1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <asm/mshyperv.h> 53 54 /* 55 * Protocol versions. The low word is the minor version, the high word the 56 * major version. 57 */ 58 59 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 60 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 61 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 62 63 enum pci_protocol_version_t { 64 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 65 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 66 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 67 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 68 }; 69 70 #define CPU_AFFINITY_ALL -1ULL 71 72 /* 73 * Supported protocol versions in the order of probing - highest go 74 * first. 75 */ 76 static enum pci_protocol_version_t pci_protocol_versions[] = { 77 PCI_PROTOCOL_VERSION_1_4, 78 PCI_PROTOCOL_VERSION_1_3, 79 PCI_PROTOCOL_VERSION_1_2, 80 PCI_PROTOCOL_VERSION_1_1, 81 }; 82 83 #define PCI_CONFIG_MMIO_LENGTH 0x2000 84 #define CFG_PAGE_OFFSET 0x1000 85 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 86 87 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 88 89 #define STATUS_REVISION_MISMATCH 0xC0000059 90 91 /* space for 32bit serial number as string */ 92 #define SLOT_NAME_SIZE 11 93 94 /* 95 * Size of requestor for VMbus; the value is based on the observation 96 * that having more than one request outstanding is 'rare', and so 64 97 * should be generous in ensuring that we don't ever run out. 98 */ 99 #define HV_PCI_RQSTOR_SIZE 64 100 101 /* 102 * Message Types 103 */ 104 105 enum pci_message_type { 106 /* 107 * Version 1.1 108 */ 109 PCI_MESSAGE_BASE = 0x42490000, 110 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 111 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 112 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 113 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 114 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 115 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 116 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 117 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 118 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 119 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 120 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 121 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 122 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 123 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 124 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 125 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 126 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 127 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 128 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 129 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 130 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 131 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 132 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 133 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 134 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 135 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 136 PCI_MESSAGE_MAXIMUM 137 }; 138 139 /* 140 * Structures defining the virtual PCI Express protocol. 141 */ 142 143 union pci_version { 144 struct { 145 u16 minor_version; 146 u16 major_version; 147 } parts; 148 u32 version; 149 } __packed; 150 151 /* 152 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 153 * which is all this driver does. This representation is the one used in 154 * Windows, which is what is expected when sending this back and forth with 155 * the Hyper-V parent partition. 156 */ 157 union win_slot_encoding { 158 struct { 159 u32 dev:5; 160 u32 func:3; 161 u32 reserved:24; 162 } bits; 163 u32 slot; 164 } __packed; 165 166 /* 167 * Pretty much as defined in the PCI Specifications. 168 */ 169 struct pci_function_description { 170 u16 v_id; /* vendor ID */ 171 u16 d_id; /* device ID */ 172 u8 rev; 173 u8 prog_intf; 174 u8 subclass; 175 u8 base_class; 176 u32 subsystem_id; 177 union win_slot_encoding win_slot; 178 u32 ser; /* serial number */ 179 } __packed; 180 181 enum pci_device_description_flags { 182 HV_PCI_DEVICE_FLAG_NONE = 0x0, 183 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 184 }; 185 186 struct pci_function_description2 { 187 u16 v_id; /* vendor ID */ 188 u16 d_id; /* device ID */ 189 u8 rev; 190 u8 prog_intf; 191 u8 subclass; 192 u8 base_class; 193 u32 subsystem_id; 194 union win_slot_encoding win_slot; 195 u32 ser; /* serial number */ 196 u32 flags; 197 u16 virtual_numa_node; 198 u16 reserved; 199 } __packed; 200 201 /** 202 * struct hv_msi_desc 203 * @vector: IDT entry 204 * @delivery_mode: As defined in Intel's Programmer's 205 * Reference Manual, Volume 3, Chapter 8. 206 * @vector_count: Number of contiguous entries in the 207 * Interrupt Descriptor Table that are 208 * occupied by this Message-Signaled 209 * Interrupt. For "MSI", as first defined 210 * in PCI 2.2, this can be between 1 and 211 * 32. For "MSI-X," as first defined in PCI 212 * 3.0, this must be 1, as each MSI-X table 213 * entry would have its own descriptor. 214 * @reserved: Empty space 215 * @cpu_mask: All the target virtual processors. 216 */ 217 struct hv_msi_desc { 218 u8 vector; 219 u8 delivery_mode; 220 u16 vector_count; 221 u32 reserved; 222 u64 cpu_mask; 223 } __packed; 224 225 /** 226 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 227 * @vector: IDT entry 228 * @delivery_mode: As defined in Intel's Programmer's 229 * Reference Manual, Volume 3, Chapter 8. 230 * @vector_count: Number of contiguous entries in the 231 * Interrupt Descriptor Table that are 232 * occupied by this Message-Signaled 233 * Interrupt. For "MSI", as first defined 234 * in PCI 2.2, this can be between 1 and 235 * 32. For "MSI-X," as first defined in PCI 236 * 3.0, this must be 1, as each MSI-X table 237 * entry would have its own descriptor. 238 * @processor_count: number of bits enabled in array. 239 * @processor_array: All the target virtual processors. 240 */ 241 struct hv_msi_desc2 { 242 u8 vector; 243 u8 delivery_mode; 244 u16 vector_count; 245 u16 processor_count; 246 u16 processor_array[32]; 247 } __packed; 248 249 /* 250 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 251 * Everything is the same as in 'hv_msi_desc2' except that the size of the 252 * 'vector' field is larger to support bigger vector values. For ex: LPI 253 * vectors on ARM. 254 */ 255 struct hv_msi_desc3 { 256 u32 vector; 257 u8 delivery_mode; 258 u8 reserved; 259 u16 vector_count; 260 u16 processor_count; 261 u16 processor_array[32]; 262 } __packed; 263 264 /** 265 * struct tran_int_desc 266 * @reserved: unused, padding 267 * @vector_count: same as in hv_msi_desc 268 * @data: This is the "data payload" value that is 269 * written by the device when it generates 270 * a message-signaled interrupt, either MSI 271 * or MSI-X. 272 * @address: This is the address to which the data 273 * payload is written on interrupt 274 * generation. 275 */ 276 struct tran_int_desc { 277 u16 reserved; 278 u16 vector_count; 279 u32 data; 280 u64 address; 281 } __packed; 282 283 /* 284 * A generic message format for virtual PCI. 285 * Specific message formats are defined later in the file. 286 */ 287 288 struct pci_message { 289 u32 type; 290 } __packed; 291 292 struct pci_child_message { 293 struct pci_message message_type; 294 union win_slot_encoding wslot; 295 } __packed; 296 297 struct pci_incoming_message { 298 struct vmpacket_descriptor hdr; 299 struct pci_message message_type; 300 } __packed; 301 302 struct pci_response { 303 struct vmpacket_descriptor hdr; 304 s32 status; /* negative values are failures */ 305 } __packed; 306 307 struct pci_packet { 308 void (*completion_func)(void *context, struct pci_response *resp, 309 int resp_packet_size); 310 void *compl_ctxt; 311 312 struct pci_message message[]; 313 }; 314 315 /* 316 * Specific message types supporting the PCI protocol. 317 */ 318 319 /* 320 * Version negotiation message. Sent from the guest to the host. 321 * The guest is free to try different versions until the host 322 * accepts the version. 323 * 324 * pci_version: The protocol version requested. 325 * is_last_attempt: If TRUE, this is the last version guest will request. 326 * reservedz: Reserved field, set to zero. 327 */ 328 329 struct pci_version_request { 330 struct pci_message message_type; 331 u32 protocol_version; 332 } __packed; 333 334 /* 335 * Bus D0 Entry. This is sent from the guest to the host when the virtual 336 * bus (PCI Express port) is ready for action. 337 */ 338 339 struct pci_bus_d0_entry { 340 struct pci_message message_type; 341 u32 reserved; 342 u64 mmio_base; 343 } __packed; 344 345 struct pci_bus_relations { 346 struct pci_incoming_message incoming; 347 u32 device_count; 348 struct pci_function_description func[]; 349 } __packed; 350 351 struct pci_bus_relations2 { 352 struct pci_incoming_message incoming; 353 u32 device_count; 354 struct pci_function_description2 func[]; 355 } __packed; 356 357 struct pci_q_res_req_response { 358 struct vmpacket_descriptor hdr; 359 s32 status; /* negative values are failures */ 360 u32 probed_bar[PCI_STD_NUM_BARS]; 361 } __packed; 362 363 struct pci_set_power { 364 struct pci_message message_type; 365 union win_slot_encoding wslot; 366 u32 power_state; /* In Windows terms */ 367 u32 reserved; 368 } __packed; 369 370 struct pci_set_power_response { 371 struct vmpacket_descriptor hdr; 372 s32 status; /* negative values are failures */ 373 union win_slot_encoding wslot; 374 u32 resultant_state; /* In Windows terms */ 375 u32 reserved; 376 } __packed; 377 378 struct pci_resources_assigned { 379 struct pci_message message_type; 380 union win_slot_encoding wslot; 381 u8 memory_range[0x14][6]; /* not used here */ 382 u32 msi_descriptors; 383 u32 reserved[4]; 384 } __packed; 385 386 struct pci_resources_assigned2 { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 u8 memory_range[0x14][6]; /* not used here */ 390 u32 msi_descriptor_count; 391 u8 reserved[70]; 392 } __packed; 393 394 struct pci_create_interrupt { 395 struct pci_message message_type; 396 union win_slot_encoding wslot; 397 struct hv_msi_desc int_desc; 398 } __packed; 399 400 struct pci_create_int_response { 401 struct pci_response response; 402 u32 reserved; 403 struct tran_int_desc int_desc; 404 } __packed; 405 406 struct pci_create_interrupt2 { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 struct hv_msi_desc2 int_desc; 410 } __packed; 411 412 struct pci_create_interrupt3 { 413 struct pci_message message_type; 414 union win_slot_encoding wslot; 415 struct hv_msi_desc3 int_desc; 416 } __packed; 417 418 struct pci_delete_interrupt { 419 struct pci_message message_type; 420 union win_slot_encoding wslot; 421 struct tran_int_desc int_desc; 422 } __packed; 423 424 /* 425 * Note: the VM must pass a valid block id, wslot and bytes_requested. 426 */ 427 struct pci_read_block { 428 struct pci_message message_type; 429 u32 block_id; 430 union win_slot_encoding wslot; 431 u32 bytes_requested; 432 } __packed; 433 434 struct pci_read_block_response { 435 struct vmpacket_descriptor hdr; 436 u32 status; 437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 438 } __packed; 439 440 /* 441 * Note: the VM must pass a valid block id, wslot and byte_count. 442 */ 443 struct pci_write_block { 444 struct pci_message message_type; 445 u32 block_id; 446 union win_slot_encoding wslot; 447 u32 byte_count; 448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 449 } __packed; 450 451 struct pci_dev_inval_block { 452 struct pci_incoming_message incoming; 453 union win_slot_encoding wslot; 454 u64 block_mask; 455 } __packed; 456 457 struct pci_dev_incoming { 458 struct pci_incoming_message incoming; 459 union win_slot_encoding wslot; 460 } __packed; 461 462 struct pci_eject_response { 463 struct pci_message message_type; 464 union win_slot_encoding wslot; 465 u32 status; 466 } __packed; 467 468 static int pci_ring_size = (4 * PAGE_SIZE); 469 470 /* 471 * Driver specific state. 472 */ 473 474 enum hv_pcibus_state { 475 hv_pcibus_init = 0, 476 hv_pcibus_probed, 477 hv_pcibus_installed, 478 hv_pcibus_removing, 479 hv_pcibus_maximum 480 }; 481 482 struct hv_pcibus_device { 483 #ifdef CONFIG_X86 484 struct pci_sysdata sysdata; 485 #elif defined(CONFIG_ARM64) 486 struct pci_config_window sysdata; 487 #endif 488 struct pci_host_bridge *bridge; 489 struct fwnode_handle *fwnode; 490 /* Protocol version negotiated with the host */ 491 enum pci_protocol_version_t protocol_version; 492 493 struct mutex state_lock; 494 enum hv_pcibus_state state; 495 496 struct hv_device *hdev; 497 resource_size_t low_mmio_space; 498 resource_size_t high_mmio_space; 499 struct resource *mem_config; 500 struct resource *low_mmio_res; 501 struct resource *high_mmio_res; 502 struct completion *survey_event; 503 struct pci_bus *pci_bus; 504 spinlock_t config_lock; /* Avoid two threads writing index page */ 505 spinlock_t device_list_lock; /* Protect lists below */ 506 void __iomem *cfg_addr; 507 508 struct list_head children; 509 struct list_head dr_list; 510 511 struct msi_domain_info msi_info; 512 struct irq_domain *irq_domain; 513 514 struct workqueue_struct *wq; 515 516 /* Highest slot of child device with resources allocated */ 517 int wslot_res_allocated; 518 bool use_calls; /* Use hypercalls to access mmio cfg space */ 519 }; 520 521 /* 522 * Tracks "Device Relations" messages from the host, which must be both 523 * processed in order and deferred so that they don't run in the context 524 * of the incoming packet callback. 525 */ 526 struct hv_dr_work { 527 struct work_struct wrk; 528 struct hv_pcibus_device *bus; 529 }; 530 531 struct hv_pcidev_description { 532 u16 v_id; /* vendor ID */ 533 u16 d_id; /* device ID */ 534 u8 rev; 535 u8 prog_intf; 536 u8 subclass; 537 u8 base_class; 538 u32 subsystem_id; 539 union win_slot_encoding win_slot; 540 u32 ser; /* serial number */ 541 u32 flags; 542 u16 virtual_numa_node; 543 }; 544 545 struct hv_dr_state { 546 struct list_head list_entry; 547 u32 device_count; 548 struct hv_pcidev_description func[]; 549 }; 550 551 struct hv_pci_dev { 552 /* List protected by pci_rescan_remove_lock */ 553 struct list_head list_entry; 554 refcount_t refs; 555 struct pci_slot *pci_slot; 556 struct hv_pcidev_description desc; 557 bool reported_missing; 558 struct hv_pcibus_device *hbus; 559 struct work_struct wrk; 560 561 void (*block_invalidate)(void *context, u64 block_mask); 562 void *invalidate_context; 563 564 /* 565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 566 * read it back, for each of the BAR offsets within config space. 567 */ 568 u32 probed_bar[PCI_STD_NUM_BARS]; 569 }; 570 571 struct hv_pci_compl { 572 struct completion host_event; 573 s32 completion_status; 574 }; 575 576 static void hv_pci_onchannelcallback(void *context); 577 578 #ifdef CONFIG_X86 579 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 580 #define FLOW_HANDLER handle_edge_irq 581 #define FLOW_NAME "edge" 582 583 static int hv_pci_irqchip_init(void) 584 { 585 return 0; 586 } 587 588 static struct irq_domain *hv_pci_get_root_domain(void) 589 { 590 return x86_vector_domain; 591 } 592 593 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 594 { 595 struct irq_cfg *cfg = irqd_cfg(data); 596 597 return cfg->vector; 598 } 599 600 #define hv_msi_prepare pci_msi_prepare 601 602 /** 603 * hv_arch_irq_unmask() - "Unmask" the IRQ by setting its current 604 * affinity. 605 * @data: Describes the IRQ 606 * 607 * Build new a destination for the MSI and make a hypercall to 608 * update the Interrupt Redirection Table. "Device Logical ID" 609 * is built out of this PCI bus's instance GUID and the function 610 * number of the device. 611 */ 612 static void hv_arch_irq_unmask(struct irq_data *data) 613 { 614 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 615 struct hv_retarget_device_interrupt *params; 616 struct tran_int_desc *int_desc; 617 struct hv_pcibus_device *hbus; 618 const struct cpumask *dest; 619 cpumask_var_t tmp; 620 struct pci_bus *pbus; 621 struct pci_dev *pdev; 622 unsigned long flags; 623 u32 var_size = 0; 624 int cpu, nr_bank; 625 u64 res; 626 627 dest = irq_data_get_effective_affinity_mask(data); 628 pdev = msi_desc_to_pci_dev(msi_desc); 629 pbus = pdev->bus; 630 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 631 int_desc = data->chip_data; 632 if (!int_desc) { 633 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", 634 __func__, data->irq); 635 return; 636 } 637 638 local_irq_save(flags); 639 640 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 641 memset(params, 0, sizeof(*params)); 642 params->partition_id = HV_PARTITION_ID_SELF; 643 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 644 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 645 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 646 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 647 (hbus->hdev->dev_instance.b[4] << 16) | 648 (hbus->hdev->dev_instance.b[7] << 8) | 649 (hbus->hdev->dev_instance.b[6] & 0xf8) | 650 PCI_FUNC(pdev->devfn); 651 params->int_target.vector = hv_msi_get_int_vector(data); 652 653 /* 654 * Honoring apic->delivery_mode set to APIC_DELIVERY_MODE_FIXED by 655 * setting the HV_DEVICE_INTERRUPT_TARGET_MULTICAST flag results in a 656 * spurious interrupt storm. Not doing so does not seem to have a 657 * negative effect (yet?). 658 */ 659 660 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 661 /* 662 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 663 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 664 * with >64 VP support. 665 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 666 * is not sufficient for this hypercall. 667 */ 668 params->int_target.flags |= 669 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 670 671 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 672 res = 1; 673 goto out; 674 } 675 676 cpumask_and(tmp, dest, cpu_online_mask); 677 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 678 free_cpumask_var(tmp); 679 680 if (nr_bank <= 0) { 681 res = 1; 682 goto out; 683 } 684 685 /* 686 * var-sized hypercall, var-size starts after vp_mask (thus 687 * vp_set.format does not count, but vp_set.valid_bank_mask 688 * does). 689 */ 690 var_size = 1 + nr_bank; 691 } else { 692 for_each_cpu_and(cpu, dest, cpu_online_mask) { 693 params->int_target.vp_mask |= 694 (1ULL << hv_cpu_number_to_vp_number(cpu)); 695 } 696 } 697 698 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 699 params, NULL); 700 701 out: 702 local_irq_restore(flags); 703 704 /* 705 * During hibernation, when a CPU is offlined, the kernel tries 706 * to move the interrupt to the remaining CPUs that haven't 707 * been offlined yet. In this case, the below hv_do_hypercall() 708 * always fails since the vmbus channel has been closed: 709 * refer to cpu_disable_common() -> fixup_irqs() -> 710 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 711 * 712 * Suppress the error message for hibernation because the failure 713 * during hibernation does not matter (at this time all the devices 714 * have been frozen). Note: the correct affinity info is still updated 715 * into the irqdata data structure in migrate_one_irq() -> 716 * irq_do_set_affinity(), so later when the VM resumes, 717 * hv_pci_restore_msi_state() is able to correctly restore the 718 * interrupt with the correct affinity. 719 */ 720 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 721 dev_err(&hbus->hdev->device, 722 "%s() failed: %#llx", __func__, res); 723 } 724 #elif defined(CONFIG_ARM64) 725 /* 726 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 727 * of room at the start to allow for SPIs to be specified through ACPI and 728 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 729 */ 730 #define HV_PCI_MSI_SPI_START 64 731 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 732 #define DELIVERY_MODE 0 733 #define FLOW_HANDLER NULL 734 #define FLOW_NAME NULL 735 #define hv_msi_prepare NULL 736 737 struct hv_pci_chip_data { 738 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 739 struct mutex map_lock; 740 }; 741 742 /* Hyper-V vPCI MSI GIC IRQ domain */ 743 static struct irq_domain *hv_msi_gic_irq_domain; 744 745 /* Hyper-V PCI MSI IRQ chip */ 746 static struct irq_chip hv_arm64_msi_irq_chip = { 747 .name = "MSI", 748 .irq_set_affinity = irq_chip_set_affinity_parent, 749 .irq_eoi = irq_chip_eoi_parent, 750 .irq_mask = irq_chip_mask_parent, 751 .irq_unmask = irq_chip_unmask_parent 752 }; 753 754 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 755 { 756 return irqd->parent_data->hwirq; 757 } 758 759 /* 760 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 761 * the bitmap. 762 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 763 * the parent domain. 764 */ 765 static void hv_pci_vec_irq_free(struct irq_domain *domain, 766 unsigned int virq, 767 unsigned int nr_bm_irqs, 768 unsigned int nr_dom_irqs) 769 { 770 struct hv_pci_chip_data *chip_data = domain->host_data; 771 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 772 int first = d->hwirq - HV_PCI_MSI_SPI_START; 773 int i; 774 775 mutex_lock(&chip_data->map_lock); 776 bitmap_release_region(chip_data->spi_map, 777 first, 778 get_count_order(nr_bm_irqs)); 779 mutex_unlock(&chip_data->map_lock); 780 for (i = 0; i < nr_dom_irqs; i++) { 781 if (i) 782 d = irq_domain_get_irq_data(domain, virq + i); 783 irq_domain_reset_irq_data(d); 784 } 785 786 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 787 } 788 789 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 790 unsigned int virq, 791 unsigned int nr_irqs) 792 { 793 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 794 } 795 796 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 797 unsigned int nr_irqs, 798 irq_hw_number_t *hwirq) 799 { 800 struct hv_pci_chip_data *chip_data = domain->host_data; 801 int index; 802 803 /* Find and allocate region from the SPI bitmap */ 804 mutex_lock(&chip_data->map_lock); 805 index = bitmap_find_free_region(chip_data->spi_map, 806 HV_PCI_MSI_SPI_NR, 807 get_count_order(nr_irqs)); 808 mutex_unlock(&chip_data->map_lock); 809 if (index < 0) 810 return -ENOSPC; 811 812 *hwirq = index + HV_PCI_MSI_SPI_START; 813 814 return 0; 815 } 816 817 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 818 unsigned int virq, 819 irq_hw_number_t hwirq) 820 { 821 struct irq_fwspec fwspec; 822 struct irq_data *d; 823 int ret; 824 825 fwspec.fwnode = domain->parent->fwnode; 826 fwspec.param_count = 2; 827 fwspec.param[0] = hwirq; 828 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 829 830 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 831 if (ret) 832 return ret; 833 834 /* 835 * Since the interrupt specifier is not coming from ACPI or DT, the 836 * trigger type will need to be set explicitly. Otherwise, it will be 837 * set to whatever is in the GIC configuration. 838 */ 839 d = irq_domain_get_irq_data(domain->parent, virq); 840 841 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 842 } 843 844 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 845 unsigned int virq, unsigned int nr_irqs, 846 void *args) 847 { 848 irq_hw_number_t hwirq; 849 unsigned int i; 850 int ret; 851 852 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 853 if (ret) 854 return ret; 855 856 for (i = 0; i < nr_irqs; i++) { 857 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 858 hwirq + i); 859 if (ret) { 860 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 861 return ret; 862 } 863 864 irq_domain_set_hwirq_and_chip(domain, virq + i, 865 hwirq + i, 866 &hv_arm64_msi_irq_chip, 867 domain->host_data); 868 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 869 } 870 871 return 0; 872 } 873 874 /* 875 * Pick the first cpu as the irq affinity that can be temporarily used for 876 * composing MSI from the hypervisor. GIC will eventually set the right 877 * affinity for the irq and the 'unmask' will retarget the interrupt to that 878 * cpu. 879 */ 880 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 881 struct irq_data *irqd, bool reserve) 882 { 883 int cpu = cpumask_first(cpu_present_mask); 884 885 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 886 887 return 0; 888 } 889 890 static const struct irq_domain_ops hv_pci_domain_ops = { 891 .alloc = hv_pci_vec_irq_domain_alloc, 892 .free = hv_pci_vec_irq_domain_free, 893 .activate = hv_pci_vec_irq_domain_activate, 894 }; 895 896 static int hv_pci_irqchip_init(void) 897 { 898 static struct hv_pci_chip_data *chip_data; 899 struct fwnode_handle *fn = NULL; 900 int ret = -ENOMEM; 901 902 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 903 if (!chip_data) 904 return ret; 905 906 mutex_init(&chip_data->map_lock); 907 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 908 if (!fn) 909 goto free_chip; 910 911 /* 912 * IRQ domain once enabled, should not be removed since there is no 913 * way to ensure that all the corresponding devices are also gone and 914 * no interrupts will be generated. 915 */ 916 hv_msi_gic_irq_domain = acpi_irq_create_hierarchy(0, HV_PCI_MSI_SPI_NR, 917 fn, &hv_pci_domain_ops, 918 chip_data); 919 920 if (!hv_msi_gic_irq_domain) { 921 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 922 goto free_chip; 923 } 924 925 return 0; 926 927 free_chip: 928 kfree(chip_data); 929 if (fn) 930 irq_domain_free_fwnode(fn); 931 932 return ret; 933 } 934 935 static struct irq_domain *hv_pci_get_root_domain(void) 936 { 937 return hv_msi_gic_irq_domain; 938 } 939 940 /* 941 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 942 * registers which Hyper-V already supports, so no hypercall needed. 943 */ 944 static void hv_arch_irq_unmask(struct irq_data *data) { } 945 #endif /* CONFIG_ARM64 */ 946 947 /** 948 * hv_pci_generic_compl() - Invoked for a completion packet 949 * @context: Set up by the sender of the packet. 950 * @resp: The response packet 951 * @resp_packet_size: Size in bytes of the packet 952 * 953 * This function is used to trigger an event and report status 954 * for any message for which the completion packet contains a 955 * status and nothing else. 956 */ 957 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 958 int resp_packet_size) 959 { 960 struct hv_pci_compl *comp_pkt = context; 961 962 comp_pkt->completion_status = resp->status; 963 complete(&comp_pkt->host_event); 964 } 965 966 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 967 u32 wslot); 968 969 static void get_pcichild(struct hv_pci_dev *hpdev) 970 { 971 refcount_inc(&hpdev->refs); 972 } 973 974 static void put_pcichild(struct hv_pci_dev *hpdev) 975 { 976 if (refcount_dec_and_test(&hpdev->refs)) 977 kfree(hpdev); 978 } 979 980 /* 981 * There is no good way to get notified from vmbus_onoffer_rescind(), 982 * so let's use polling here, since this is not a hot path. 983 */ 984 static int wait_for_response(struct hv_device *hdev, 985 struct completion *comp) 986 { 987 while (true) { 988 if (hdev->channel->rescind) { 989 dev_warn_once(&hdev->device, "The device is gone.\n"); 990 return -ENODEV; 991 } 992 993 if (wait_for_completion_timeout(comp, HZ / 10)) 994 break; 995 } 996 997 return 0; 998 } 999 1000 /** 1001 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1002 * @devfn: The Linux representation of PCI slot 1003 * 1004 * Windows uses a slightly different representation of PCI slot. 1005 * 1006 * Return: The Windows representation 1007 */ 1008 static u32 devfn_to_wslot(int devfn) 1009 { 1010 union win_slot_encoding wslot; 1011 1012 wslot.slot = 0; 1013 wslot.bits.dev = PCI_SLOT(devfn); 1014 wslot.bits.func = PCI_FUNC(devfn); 1015 1016 return wslot.slot; 1017 } 1018 1019 /** 1020 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1021 * @wslot: The Windows representation of PCI slot 1022 * 1023 * Windows uses a slightly different representation of PCI slot. 1024 * 1025 * Return: The Linux representation 1026 */ 1027 static int wslot_to_devfn(u32 wslot) 1028 { 1029 union win_slot_encoding slot_no; 1030 1031 slot_no.slot = wslot; 1032 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1033 } 1034 1035 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1036 { 1037 struct hv_mmio_read_input *in; 1038 struct hv_mmio_read_output *out; 1039 u64 ret; 1040 1041 /* 1042 * Must be called with interrupts disabled so it is safe 1043 * to use the per-cpu input argument page. Use it for 1044 * both input and output. 1045 */ 1046 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1047 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1048 in->gpa = gpa; 1049 in->size = size; 1050 1051 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1052 if (hv_result_success(ret)) { 1053 switch (size) { 1054 case 1: 1055 *val = *(u8 *)(out->data); 1056 break; 1057 case 2: 1058 *val = *(u16 *)(out->data); 1059 break; 1060 default: 1061 *val = *(u32 *)(out->data); 1062 break; 1063 } 1064 } else 1065 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1066 ret, gpa, size); 1067 } 1068 1069 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1070 { 1071 struct hv_mmio_write_input *in; 1072 u64 ret; 1073 1074 /* 1075 * Must be called with interrupts disabled so it is safe 1076 * to use the per-cpu input argument memory. 1077 */ 1078 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1079 in->gpa = gpa; 1080 in->size = size; 1081 switch (size) { 1082 case 1: 1083 *(u8 *)(in->data) = val; 1084 break; 1085 case 2: 1086 *(u16 *)(in->data) = val; 1087 break; 1088 default: 1089 *(u32 *)(in->data) = val; 1090 break; 1091 } 1092 1093 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1094 if (!hv_result_success(ret)) 1095 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1096 ret, gpa, size); 1097 } 1098 1099 /* 1100 * PCI Configuration Space for these root PCI buses is implemented as a pair 1101 * of pages in memory-mapped I/O space. Writing to the first page chooses 1102 * the PCI function being written or read. Once the first page has been 1103 * written to, the following page maps in the entire configuration space of 1104 * the function. 1105 */ 1106 1107 /** 1108 * _hv_pcifront_read_config() - Internal PCI config read 1109 * @hpdev: The PCI driver's representation of the device 1110 * @where: Offset within config space 1111 * @size: Size of the transfer 1112 * @val: Pointer to the buffer receiving the data 1113 */ 1114 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1115 int size, u32 *val) 1116 { 1117 struct hv_pcibus_device *hbus = hpdev->hbus; 1118 struct device *dev = &hbus->hdev->device; 1119 int offset = where + CFG_PAGE_OFFSET; 1120 unsigned long flags; 1121 1122 /* 1123 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1124 */ 1125 if (where + size <= PCI_COMMAND) { 1126 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1127 } else if (where >= PCI_CLASS_REVISION && where + size <= 1128 PCI_CACHE_LINE_SIZE) { 1129 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1130 PCI_CLASS_REVISION, size); 1131 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1132 PCI_ROM_ADDRESS) { 1133 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1134 PCI_SUBSYSTEM_VENDOR_ID, size); 1135 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1136 PCI_CAPABILITY_LIST) { 1137 /* ROM BARs are unimplemented */ 1138 *val = 0; 1139 } else if (where >= PCI_INTERRUPT_LINE && where + size <= 1140 PCI_INTERRUPT_PIN) { 1141 /* 1142 * Interrupt Line and Interrupt PIN are hard-wired to zero 1143 * because this front-end only supports message-signaled 1144 * interrupts. 1145 */ 1146 *val = 0; 1147 } else if (where + size <= CFG_PAGE_SIZE) { 1148 1149 spin_lock_irqsave(&hbus->config_lock, flags); 1150 if (hbus->use_calls) { 1151 phys_addr_t addr = hbus->mem_config->start + offset; 1152 1153 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1154 hpdev->desc.win_slot.slot); 1155 hv_pci_read_mmio(dev, addr, size, val); 1156 } else { 1157 void __iomem *addr = hbus->cfg_addr + offset; 1158 1159 /* Choose the function to be read. (See comment above) */ 1160 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1161 /* Make sure the function was chosen before reading. */ 1162 mb(); 1163 /* Read from that function's config space. */ 1164 switch (size) { 1165 case 1: 1166 *val = readb(addr); 1167 break; 1168 case 2: 1169 *val = readw(addr); 1170 break; 1171 default: 1172 *val = readl(addr); 1173 break; 1174 } 1175 /* 1176 * Make sure the read was done before we release the 1177 * spinlock allowing consecutive reads/writes. 1178 */ 1179 mb(); 1180 } 1181 spin_unlock_irqrestore(&hbus->config_lock, flags); 1182 } else { 1183 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1184 } 1185 } 1186 1187 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1188 { 1189 struct hv_pcibus_device *hbus = hpdev->hbus; 1190 struct device *dev = &hbus->hdev->device; 1191 u32 val; 1192 u16 ret; 1193 unsigned long flags; 1194 1195 spin_lock_irqsave(&hbus->config_lock, flags); 1196 1197 if (hbus->use_calls) { 1198 phys_addr_t addr = hbus->mem_config->start + 1199 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1200 1201 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1202 hpdev->desc.win_slot.slot); 1203 hv_pci_read_mmio(dev, addr, 2, &val); 1204 ret = val; /* Truncates to 16 bits */ 1205 } else { 1206 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1207 PCI_VENDOR_ID; 1208 /* Choose the function to be read. (See comment above) */ 1209 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1210 /* Make sure the function was chosen before we start reading. */ 1211 mb(); 1212 /* Read from that function's config space. */ 1213 ret = readw(addr); 1214 /* 1215 * mb() is not required here, because the 1216 * spin_unlock_irqrestore() is a barrier. 1217 */ 1218 } 1219 1220 spin_unlock_irqrestore(&hbus->config_lock, flags); 1221 1222 return ret; 1223 } 1224 1225 /** 1226 * _hv_pcifront_write_config() - Internal PCI config write 1227 * @hpdev: The PCI driver's representation of the device 1228 * @where: Offset within config space 1229 * @size: Size of the transfer 1230 * @val: The data being transferred 1231 */ 1232 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1233 int size, u32 val) 1234 { 1235 struct hv_pcibus_device *hbus = hpdev->hbus; 1236 struct device *dev = &hbus->hdev->device; 1237 int offset = where + CFG_PAGE_OFFSET; 1238 unsigned long flags; 1239 1240 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1241 where + size <= PCI_CAPABILITY_LIST) { 1242 /* SSIDs and ROM BARs are read-only */ 1243 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1244 spin_lock_irqsave(&hbus->config_lock, flags); 1245 1246 if (hbus->use_calls) { 1247 phys_addr_t addr = hbus->mem_config->start + offset; 1248 1249 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1250 hpdev->desc.win_slot.slot); 1251 hv_pci_write_mmio(dev, addr, size, val); 1252 } else { 1253 void __iomem *addr = hbus->cfg_addr + offset; 1254 1255 /* Choose the function to write. (See comment above) */ 1256 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1257 /* Make sure the function was chosen before writing. */ 1258 wmb(); 1259 /* Write to that function's config space. */ 1260 switch (size) { 1261 case 1: 1262 writeb(val, addr); 1263 break; 1264 case 2: 1265 writew(val, addr); 1266 break; 1267 default: 1268 writel(val, addr); 1269 break; 1270 } 1271 /* 1272 * Make sure the write was done before we release the 1273 * spinlock allowing consecutive reads/writes. 1274 */ 1275 mb(); 1276 } 1277 spin_unlock_irqrestore(&hbus->config_lock, flags); 1278 } else { 1279 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1280 } 1281 } 1282 1283 /** 1284 * hv_pcifront_read_config() - Read configuration space 1285 * @bus: PCI Bus structure 1286 * @devfn: Device/function 1287 * @where: Offset from base 1288 * @size: Byte/word/dword 1289 * @val: Value to be read 1290 * 1291 * Return: PCIBIOS_SUCCESSFUL on success 1292 * PCIBIOS_DEVICE_NOT_FOUND on failure 1293 */ 1294 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1295 int where, int size, u32 *val) 1296 { 1297 struct hv_pcibus_device *hbus = 1298 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1299 struct hv_pci_dev *hpdev; 1300 1301 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1302 if (!hpdev) 1303 return PCIBIOS_DEVICE_NOT_FOUND; 1304 1305 _hv_pcifront_read_config(hpdev, where, size, val); 1306 1307 put_pcichild(hpdev); 1308 return PCIBIOS_SUCCESSFUL; 1309 } 1310 1311 /** 1312 * hv_pcifront_write_config() - Write configuration space 1313 * @bus: PCI Bus structure 1314 * @devfn: Device/function 1315 * @where: Offset from base 1316 * @size: Byte/word/dword 1317 * @val: Value to be written to device 1318 * 1319 * Return: PCIBIOS_SUCCESSFUL on success 1320 * PCIBIOS_DEVICE_NOT_FOUND on failure 1321 */ 1322 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1323 int where, int size, u32 val) 1324 { 1325 struct hv_pcibus_device *hbus = 1326 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1327 struct hv_pci_dev *hpdev; 1328 1329 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1330 if (!hpdev) 1331 return PCIBIOS_DEVICE_NOT_FOUND; 1332 1333 _hv_pcifront_write_config(hpdev, where, size, val); 1334 1335 put_pcichild(hpdev); 1336 return PCIBIOS_SUCCESSFUL; 1337 } 1338 1339 /* PCIe operations */ 1340 static struct pci_ops hv_pcifront_ops = { 1341 .read = hv_pcifront_read_config, 1342 .write = hv_pcifront_write_config, 1343 }; 1344 1345 /* 1346 * Paravirtual backchannel 1347 * 1348 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1349 * communication between a VF driver and a PF driver. These 1350 * "configuration blocks" are similar in concept to PCI configuration space, 1351 * but instead of doing reads and writes in 32-bit chunks through a very slow 1352 * path, packets of up to 128 bytes can be sent or received asynchronously. 1353 * 1354 * Nearly every SR-IOV device contains just such a communications channel in 1355 * hardware, so using this one in software is usually optional. Using the 1356 * software channel, however, allows driver implementers to leverage software 1357 * tools that fuzz the communications channel looking for vulnerabilities. 1358 * 1359 * The usage model for these packets puts the responsibility for reading or 1360 * writing on the VF driver. The VF driver sends a read or a write packet, 1361 * indicating which "block" is being referred to by number. 1362 * 1363 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1364 * more of the first 64 blocks. This invalidation is delivered via a callback 1365 * supplied by the VF driver by this driver. 1366 * 1367 * No protocol is implied, except that supplied by the PF and VF drivers. 1368 */ 1369 1370 struct hv_read_config_compl { 1371 struct hv_pci_compl comp_pkt; 1372 void *buf; 1373 unsigned int len; 1374 unsigned int bytes_returned; 1375 }; 1376 1377 /** 1378 * hv_pci_read_config_compl() - Invoked when a response packet 1379 * for a read config block operation arrives. 1380 * @context: Identifies the read config operation 1381 * @resp: The response packet itself 1382 * @resp_packet_size: Size in bytes of the response packet 1383 */ 1384 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1385 int resp_packet_size) 1386 { 1387 struct hv_read_config_compl *comp = context; 1388 struct pci_read_block_response *read_resp = 1389 (struct pci_read_block_response *)resp; 1390 unsigned int data_len, hdr_len; 1391 1392 hdr_len = offsetof(struct pci_read_block_response, bytes); 1393 if (resp_packet_size < hdr_len) { 1394 comp->comp_pkt.completion_status = -1; 1395 goto out; 1396 } 1397 1398 data_len = resp_packet_size - hdr_len; 1399 if (data_len > 0 && read_resp->status == 0) { 1400 comp->bytes_returned = min(comp->len, data_len); 1401 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1402 } else { 1403 comp->bytes_returned = 0; 1404 } 1405 1406 comp->comp_pkt.completion_status = read_resp->status; 1407 out: 1408 complete(&comp->comp_pkt.host_event); 1409 } 1410 1411 /** 1412 * hv_read_config_block() - Sends a read config block request to 1413 * the back-end driver running in the Hyper-V parent partition. 1414 * @pdev: The PCI driver's representation for this device. 1415 * @buf: Buffer into which the config block will be copied. 1416 * @len: Size in bytes of buf. 1417 * @block_id: Identifies the config block which has been requested. 1418 * @bytes_returned: Size which came back from the back-end driver. 1419 * 1420 * Return: 0 on success, -errno on failure 1421 */ 1422 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1423 unsigned int len, unsigned int block_id, 1424 unsigned int *bytes_returned) 1425 { 1426 struct hv_pcibus_device *hbus = 1427 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1428 sysdata); 1429 struct { 1430 struct pci_packet pkt; 1431 char buf[sizeof(struct pci_read_block)]; 1432 } pkt; 1433 struct hv_read_config_compl comp_pkt; 1434 struct pci_read_block *read_blk; 1435 int ret; 1436 1437 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1438 return -EINVAL; 1439 1440 init_completion(&comp_pkt.comp_pkt.host_event); 1441 comp_pkt.buf = buf; 1442 comp_pkt.len = len; 1443 1444 memset(&pkt, 0, sizeof(pkt)); 1445 pkt.pkt.completion_func = hv_pci_read_config_compl; 1446 pkt.pkt.compl_ctxt = &comp_pkt; 1447 read_blk = (struct pci_read_block *)&pkt.pkt.message; 1448 read_blk->message_type.type = PCI_READ_BLOCK; 1449 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1450 read_blk->block_id = block_id; 1451 read_blk->bytes_requested = len; 1452 1453 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1454 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1455 VM_PKT_DATA_INBAND, 1456 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1457 if (ret) 1458 return ret; 1459 1460 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1461 if (ret) 1462 return ret; 1463 1464 if (comp_pkt.comp_pkt.completion_status != 0 || 1465 comp_pkt.bytes_returned == 0) { 1466 dev_err(&hbus->hdev->device, 1467 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1468 comp_pkt.comp_pkt.completion_status, 1469 comp_pkt.bytes_returned); 1470 return -EIO; 1471 } 1472 1473 *bytes_returned = comp_pkt.bytes_returned; 1474 return 0; 1475 } 1476 1477 /** 1478 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1479 * config block operation arrives. 1480 * @context: Identifies the write config operation 1481 * @resp: The response packet itself 1482 * @resp_packet_size: Size in bytes of the response packet 1483 */ 1484 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1485 int resp_packet_size) 1486 { 1487 struct hv_pci_compl *comp_pkt = context; 1488 1489 comp_pkt->completion_status = resp->status; 1490 complete(&comp_pkt->host_event); 1491 } 1492 1493 /** 1494 * hv_write_config_block() - Sends a write config block request to the 1495 * back-end driver running in the Hyper-V parent partition. 1496 * @pdev: The PCI driver's representation for this device. 1497 * @buf: Buffer from which the config block will be copied. 1498 * @len: Size in bytes of buf. 1499 * @block_id: Identifies the config block which is being written. 1500 * 1501 * Return: 0 on success, -errno on failure 1502 */ 1503 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1504 unsigned int len, unsigned int block_id) 1505 { 1506 struct hv_pcibus_device *hbus = 1507 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1508 sysdata); 1509 struct { 1510 struct pci_packet pkt; 1511 char buf[sizeof(struct pci_write_block)]; 1512 u32 reserved; 1513 } pkt; 1514 struct hv_pci_compl comp_pkt; 1515 struct pci_write_block *write_blk; 1516 u32 pkt_size; 1517 int ret; 1518 1519 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1520 return -EINVAL; 1521 1522 init_completion(&comp_pkt.host_event); 1523 1524 memset(&pkt, 0, sizeof(pkt)); 1525 pkt.pkt.completion_func = hv_pci_write_config_compl; 1526 pkt.pkt.compl_ctxt = &comp_pkt; 1527 write_blk = (struct pci_write_block *)&pkt.pkt.message; 1528 write_blk->message_type.type = PCI_WRITE_BLOCK; 1529 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1530 write_blk->block_id = block_id; 1531 write_blk->byte_count = len; 1532 memcpy(write_blk->bytes, buf, len); 1533 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1534 /* 1535 * This quirk is required on some hosts shipped around 2018, because 1536 * these hosts don't check the pkt_size correctly (new hosts have been 1537 * fixed since early 2019). The quirk is also safe on very old hosts 1538 * and new hosts, because, on them, what really matters is the length 1539 * specified in write_blk->byte_count. 1540 */ 1541 pkt_size += sizeof(pkt.reserved); 1542 1543 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1544 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1545 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1546 if (ret) 1547 return ret; 1548 1549 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1550 if (ret) 1551 return ret; 1552 1553 if (comp_pkt.completion_status != 0) { 1554 dev_err(&hbus->hdev->device, 1555 "Write Config Block failed: 0x%x\n", 1556 comp_pkt.completion_status); 1557 return -EIO; 1558 } 1559 1560 return 0; 1561 } 1562 1563 /** 1564 * hv_register_block_invalidate() - Invoked when a config block invalidation 1565 * arrives from the back-end driver. 1566 * @pdev: The PCI driver's representation for this device. 1567 * @context: Identifies the device. 1568 * @block_invalidate: Identifies all of the blocks being invalidated. 1569 * 1570 * Return: 0 on success, -errno on failure 1571 */ 1572 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1573 void (*block_invalidate)(void *context, 1574 u64 block_mask)) 1575 { 1576 struct hv_pcibus_device *hbus = 1577 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1578 sysdata); 1579 struct hv_pci_dev *hpdev; 1580 1581 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1582 if (!hpdev) 1583 return -ENODEV; 1584 1585 hpdev->block_invalidate = block_invalidate; 1586 hpdev->invalidate_context = context; 1587 1588 put_pcichild(hpdev); 1589 return 0; 1590 1591 } 1592 1593 /* Interrupt management hooks */ 1594 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1595 struct tran_int_desc *int_desc) 1596 { 1597 struct pci_delete_interrupt *int_pkt; 1598 struct { 1599 struct pci_packet pkt; 1600 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1601 } ctxt; 1602 1603 if (!int_desc->vector_count) { 1604 kfree(int_desc); 1605 return; 1606 } 1607 memset(&ctxt, 0, sizeof(ctxt)); 1608 int_pkt = (struct pci_delete_interrupt *)&ctxt.pkt.message; 1609 int_pkt->message_type.type = 1610 PCI_DELETE_INTERRUPT_MESSAGE; 1611 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1612 int_pkt->int_desc = *int_desc; 1613 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1614 0, VM_PKT_DATA_INBAND, 0); 1615 kfree(int_desc); 1616 } 1617 1618 /** 1619 * hv_msi_free() - Free the MSI. 1620 * @domain: The interrupt domain pointer 1621 * @info: Extra MSI-related context 1622 * @irq: Identifies the IRQ. 1623 * 1624 * The Hyper-V parent partition and hypervisor are tracking the 1625 * messages that are in use, keeping the interrupt redirection 1626 * table up to date. This callback sends a message that frees 1627 * the IRT entry and related tracking nonsense. 1628 */ 1629 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1630 unsigned int irq) 1631 { 1632 struct hv_pcibus_device *hbus; 1633 struct hv_pci_dev *hpdev; 1634 struct pci_dev *pdev; 1635 struct tran_int_desc *int_desc; 1636 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1637 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1638 1639 pdev = msi_desc_to_pci_dev(msi); 1640 hbus = info->data; 1641 int_desc = irq_data_get_irq_chip_data(irq_data); 1642 if (!int_desc) 1643 return; 1644 1645 irq_data->chip_data = NULL; 1646 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1647 if (!hpdev) { 1648 kfree(int_desc); 1649 return; 1650 } 1651 1652 hv_int_desc_free(hpdev, int_desc); 1653 put_pcichild(hpdev); 1654 } 1655 1656 static void hv_irq_mask(struct irq_data *data) 1657 { 1658 pci_msi_mask_irq(data); 1659 if (data->parent_data->chip->irq_mask) 1660 irq_chip_mask_parent(data); 1661 } 1662 1663 static void hv_irq_unmask(struct irq_data *data) 1664 { 1665 hv_arch_irq_unmask(data); 1666 1667 if (data->parent_data->chip->irq_unmask) 1668 irq_chip_unmask_parent(data); 1669 pci_msi_unmask_irq(data); 1670 } 1671 1672 struct compose_comp_ctxt { 1673 struct hv_pci_compl comp_pkt; 1674 struct tran_int_desc int_desc; 1675 }; 1676 1677 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1678 int resp_packet_size) 1679 { 1680 struct compose_comp_ctxt *comp_pkt = context; 1681 struct pci_create_int_response *int_resp = 1682 (struct pci_create_int_response *)resp; 1683 1684 if (resp_packet_size < sizeof(*int_resp)) { 1685 comp_pkt->comp_pkt.completion_status = -1; 1686 goto out; 1687 } 1688 comp_pkt->comp_pkt.completion_status = resp->status; 1689 comp_pkt->int_desc = int_resp->int_desc; 1690 out: 1691 complete(&comp_pkt->comp_pkt.host_event); 1692 } 1693 1694 static u32 hv_compose_msi_req_v1( 1695 struct pci_create_interrupt *int_pkt, 1696 u32 slot, u8 vector, u16 vector_count) 1697 { 1698 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1699 int_pkt->wslot.slot = slot; 1700 int_pkt->int_desc.vector = vector; 1701 int_pkt->int_desc.vector_count = vector_count; 1702 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1703 1704 /* 1705 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1706 * hv_irq_unmask(). 1707 */ 1708 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1709 1710 return sizeof(*int_pkt); 1711 } 1712 1713 /* 1714 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1715 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1716 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1717 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1718 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1719 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1720 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1721 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1722 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1723 * to spread out the pCPUs that it selects. 1724 * 1725 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1726 * to always return the same dummy vCPU, because a second call to 1727 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1728 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1729 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1730 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1731 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1732 * the same pCPU, even though the vCPUs will be spread out by later calls 1733 * to hv_irq_unmask(), but that is the best we can do now. 1734 * 1735 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1736 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1737 * enhancement is planned for a future version. With that enhancement, the 1738 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1739 * device will be spread across multiple pCPUs. 1740 */ 1741 1742 /* 1743 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1744 * by subsequent retarget in hv_irq_unmask(). 1745 */ 1746 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1747 { 1748 return cpumask_first_and(affinity, cpu_online_mask); 1749 } 1750 1751 /* 1752 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1753 */ 1754 static int hv_compose_multi_msi_req_get_cpu(void) 1755 { 1756 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1757 1758 /* -1 means starting with CPU 0 */ 1759 static int cpu_next = -1; 1760 1761 unsigned long flags; 1762 int cpu; 1763 1764 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1765 1766 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask, nr_cpu_ids, 1767 false); 1768 cpu = cpu_next; 1769 1770 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1771 1772 return cpu; 1773 } 1774 1775 static u32 hv_compose_msi_req_v2( 1776 struct pci_create_interrupt2 *int_pkt, int cpu, 1777 u32 slot, u8 vector, u16 vector_count) 1778 { 1779 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1780 int_pkt->wslot.slot = slot; 1781 int_pkt->int_desc.vector = vector; 1782 int_pkt->int_desc.vector_count = vector_count; 1783 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1784 int_pkt->int_desc.processor_array[0] = 1785 hv_cpu_number_to_vp_number(cpu); 1786 int_pkt->int_desc.processor_count = 1; 1787 1788 return sizeof(*int_pkt); 1789 } 1790 1791 static u32 hv_compose_msi_req_v3( 1792 struct pci_create_interrupt3 *int_pkt, int cpu, 1793 u32 slot, u32 vector, u16 vector_count) 1794 { 1795 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1796 int_pkt->wslot.slot = slot; 1797 int_pkt->int_desc.vector = vector; 1798 int_pkt->int_desc.reserved = 0; 1799 int_pkt->int_desc.vector_count = vector_count; 1800 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1801 int_pkt->int_desc.processor_array[0] = 1802 hv_cpu_number_to_vp_number(cpu); 1803 int_pkt->int_desc.processor_count = 1; 1804 1805 return sizeof(*int_pkt); 1806 } 1807 1808 /** 1809 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1810 * @data: Everything about this MSI 1811 * @msg: Buffer that is filled in by this function 1812 * 1813 * This function unpacks the IRQ looking for target CPU set, IDT 1814 * vector and mode and sends a message to the parent partition 1815 * asking for a mapping for that tuple in this partition. The 1816 * response supplies a data value and address to which that data 1817 * should be written to trigger that interrupt. 1818 */ 1819 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1820 { 1821 struct hv_pcibus_device *hbus; 1822 struct vmbus_channel *channel; 1823 struct hv_pci_dev *hpdev; 1824 struct pci_bus *pbus; 1825 struct pci_dev *pdev; 1826 const struct cpumask *dest; 1827 struct compose_comp_ctxt comp; 1828 struct tran_int_desc *int_desc; 1829 struct msi_desc *msi_desc; 1830 /* 1831 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1832 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1833 */ 1834 u16 vector_count; 1835 u32 vector; 1836 struct { 1837 struct pci_packet pci_pkt; 1838 union { 1839 struct pci_create_interrupt v1; 1840 struct pci_create_interrupt2 v2; 1841 struct pci_create_interrupt3 v3; 1842 } int_pkts; 1843 } __packed ctxt; 1844 bool multi_msi; 1845 u64 trans_id; 1846 u32 size; 1847 int ret; 1848 int cpu; 1849 1850 msi_desc = irq_data_get_msi_desc(data); 1851 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1852 msi_desc->nvec_used > 1; 1853 1854 /* Reuse the previous allocation */ 1855 if (data->chip_data && multi_msi) { 1856 int_desc = data->chip_data; 1857 msg->address_hi = int_desc->address >> 32; 1858 msg->address_lo = int_desc->address & 0xffffffff; 1859 msg->data = int_desc->data; 1860 return; 1861 } 1862 1863 pdev = msi_desc_to_pci_dev(msi_desc); 1864 dest = irq_data_get_effective_affinity_mask(data); 1865 pbus = pdev->bus; 1866 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1867 channel = hbus->hdev->channel; 1868 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1869 if (!hpdev) 1870 goto return_null_message; 1871 1872 /* Free any previous message that might have already been composed. */ 1873 if (data->chip_data && !multi_msi) { 1874 int_desc = data->chip_data; 1875 data->chip_data = NULL; 1876 hv_int_desc_free(hpdev, int_desc); 1877 } 1878 1879 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1880 if (!int_desc) 1881 goto drop_reference; 1882 1883 if (multi_msi) { 1884 /* 1885 * If this is not the first MSI of Multi MSI, we already have 1886 * a mapping. Can exit early. 1887 */ 1888 if (msi_desc->irq != data->irq) { 1889 data->chip_data = int_desc; 1890 int_desc->address = msi_desc->msg.address_lo | 1891 (u64)msi_desc->msg.address_hi << 32; 1892 int_desc->data = msi_desc->msg.data + 1893 (data->irq - msi_desc->irq); 1894 msg->address_hi = msi_desc->msg.address_hi; 1895 msg->address_lo = msi_desc->msg.address_lo; 1896 msg->data = int_desc->data; 1897 put_pcichild(hpdev); 1898 return; 1899 } 1900 /* 1901 * The vector we select here is a dummy value. The correct 1902 * value gets sent to the hypervisor in unmask(). This needs 1903 * to be aligned with the count, and also not zero. Multi-msi 1904 * is powers of 2 up to 32, so 32 will always work here. 1905 */ 1906 vector = 32; 1907 vector_count = msi_desc->nvec_used; 1908 cpu = hv_compose_multi_msi_req_get_cpu(); 1909 } else { 1910 vector = hv_msi_get_int_vector(data); 1911 vector_count = 1; 1912 cpu = hv_compose_msi_req_get_cpu(dest); 1913 } 1914 1915 /* 1916 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1917 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1918 * for better readability. 1919 */ 1920 memset(&ctxt, 0, sizeof(ctxt)); 1921 init_completion(&comp.comp_pkt.host_event); 1922 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1923 ctxt.pci_pkt.compl_ctxt = ∁ 1924 1925 switch (hbus->protocol_version) { 1926 case PCI_PROTOCOL_VERSION_1_1: 1927 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1928 hpdev->desc.win_slot.slot, 1929 (u8)vector, 1930 vector_count); 1931 break; 1932 1933 case PCI_PROTOCOL_VERSION_1_2: 1934 case PCI_PROTOCOL_VERSION_1_3: 1935 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1936 cpu, 1937 hpdev->desc.win_slot.slot, 1938 (u8)vector, 1939 vector_count); 1940 break; 1941 1942 case PCI_PROTOCOL_VERSION_1_4: 1943 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 1944 cpu, 1945 hpdev->desc.win_slot.slot, 1946 vector, 1947 vector_count); 1948 break; 1949 1950 default: 1951 /* As we only negotiate protocol versions known to this driver, 1952 * this path should never hit. However, this is it not a hot 1953 * path so we print a message to aid future updates. 1954 */ 1955 dev_err(&hbus->hdev->device, 1956 "Unexpected vPCI protocol, update driver."); 1957 goto free_int_desc; 1958 } 1959 1960 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 1961 size, (unsigned long)&ctxt.pci_pkt, 1962 &trans_id, VM_PKT_DATA_INBAND, 1963 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1964 if (ret) { 1965 dev_err(&hbus->hdev->device, 1966 "Sending request for interrupt failed: 0x%x", 1967 comp.comp_pkt.completion_status); 1968 goto free_int_desc; 1969 } 1970 1971 /* 1972 * Prevents hv_pci_onchannelcallback() from running concurrently 1973 * in the tasklet. 1974 */ 1975 tasklet_disable_in_atomic(&channel->callback_event); 1976 1977 /* 1978 * Since this function is called with IRQ locks held, can't 1979 * do normal wait for completion; instead poll. 1980 */ 1981 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 1982 unsigned long flags; 1983 1984 /* 0xFFFF means an invalid PCI VENDOR ID. */ 1985 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 1986 dev_err_once(&hbus->hdev->device, 1987 "the device has gone\n"); 1988 goto enable_tasklet; 1989 } 1990 1991 /* 1992 * Make sure that the ring buffer data structure doesn't get 1993 * freed while we dereference the ring buffer pointer. Test 1994 * for the channel's onchannel_callback being NULL within a 1995 * sched_lock critical section. See also the inline comments 1996 * in vmbus_reset_channel_cb(). 1997 */ 1998 spin_lock_irqsave(&channel->sched_lock, flags); 1999 if (unlikely(channel->onchannel_callback == NULL)) { 2000 spin_unlock_irqrestore(&channel->sched_lock, flags); 2001 goto enable_tasklet; 2002 } 2003 hv_pci_onchannelcallback(hbus); 2004 spin_unlock_irqrestore(&channel->sched_lock, flags); 2005 2006 udelay(100); 2007 } 2008 2009 tasklet_enable(&channel->callback_event); 2010 2011 if (comp.comp_pkt.completion_status < 0) { 2012 dev_err(&hbus->hdev->device, 2013 "Request for interrupt failed: 0x%x", 2014 comp.comp_pkt.completion_status); 2015 goto free_int_desc; 2016 } 2017 2018 /* 2019 * Record the assignment so that this can be unwound later. Using 2020 * irq_set_chip_data() here would be appropriate, but the lock it takes 2021 * is already held. 2022 */ 2023 *int_desc = comp.int_desc; 2024 data->chip_data = int_desc; 2025 2026 /* Pass up the result. */ 2027 msg->address_hi = comp.int_desc.address >> 32; 2028 msg->address_lo = comp.int_desc.address & 0xffffffff; 2029 msg->data = comp.int_desc.data; 2030 2031 put_pcichild(hpdev); 2032 return; 2033 2034 enable_tasklet: 2035 tasklet_enable(&channel->callback_event); 2036 /* 2037 * The completion packet on the stack becomes invalid after 'return'; 2038 * remove the ID from the VMbus requestor if the identifier is still 2039 * mapped to/associated with the packet. (The identifier could have 2040 * been 're-used', i.e., already removed and (re-)mapped.) 2041 * 2042 * Cf. hv_pci_onchannelcallback(). 2043 */ 2044 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2045 free_int_desc: 2046 kfree(int_desc); 2047 drop_reference: 2048 put_pcichild(hpdev); 2049 return_null_message: 2050 msg->address_hi = 0; 2051 msg->address_lo = 0; 2052 msg->data = 0; 2053 } 2054 2055 /* HW Interrupt Chip Descriptor */ 2056 static struct irq_chip hv_msi_irq_chip = { 2057 .name = "Hyper-V PCIe MSI", 2058 .irq_compose_msi_msg = hv_compose_msi_msg, 2059 .irq_set_affinity = irq_chip_set_affinity_parent, 2060 #ifdef CONFIG_X86 2061 .irq_ack = irq_chip_ack_parent, 2062 #elif defined(CONFIG_ARM64) 2063 .irq_eoi = irq_chip_eoi_parent, 2064 #endif 2065 .irq_mask = hv_irq_mask, 2066 .irq_unmask = hv_irq_unmask, 2067 }; 2068 2069 static struct msi_domain_ops hv_msi_ops = { 2070 .msi_prepare = hv_msi_prepare, 2071 .msi_free = hv_msi_free, 2072 }; 2073 2074 /** 2075 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2076 * @hbus: The root PCI bus 2077 * 2078 * This function creates an IRQ domain which will be used for 2079 * interrupts from devices that have been passed through. These 2080 * devices only support MSI and MSI-X, not line-based interrupts 2081 * or simulations of line-based interrupts through PCIe's 2082 * fabric-layer messages. Because interrupts are remapped, we 2083 * can support multi-message MSI here. 2084 * 2085 * Return: '0' on success and error value on failure 2086 */ 2087 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2088 { 2089 hbus->msi_info.chip = &hv_msi_irq_chip; 2090 hbus->msi_info.ops = &hv_msi_ops; 2091 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 2092 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 2093 MSI_FLAG_PCI_MSIX); 2094 hbus->msi_info.handler = FLOW_HANDLER; 2095 hbus->msi_info.handler_name = FLOW_NAME; 2096 hbus->msi_info.data = hbus; 2097 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 2098 &hbus->msi_info, 2099 hv_pci_get_root_domain()); 2100 if (!hbus->irq_domain) { 2101 dev_err(&hbus->hdev->device, 2102 "Failed to build an MSI IRQ domain\n"); 2103 return -ENODEV; 2104 } 2105 2106 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2107 2108 return 0; 2109 } 2110 2111 /** 2112 * get_bar_size() - Get the address space consumed by a BAR 2113 * @bar_val: Value that a BAR returned after -1 was written 2114 * to it. 2115 * 2116 * This function returns the size of the BAR, rounded up to 1 2117 * page. It has to be rounded up because the hypervisor's page 2118 * table entry that maps the BAR into the VM can't specify an 2119 * offset within a page. The invariant is that the hypervisor 2120 * must place any BARs of smaller than page length at the 2121 * beginning of a page. 2122 * 2123 * Return: Size in bytes of the consumed MMIO space. 2124 */ 2125 static u64 get_bar_size(u64 bar_val) 2126 { 2127 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2128 PAGE_SIZE); 2129 } 2130 2131 /** 2132 * survey_child_resources() - Total all MMIO requirements 2133 * @hbus: Root PCI bus, as understood by this driver 2134 */ 2135 static void survey_child_resources(struct hv_pcibus_device *hbus) 2136 { 2137 struct hv_pci_dev *hpdev; 2138 resource_size_t bar_size = 0; 2139 unsigned long flags; 2140 struct completion *event; 2141 u64 bar_val; 2142 int i; 2143 2144 /* If nobody is waiting on the answer, don't compute it. */ 2145 event = xchg(&hbus->survey_event, NULL); 2146 if (!event) 2147 return; 2148 2149 /* If the answer has already been computed, go with it. */ 2150 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2151 complete(event); 2152 return; 2153 } 2154 2155 spin_lock_irqsave(&hbus->device_list_lock, flags); 2156 2157 /* 2158 * Due to an interesting quirk of the PCI spec, all memory regions 2159 * for a child device are a power of 2 in size and aligned in memory, 2160 * so it's sufficient to just add them up without tracking alignment. 2161 */ 2162 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2163 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2164 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2165 dev_err(&hbus->hdev->device, 2166 "There's an I/O BAR in this list!\n"); 2167 2168 if (hpdev->probed_bar[i] != 0) { 2169 /* 2170 * A probed BAR has all the upper bits set that 2171 * can be changed. 2172 */ 2173 2174 bar_val = hpdev->probed_bar[i]; 2175 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2176 bar_val |= 2177 ((u64)hpdev->probed_bar[++i] << 32); 2178 else 2179 bar_val |= 0xffffffff00000000ULL; 2180 2181 bar_size = get_bar_size(bar_val); 2182 2183 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2184 hbus->high_mmio_space += bar_size; 2185 else 2186 hbus->low_mmio_space += bar_size; 2187 } 2188 } 2189 } 2190 2191 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2192 complete(event); 2193 } 2194 2195 /** 2196 * prepopulate_bars() - Fill in BARs with defaults 2197 * @hbus: Root PCI bus, as understood by this driver 2198 * 2199 * The core PCI driver code seems much, much happier if the BARs 2200 * for a device have values upon first scan. So fill them in. 2201 * The algorithm below works down from large sizes to small, 2202 * attempting to pack the assignments optimally. The assumption, 2203 * enforced in other parts of the code, is that the beginning of 2204 * the memory-mapped I/O space will be aligned on the largest 2205 * BAR size. 2206 */ 2207 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2208 { 2209 resource_size_t high_size = 0; 2210 resource_size_t low_size = 0; 2211 resource_size_t high_base = 0; 2212 resource_size_t low_base = 0; 2213 resource_size_t bar_size; 2214 struct hv_pci_dev *hpdev; 2215 unsigned long flags; 2216 u64 bar_val; 2217 u32 command; 2218 bool high; 2219 int i; 2220 2221 if (hbus->low_mmio_space) { 2222 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2223 low_base = hbus->low_mmio_res->start; 2224 } 2225 2226 if (hbus->high_mmio_space) { 2227 high_size = 1ULL << 2228 (63 - __builtin_clzll(hbus->high_mmio_space)); 2229 high_base = hbus->high_mmio_res->start; 2230 } 2231 2232 spin_lock_irqsave(&hbus->device_list_lock, flags); 2233 2234 /* 2235 * Clear the memory enable bit, in case it's already set. This occurs 2236 * in the suspend path of hibernation, where the device is suspended, 2237 * resumed and suspended again: see hibernation_snapshot() and 2238 * hibernation_platform_enter(). 2239 * 2240 * If the memory enable bit is already set, Hyper-V silently ignores 2241 * the below BAR updates, and the related PCI device driver can not 2242 * work, because reading from the device register(s) always returns 2243 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2244 */ 2245 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2246 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2247 command &= ~PCI_COMMAND_MEMORY; 2248 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2249 } 2250 2251 /* Pick addresses for the BARs. */ 2252 do { 2253 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2254 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2255 bar_val = hpdev->probed_bar[i]; 2256 if (bar_val == 0) 2257 continue; 2258 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2259 if (high) { 2260 bar_val |= 2261 ((u64)hpdev->probed_bar[i + 1] 2262 << 32); 2263 } else { 2264 bar_val |= 0xffffffffULL << 32; 2265 } 2266 bar_size = get_bar_size(bar_val); 2267 if (high) { 2268 if (high_size != bar_size) { 2269 i++; 2270 continue; 2271 } 2272 _hv_pcifront_write_config(hpdev, 2273 PCI_BASE_ADDRESS_0 + (4 * i), 2274 4, 2275 (u32)(high_base & 0xffffff00)); 2276 i++; 2277 _hv_pcifront_write_config(hpdev, 2278 PCI_BASE_ADDRESS_0 + (4 * i), 2279 4, (u32)(high_base >> 32)); 2280 high_base += bar_size; 2281 } else { 2282 if (low_size != bar_size) 2283 continue; 2284 _hv_pcifront_write_config(hpdev, 2285 PCI_BASE_ADDRESS_0 + (4 * i), 2286 4, 2287 (u32)(low_base & 0xffffff00)); 2288 low_base += bar_size; 2289 } 2290 } 2291 if (high_size <= 1 && low_size <= 1) { 2292 /* 2293 * No need to set the PCI_COMMAND_MEMORY bit as 2294 * the core PCI driver doesn't require the bit 2295 * to be pre-set. Actually here we intentionally 2296 * keep the bit off so that the PCI BAR probing 2297 * in the core PCI driver doesn't cause Hyper-V 2298 * to unnecessarily unmap/map the virtual BARs 2299 * from/to the physical BARs multiple times. 2300 * This reduces the VM boot time significantly 2301 * if the BAR sizes are huge. 2302 */ 2303 break; 2304 } 2305 } 2306 2307 high_size >>= 1; 2308 low_size >>= 1; 2309 } while (high_size || low_size); 2310 2311 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2312 } 2313 2314 /* 2315 * Assign entries in sysfs pci slot directory. 2316 * 2317 * Note that this function does not need to lock the children list 2318 * because it is called from pci_devices_present_work which 2319 * is serialized with hv_eject_device_work because they are on the 2320 * same ordered workqueue. Therefore hbus->children list will not change 2321 * even when pci_create_slot sleeps. 2322 */ 2323 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2324 { 2325 struct hv_pci_dev *hpdev; 2326 char name[SLOT_NAME_SIZE]; 2327 int slot_nr; 2328 2329 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2330 if (hpdev->pci_slot) 2331 continue; 2332 2333 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2334 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2335 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2336 name, NULL); 2337 if (IS_ERR(hpdev->pci_slot)) { 2338 pr_warn("pci_create slot %s failed\n", name); 2339 hpdev->pci_slot = NULL; 2340 } 2341 } 2342 } 2343 2344 /* 2345 * Remove entries in sysfs pci slot directory. 2346 */ 2347 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2348 { 2349 struct hv_pci_dev *hpdev; 2350 2351 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2352 if (!hpdev->pci_slot) 2353 continue; 2354 pci_destroy_slot(hpdev->pci_slot); 2355 hpdev->pci_slot = NULL; 2356 } 2357 } 2358 2359 /* 2360 * Set NUMA node for the devices on the bus 2361 */ 2362 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2363 { 2364 struct pci_dev *dev; 2365 struct pci_bus *bus = hbus->bridge->bus; 2366 struct hv_pci_dev *hv_dev; 2367 2368 list_for_each_entry(dev, &bus->devices, bus_list) { 2369 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2370 if (!hv_dev) 2371 continue; 2372 2373 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2374 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2375 /* 2376 * The kernel may boot with some NUMA nodes offline 2377 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2378 * "numa=off". In those cases, adjust the host provided 2379 * NUMA node to a valid NUMA node used by the kernel. 2380 */ 2381 set_dev_node(&dev->dev, 2382 numa_map_to_online_node( 2383 hv_dev->desc.virtual_numa_node)); 2384 2385 put_pcichild(hv_dev); 2386 } 2387 } 2388 2389 /** 2390 * create_root_hv_pci_bus() - Expose a new root PCI bus 2391 * @hbus: Root PCI bus, as understood by this driver 2392 * 2393 * Return: 0 on success, -errno on failure 2394 */ 2395 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2396 { 2397 int error; 2398 struct pci_host_bridge *bridge = hbus->bridge; 2399 2400 bridge->dev.parent = &hbus->hdev->device; 2401 bridge->sysdata = &hbus->sysdata; 2402 bridge->ops = &hv_pcifront_ops; 2403 2404 error = pci_scan_root_bus_bridge(bridge); 2405 if (error) 2406 return error; 2407 2408 pci_lock_rescan_remove(); 2409 hv_pci_assign_numa_node(hbus); 2410 pci_bus_assign_resources(bridge->bus); 2411 hv_pci_assign_slots(hbus); 2412 pci_bus_add_devices(bridge->bus); 2413 pci_unlock_rescan_remove(); 2414 hbus->state = hv_pcibus_installed; 2415 return 0; 2416 } 2417 2418 struct q_res_req_compl { 2419 struct completion host_event; 2420 struct hv_pci_dev *hpdev; 2421 }; 2422 2423 /** 2424 * q_resource_requirements() - Query Resource Requirements 2425 * @context: The completion context. 2426 * @resp: The response that came from the host. 2427 * @resp_packet_size: The size in bytes of resp. 2428 * 2429 * This function is invoked on completion of a Query Resource 2430 * Requirements packet. 2431 */ 2432 static void q_resource_requirements(void *context, struct pci_response *resp, 2433 int resp_packet_size) 2434 { 2435 struct q_res_req_compl *completion = context; 2436 struct pci_q_res_req_response *q_res_req = 2437 (struct pci_q_res_req_response *)resp; 2438 s32 status; 2439 int i; 2440 2441 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2442 if (status < 0) { 2443 dev_err(&completion->hpdev->hbus->hdev->device, 2444 "query resource requirements failed: %x\n", 2445 status); 2446 } else { 2447 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2448 completion->hpdev->probed_bar[i] = 2449 q_res_req->probed_bar[i]; 2450 } 2451 } 2452 2453 complete(&completion->host_event); 2454 } 2455 2456 /** 2457 * new_pcichild_device() - Create a new child device 2458 * @hbus: The internal struct tracking this root PCI bus. 2459 * @desc: The information supplied so far from the host 2460 * about the device. 2461 * 2462 * This function creates the tracking structure for a new child 2463 * device and kicks off the process of figuring out what it is. 2464 * 2465 * Return: Pointer to the new tracking struct 2466 */ 2467 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2468 struct hv_pcidev_description *desc) 2469 { 2470 struct hv_pci_dev *hpdev; 2471 struct pci_child_message *res_req; 2472 struct q_res_req_compl comp_pkt; 2473 struct { 2474 struct pci_packet init_packet; 2475 u8 buffer[sizeof(struct pci_child_message)]; 2476 } pkt; 2477 unsigned long flags; 2478 int ret; 2479 2480 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2481 if (!hpdev) 2482 return NULL; 2483 2484 hpdev->hbus = hbus; 2485 2486 memset(&pkt, 0, sizeof(pkt)); 2487 init_completion(&comp_pkt.host_event); 2488 comp_pkt.hpdev = hpdev; 2489 pkt.init_packet.compl_ctxt = &comp_pkt; 2490 pkt.init_packet.completion_func = q_resource_requirements; 2491 res_req = (struct pci_child_message *)&pkt.init_packet.message; 2492 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2493 res_req->wslot.slot = desc->win_slot.slot; 2494 2495 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2496 sizeof(struct pci_child_message), 2497 (unsigned long)&pkt.init_packet, 2498 VM_PKT_DATA_INBAND, 2499 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2500 if (ret) 2501 goto error; 2502 2503 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2504 goto error; 2505 2506 hpdev->desc = *desc; 2507 refcount_set(&hpdev->refs, 1); 2508 get_pcichild(hpdev); 2509 spin_lock_irqsave(&hbus->device_list_lock, flags); 2510 2511 list_add_tail(&hpdev->list_entry, &hbus->children); 2512 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2513 return hpdev; 2514 2515 error: 2516 kfree(hpdev); 2517 return NULL; 2518 } 2519 2520 /** 2521 * get_pcichild_wslot() - Find device from slot 2522 * @hbus: Root PCI bus, as understood by this driver 2523 * @wslot: Location on the bus 2524 * 2525 * This function looks up a PCI device and returns the internal 2526 * representation of it. It acquires a reference on it, so that 2527 * the device won't be deleted while somebody is using it. The 2528 * caller is responsible for calling put_pcichild() to release 2529 * this reference. 2530 * 2531 * Return: Internal representation of a PCI device 2532 */ 2533 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2534 u32 wslot) 2535 { 2536 unsigned long flags; 2537 struct hv_pci_dev *iter, *hpdev = NULL; 2538 2539 spin_lock_irqsave(&hbus->device_list_lock, flags); 2540 list_for_each_entry(iter, &hbus->children, list_entry) { 2541 if (iter->desc.win_slot.slot == wslot) { 2542 hpdev = iter; 2543 get_pcichild(hpdev); 2544 break; 2545 } 2546 } 2547 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2548 2549 return hpdev; 2550 } 2551 2552 /** 2553 * pci_devices_present_work() - Handle new list of child devices 2554 * @work: Work struct embedded in struct hv_dr_work 2555 * 2556 * "Bus Relations" is the Windows term for "children of this 2557 * bus." The terminology is preserved here for people trying to 2558 * debug the interaction between Hyper-V and Linux. This 2559 * function is called when the parent partition reports a list 2560 * of functions that should be observed under this PCI Express 2561 * port (bus). 2562 * 2563 * This function updates the list, and must tolerate being 2564 * called multiple times with the same information. The typical 2565 * number of child devices is one, with very atypical cases 2566 * involving three or four, so the algorithms used here can be 2567 * simple and inefficient. 2568 * 2569 * It must also treat the omission of a previously observed device as 2570 * notification that the device no longer exists. 2571 * 2572 * Note that this function is serialized with hv_eject_device_work(), 2573 * because both are pushed to the ordered workqueue hbus->wq. 2574 */ 2575 static void pci_devices_present_work(struct work_struct *work) 2576 { 2577 u32 child_no; 2578 bool found; 2579 struct hv_pcidev_description *new_desc; 2580 struct hv_pci_dev *hpdev; 2581 struct hv_pcibus_device *hbus; 2582 struct list_head removed; 2583 struct hv_dr_work *dr_wrk; 2584 struct hv_dr_state *dr = NULL; 2585 unsigned long flags; 2586 2587 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2588 hbus = dr_wrk->bus; 2589 kfree(dr_wrk); 2590 2591 INIT_LIST_HEAD(&removed); 2592 2593 /* Pull this off the queue and process it if it was the last one. */ 2594 spin_lock_irqsave(&hbus->device_list_lock, flags); 2595 while (!list_empty(&hbus->dr_list)) { 2596 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2597 list_entry); 2598 list_del(&dr->list_entry); 2599 2600 /* Throw this away if the list still has stuff in it. */ 2601 if (!list_empty(&hbus->dr_list)) { 2602 kfree(dr); 2603 continue; 2604 } 2605 } 2606 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2607 2608 if (!dr) 2609 return; 2610 2611 mutex_lock(&hbus->state_lock); 2612 2613 /* First, mark all existing children as reported missing. */ 2614 spin_lock_irqsave(&hbus->device_list_lock, flags); 2615 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2616 hpdev->reported_missing = true; 2617 } 2618 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2619 2620 /* Next, add back any reported devices. */ 2621 for (child_no = 0; child_no < dr->device_count; child_no++) { 2622 found = false; 2623 new_desc = &dr->func[child_no]; 2624 2625 spin_lock_irqsave(&hbus->device_list_lock, flags); 2626 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2627 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2628 (hpdev->desc.v_id == new_desc->v_id) && 2629 (hpdev->desc.d_id == new_desc->d_id) && 2630 (hpdev->desc.ser == new_desc->ser)) { 2631 hpdev->reported_missing = false; 2632 found = true; 2633 } 2634 } 2635 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2636 2637 if (!found) { 2638 hpdev = new_pcichild_device(hbus, new_desc); 2639 if (!hpdev) 2640 dev_err(&hbus->hdev->device, 2641 "couldn't record a child device.\n"); 2642 } 2643 } 2644 2645 /* Move missing children to a list on the stack. */ 2646 spin_lock_irqsave(&hbus->device_list_lock, flags); 2647 do { 2648 found = false; 2649 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2650 if (hpdev->reported_missing) { 2651 found = true; 2652 put_pcichild(hpdev); 2653 list_move_tail(&hpdev->list_entry, &removed); 2654 break; 2655 } 2656 } 2657 } while (found); 2658 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2659 2660 /* Delete everything that should no longer exist. */ 2661 while (!list_empty(&removed)) { 2662 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2663 list_entry); 2664 list_del(&hpdev->list_entry); 2665 2666 if (hpdev->pci_slot) 2667 pci_destroy_slot(hpdev->pci_slot); 2668 2669 put_pcichild(hpdev); 2670 } 2671 2672 switch (hbus->state) { 2673 case hv_pcibus_installed: 2674 /* 2675 * Tell the core to rescan bus 2676 * because there may have been changes. 2677 */ 2678 pci_lock_rescan_remove(); 2679 pci_scan_child_bus(hbus->bridge->bus); 2680 hv_pci_assign_numa_node(hbus); 2681 hv_pci_assign_slots(hbus); 2682 pci_unlock_rescan_remove(); 2683 break; 2684 2685 case hv_pcibus_init: 2686 case hv_pcibus_probed: 2687 survey_child_resources(hbus); 2688 break; 2689 2690 default: 2691 break; 2692 } 2693 2694 mutex_unlock(&hbus->state_lock); 2695 2696 kfree(dr); 2697 } 2698 2699 /** 2700 * hv_pci_start_relations_work() - Queue work to start device discovery 2701 * @hbus: Root PCI bus, as understood by this driver 2702 * @dr: The list of children returned from host 2703 * 2704 * Return: 0 on success, -errno on failure 2705 */ 2706 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2707 struct hv_dr_state *dr) 2708 { 2709 struct hv_dr_work *dr_wrk; 2710 unsigned long flags; 2711 bool pending_dr; 2712 2713 if (hbus->state == hv_pcibus_removing) { 2714 dev_info(&hbus->hdev->device, 2715 "PCI VMBus BUS_RELATIONS: ignored\n"); 2716 return -ENOENT; 2717 } 2718 2719 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2720 if (!dr_wrk) 2721 return -ENOMEM; 2722 2723 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2724 dr_wrk->bus = hbus; 2725 2726 spin_lock_irqsave(&hbus->device_list_lock, flags); 2727 /* 2728 * If pending_dr is true, we have already queued a work, 2729 * which will see the new dr. Otherwise, we need to 2730 * queue a new work. 2731 */ 2732 pending_dr = !list_empty(&hbus->dr_list); 2733 list_add_tail(&dr->list_entry, &hbus->dr_list); 2734 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2735 2736 if (pending_dr) 2737 kfree(dr_wrk); 2738 else 2739 queue_work(hbus->wq, &dr_wrk->wrk); 2740 2741 return 0; 2742 } 2743 2744 /** 2745 * hv_pci_devices_present() - Handle list of new children 2746 * @hbus: Root PCI bus, as understood by this driver 2747 * @relations: Packet from host listing children 2748 * 2749 * Process a new list of devices on the bus. The list of devices is 2750 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2751 * whenever a new list of devices for this bus appears. 2752 */ 2753 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2754 struct pci_bus_relations *relations) 2755 { 2756 struct hv_dr_state *dr; 2757 int i; 2758 2759 dr = kzalloc(struct_size(dr, func, relations->device_count), 2760 GFP_NOWAIT); 2761 if (!dr) 2762 return; 2763 2764 dr->device_count = relations->device_count; 2765 for (i = 0; i < dr->device_count; i++) { 2766 dr->func[i].v_id = relations->func[i].v_id; 2767 dr->func[i].d_id = relations->func[i].d_id; 2768 dr->func[i].rev = relations->func[i].rev; 2769 dr->func[i].prog_intf = relations->func[i].prog_intf; 2770 dr->func[i].subclass = relations->func[i].subclass; 2771 dr->func[i].base_class = relations->func[i].base_class; 2772 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2773 dr->func[i].win_slot = relations->func[i].win_slot; 2774 dr->func[i].ser = relations->func[i].ser; 2775 } 2776 2777 if (hv_pci_start_relations_work(hbus, dr)) 2778 kfree(dr); 2779 } 2780 2781 /** 2782 * hv_pci_devices_present2() - Handle list of new children 2783 * @hbus: Root PCI bus, as understood by this driver 2784 * @relations: Packet from host listing children 2785 * 2786 * This function is the v2 version of hv_pci_devices_present() 2787 */ 2788 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2789 struct pci_bus_relations2 *relations) 2790 { 2791 struct hv_dr_state *dr; 2792 int i; 2793 2794 dr = kzalloc(struct_size(dr, func, relations->device_count), 2795 GFP_NOWAIT); 2796 if (!dr) 2797 return; 2798 2799 dr->device_count = relations->device_count; 2800 for (i = 0; i < dr->device_count; i++) { 2801 dr->func[i].v_id = relations->func[i].v_id; 2802 dr->func[i].d_id = relations->func[i].d_id; 2803 dr->func[i].rev = relations->func[i].rev; 2804 dr->func[i].prog_intf = relations->func[i].prog_intf; 2805 dr->func[i].subclass = relations->func[i].subclass; 2806 dr->func[i].base_class = relations->func[i].base_class; 2807 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2808 dr->func[i].win_slot = relations->func[i].win_slot; 2809 dr->func[i].ser = relations->func[i].ser; 2810 dr->func[i].flags = relations->func[i].flags; 2811 dr->func[i].virtual_numa_node = 2812 relations->func[i].virtual_numa_node; 2813 } 2814 2815 if (hv_pci_start_relations_work(hbus, dr)) 2816 kfree(dr); 2817 } 2818 2819 /** 2820 * hv_eject_device_work() - Asynchronously handles ejection 2821 * @work: Work struct embedded in internal device struct 2822 * 2823 * This function handles ejecting a device. Windows will 2824 * attempt to gracefully eject a device, waiting 60 seconds to 2825 * hear back from the guest OS that this completed successfully. 2826 * If this timer expires, the device will be forcibly removed. 2827 */ 2828 static void hv_eject_device_work(struct work_struct *work) 2829 { 2830 struct pci_eject_response *ejct_pkt; 2831 struct hv_pcibus_device *hbus; 2832 struct hv_pci_dev *hpdev; 2833 struct pci_dev *pdev; 2834 unsigned long flags; 2835 int wslot; 2836 struct { 2837 struct pci_packet pkt; 2838 u8 buffer[sizeof(struct pci_eject_response)]; 2839 } ctxt; 2840 2841 hpdev = container_of(work, struct hv_pci_dev, wrk); 2842 hbus = hpdev->hbus; 2843 2844 mutex_lock(&hbus->state_lock); 2845 2846 /* 2847 * Ejection can come before or after the PCI bus has been set up, so 2848 * attempt to find it and tear down the bus state, if it exists. This 2849 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2850 * because hbus->bridge->bus may not exist yet. 2851 */ 2852 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2853 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2854 if (pdev) { 2855 pci_lock_rescan_remove(); 2856 pci_stop_and_remove_bus_device(pdev); 2857 pci_dev_put(pdev); 2858 pci_unlock_rescan_remove(); 2859 } 2860 2861 spin_lock_irqsave(&hbus->device_list_lock, flags); 2862 list_del(&hpdev->list_entry); 2863 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2864 2865 if (hpdev->pci_slot) 2866 pci_destroy_slot(hpdev->pci_slot); 2867 2868 memset(&ctxt, 0, sizeof(ctxt)); 2869 ejct_pkt = (struct pci_eject_response *)&ctxt.pkt.message; 2870 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2871 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2872 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2873 sizeof(*ejct_pkt), 0, 2874 VM_PKT_DATA_INBAND, 0); 2875 2876 /* For the get_pcichild() in hv_pci_eject_device() */ 2877 put_pcichild(hpdev); 2878 /* For the two refs got in new_pcichild_device() */ 2879 put_pcichild(hpdev); 2880 put_pcichild(hpdev); 2881 /* hpdev has been freed. Do not use it any more. */ 2882 2883 mutex_unlock(&hbus->state_lock); 2884 } 2885 2886 /** 2887 * hv_pci_eject_device() - Handles device ejection 2888 * @hpdev: Internal device tracking struct 2889 * 2890 * This function is invoked when an ejection packet arrives. It 2891 * just schedules work so that we don't re-enter the packet 2892 * delivery code handling the ejection. 2893 */ 2894 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2895 { 2896 struct hv_pcibus_device *hbus = hpdev->hbus; 2897 struct hv_device *hdev = hbus->hdev; 2898 2899 if (hbus->state == hv_pcibus_removing) { 2900 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2901 return; 2902 } 2903 2904 get_pcichild(hpdev); 2905 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2906 queue_work(hbus->wq, &hpdev->wrk); 2907 } 2908 2909 /** 2910 * hv_pci_onchannelcallback() - Handles incoming packets 2911 * @context: Internal bus tracking struct 2912 * 2913 * This function is invoked whenever the host sends a packet to 2914 * this channel (which is private to this root PCI bus). 2915 */ 2916 static void hv_pci_onchannelcallback(void *context) 2917 { 2918 const int packet_size = 0x100; 2919 int ret; 2920 struct hv_pcibus_device *hbus = context; 2921 struct vmbus_channel *chan = hbus->hdev->channel; 2922 u32 bytes_recvd; 2923 u64 req_id, req_addr; 2924 struct vmpacket_descriptor *desc; 2925 unsigned char *buffer; 2926 int bufferlen = packet_size; 2927 struct pci_packet *comp_packet; 2928 struct pci_response *response; 2929 struct pci_incoming_message *new_message; 2930 struct pci_bus_relations *bus_rel; 2931 struct pci_bus_relations2 *bus_rel2; 2932 struct pci_dev_inval_block *inval; 2933 struct pci_dev_incoming *dev_message; 2934 struct hv_pci_dev *hpdev; 2935 unsigned long flags; 2936 2937 buffer = kmalloc(bufferlen, GFP_ATOMIC); 2938 if (!buffer) 2939 return; 2940 2941 while (1) { 2942 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 2943 &bytes_recvd, &req_id); 2944 2945 if (ret == -ENOBUFS) { 2946 kfree(buffer); 2947 /* Handle large packet */ 2948 bufferlen = bytes_recvd; 2949 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 2950 if (!buffer) 2951 return; 2952 continue; 2953 } 2954 2955 /* Zero length indicates there are no more packets. */ 2956 if (ret || !bytes_recvd) 2957 break; 2958 2959 /* 2960 * All incoming packets must be at least as large as a 2961 * response. 2962 */ 2963 if (bytes_recvd <= sizeof(struct pci_response)) 2964 continue; 2965 desc = (struct vmpacket_descriptor *)buffer; 2966 2967 switch (desc->type) { 2968 case VM_PKT_COMP: 2969 2970 lock_requestor(chan, flags); 2971 req_addr = __vmbus_request_addr_match(chan, req_id, 2972 VMBUS_RQST_ADDR_ANY); 2973 if (req_addr == VMBUS_RQST_ERROR) { 2974 unlock_requestor(chan, flags); 2975 dev_err(&hbus->hdev->device, 2976 "Invalid transaction ID %llx\n", 2977 req_id); 2978 break; 2979 } 2980 comp_packet = (struct pci_packet *)req_addr; 2981 response = (struct pci_response *)buffer; 2982 /* 2983 * Call ->completion_func() within the critical section to make 2984 * sure that the packet pointer is still valid during the call: 2985 * here 'valid' means that there's a task still waiting for the 2986 * completion, and that the packet data is still on the waiting 2987 * task's stack. Cf. hv_compose_msi_msg(). 2988 */ 2989 comp_packet->completion_func(comp_packet->compl_ctxt, 2990 response, 2991 bytes_recvd); 2992 unlock_requestor(chan, flags); 2993 break; 2994 2995 case VM_PKT_DATA_INBAND: 2996 2997 new_message = (struct pci_incoming_message *)buffer; 2998 switch (new_message->message_type.type) { 2999 case PCI_BUS_RELATIONS: 3000 3001 bus_rel = (struct pci_bus_relations *)buffer; 3002 if (bytes_recvd < sizeof(*bus_rel) || 3003 bytes_recvd < 3004 struct_size(bus_rel, func, 3005 bus_rel->device_count)) { 3006 dev_err(&hbus->hdev->device, 3007 "bus relations too small\n"); 3008 break; 3009 } 3010 3011 hv_pci_devices_present(hbus, bus_rel); 3012 break; 3013 3014 case PCI_BUS_RELATIONS2: 3015 3016 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3017 if (bytes_recvd < sizeof(*bus_rel2) || 3018 bytes_recvd < 3019 struct_size(bus_rel2, func, 3020 bus_rel2->device_count)) { 3021 dev_err(&hbus->hdev->device, 3022 "bus relations v2 too small\n"); 3023 break; 3024 } 3025 3026 hv_pci_devices_present2(hbus, bus_rel2); 3027 break; 3028 3029 case PCI_EJECT: 3030 3031 dev_message = (struct pci_dev_incoming *)buffer; 3032 if (bytes_recvd < sizeof(*dev_message)) { 3033 dev_err(&hbus->hdev->device, 3034 "eject message too small\n"); 3035 break; 3036 } 3037 hpdev = get_pcichild_wslot(hbus, 3038 dev_message->wslot.slot); 3039 if (hpdev) { 3040 hv_pci_eject_device(hpdev); 3041 put_pcichild(hpdev); 3042 } 3043 break; 3044 3045 case PCI_INVALIDATE_BLOCK: 3046 3047 inval = (struct pci_dev_inval_block *)buffer; 3048 if (bytes_recvd < sizeof(*inval)) { 3049 dev_err(&hbus->hdev->device, 3050 "invalidate message too small\n"); 3051 break; 3052 } 3053 hpdev = get_pcichild_wslot(hbus, 3054 inval->wslot.slot); 3055 if (hpdev) { 3056 if (hpdev->block_invalidate) { 3057 hpdev->block_invalidate( 3058 hpdev->invalidate_context, 3059 inval->block_mask); 3060 } 3061 put_pcichild(hpdev); 3062 } 3063 break; 3064 3065 default: 3066 dev_warn(&hbus->hdev->device, 3067 "Unimplemented protocol message %x\n", 3068 new_message->message_type.type); 3069 break; 3070 } 3071 break; 3072 3073 default: 3074 dev_err(&hbus->hdev->device, 3075 "unhandled packet type %d, tid %llx len %d\n", 3076 desc->type, req_id, bytes_recvd); 3077 break; 3078 } 3079 } 3080 3081 kfree(buffer); 3082 } 3083 3084 /** 3085 * hv_pci_protocol_negotiation() - Set up protocol 3086 * @hdev: VMBus's tracking struct for this root PCI bus. 3087 * @version: Array of supported channel protocol versions in 3088 * the order of probing - highest go first. 3089 * @num_version: Number of elements in the version array. 3090 * 3091 * This driver is intended to support running on Windows 10 3092 * (server) and later versions. It will not run on earlier 3093 * versions, as they assume that many of the operations which 3094 * Linux needs accomplished with a spinlock held were done via 3095 * asynchronous messaging via VMBus. Windows 10 increases the 3096 * surface area of PCI emulation so that these actions can take 3097 * place by suspending a virtual processor for their duration. 3098 * 3099 * This function negotiates the channel protocol version, 3100 * failing if the host doesn't support the necessary protocol 3101 * level. 3102 */ 3103 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3104 enum pci_protocol_version_t version[], 3105 int num_version) 3106 { 3107 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3108 struct pci_version_request *version_req; 3109 struct hv_pci_compl comp_pkt; 3110 struct pci_packet *pkt; 3111 int ret; 3112 int i; 3113 3114 /* 3115 * Initiate the handshake with the host and negotiate 3116 * a version that the host can support. We start with the 3117 * highest version number and go down if the host cannot 3118 * support it. 3119 */ 3120 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3121 if (!pkt) 3122 return -ENOMEM; 3123 3124 init_completion(&comp_pkt.host_event); 3125 pkt->completion_func = hv_pci_generic_compl; 3126 pkt->compl_ctxt = &comp_pkt; 3127 version_req = (struct pci_version_request *)&pkt->message; 3128 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3129 3130 for (i = 0; i < num_version; i++) { 3131 version_req->protocol_version = version[i]; 3132 ret = vmbus_sendpacket(hdev->channel, version_req, 3133 sizeof(struct pci_version_request), 3134 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3135 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3136 if (!ret) 3137 ret = wait_for_response(hdev, &comp_pkt.host_event); 3138 3139 if (ret) { 3140 dev_err(&hdev->device, 3141 "PCI Pass-through VSP failed to request version: %d", 3142 ret); 3143 goto exit; 3144 } 3145 3146 if (comp_pkt.completion_status >= 0) { 3147 hbus->protocol_version = version[i]; 3148 dev_info(&hdev->device, 3149 "PCI VMBus probing: Using version %#x\n", 3150 hbus->protocol_version); 3151 goto exit; 3152 } 3153 3154 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3155 dev_err(&hdev->device, 3156 "PCI Pass-through VSP failed version request: %#x", 3157 comp_pkt.completion_status); 3158 ret = -EPROTO; 3159 goto exit; 3160 } 3161 3162 reinit_completion(&comp_pkt.host_event); 3163 } 3164 3165 dev_err(&hdev->device, 3166 "PCI pass-through VSP failed to find supported version"); 3167 ret = -EPROTO; 3168 3169 exit: 3170 kfree(pkt); 3171 return ret; 3172 } 3173 3174 /** 3175 * hv_pci_free_bridge_windows() - Release memory regions for the 3176 * bus 3177 * @hbus: Root PCI bus, as understood by this driver 3178 */ 3179 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3180 { 3181 /* 3182 * Set the resources back to the way they looked when they 3183 * were allocated by setting IORESOURCE_BUSY again. 3184 */ 3185 3186 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3187 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3188 vmbus_free_mmio(hbus->low_mmio_res->start, 3189 resource_size(hbus->low_mmio_res)); 3190 } 3191 3192 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3193 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3194 vmbus_free_mmio(hbus->high_mmio_res->start, 3195 resource_size(hbus->high_mmio_res)); 3196 } 3197 } 3198 3199 /** 3200 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3201 * for the bus 3202 * @hbus: Root PCI bus, as understood by this driver 3203 * 3204 * This function calls vmbus_allocate_mmio(), which is itself a 3205 * bit of a compromise. Ideally, we might change the pnp layer 3206 * in the kernel such that it comprehends either PCI devices 3207 * which are "grandchildren of ACPI," with some intermediate bus 3208 * node (in this case, VMBus) or change it such that it 3209 * understands VMBus. The pnp layer, however, has been declared 3210 * deprecated, and not subject to change. 3211 * 3212 * The workaround, implemented here, is to ask VMBus to allocate 3213 * MMIO space for this bus. VMBus itself knows which ranges are 3214 * appropriate by looking at its own ACPI objects. Then, after 3215 * these ranges are claimed, they're modified to look like they 3216 * would have looked if the ACPI and pnp code had allocated 3217 * bridge windows. These descriptors have to exist in this form 3218 * in order to satisfy the code which will get invoked when the 3219 * endpoint PCI function driver calls request_mem_region() or 3220 * request_mem_region_exclusive(). 3221 * 3222 * Return: 0 on success, -errno on failure 3223 */ 3224 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3225 { 3226 resource_size_t align; 3227 int ret; 3228 3229 if (hbus->low_mmio_space) { 3230 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3231 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3232 (u64)(u32)0xffffffff, 3233 hbus->low_mmio_space, 3234 align, false); 3235 if (ret) { 3236 dev_err(&hbus->hdev->device, 3237 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3238 hbus->low_mmio_space); 3239 return ret; 3240 } 3241 3242 /* Modify this resource to become a bridge window. */ 3243 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3244 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3245 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3246 } 3247 3248 if (hbus->high_mmio_space) { 3249 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3250 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3251 0x100000000, -1, 3252 hbus->high_mmio_space, align, 3253 false); 3254 if (ret) { 3255 dev_err(&hbus->hdev->device, 3256 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3257 hbus->high_mmio_space); 3258 goto release_low_mmio; 3259 } 3260 3261 /* Modify this resource to become a bridge window. */ 3262 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3263 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3264 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3265 } 3266 3267 return 0; 3268 3269 release_low_mmio: 3270 if (hbus->low_mmio_res) { 3271 vmbus_free_mmio(hbus->low_mmio_res->start, 3272 resource_size(hbus->low_mmio_res)); 3273 } 3274 3275 return ret; 3276 } 3277 3278 /** 3279 * hv_allocate_config_window() - Find MMIO space for PCI Config 3280 * @hbus: Root PCI bus, as understood by this driver 3281 * 3282 * This function claims memory-mapped I/O space for accessing 3283 * configuration space for the functions on this bus. 3284 * 3285 * Return: 0 on success, -errno on failure 3286 */ 3287 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3288 { 3289 int ret; 3290 3291 /* 3292 * Set up a region of MMIO space to use for accessing configuration 3293 * space. 3294 */ 3295 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3296 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3297 if (ret) 3298 return ret; 3299 3300 /* 3301 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3302 * resource claims (those which cannot be overlapped) and the ranges 3303 * which are valid for the children of this bus, which are intended 3304 * to be overlapped by those children. Set the flag on this claim 3305 * meaning that this region can't be overlapped. 3306 */ 3307 3308 hbus->mem_config->flags |= IORESOURCE_BUSY; 3309 3310 return 0; 3311 } 3312 3313 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3314 { 3315 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3316 } 3317 3318 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3319 3320 /** 3321 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3322 * @hdev: VMBus's tracking struct for this root PCI bus 3323 * 3324 * Return: 0 on success, -errno on failure 3325 */ 3326 static int hv_pci_enter_d0(struct hv_device *hdev) 3327 { 3328 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3329 struct pci_bus_d0_entry *d0_entry; 3330 struct hv_pci_compl comp_pkt; 3331 struct pci_packet *pkt; 3332 bool retry = true; 3333 int ret; 3334 3335 enter_d0_retry: 3336 /* 3337 * Tell the host that the bus is ready to use, and moved into the 3338 * powered-on state. This includes telling the host which region 3339 * of memory-mapped I/O space has been chosen for configuration space 3340 * access. 3341 */ 3342 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3343 if (!pkt) 3344 return -ENOMEM; 3345 3346 init_completion(&comp_pkt.host_event); 3347 pkt->completion_func = hv_pci_generic_compl; 3348 pkt->compl_ctxt = &comp_pkt; 3349 d0_entry = (struct pci_bus_d0_entry *)&pkt->message; 3350 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3351 d0_entry->mmio_base = hbus->mem_config->start; 3352 3353 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3354 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3355 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3356 if (!ret) 3357 ret = wait_for_response(hdev, &comp_pkt.host_event); 3358 3359 if (ret) 3360 goto exit; 3361 3362 /* 3363 * In certain case (Kdump) the pci device of interest was 3364 * not cleanly shut down and resource is still held on host 3365 * side, the host could return invalid device status. 3366 * We need to explicitly request host to release the resource 3367 * and try to enter D0 again. 3368 */ 3369 if (comp_pkt.completion_status < 0 && retry) { 3370 retry = false; 3371 3372 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3373 3374 /* 3375 * Hv_pci_bus_exit() calls hv_send_resource_released() 3376 * to free up resources of its child devices. 3377 * In the kdump kernel we need to set the 3378 * wslot_res_allocated to 255 so it scans all child 3379 * devices to release resources allocated in the 3380 * normal kernel before panic happened. 3381 */ 3382 hbus->wslot_res_allocated = 255; 3383 3384 ret = hv_pci_bus_exit(hdev, true); 3385 3386 if (ret == 0) { 3387 kfree(pkt); 3388 goto enter_d0_retry; 3389 } 3390 dev_err(&hdev->device, 3391 "Retrying D0 failed with ret %d\n", ret); 3392 } 3393 3394 if (comp_pkt.completion_status < 0) { 3395 dev_err(&hdev->device, 3396 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3397 comp_pkt.completion_status); 3398 ret = -EPROTO; 3399 goto exit; 3400 } 3401 3402 ret = 0; 3403 3404 exit: 3405 kfree(pkt); 3406 return ret; 3407 } 3408 3409 /** 3410 * hv_pci_query_relations() - Ask host to send list of child 3411 * devices 3412 * @hdev: VMBus's tracking struct for this root PCI bus 3413 * 3414 * Return: 0 on success, -errno on failure 3415 */ 3416 static int hv_pci_query_relations(struct hv_device *hdev) 3417 { 3418 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3419 struct pci_message message; 3420 struct completion comp; 3421 int ret; 3422 3423 /* Ask the host to send along the list of child devices */ 3424 init_completion(&comp); 3425 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3426 return -ENOTEMPTY; 3427 3428 memset(&message, 0, sizeof(message)); 3429 message.type = PCI_QUERY_BUS_RELATIONS; 3430 3431 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3432 0, VM_PKT_DATA_INBAND, 0); 3433 if (!ret) 3434 ret = wait_for_response(hdev, &comp); 3435 3436 /* 3437 * In the case of fast device addition/removal, it's possible that 3438 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we 3439 * already got a PCI_BUS_RELATIONS* message from the host and the 3440 * channel callback already scheduled a work to hbus->wq, which can be 3441 * running pci_devices_present_work() -> survey_child_resources() -> 3442 * complete(&hbus->survey_event), even after hv_pci_query_relations() 3443 * exits and the stack variable 'comp' is no longer valid; as a result, 3444 * a hang or a page fault may happen when the complete() calls 3445 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from 3446 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is 3447 * -ENODEV, there can't be any more work item scheduled to hbus->wq 3448 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> 3449 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> 3450 * channel->rescind = true. 3451 */ 3452 flush_workqueue(hbus->wq); 3453 3454 return ret; 3455 } 3456 3457 /** 3458 * hv_send_resources_allocated() - Report local resource choices 3459 * @hdev: VMBus's tracking struct for this root PCI bus 3460 * 3461 * The host OS is expecting to be sent a request as a message 3462 * which contains all the resources that the device will use. 3463 * The response contains those same resources, "translated" 3464 * which is to say, the values which should be used by the 3465 * hardware, when it delivers an interrupt. (MMIO resources are 3466 * used in local terms.) This is nice for Windows, and lines up 3467 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3468 * is deeply expecting to scan an emulated PCI configuration 3469 * space. So this message is sent here only to drive the state 3470 * machine on the host forward. 3471 * 3472 * Return: 0 on success, -errno on failure 3473 */ 3474 static int hv_send_resources_allocated(struct hv_device *hdev) 3475 { 3476 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3477 struct pci_resources_assigned *res_assigned; 3478 struct pci_resources_assigned2 *res_assigned2; 3479 struct hv_pci_compl comp_pkt; 3480 struct hv_pci_dev *hpdev; 3481 struct pci_packet *pkt; 3482 size_t size_res; 3483 int wslot; 3484 int ret; 3485 3486 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3487 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3488 3489 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3490 if (!pkt) 3491 return -ENOMEM; 3492 3493 ret = 0; 3494 3495 for (wslot = 0; wslot < 256; wslot++) { 3496 hpdev = get_pcichild_wslot(hbus, wslot); 3497 if (!hpdev) 3498 continue; 3499 3500 memset(pkt, 0, sizeof(*pkt) + size_res); 3501 init_completion(&comp_pkt.host_event); 3502 pkt->completion_func = hv_pci_generic_compl; 3503 pkt->compl_ctxt = &comp_pkt; 3504 3505 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3506 res_assigned = 3507 (struct pci_resources_assigned *)&pkt->message; 3508 res_assigned->message_type.type = 3509 PCI_RESOURCES_ASSIGNED; 3510 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3511 } else { 3512 res_assigned2 = 3513 (struct pci_resources_assigned2 *)&pkt->message; 3514 res_assigned2->message_type.type = 3515 PCI_RESOURCES_ASSIGNED2; 3516 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3517 } 3518 put_pcichild(hpdev); 3519 3520 ret = vmbus_sendpacket(hdev->channel, &pkt->message, 3521 size_res, (unsigned long)pkt, 3522 VM_PKT_DATA_INBAND, 3523 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3524 if (!ret) 3525 ret = wait_for_response(hdev, &comp_pkt.host_event); 3526 if (ret) 3527 break; 3528 3529 if (comp_pkt.completion_status < 0) { 3530 ret = -EPROTO; 3531 dev_err(&hdev->device, 3532 "resource allocated returned 0x%x", 3533 comp_pkt.completion_status); 3534 break; 3535 } 3536 3537 hbus->wslot_res_allocated = wslot; 3538 } 3539 3540 kfree(pkt); 3541 return ret; 3542 } 3543 3544 /** 3545 * hv_send_resources_released() - Report local resources 3546 * released 3547 * @hdev: VMBus's tracking struct for this root PCI bus 3548 * 3549 * Return: 0 on success, -errno on failure 3550 */ 3551 static int hv_send_resources_released(struct hv_device *hdev) 3552 { 3553 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3554 struct pci_child_message pkt; 3555 struct hv_pci_dev *hpdev; 3556 int wslot; 3557 int ret; 3558 3559 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3560 hpdev = get_pcichild_wslot(hbus, wslot); 3561 if (!hpdev) 3562 continue; 3563 3564 memset(&pkt, 0, sizeof(pkt)); 3565 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3566 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3567 3568 put_pcichild(hpdev); 3569 3570 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3571 VM_PKT_DATA_INBAND, 0); 3572 if (ret) 3573 return ret; 3574 3575 hbus->wslot_res_allocated = wslot - 1; 3576 } 3577 3578 hbus->wslot_res_allocated = -1; 3579 3580 return 0; 3581 } 3582 3583 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3584 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3585 3586 /* 3587 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3588 * as invalid for passthrough PCI devices of this driver. 3589 */ 3590 #define HVPCI_DOM_INVALID 0 3591 3592 /** 3593 * hv_get_dom_num() - Get a valid PCI domain number 3594 * Check if the PCI domain number is in use, and return another number if 3595 * it is in use. 3596 * 3597 * @dom: Requested domain number 3598 * 3599 * return: domain number on success, HVPCI_DOM_INVALID on failure 3600 */ 3601 static u16 hv_get_dom_num(u16 dom) 3602 { 3603 unsigned int i; 3604 3605 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3606 return dom; 3607 3608 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3609 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3610 return i; 3611 } 3612 3613 return HVPCI_DOM_INVALID; 3614 } 3615 3616 /** 3617 * hv_put_dom_num() - Mark the PCI domain number as free 3618 * @dom: Domain number to be freed 3619 */ 3620 static void hv_put_dom_num(u16 dom) 3621 { 3622 clear_bit(dom, hvpci_dom_map); 3623 } 3624 3625 /** 3626 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3627 * @hdev: VMBus's tracking struct for this root PCI bus 3628 * @dev_id: Identifies the device itself 3629 * 3630 * Return: 0 on success, -errno on failure 3631 */ 3632 static int hv_pci_probe(struct hv_device *hdev, 3633 const struct hv_vmbus_device_id *dev_id) 3634 { 3635 struct pci_host_bridge *bridge; 3636 struct hv_pcibus_device *hbus; 3637 u16 dom_req, dom; 3638 char *name; 3639 int ret; 3640 3641 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3642 if (!bridge) 3643 return -ENOMEM; 3644 3645 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); 3646 if (!hbus) 3647 return -ENOMEM; 3648 3649 hbus->bridge = bridge; 3650 mutex_init(&hbus->state_lock); 3651 hbus->state = hv_pcibus_init; 3652 hbus->wslot_res_allocated = -1; 3653 3654 /* 3655 * The PCI bus "domain" is what is called "segment" in ACPI and other 3656 * specs. Pull it from the instance ID, to get something usually 3657 * unique. In rare cases of collision, we will find out another number 3658 * not in use. 3659 * 3660 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3661 * together with this guest driver can guarantee that (1) The only 3662 * domain used by Gen1 VMs for something that looks like a physical 3663 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3664 * (2) There will be no overlap between domains (after fixing possible 3665 * collisions) in the same VM. 3666 */ 3667 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3668 dom = hv_get_dom_num(dom_req); 3669 3670 if (dom == HVPCI_DOM_INVALID) { 3671 dev_err(&hdev->device, 3672 "Unable to use dom# 0x%x or other numbers", dom_req); 3673 ret = -EINVAL; 3674 goto free_bus; 3675 } 3676 3677 if (dom != dom_req) 3678 dev_info(&hdev->device, 3679 "PCI dom# 0x%x has collision, using 0x%x", 3680 dom_req, dom); 3681 3682 hbus->bridge->domain_nr = dom; 3683 #ifdef CONFIG_X86 3684 hbus->sysdata.domain = dom; 3685 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3686 #elif defined(CONFIG_ARM64) 3687 /* 3688 * Set the PCI bus parent to be the corresponding VMbus 3689 * device. Then the VMbus device will be assigned as the 3690 * ACPI companion in pcibios_root_bridge_prepare() and 3691 * pci_dma_configure() will propagate device coherence 3692 * information to devices created on the bus. 3693 */ 3694 hbus->sysdata.parent = hdev->device.parent; 3695 hbus->use_calls = false; 3696 #endif 3697 3698 hbus->hdev = hdev; 3699 INIT_LIST_HEAD(&hbus->children); 3700 INIT_LIST_HEAD(&hbus->dr_list); 3701 spin_lock_init(&hbus->config_lock); 3702 spin_lock_init(&hbus->device_list_lock); 3703 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3704 hbus->bridge->domain_nr); 3705 if (!hbus->wq) { 3706 ret = -ENOMEM; 3707 goto free_dom; 3708 } 3709 3710 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3711 hdev->channel->request_addr_callback = vmbus_request_addr; 3712 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3713 3714 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3715 hv_pci_onchannelcallback, hbus); 3716 if (ret) 3717 goto destroy_wq; 3718 3719 hv_set_drvdata(hdev, hbus); 3720 3721 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3722 ARRAY_SIZE(pci_protocol_versions)); 3723 if (ret) 3724 goto close; 3725 3726 ret = hv_allocate_config_window(hbus); 3727 if (ret) 3728 goto close; 3729 3730 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3731 PCI_CONFIG_MMIO_LENGTH); 3732 if (!hbus->cfg_addr) { 3733 dev_err(&hdev->device, 3734 "Unable to map a virtual address for config space\n"); 3735 ret = -ENOMEM; 3736 goto free_config; 3737 } 3738 3739 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3740 if (!name) { 3741 ret = -ENOMEM; 3742 goto unmap; 3743 } 3744 3745 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3746 kfree(name); 3747 if (!hbus->fwnode) { 3748 ret = -ENOMEM; 3749 goto unmap; 3750 } 3751 3752 ret = hv_pcie_init_irq_domain(hbus); 3753 if (ret) 3754 goto free_fwnode; 3755 3756 ret = hv_pci_query_relations(hdev); 3757 if (ret) 3758 goto free_irq_domain; 3759 3760 mutex_lock(&hbus->state_lock); 3761 3762 ret = hv_pci_enter_d0(hdev); 3763 if (ret) 3764 goto release_state_lock; 3765 3766 ret = hv_pci_allocate_bridge_windows(hbus); 3767 if (ret) 3768 goto exit_d0; 3769 3770 ret = hv_send_resources_allocated(hdev); 3771 if (ret) 3772 goto free_windows; 3773 3774 prepopulate_bars(hbus); 3775 3776 hbus->state = hv_pcibus_probed; 3777 3778 ret = create_root_hv_pci_bus(hbus); 3779 if (ret) 3780 goto free_windows; 3781 3782 mutex_unlock(&hbus->state_lock); 3783 return 0; 3784 3785 free_windows: 3786 hv_pci_free_bridge_windows(hbus); 3787 exit_d0: 3788 (void) hv_pci_bus_exit(hdev, true); 3789 release_state_lock: 3790 mutex_unlock(&hbus->state_lock); 3791 free_irq_domain: 3792 irq_domain_remove(hbus->irq_domain); 3793 free_fwnode: 3794 irq_domain_free_fwnode(hbus->fwnode); 3795 unmap: 3796 iounmap(hbus->cfg_addr); 3797 free_config: 3798 hv_free_config_window(hbus); 3799 close: 3800 vmbus_close(hdev->channel); 3801 destroy_wq: 3802 destroy_workqueue(hbus->wq); 3803 free_dom: 3804 hv_put_dom_num(hbus->bridge->domain_nr); 3805 free_bus: 3806 kfree(hbus); 3807 return ret; 3808 } 3809 3810 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3811 { 3812 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3813 struct vmbus_channel *chan = hdev->channel; 3814 struct { 3815 struct pci_packet teardown_packet; 3816 u8 buffer[sizeof(struct pci_message)]; 3817 } pkt; 3818 struct hv_pci_compl comp_pkt; 3819 struct hv_pci_dev *hpdev, *tmp; 3820 unsigned long flags; 3821 u64 trans_id; 3822 int ret; 3823 3824 /* 3825 * After the host sends the RESCIND_CHANNEL message, it doesn't 3826 * access the per-channel ringbuffer any longer. 3827 */ 3828 if (chan->rescind) 3829 return 0; 3830 3831 if (!keep_devs) { 3832 struct list_head removed; 3833 3834 /* Move all present children to the list on stack */ 3835 INIT_LIST_HEAD(&removed); 3836 spin_lock_irqsave(&hbus->device_list_lock, flags); 3837 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3838 list_move_tail(&hpdev->list_entry, &removed); 3839 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3840 3841 /* Remove all children in the list */ 3842 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3843 list_del(&hpdev->list_entry); 3844 if (hpdev->pci_slot) 3845 pci_destroy_slot(hpdev->pci_slot); 3846 /* For the two refs got in new_pcichild_device() */ 3847 put_pcichild(hpdev); 3848 put_pcichild(hpdev); 3849 } 3850 } 3851 3852 ret = hv_send_resources_released(hdev); 3853 if (ret) { 3854 dev_err(&hdev->device, 3855 "Couldn't send resources released packet(s)\n"); 3856 return ret; 3857 } 3858 3859 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3860 init_completion(&comp_pkt.host_event); 3861 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3862 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3863 pkt.teardown_packet.message[0].type = PCI_BUS_D0EXIT; 3864 3865 ret = vmbus_sendpacket_getid(chan, &pkt.teardown_packet.message, 3866 sizeof(struct pci_message), 3867 (unsigned long)&pkt.teardown_packet, 3868 &trans_id, VM_PKT_DATA_INBAND, 3869 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3870 if (ret) 3871 return ret; 3872 3873 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3874 /* 3875 * The completion packet on the stack becomes invalid after 3876 * 'return'; remove the ID from the VMbus requestor if the 3877 * identifier is still mapped to/associated with the packet. 3878 * 3879 * Cf. hv_pci_onchannelcallback(). 3880 */ 3881 vmbus_request_addr_match(chan, trans_id, 3882 (unsigned long)&pkt.teardown_packet); 3883 return -ETIMEDOUT; 3884 } 3885 3886 return 0; 3887 } 3888 3889 /** 3890 * hv_pci_remove() - Remove routine for this VMBus channel 3891 * @hdev: VMBus's tracking struct for this root PCI bus 3892 */ 3893 static void hv_pci_remove(struct hv_device *hdev) 3894 { 3895 struct hv_pcibus_device *hbus; 3896 3897 hbus = hv_get_drvdata(hdev); 3898 if (hbus->state == hv_pcibus_installed) { 3899 tasklet_disable(&hdev->channel->callback_event); 3900 hbus->state = hv_pcibus_removing; 3901 tasklet_enable(&hdev->channel->callback_event); 3902 destroy_workqueue(hbus->wq); 3903 hbus->wq = NULL; 3904 /* 3905 * At this point, no work is running or can be scheduled 3906 * on hbus-wq. We can't race with hv_pci_devices_present() 3907 * or hv_pci_eject_device(), it's safe to proceed. 3908 */ 3909 3910 /* Remove the bus from PCI's point of view. */ 3911 pci_lock_rescan_remove(); 3912 pci_stop_root_bus(hbus->bridge->bus); 3913 hv_pci_remove_slots(hbus); 3914 pci_remove_root_bus(hbus->bridge->bus); 3915 pci_unlock_rescan_remove(); 3916 } 3917 3918 hv_pci_bus_exit(hdev, false); 3919 3920 vmbus_close(hdev->channel); 3921 3922 iounmap(hbus->cfg_addr); 3923 hv_free_config_window(hbus); 3924 hv_pci_free_bridge_windows(hbus); 3925 irq_domain_remove(hbus->irq_domain); 3926 irq_domain_free_fwnode(hbus->fwnode); 3927 3928 hv_put_dom_num(hbus->bridge->domain_nr); 3929 3930 kfree(hbus); 3931 } 3932 3933 static int hv_pci_suspend(struct hv_device *hdev) 3934 { 3935 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3936 enum hv_pcibus_state old_state; 3937 int ret; 3938 3939 /* 3940 * hv_pci_suspend() must make sure there are no pending work items 3941 * before calling vmbus_close(), since it runs in a process context 3942 * as a callback in dpm_suspend(). When it starts to run, the channel 3943 * callback hv_pci_onchannelcallback(), which runs in a tasklet 3944 * context, can be still running concurrently and scheduling new work 3945 * items onto hbus->wq in hv_pci_devices_present() and 3946 * hv_pci_eject_device(), and the work item handlers can access the 3947 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 3948 * the work item handler pci_devices_present_work() -> 3949 * new_pcichild_device() writes to the vmbus channel. 3950 * 3951 * To eliminate the race, hv_pci_suspend() disables the channel 3952 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 3953 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 3954 * it knows that no new work item can be scheduled, and then it flushes 3955 * hbus->wq and safely closes the vmbus channel. 3956 */ 3957 tasklet_disable(&hdev->channel->callback_event); 3958 3959 /* Change the hbus state to prevent new work items. */ 3960 old_state = hbus->state; 3961 if (hbus->state == hv_pcibus_installed) 3962 hbus->state = hv_pcibus_removing; 3963 3964 tasklet_enable(&hdev->channel->callback_event); 3965 3966 if (old_state != hv_pcibus_installed) 3967 return -EINVAL; 3968 3969 flush_workqueue(hbus->wq); 3970 3971 ret = hv_pci_bus_exit(hdev, true); 3972 if (ret) 3973 return ret; 3974 3975 vmbus_close(hdev->channel); 3976 3977 return 0; 3978 } 3979 3980 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 3981 { 3982 struct irq_data *irq_data; 3983 struct msi_desc *entry; 3984 int ret = 0; 3985 3986 msi_lock_descs(&pdev->dev); 3987 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 3988 irq_data = irq_get_irq_data(entry->irq); 3989 if (WARN_ON_ONCE(!irq_data)) { 3990 ret = -EINVAL; 3991 break; 3992 } 3993 3994 hv_compose_msi_msg(irq_data, &entry->msg); 3995 } 3996 msi_unlock_descs(&pdev->dev); 3997 3998 return ret; 3999 } 4000 4001 /* 4002 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 4003 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 4004 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 4005 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 4006 * Table entries. 4007 */ 4008 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 4009 { 4010 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 4011 } 4012 4013 static int hv_pci_resume(struct hv_device *hdev) 4014 { 4015 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4016 enum pci_protocol_version_t version[1]; 4017 int ret; 4018 4019 hbus->state = hv_pcibus_init; 4020 4021 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4022 hdev->channel->request_addr_callback = vmbus_request_addr; 4023 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4024 4025 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4026 hv_pci_onchannelcallback, hbus); 4027 if (ret) 4028 return ret; 4029 4030 /* Only use the version that was in use before hibernation. */ 4031 version[0] = hbus->protocol_version; 4032 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4033 if (ret) 4034 goto out; 4035 4036 ret = hv_pci_query_relations(hdev); 4037 if (ret) 4038 goto out; 4039 4040 mutex_lock(&hbus->state_lock); 4041 4042 ret = hv_pci_enter_d0(hdev); 4043 if (ret) 4044 goto release_state_lock; 4045 4046 ret = hv_send_resources_allocated(hdev); 4047 if (ret) 4048 goto release_state_lock; 4049 4050 prepopulate_bars(hbus); 4051 4052 hv_pci_restore_msi_state(hbus); 4053 4054 hbus->state = hv_pcibus_installed; 4055 mutex_unlock(&hbus->state_lock); 4056 return 0; 4057 4058 release_state_lock: 4059 mutex_unlock(&hbus->state_lock); 4060 out: 4061 vmbus_close(hdev->channel); 4062 return ret; 4063 } 4064 4065 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4066 /* PCI Pass-through Class ID */ 4067 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4068 { HV_PCIE_GUID, }, 4069 { }, 4070 }; 4071 4072 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4073 4074 static struct hv_driver hv_pci_drv = { 4075 .name = "hv_pci", 4076 .id_table = hv_pci_id_table, 4077 .probe = hv_pci_probe, 4078 .remove = hv_pci_remove, 4079 .suspend = hv_pci_suspend, 4080 .resume = hv_pci_resume, 4081 }; 4082 4083 static void __exit exit_hv_pci_drv(void) 4084 { 4085 vmbus_driver_unregister(&hv_pci_drv); 4086 4087 hvpci_block_ops.read_block = NULL; 4088 hvpci_block_ops.write_block = NULL; 4089 hvpci_block_ops.reg_blk_invalidate = NULL; 4090 } 4091 4092 static int __init init_hv_pci_drv(void) 4093 { 4094 int ret; 4095 4096 if (!hv_is_hyperv_initialized()) 4097 return -ENODEV; 4098 4099 ret = hv_pci_irqchip_init(); 4100 if (ret) 4101 return ret; 4102 4103 /* Set the invalid domain number's bit, so it will not be used */ 4104 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4105 4106 /* Initialize PCI block r/w interface */ 4107 hvpci_block_ops.read_block = hv_read_config_block; 4108 hvpci_block_ops.write_block = hv_write_config_block; 4109 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4110 4111 return vmbus_driver_register(&hv_pci_drv); 4112 } 4113 4114 module_init(init_hv_pci_drv); 4115 module_exit(exit_hv_pci_drv); 4116 4117 MODULE_DESCRIPTION("Hyper-V PCI"); 4118 MODULE_LICENSE("GPL v2"); 4119