = vmbus_sendpacket(hdev->channel, version_req, 3253 sizeof(struct pci_version_request), 3254 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3255 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3256 if (!ret) 3257 ret = wait_for_response(hdev, &comp_pkt.host_event); 3258 3259 if (ret) { 3260 dev_err(&hdev->device, 3261 "PCI Pass-through VSP failed to request version: %d", 3262 ret); 3263 goto exit; 3264 } 3265 3266 if (comp_pkt.completion_status >= 0) { 3267 hbus->protocol_version = version[i]; 3268 dev_info(&hdev->device, 3269 "PCI VMBus probing: Using version %#x\n", 3270 hbus->protocol_version); 3271 goto exit; 3272 } 3273 3274 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3275 dev_err(&hdev->device, 3276 "PCI Pass-through VSP failed version request: %#x", 3277 comp_pkt.completion_status); 3278 ret = -EPROTO; 3279 goto exit; 3280 } 3281 3282 reinit_completion(&comp_pkt.host_event); 3283 } 3284 3285 dev_err(&hdev->device, 3286 "PCI pass-through VSP failed to find supported version"); 3287 ret = -EPROTO; 3288 3289 exit: 3290 kfree(pkt); 3291 return ret; 3292 } 3293 3294 /** 3295 * hv_pci_free_bridge_windows() - Release memory regions for the 3296 * bus 3297 * @hbus: Root PCI bus, as understood by this driver 3298 */ 3299 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3300 { 3301 /* 3302 * Set the resources back to the way they looked when they 3303 * were allocated by setting IORESOURCE_BUSY again. 3304 */ 3305 3306 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3307 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3308 vmbus_free_mmio(hbus->low_mmio_res->start, 3309 resource_size(hbus->low_mmio_res)); 3310 } 3311 3312 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3313 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3314 vmbus_free_mmio(hbus->high_mmio_res->start, 3315 resource_size(hbus->high_mmio_res)); 3316 } 3317 } 3318 3319 /** 3320 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3321 * for the bus 3322 * @hbus: Root PCI bus, as understood by this driver 3323 * 3324 * This function calls vmbus_allocate_mmio(), which is itself a 3325 * bit of a compromise. Ideally, we might change the pnp layer 3326 * in the kernel such that it comprehends either PCI devices 3327 * which are "grandchildren of ACPI," with some intermediate bus 3328 * node (in this case, VMBus) or change it such that it 3329 * understands VMBus. The pnp layer, however, has been declared 3330 * deprecated, and not subject to change. 3331 * 3332 * The workaround, implemented here, is to ask VMBus to allocate 3333 * MMIO space for this bus. VMBus itself knows which ranges are 3334 * appropriate by looking at its own ACPI objects. Then, after 3335 * these ranges are claimed, they're modified to look like they 3336 * would have looked if the ACPI and pnp code had allocated 3337 * bridge windows. These descriptors have to exist in this form 3338 * in order to satisfy the code which will get invoked when the 3339 * endpoint PCI function driver calls request_mem_region() or 3340 * request_mem_region_exclusive(). 3341 * 3342 * Return: 0 on success, -errno on failure 3343 */ 3344 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3345 { 3346 resource_size_t align; 3347 int ret; 3348 3349 if (hbus->low_mmio_space) { 3350 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3351 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3352 (u64)(u32)0xffffffff, 3353 hbus->low_mmio_space, 3354 align, false); 3355 if (ret) { 3356 dev_err(&hbus->hdev->device, 3357 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3358 hbus->low_mmio_space); 3359 return ret; 3360 } 3361 3362 /* Modify this resource to become a bridge window. */ 3363 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3364 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3365 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3366 } 3367 3368 if (hbus->high_mmio_space) { 3369 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3370 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3371 0x100000000, -1, 3372 hbus->high_mmio_space, align, 3373 false); 3374 if (ret) { 3375 dev_err(&hbus->hdev->device, 3376 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3377 hbus->high_mmio_space); 3378 goto release_low_mmio; 3379 } 3380 3381 /* Modify this resource to become a bridge window. */ 3382 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3383 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3384 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3385 } 3386 3387 return 0; 3388 3389 release_low_mmio: 3390 if (hbus->low_mmio_res) { 3391 vmbus_free_mmio(hbus->low_mmio_res->start, 3392 resource_size(hbus->low_mmio_res)); 3393 } 3394 3395 return ret; 3396 } 3397 3398 /** 3399 * hv_allocate_config_window() - Find MMIO space for PCI Config 3400 * @hbus: Root PCI bus, as understood by this driver 3401 * 3402 * This function claims memory-mapped I/O space for accessing 3403 * configuration space for the functions on this bus. 3404 * 3405 * Return: 0 on success, -errno on failure 3406 */ 3407 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3408 { 3409 int ret; 3410 3411 /* 3412 * Set up a region of MMIO space to use for accessing configuration 3413 * space. 3414 */ 3415 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3416 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3417 if (ret) 3418 return ret; 3419 3420 /* 3421 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3422 * resource claims (those which cannot be overlapped) and the ranges 3423 * which are valid for the children of this bus, which are intended 3424 * to be overlapped by those children. Set the flag on this claim 3425 * meaning that this region can't be overlapped. 3426 */ 3427 3428 hbus->mem_config->flags |= IORESOURCE_BUSY; 3429 3430 return 0; 3431 } 3432 3433 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3434 { 3435 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3436 } 3437 3438 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3439 3440 /** 3441 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3442 * @hdev: VMBus's tracking struct for this root PCI bus 3443 * 3444 * Return: 0 on success, -errno on failure 3445 */ 3446 static int hv_pci_enter_d0(struct hv_device *hdev) 3447 { 3448 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3449 struct pci_bus_d0_entry *d0_entry; 3450 struct hv_pci_compl comp_pkt; 3451 struct pci_packet *pkt; 3452 bool retry = true; 3453 int ret; 3454 3455 enter_d0_retry: 3456 /* 3457 * Tell the host that the bus is ready to use, and moved into the 3458 * powered-on state. This includes telling the host which region 3459 * of memory-mapped I/O space has been chosen for configuration space 3460 * access. 3461 */ 3462 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3463 if (!pkt) 3464 return -ENOMEM; 3465 3466 init_completion(&comp_pkt.host_event); 3467 pkt->completion_func = hv_pci_generic_compl; 3468 pkt->compl_ctxt = &comp_pkt; 3469 d0_entry = (struct pci_bus_d0_entry *)(pkt + 1); 3470 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3471 d0_entry->mmio_base = hbus->mem_config->start; 3472 3473 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3474 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3475 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3476 if (!ret) 3477 ret = wait_for_response(hdev, &comp_pkt.host_event); 3478 3479 if (ret) 3480 goto exit; 3481 3482 /* 3483 * In certain case (Kdump) the pci device of interest was 3484 * not cleanly shut down and resource is still held on host 3485 * side, the host could return invalid device status. 3486 * We need to explicitly request host to release the resource 3487 * and try to enter D0 again. 3488 */ 3489 if (comp_pkt.completion_status < 0 && retry) { 3490 retry = false; 3491 3492 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3493 3494 /* 3495 * Hv_pci_bus_exit() calls hv_send_resource_released() 3496 * to free up resources of its child devices. 3497 * In the kdump kernel we need to set the 3498 * wslot_res_allocated to 255 so it scans all child 3499 * devices to release resources allocated in the 3500 * normal kernel before panic happened. 3501 */ 3502 hbus->wslot_res_allocated = 255; 3503 3504 ret = hv_pci_bus_exit(hdev, true); 3505 3506 if (ret == 0) { 3507 kfree(pkt); 3508 goto enter_d0_retry; 3509 } 3510 dev_err(&hdev->device, 3511 "Retrying D0 failed with ret %d\n", ret); 3512 } 3513 3514 if (comp_pkt.completion_status < 0) { 3515 dev_err(&hdev->device, 3516 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3517 comp_pkt.completion_status); 3518 ret = -EPROTO; 3519 goto exit; 3520 } 3521 3522 ret = 0; 3523 3524 exit: 3525 kfree(pkt); 3526 return ret; 3527 } 3528 3529 /** 3530 * hv_pci_query_relations() - Ask host to send list of child 3531 * devices 3532 * @hdev: VMBus's tracking struct for this root PCI bus 3533 * 3534 * Return: 0 on success, -errno on failure 3535 */ 3536 static int hv_pci_query_relations(struct hv_device *hdev) 3537 { 3538 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3539 struct pci_message message; 3540 struct completion comp; 3541 int ret; 3542 3543 /* Ask the host to send along the list of child devices */ 3544 init_completion(&comp); 3545 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3546 return -ENOTEMPTY; 3547 3548 memset(&message, 0, sizeof(message)); 3549 message.type = PCI_QUERY_BUS_RELATIONS; 3550 3551 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3552 0, VM_PKT_DATA_INBAND, 0); 3553 if (!ret) 3554 ret = wait_for_response(hdev, &comp); 3555 3556 /* 3557 * In the case of fast device addition/removal, it's possible that 3558 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we 3559 * already got a PCI_BUS_RELATIONS* message from the host and the 3560 * channel callback already scheduled a work to hbus->wq, which can be 3561 * running pci_devices_present_work() -> survey_child_resources() -> 3562 * complete(&hbus->survey_event), even after hv_pci_query_relations() 3563 * exits and the stack variable 'comp' is no longer valid; as a result, 3564 * a hang or a page fault may happen when the complete() calls 3565 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from 3566 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is 3567 * -ENODEV, there can't be any more work item scheduled to hbus->wq 3568 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> 3569 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> 3570 * channel->rescind = true. 3571 */ 3572 flush_workqueue(hbus->wq); 3573 3574 return ret; 3575 } 3576 3577 /** 3578 * hv_send_resources_allocated() - Report local resource choices 3579 * @hdev: VMBus's tracking struct for this root PCI bus 3580 * 3581 * The host OS is expecting to be sent a request as a message 3582 * which contains all the resources that the device will use. 3583 * The response contains those same resources, "translated" 3584 * which is to say, the values which should be used by the 3585 * hardware, when it delivers an interrupt. (MMIO resources are 3586 * used in local terms.) This is nice for Windows, and lines up 3587 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3588 * is deeply expecting to scan an emulated PCI configuration 3589 * space. So this message is sent here only to drive the state 3590 * machine on the host forward. 3591 * 3592 * Return: 0 on success, -errno on failure 3593 */ 3594 static int hv_send_resources_allocated(struct hv_device *hdev) 3595 { 3596 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3597 struct pci_resources_assigned *res_assigned; 3598 struct pci_resources_assigned2 *res_assigned2; 3599 struct hv_pci_compl comp_pkt; 3600 struct hv_pci_dev *hpdev; 3601 struct pci_packet *pkt; 3602 size_t size_res; 3603 int wslot; 3604 int ret; 3605 3606 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3607 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3608 3609 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3610 if (!pkt) 3611 return -ENOMEM; 3612 3613 ret = 0; 3614 3615 for (wslot = 0; wslot < 256; wslot++) { 3616 hpdev = get_pcichild_wslot(hbus, wslot); 3617 if (!hpdev) 3618 continue; 3619 3620 memset(pkt, 0, sizeof(*pkt) + size_res); 3621 init_completion(&comp_pkt.host_event); 3622 pkt->completion_func = hv_pci_generic_compl; 3623 pkt->compl_ctxt = &comp_pkt; 3624 3625 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3626 res_assigned = 3627 (struct pci_resources_assigned *)(pkt + 1); 3628 res_assigned->message_type.type = 3629 PCI_RESOURCES_ASSIGNED; 3630 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3631 } else { 3632 res_assigned2 = 3633 (struct pci_resources_assigned2 *)(pkt + 1); 3634 res_assigned2->message_type.type = 3635 PCI_RESOURCES_ASSIGNED2; 3636 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3637 } 3638 put_pcichild(hpdev); 3639 3640 ret = vmbus_sendpacket(hdev->channel, pkt + 1, 3641 size_res, (unsigned long)pkt, 3642 VM_PKT_DATA_INBAND, 3643 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3644 if (!ret) 3645 ret = wait_for_response(hdev, &comp_pkt.host_event); 3646 if (ret) 3647 break; 3648 3649 if (comp_pkt.completion_status < 0) { 3650 ret = -EPROTO; 3651 dev_err(&hdev->device, 3652 "resource allocated returned 0x%x", 3653 comp_pkt.completion_status); 3654 break; 3655 } 3656 3657 hbus->wslot_res_allocated = wslot; 3658 } 3659 3660 kfree(pkt); 3661 return ret; 3662 } 3663 3664 /** 3665 * hv_send_resources_released() - Report local resources 3666 * released 3667 * @hdev: VMBus's tracking struct for this root PCI bus 3668 * 3669 * Return: 0 on success, -errno on failure 3670 */ 3671 static int hv_send_resources_released(struct hv_device *hdev) 3672 { 3673 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3674 struct pci_child_message pkt; 3675 struct hv_pci_dev *hpdev; 3676 int wslot; 3677 int ret; 3678 3679 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3680 hpdev = get_pcichild_wslot(hbus, wslot); 3681 if (!hpdev) 3682 continue; 3683 3684 memset(&pkt, 0, sizeof(pkt)); 3685 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3686 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3687 3688 put_pcichild(hpdev); 3689 3690 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3691 VM_PKT_DATA_INBAND, 0); 3692 if (ret) 3693 return ret; 3694 3695 hbus->wslot_res_allocated = wslot - 1; 3696 } 3697 3698 hbus->wslot_res_allocated = -1; 3699 3700 return 0; 3701 } 3702 3703 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3704 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3705 3706 /* 3707 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3708 * as invalid for passthrough PCI devices of this driver. 3709 */ 3710 #define HVPCI_DOM_INVALID 0 3711 3712 /** 3713 * hv_get_dom_num() - Get a valid PCI domain number 3714 * Check if the PCI domain number is in use, and return another number if 3715 * it is in use. 3716 * 3717 * @dom: Requested domain number 3718 * 3719 * return: domain number on success, HVPCI_DOM_INVALID on failure 3720 */ 3721 static u16 hv_get_dom_num(u16 dom) 3722 { 3723 unsigned int i; 3724 3725 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3726 return dom; 3727 3728 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3729 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3730 return i; 3731 } 3732 3733 return HVPCI_DOM_INVALID; 3734 } 3735 3736 /** 3737 * hv_put_dom_num() - Mark the PCI domain number as free 3738 * @dom: Domain number to be freed 3739 */ 3740 static void hv_put_dom_num(u16 dom) 3741 { 3742 clear_bit(dom, hvpci_dom_map); 3743 } 3744 3745 /** 3746 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3747 * @hdev: VMBus's tracking struct for this root PCI bus 3748 * @dev_id: Identifies the device itself 3749 * 3750 * Return: 0 on success, -errno on failure 3751 */ 3752 static int hv_pci_probe(struct hv_device *hdev, 3753 const struct hv_vmbus_device_id *dev_id) 3754 { 3755 struct pci_host_bridge *bridge; 3756 struct hv_pcibus_device *hbus; 3757 u16 dom_req, dom; 3758 char *name; 3759 int ret; 3760 3761 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3762 if (!bridge) 3763 return -ENOMEM; 3764 3765 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); 3766 if (!hbus) 3767 return -ENOMEM; 3768 3769 hbus->bridge = bridge; 3770 mutex_init(&hbus->state_lock); 3771 hbus->state = hv_pcibus_init; 3772 hbus->wslot_res_allocated = -1; 3773 3774 /* 3775 * The PCI bus "domain" is what is called "segment" in ACPI and other 3776 * specs. Pull it from the instance ID, to get something usually 3777 * unique. In rare cases of collision, we will find out another number 3778 * not in use. 3779 * 3780 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3781 * together with this guest driver can guarantee that (1) The only 3782 * domain used by Gen1 VMs for something that looks like a physical 3783 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3784 * (2) There will be no overlap between domains (after fixing possible 3785 * collisions) in the same VM. 3786 */ 3787 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3788 dom = hv_get_dom_num(dom_req); 3789 3790 if (dom == HVPCI_DOM_INVALID) { 3791 dev_err(&hdev->device, 3792 "Unable to use dom# 0x%x or other numbers", dom_req); 3793 ret = -EINVAL; 3794 goto free_bus; 3795 } 3796 3797 if (dom != dom_req) 3798 dev_info(&hdev->device, 3799 "PCI dom# 0x%x has collision, using 0x%x", 3800 dom_req, dom); 3801 3802 hbus->bridge->domain_nr = dom; 3803 #ifdef CONFIG_X86 3804 hbus->sysdata.domain = dom; 3805 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3806 #elif defined(CONFIG_ARM64) 3807 /* 3808 * Set the PCI bus parent to be the corresponding VMbus 3809 * device. Then the VMbus device will be assigned as the 3810 * ACPI companion in pcibios_root_bridge_prepare() and 3811 * pci_dma_configure() will propagate device coherence 3812 * information to devices created on the bus. 3813 */ 3814 hbus->sysdata.parent = hdev->device.parent; 3815 hbus->use_calls = false; 3816 #endif 3817 3818 hbus->hdev = hdev; 3819 INIT_LIST_HEAD(&hbus->children); 3820 INIT_LIST_HEAD(&hbus->dr_list); 3821 spin_lock_init(&hbus->config_lock); 3822 spin_lock_init(&hbus->device_list_lock); 3823 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3824 hbus->bridge->domain_nr); 3825 if (!hbus->wq) { 3826 ret = -ENOMEM; 3827 goto free_dom; 3828 } 3829 3830 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3831 hdev->channel->request_addr_callback = vmbus_request_addr; 3832 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3833 3834 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3835 hv_pci_onchannelcallback, hbus); 3836 if (ret) 3837 goto destroy_wq; 3838 3839 hv_set_drvdata(hdev, hbus); 3840 3841 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3842 ARRAY_SIZE(pci_protocol_versions)); 3843 if (ret) 3844 goto close; 3845 3846 ret = hv_allocate_config_window(hbus); 3847 if (ret) 3848 goto close; 3849 3850 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3851 PCI_CONFIG_MMIO_LENGTH); 3852 if (!hbus->cfg_addr) { 3853 dev_err(&hdev->device, 3854 "Unable to map a virtual address for config space\n"); 3855 ret = -ENOMEM; 3856 goto free_config; 3857 } 3858 3859 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3860 if (!name) { 3861 ret = -ENOMEM; 3862 goto unmap; 3863 } 3864 3865 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3866 kfree(name); 3867 if (!hbus->fwnode) { 3868 ret = -ENOMEM; 3869 goto unmap; 3870 } 3871 3872 ret = hv_pcie_init_irq_domain(hbus); 3873 if (ret) 3874 goto free_fwnode; 3875 3876 ret = hv_pci_query_relations(hdev); 3877 if (ret) 3878 goto free_irq_domain; 3879 3880 mutex_lock(&hbus->state_lock); 3881 3882 ret = hv_pci_enter_d0(hdev); 3883 if (ret) 3884 goto release_state_lock; 3885 3886 ret = hv_pci_allocate_bridge_windows(hbus); 3887 if (ret) 3888 goto exit_d0; 3889 3890 ret = hv_send_resources_allocated(hdev); 3891 if (ret) 3892 goto free_windows; 3893 3894 prepopulate_bars(hbus); 3895 3896 hbus->state = hv_pcibus_probed; 3897 3898 ret = create_root_hv_pci_bus(hbus); 3899 if (ret) 3900 goto free_windows; 3901 3902 mutex_unlock(&hbus->state_lock); 3903 return 0; 3904 3905 free_windows: 3906 hv_pci_free_bridge_windows(hbus); 3907 exit_d0: 3908 (void) hv_pci_bus_exit(hdev, true); 3909 release_state_lock: 3910 mutex_unlock(&hbus->state_lock); 3911 free_irq_domain: 3912 irq_domain_remove(hbus->irq_domain); 3913 free_fwnode: 3914 irq_domain_free_fwnode(hbus->fwnode); 3915 unmap: 3916 iounmap(hbus->cfg_addr); 3917 free_config: 3918 hv_free_config_window(hbus); 3919 close: 3920 vmbus_close(hdev->channel); 3921 destroy_wq: 3922 destroy_workqueue(hbus->wq); 3923 free_dom: 3924 hv_put_dom_num(hbus->bridge->domain_nr); 3925 free_bus: 3926 kfree(hbus); 3927 return ret; 3928 } 3929 3930 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3931 { 3932 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3933 struct vmbus_channel *chan = hdev->channel; 3934 struct { 3935 struct pci_packet teardown_packet; 3936 u8 buffer[sizeof(struct pci_message)]; 3937 } pkt; 3938 struct pci_message *msg; 3939 struct hv_pci_compl comp_pkt; 3940 struct hv_pci_dev *hpdev, *tmp; 3941 unsigned long flags; 3942 u64 trans_id; 3943 int ret; 3944 3945 /* 3946 * After the host sends the RESCIND_CHANNEL message, it doesn't 3947 * access the per-channel ringbuffer any longer. 3948 */ 3949 if (chan->rescind) 3950 return 0; 3951 3952 if (!keep_devs) { 3953 struct list_head removed; 3954 3955 /* Move all present children to the list on stack */ 3956 INIT_LIST_HEAD(&removed); 3957 spin_lock_irqsave(&hbus->device_list_lock, flags); 3958 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3959 list_move_tail(&hpdev->list_entry, &removed); 3960 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3961 3962 /* Remove all children in the list */ 3963 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3964 list_del(&hpdev->list_entry); 3965 if (hpdev->pci_slot) 3966 pci_destroy_slot(hpdev->pci_slot); 3967 /* For the two refs got in new_pcichild_device() */ 3968 put_pcichild(hpdev); 3969 put_pcichild(hpdev); 3970 } 3971 } 3972 3973 ret = hv_send_resources_released(hdev); 3974 if (ret) { 3975 dev_err(&hdev->device, 3976 "Couldn't send resources released packet(s)\n"); 3977 return ret; 3978 } 3979 3980 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3981 init_completion(&comp_pkt.host_event); 3982 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3983 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3984 msg = (struct pci_message *)pkt.buffer; 3985 msg->type = PCI_BUS_D0EXIT; 3986 3987 ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg), 3988 (unsigned long)&pkt.teardown_packet, 3989 &trans_id, VM_PKT_DATA_INBAND, 3990 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3991 if (ret) 3992 return ret; 3993 3994 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3995 /* 3996 * The completion packet on the stack becomes invalid after 3997 * 'return'; remove the ID from the VMbus requestor if the 3998 * identifier is still mapped to/associated with the packet. 3999 * 4000 * Cf. hv_pci_onchannelcallback(). 4001 */ 4002 vmbus_request_addr_match(chan, trans_id, 4003 (unsigned long)&pkt.teardown_packet); 4004 return -ETIMEDOUT; 4005 } 4006 4007 return 0; 4008 } 4009 4010 /** 4011 * hv_pci_remove() - Remove routine for this VMBus channel 4012 * @hdev: VMBus's tracking struct for this root PCI bus 4013 */ 4014 static void hv_pci_remove(struct hv_device *hdev) 4015 { 4016 struct hv_pcibus_device *hbus; 4017 4018 hbus = hv_get_drvdata(hdev); 4019 if (hbus->state == hv_pcibus_installed) { 4020 tasklet_disable(&hdev->channel->callback_event); 4021 hbus->state = hv_pcibus_removing; 4022 tasklet_enable(&hdev->channel->callback_event); 4023 destroy_workqueue(hbus->wq); 4024 hbus->wq = NULL; 4025 /* 4026 * At this point, no work is running or can be scheduled 4027 * on hbus-wq. We can't race with hv_pci_devices_present() 4028 * or hv_pci_eject_device(), it's safe to proceed. 4029 */ 4030 4031 /* Remove the bus from PCI's point of view. */ 4032 pci_lock_rescan_remove(); 4033 pci_stop_root_bus(hbus->bridge->bus); 4034 hv_pci_remove_slots(hbus); 4035 pci_remove_root_bus(hbus->bridge->bus); 4036 pci_unlock_rescan_remove(); 4037 } 4038 4039 hv_pci_bus_exit(hdev, false); 4040 4041 vmbus_close(hdev->channel); 4042 4043 iounmap(hbus->cfg_addr); 4044 hv_free_config_window(hbus); 4045 hv_pci_free_bridge_windows(hbus); 4046 irq_domain_remove(hbus->irq_domain); 4047 irq_domain_free_fwnode(hbus->fwnode); 4048 4049 hv_put_dom_num(hbus->bridge->domain_nr); 4050 4051 kfree(hbus); 4052 } 4053 4054 static int hv_pci_suspend(struct hv_device *hdev) 4055 { 4056 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4057 enum hv_pcibus_state old_state; 4058 int ret; 4059 4060 /* 4061 * hv_pci_suspend() must make sure there are no pending work items 4062 * before calling vmbus_close(), since it runs in a process context 4063 * as a callback in dpm_suspend(). When it starts to run, the channel 4064 * callback hv_pci_onchannelcallback(), which runs in a tasklet 4065 * context, can be still running concurrently and scheduling new work 4066 * items onto hbus->wq in hv_pci_devices_present() and 4067 * hv_pci_eject_device(), and the work item handlers can access the 4068 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 4069 * the work item handler pci_devices_present_work() -> 4070 * new_pcichild_device() writes to the vmbus channel. 4071 * 4072 * To eliminate the race, hv_pci_suspend() disables the channel 4073 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 4074 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 4075 * it knows that no new work item can be scheduled, and then it flushes 4076 * hbus->wq and safely closes the vmbus channel. 4077 */ 4078 tasklet_disable(&hdev->channel->callback_event); 4079 4080 /* Change the hbus state to prevent new work items. */ 4081 old_state = hbus->state; 4082 if (hbus->state == hv_pcibus_installed) 4083 hbus->state = hv_pcibus_removing; 4084 4085 tasklet_enable(&hdev->channel->callback_event); 4086 4087 if (old_state != hv_pcibus_installed) 4088 return -EINVAL; 4089 4090 flush_workqueue(hbus->wq); 4091 4092 ret = hv_pci_bus_exit(hdev, true); 4093 if (ret) 4094 return ret; 4095 4096 vmbus_close(hdev->channel); 4097 4098 return 0; 4099 } 4100 4101 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 4102 { 4103 struct irq_data *irq_data; 4104 struct msi_desc *entry; 4105 4106 if (!pdev->msi_enabled && !pdev->msix_enabled) 4107 return 0; 4108 4109 guard(msi_descs_lock)(&pdev->dev); 4110 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 4111 irq_data = irq_get_irq_data(entry->irq); 4112 if (WARN_ON_ONCE(!irq_data)) 4113 return -EINVAL; 4114 hv_compose_msi_msg(irq_data, &entry->msg); 4115 } 4116 return 0; 4117 } 4118 4119 /* 4120 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 4121 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 4122 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 4123 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 4124 * Table entries. 4125 */ 4126 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 4127 { 4128 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 4129 } 4130 4131 static int hv_pci_resume(struct hv_device *hdev) 4132 { 4133 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4134 enum pci_protocol_version_t version[1]; 4135 int ret; 4136 4137 hbus->state = hv_pcibus_init; 4138 4139 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4140 hdev->channel->request_addr_callback = vmbus_request_addr; 4141 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4142 4143 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4144 hv_pci_onchannelcallback, hbus); 4145 if (ret) 4146 return ret; 4147 4148 /* Only use the version that was in use before hibernation. */ 4149 version[0] = hbus->protocol_version; 4150 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4151 if (ret) 4152 goto out; 4153 4154 ret = hv_pci_query_relations(hdev); 4155 if (ret) 4156 goto out; 4157 4158 mutex_lock(&hbus->state_lock); 4159 4160 ret = hv_pci_enter_d0(hdev); 4161 if (ret) 4162 goto release_state_lock; 4163 4164 ret = hv_send_resources_allocated(hdev); 4165 if (ret) 4166 goto release_state_lock; 4167 4168 prepopulate_bars(hbus); 4169 4170 hv_pci_restore_msi_state(hbus); 4171 4172 hbus->state = hv_pcibus_installed; 4173 mutex_unlock(&hbus->state_lock); 4174 return 0; 4175 4176 release_state_lock: 4177 mutex_unlock(&hbus->state_lock); 4178 out: 4179 vmbus_close(hdev->channel); 4180 return ret; 4181 } 4182 4183 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4184 /* PCI Pass-through Class ID */ 4185 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4186 { HV_PCIE_GUID, }, 4187 { }, 4188 }; 4189 4190 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4191 4192 static struct hv_driver hv_pci_drv = { 4193 .name = "hv_pci", 4194 .id_table = hv_pci_id_table, 4195 .probe = hv_pci_probe, 4196 .remove = hv_pci_remove, 4197 .suspend = hv_pci_suspend, 4198 .resume = hv_pci_resume, 4199 }; 4200 4201 static void __exit exit_hv_pci_drv(void) 4202 { 4203 vmbus_driver_unregister(&hv_pci_drv); 4204 4205 hvpci_block_ops.read_block = NULL; 4206 hvpci_block_ops.write_block = NULL; 4207 hvpci_block_ops.reg_blk_invalidate = NULL; 4208 } 4209 4210 static int __init init_hv_pci_drv(void) 4211 { 4212 int ret; 4213 4214 if (!hv_is_hyperv_initialized()) 4215 return -ENODEV; 4216 4217 if (hv_root_partition() && !hv_nested) 4218 return -ENODEV; 4219 4220 ret = hv_pci_irqchip_init(); 4221 if (ret) 4222 return ret; 4223 4224 /* Set the invalid domain number's bit, so it will not be used */ 4225 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4226 4227 /* Initialize PCI block r/w interface */ 4228 hvpci_block_ops.read_block = hv_read_config_block; 4229 hvpci_block_ops.write_block = hv_write_config_block; 4230 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4231 4232 return vmbus_driver_register(&hv_pci_drv); 4233 } 4234 4235 module_init(init_hv_pci_drv); 4236 module_exit(exit_hv_pci_drv); 4237 4238 MODULE_DESCRIPTION("Hyper-V PCI"); 4239 MODULE_LICENSE("GPL v2"); 4240