1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (c) Microsoft Corporation. 4 * 5 * Author: 6 * Jake Oshins <jakeo@microsoft.com> 7 * 8 * This driver acts as a paravirtual front-end for PCI Express root buses. 9 * When a PCI Express function (either an entire device or an SR-IOV 10 * Virtual Function) is being passed through to the VM, this driver exposes 11 * a new bus to the guest VM. This is modeled as a root PCI bus because 12 * no bridges are being exposed to the VM. In fact, with a "Generation 2" 13 * VM within Hyper-V, there may seem to be no PCI bus at all in the VM 14 * until a device as been exposed using this driver. 15 * 16 * Each root PCI bus has its own PCI domain, which is called "Segment" in 17 * the PCI Firmware Specifications. Thus while each device passed through 18 * to the VM using this front-end will appear at "device 0", the domain will 19 * be unique. Typically, each bus will have one PCI function on it, though 20 * this driver does support more than one. 21 * 22 * In order to map the interrupts from the device through to the guest VM, 23 * this driver also implements an IRQ Domain, which handles interrupts (either 24 * MSI or MSI-X) associated with the functions on the bus. As interrupts are 25 * set up, torn down, or reaffined, this driver communicates with the 26 * underlying hypervisor to adjust the mappings in the I/O MMU so that each 27 * interrupt will be delivered to the correct virtual processor at the right 28 * vector. This driver does not support level-triggered (line-based) 29 * interrupts, and will report that the Interrupt Line register in the 30 * function's configuration space is zero. 31 * 32 * The rest of this driver mostly maps PCI concepts onto underlying Hyper-V 33 * facilities. For instance, the configuration space of a function exposed 34 * by Hyper-V is mapped into a single page of memory space, and the 35 * read and write handlers for config space must be aware of this mechanism. 36 * Similarly, device setup and teardown involves messages sent to and from 37 * the PCI back-end driver in Hyper-V. 38 */ 39 40 #include <linux/kernel.h> 41 #include <linux/module.h> 42 #include <linux/pci.h> 43 #include <linux/pci-ecam.h> 44 #include <linux/delay.h> 45 #include <linux/semaphore.h> 46 #include <linux/irq.h> 47 #include <linux/msi.h> 48 #include <linux/hyperv.h> 49 #include <linux/refcount.h> 50 #include <linux/irqdomain.h> 51 #include <linux/acpi.h> 52 #include <linux/sizes.h> 53 #include <linux/of_irq.h> 54 #include <asm/mshyperv.h> 55 56 /* 57 * Protocol versions. The low word is the minor version, the high word the 58 * major version. 59 */ 60 61 #define PCI_MAKE_VERSION(major, minor) ((u32)(((major) << 16) | (minor))) 62 #define PCI_MAJOR_VERSION(version) ((u32)(version) >> 16) 63 #define PCI_MINOR_VERSION(version) ((u32)(version) & 0xff) 64 65 enum pci_protocol_version_t { 66 PCI_PROTOCOL_VERSION_1_1 = PCI_MAKE_VERSION(1, 1), /* Win10 */ 67 PCI_PROTOCOL_VERSION_1_2 = PCI_MAKE_VERSION(1, 2), /* RS1 */ 68 PCI_PROTOCOL_VERSION_1_3 = PCI_MAKE_VERSION(1, 3), /* Vibranium */ 69 PCI_PROTOCOL_VERSION_1_4 = PCI_MAKE_VERSION(1, 4), /* WS2022 */ 70 }; 71 72 #define CPU_AFFINITY_ALL -1ULL 73 74 /* 75 * Supported protocol versions in the order of probing - highest go 76 * first. 77 */ 78 static enum pci_protocol_version_t pci_protocol_versions[] = { 79 PCI_PROTOCOL_VERSION_1_4, 80 PCI_PROTOCOL_VERSION_1_3, 81 PCI_PROTOCOL_VERSION_1_2, 82 PCI_PROTOCOL_VERSION_1_1, 83 }; 84 85 #define PCI_CONFIG_MMIO_LENGTH 0x2000 86 #define CFG_PAGE_OFFSET 0x1000 87 #define CFG_PAGE_SIZE (PCI_CONFIG_MMIO_LENGTH - CFG_PAGE_OFFSET) 88 89 #define MAX_SUPPORTED_MSI_MESSAGES 0x400 90 91 #define STATUS_REVISION_MISMATCH 0xC0000059 92 93 /* space for 32bit serial number as string */ 94 #define SLOT_NAME_SIZE 11 95 96 /* 97 * Size of requestor for VMbus; the value is based on the observation 98 * that having more than one request outstanding is 'rare', and so 64 99 * should be generous in ensuring that we don't ever run out. 100 */ 101 #define HV_PCI_RQSTOR_SIZE 64 102 103 /* 104 * Message Types 105 */ 106 107 enum pci_message_type { 108 /* 109 * Version 1.1 110 */ 111 PCI_MESSAGE_BASE = 0x42490000, 112 PCI_BUS_RELATIONS = PCI_MESSAGE_BASE + 0, 113 PCI_QUERY_BUS_RELATIONS = PCI_MESSAGE_BASE + 1, 114 PCI_POWER_STATE_CHANGE = PCI_MESSAGE_BASE + 4, 115 PCI_QUERY_RESOURCE_REQUIREMENTS = PCI_MESSAGE_BASE + 5, 116 PCI_QUERY_RESOURCE_RESOURCES = PCI_MESSAGE_BASE + 6, 117 PCI_BUS_D0ENTRY = PCI_MESSAGE_BASE + 7, 118 PCI_BUS_D0EXIT = PCI_MESSAGE_BASE + 8, 119 PCI_READ_BLOCK = PCI_MESSAGE_BASE + 9, 120 PCI_WRITE_BLOCK = PCI_MESSAGE_BASE + 0xA, 121 PCI_EJECT = PCI_MESSAGE_BASE + 0xB, 122 PCI_QUERY_STOP = PCI_MESSAGE_BASE + 0xC, 123 PCI_REENABLE = PCI_MESSAGE_BASE + 0xD, 124 PCI_QUERY_STOP_FAILED = PCI_MESSAGE_BASE + 0xE, 125 PCI_EJECTION_COMPLETE = PCI_MESSAGE_BASE + 0xF, 126 PCI_RESOURCES_ASSIGNED = PCI_MESSAGE_BASE + 0x10, 127 PCI_RESOURCES_RELEASED = PCI_MESSAGE_BASE + 0x11, 128 PCI_INVALIDATE_BLOCK = PCI_MESSAGE_BASE + 0x12, 129 PCI_QUERY_PROTOCOL_VERSION = PCI_MESSAGE_BASE + 0x13, 130 PCI_CREATE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x14, 131 PCI_DELETE_INTERRUPT_MESSAGE = PCI_MESSAGE_BASE + 0x15, 132 PCI_RESOURCES_ASSIGNED2 = PCI_MESSAGE_BASE + 0x16, 133 PCI_CREATE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x17, 134 PCI_DELETE_INTERRUPT_MESSAGE2 = PCI_MESSAGE_BASE + 0x18, /* unused */ 135 PCI_BUS_RELATIONS2 = PCI_MESSAGE_BASE + 0x19, 136 PCI_RESOURCES_ASSIGNED3 = PCI_MESSAGE_BASE + 0x1A, 137 PCI_CREATE_INTERRUPT_MESSAGE3 = PCI_MESSAGE_BASE + 0x1B, 138 PCI_MESSAGE_MAXIMUM 139 }; 140 141 /* 142 * Structures defining the virtual PCI Express protocol. 143 */ 144 145 union pci_version { 146 struct { 147 u16 minor_version; 148 u16 major_version; 149 } parts; 150 u32 version; 151 } __packed; 152 153 /* 154 * Function numbers are 8-bits wide on Express, as interpreted through ARI, 155 * which is all this driver does. This representation is the one used in 156 * Windows, which is what is expected when sending this back and forth with 157 * the Hyper-V parent partition. 158 */ 159 union win_slot_encoding { 160 struct { 161 u32 dev:5; 162 u32 func:3; 163 u32 reserved:24; 164 } bits; 165 u32 slot; 166 } __packed; 167 168 /* 169 * Pretty much as defined in the PCI Specifications. 170 */ 171 struct pci_function_description { 172 u16 v_id; /* vendor ID */ 173 u16 d_id; /* device ID */ 174 u8 rev; 175 u8 prog_intf; 176 u8 subclass; 177 u8 base_class; 178 u32 subsystem_id; 179 union win_slot_encoding win_slot; 180 u32 ser; /* serial number */ 181 } __packed; 182 183 enum pci_device_description_flags { 184 HV_PCI_DEVICE_FLAG_NONE = 0x0, 185 HV_PCI_DEVICE_FLAG_NUMA_AFFINITY = 0x1, 186 }; 187 188 struct pci_function_description2 { 189 u16 v_id; /* vendor ID */ 190 u16 d_id; /* device ID */ 191 u8 rev; 192 u8 prog_intf; 193 u8 subclass; 194 u8 base_class; 195 u32 subsystem_id; 196 union win_slot_encoding win_slot; 197 u32 ser; /* serial number */ 198 u32 flags; 199 u16 virtual_numa_node; 200 u16 reserved; 201 } __packed; 202 203 /** 204 * struct hv_msi_desc 205 * @vector: IDT entry 206 * @delivery_mode: As defined in Intel's Programmer's 207 * Reference Manual, Volume 3, Chapter 8. 208 * @vector_count: Number of contiguous entries in the 209 * Interrupt Descriptor Table that are 210 * occupied by this Message-Signaled 211 * Interrupt. For "MSI", as first defined 212 * in PCI 2.2, this can be between 1 and 213 * 32. For "MSI-X," as first defined in PCI 214 * 3.0, this must be 1, as each MSI-X table 215 * entry would have its own descriptor. 216 * @reserved: Empty space 217 * @cpu_mask: All the target virtual processors. 218 */ 219 struct hv_msi_desc { 220 u8 vector; 221 u8 delivery_mode; 222 u16 vector_count; 223 u32 reserved; 224 u64 cpu_mask; 225 } __packed; 226 227 /** 228 * struct hv_msi_desc2 - 1.2 version of hv_msi_desc 229 * @vector: IDT entry 230 * @delivery_mode: As defined in Intel's Programmer's 231 * Reference Manual, Volume 3, Chapter 8. 232 * @vector_count: Number of contiguous entries in the 233 * Interrupt Descriptor Table that are 234 * occupied by this Message-Signaled 235 * Interrupt. For "MSI", as first defined 236 * in PCI 2.2, this can be between 1 and 237 * 32. For "MSI-X," as first defined in PCI 238 * 3.0, this must be 1, as each MSI-X table 239 * entry would have its own descriptor. 240 * @processor_count: number of bits enabled in array. 241 * @processor_array: All the target virtual processors. 242 */ 243 struct hv_msi_desc2 { 244 u8 vector; 245 u8 delivery_mode; 246 u16 vector_count; 247 u16 processor_count; 248 u16 processor_array[32]; 249 } __packed; 250 251 /* 252 * struct hv_msi_desc3 - 1.3 version of hv_msi_desc 253 * Everything is the same as in 'hv_msi_desc2' except that the size of the 254 * 'vector' field is larger to support bigger vector values. For ex: LPI 255 * vectors on ARM. 256 */ 257 struct hv_msi_desc3 { 258 u32 vector; 259 u8 delivery_mode; 260 u8 reserved; 261 u16 vector_count; 262 u16 processor_count; 263 u16 processor_array[32]; 264 } __packed; 265 266 /** 267 * struct tran_int_desc 268 * @reserved: unused, padding 269 * @vector_count: same as in hv_msi_desc 270 * @data: This is the "data payload" value that is 271 * written by the device when it generates 272 * a message-signaled interrupt, either MSI 273 * or MSI-X. 274 * @address: This is the address to which the data 275 * payload is written on interrupt 276 * generation. 277 */ 278 struct tran_int_desc { 279 u16 reserved; 280 u16 vector_count; 281 u32 data; 282 u64 address; 283 } __packed; 284 285 /* 286 * A generic message format for virtual PCI. 287 * Specific message formats are defined later in the file. 288 */ 289 290 struct pci_message { 291 u32 type; 292 } __packed; 293 294 struct pci_child_message { 295 struct pci_message message_type; 296 union win_slot_encoding wslot; 297 } __packed; 298 299 struct pci_incoming_message { 300 struct vmpacket_descriptor hdr; 301 struct pci_message message_type; 302 } __packed; 303 304 struct pci_response { 305 struct vmpacket_descriptor hdr; 306 s32 status; /* negative values are failures */ 307 } __packed; 308 309 struct pci_packet { 310 void (*completion_func)(void *context, struct pci_response *resp, 311 int resp_packet_size); 312 void *compl_ctxt; 313 }; 314 315 /* 316 * Specific message types supporting the PCI protocol. 317 */ 318 319 /* 320 * Version negotiation message. Sent from the guest to the host. 321 * The guest is free to try different versions until the host 322 * accepts the version. 323 * 324 * pci_version: The protocol version requested. 325 * is_last_attempt: If TRUE, this is the last version guest will request. 326 * reservedz: Reserved field, set to zero. 327 */ 328 329 struct pci_version_request { 330 struct pci_message message_type; 331 u32 protocol_version; 332 } __packed; 333 334 /* 335 * Bus D0 Entry. This is sent from the guest to the host when the virtual 336 * bus (PCI Express port) is ready for action. 337 */ 338 339 struct pci_bus_d0_entry { 340 struct pci_message message_type; 341 u32 reserved; 342 u64 mmio_base; 343 } __packed; 344 345 struct pci_bus_relations { 346 struct pci_incoming_message incoming; 347 u32 device_count; 348 struct pci_function_description func[]; 349 } __packed; 350 351 struct pci_bus_relations2 { 352 struct pci_incoming_message incoming; 353 u32 device_count; 354 struct pci_function_description2 func[]; 355 } __packed; 356 357 struct pci_q_res_req_response { 358 struct vmpacket_descriptor hdr; 359 s32 status; /* negative values are failures */ 360 u32 probed_bar[PCI_STD_NUM_BARS]; 361 } __packed; 362 363 struct pci_set_power { 364 struct pci_message message_type; 365 union win_slot_encoding wslot; 366 u32 power_state; /* In Windows terms */ 367 u32 reserved; 368 } __packed; 369 370 struct pci_set_power_response { 371 struct vmpacket_descriptor hdr; 372 s32 status; /* negative values are failures */ 373 union win_slot_encoding wslot; 374 u32 resultant_state; /* In Windows terms */ 375 u32 reserved; 376 } __packed; 377 378 struct pci_resources_assigned { 379 struct pci_message message_type; 380 union win_slot_encoding wslot; 381 u8 memory_range[0x14][6]; /* not used here */ 382 u32 msi_descriptors; 383 u32 reserved[4]; 384 } __packed; 385 386 struct pci_resources_assigned2 { 387 struct pci_message message_type; 388 union win_slot_encoding wslot; 389 u8 memory_range[0x14][6]; /* not used here */ 390 u32 msi_descriptor_count; 391 u8 reserved[70]; 392 } __packed; 393 394 struct pci_create_interrupt { 395 struct pci_message message_type; 396 union win_slot_encoding wslot; 397 struct hv_msi_desc int_desc; 398 } __packed; 399 400 struct pci_create_int_response { 401 struct pci_response response; 402 u32 reserved; 403 struct tran_int_desc int_desc; 404 } __packed; 405 406 struct pci_create_interrupt2 { 407 struct pci_message message_type; 408 union win_slot_encoding wslot; 409 struct hv_msi_desc2 int_desc; 410 } __packed; 411 412 struct pci_create_interrupt3 { 413 struct pci_message message_type; 414 union win_slot_encoding wslot; 415 struct hv_msi_desc3 int_desc; 416 } __packed; 417 418 struct pci_delete_interrupt { 419 struct pci_message message_type; 420 union win_slot_encoding wslot; 421 struct tran_int_desc int_desc; 422 } __packed; 423 424 /* 425 * Note: the VM must pass a valid block id, wslot and bytes_requested. 426 */ 427 struct pci_read_block { 428 struct pci_message message_type; 429 u32 block_id; 430 union win_slot_encoding wslot; 431 u32 bytes_requested; 432 } __packed; 433 434 struct pci_read_block_response { 435 struct vmpacket_descriptor hdr; 436 u32 status; 437 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 438 } __packed; 439 440 /* 441 * Note: the VM must pass a valid block id, wslot and byte_count. 442 */ 443 struct pci_write_block { 444 struct pci_message message_type; 445 u32 block_id; 446 union win_slot_encoding wslot; 447 u32 byte_count; 448 u8 bytes[HV_CONFIG_BLOCK_SIZE_MAX]; 449 } __packed; 450 451 struct pci_dev_inval_block { 452 struct pci_incoming_message incoming; 453 union win_slot_encoding wslot; 454 u64 block_mask; 455 } __packed; 456 457 struct pci_dev_incoming { 458 struct pci_incoming_message incoming; 459 union win_slot_encoding wslot; 460 } __packed; 461 462 struct pci_eject_response { 463 struct pci_message message_type; 464 union win_slot_encoding wslot; 465 u32 status; 466 } __packed; 467 468 static int pci_ring_size = VMBUS_RING_SIZE(SZ_16K); 469 470 /* 471 * Driver specific state. 472 */ 473 474 enum hv_pcibus_state { 475 hv_pcibus_init = 0, 476 hv_pcibus_probed, 477 hv_pcibus_installed, 478 hv_pcibus_removing, 479 hv_pcibus_maximum 480 }; 481 482 struct hv_pcibus_device { 483 #ifdef CONFIG_X86 484 struct pci_sysdata sysdata; 485 #elif defined(CONFIG_ARM64) 486 struct pci_config_window sysdata; 487 #endif 488 struct pci_host_bridge *bridge; 489 struct fwnode_handle *fwnode; 490 /* Protocol version negotiated with the host */ 491 enum pci_protocol_version_t protocol_version; 492 493 struct mutex state_lock; 494 enum hv_pcibus_state state; 495 496 struct hv_device *hdev; 497 resource_size_t low_mmio_space; 498 resource_size_t high_mmio_space; 499 struct resource *mem_config; 500 struct resource *low_mmio_res; 501 struct resource *high_mmio_res; 502 struct completion *survey_event; 503 struct pci_bus *pci_bus; 504 spinlock_t config_lock; /* Avoid two threads writing index page */ 505 spinlock_t device_list_lock; /* Protect lists below */ 506 void __iomem *cfg_addr; 507 508 struct list_head children; 509 struct list_head dr_list; 510 511 struct msi_domain_info msi_info; 512 struct irq_domain *irq_domain; 513 514 struct workqueue_struct *wq; 515 516 /* Highest slot of child device with resources allocated */ 517 int wslot_res_allocated; 518 bool use_calls; /* Use hypercalls to access mmio cfg space */ 519 }; 520 521 /* 522 * Tracks "Device Relations" messages from the host, which must be both 523 * processed in order and deferred so that they don't run in the context 524 * of the incoming packet callback. 525 */ 526 struct hv_dr_work { 527 struct work_struct wrk; 528 struct hv_pcibus_device *bus; 529 }; 530 531 struct hv_pcidev_description { 532 u16 v_id; /* vendor ID */ 533 u16 d_id; /* device ID */ 534 u8 rev; 535 u8 prog_intf; 536 u8 subclass; 537 u8 base_class; 538 u32 subsystem_id; 539 union win_slot_encoding win_slot; 540 u32 ser; /* serial number */ 541 u32 flags; 542 u16 virtual_numa_node; 543 }; 544 545 struct hv_dr_state { 546 struct list_head list_entry; 547 u32 device_count; 548 struct hv_pcidev_description func[] __counted_by(device_count); 549 }; 550 551 struct hv_pci_dev { 552 /* List protected by pci_rescan_remove_lock */ 553 struct list_head list_entry; 554 refcount_t refs; 555 struct pci_slot *pci_slot; 556 struct hv_pcidev_description desc; 557 bool reported_missing; 558 struct hv_pcibus_device *hbus; 559 struct work_struct wrk; 560 561 void (*block_invalidate)(void *context, u64 block_mask); 562 void *invalidate_context; 563 564 /* 565 * What would be observed if one wrote 0xFFFFFFFF to a BAR and then 566 * read it back, for each of the BAR offsets within config space. 567 */ 568 u32 probed_bar[PCI_STD_NUM_BARS]; 569 }; 570 571 struct hv_pci_compl { 572 struct completion host_event; 573 s32 completion_status; 574 }; 575 576 static void hv_pci_onchannelcallback(void *context); 577 578 #ifdef CONFIG_X86 579 #define DELIVERY_MODE APIC_DELIVERY_MODE_FIXED 580 #define FLOW_HANDLER handle_edge_irq 581 #define FLOW_NAME "edge" 582 583 static int hv_pci_irqchip_init(void) 584 { 585 return 0; 586 } 587 588 static struct irq_domain *hv_pci_get_root_domain(void) 589 { 590 return x86_vector_domain; 591 } 592 593 static unsigned int hv_msi_get_int_vector(struct irq_data *data) 594 { 595 struct irq_cfg *cfg = irqd_cfg(data); 596 597 return cfg->vector; 598 } 599 600 #define hv_msi_prepare pci_msi_prepare 601 602 /** 603 * hv_irq_retarget_interrupt() - "Unmask" the IRQ by setting its current 604 * affinity. 605 * @data: Describes the IRQ 606 * 607 * Build new a destination for the MSI and make a hypercall to 608 * update the Interrupt Redirection Table. "Device Logical ID" 609 * is built out of this PCI bus's instance GUID and the function 610 * number of the device. 611 */ 612 static void hv_irq_retarget_interrupt(struct irq_data *data) 613 { 614 struct msi_desc *msi_desc = irq_data_get_msi_desc(data); 615 struct hv_retarget_device_interrupt *params; 616 struct tran_int_desc *int_desc; 617 struct hv_pcibus_device *hbus; 618 const struct cpumask *dest; 619 cpumask_var_t tmp; 620 struct pci_bus *pbus; 621 struct pci_dev *pdev; 622 unsigned long flags; 623 u32 var_size = 0; 624 int cpu, nr_bank; 625 u64 res; 626 627 dest = irq_data_get_effective_affinity_mask(data); 628 pdev = msi_desc_to_pci_dev(msi_desc); 629 pbus = pdev->bus; 630 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 631 int_desc = data->chip_data; 632 if (!int_desc) { 633 dev_warn(&hbus->hdev->device, "%s() can not unmask irq %u\n", 634 __func__, data->irq); 635 return; 636 } 637 638 local_irq_save(flags); 639 640 params = *this_cpu_ptr(hyperv_pcpu_input_arg); 641 memset(params, 0, sizeof(*params)); 642 params->partition_id = HV_PARTITION_ID_SELF; 643 params->int_entry.source = HV_INTERRUPT_SOURCE_MSI; 644 params->int_entry.msi_entry.address.as_uint32 = int_desc->address & 0xffffffff; 645 params->int_entry.msi_entry.data.as_uint32 = int_desc->data; 646 params->device_id = (hbus->hdev->dev_instance.b[5] << 24) | 647 (hbus->hdev->dev_instance.b[4] << 16) | 648 (hbus->hdev->dev_instance.b[7] << 8) | 649 (hbus->hdev->dev_instance.b[6] & 0xf8) | 650 PCI_FUNC(pdev->devfn); 651 params->int_target.vector = hv_msi_get_int_vector(data); 652 653 if (hbus->protocol_version >= PCI_PROTOCOL_VERSION_1_2) { 654 /* 655 * PCI_PROTOCOL_VERSION_1_2 supports the VP_SET version of the 656 * HVCALL_RETARGET_INTERRUPT hypercall, which also coincides 657 * with >64 VP support. 658 * ms_hyperv.hints & HV_X64_EX_PROCESSOR_MASKS_RECOMMENDED 659 * is not sufficient for this hypercall. 660 */ 661 params->int_target.flags |= 662 HV_DEVICE_INTERRUPT_TARGET_PROCESSOR_SET; 663 664 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC)) { 665 res = 1; 666 goto out; 667 } 668 669 cpumask_and(tmp, dest, cpu_online_mask); 670 nr_bank = cpumask_to_vpset(¶ms->int_target.vp_set, tmp); 671 free_cpumask_var(tmp); 672 673 if (nr_bank <= 0) { 674 res = 1; 675 goto out; 676 } 677 678 /* 679 * var-sized hypercall, var-size starts after vp_mask (thus 680 * vp_set.format does not count, but vp_set.valid_bank_mask 681 * does). 682 */ 683 var_size = 1 + nr_bank; 684 } else { 685 for_each_cpu_and(cpu, dest, cpu_online_mask) { 686 params->int_target.vp_mask |= 687 (1ULL << hv_cpu_number_to_vp_number(cpu)); 688 } 689 } 690 691 res = hv_do_hypercall(HVCALL_RETARGET_INTERRUPT | (var_size << 17), 692 params, NULL); 693 694 out: 695 local_irq_restore(flags); 696 697 /* 698 * During hibernation, when a CPU is offlined, the kernel tries 699 * to move the interrupt to the remaining CPUs that haven't 700 * been offlined yet. In this case, the below hv_do_hypercall() 701 * always fails since the vmbus channel has been closed: 702 * refer to cpu_disable_common() -> fixup_irqs() -> 703 * irq_migrate_all_off_this_cpu() -> migrate_one_irq(). 704 * 705 * Suppress the error message for hibernation because the failure 706 * during hibernation does not matter (at this time all the devices 707 * have been frozen). Note: the correct affinity info is still updated 708 * into the irqdata data structure in migrate_one_irq() -> 709 * irq_do_set_affinity(), so later when the VM resumes, 710 * hv_pci_restore_msi_state() is able to correctly restore the 711 * interrupt with the correct affinity. 712 */ 713 if (!hv_result_success(res) && hbus->state != hv_pcibus_removing) 714 dev_err(&hbus->hdev->device, 715 "%s() failed: %#llx", __func__, res); 716 } 717 718 static void hv_arch_irq_unmask(struct irq_data *data) 719 { 720 if (hv_root_partition()) 721 /* 722 * In case of the nested root partition, the nested hypervisor 723 * is taking care of interrupt remapping and thus the 724 * MAP_DEVICE_INTERRUPT hypercall is required instead of 725 * RETARGET_INTERRUPT. 726 */ 727 (void)hv_map_msi_interrupt(data, NULL); 728 else 729 hv_irq_retarget_interrupt(data); 730 } 731 #elif defined(CONFIG_ARM64) 732 /* 733 * SPI vectors to use for vPCI; arch SPIs range is [32, 1019], but leaving a bit 734 * of room at the start to allow for SPIs to be specified through ACPI and 735 * starting with a power of two to satisfy power of 2 multi-MSI requirement. 736 */ 737 #define HV_PCI_MSI_SPI_START 64 738 #define HV_PCI_MSI_SPI_NR (1020 - HV_PCI_MSI_SPI_START) 739 #define DELIVERY_MODE 0 740 #define FLOW_HANDLER NULL 741 #define FLOW_NAME NULL 742 #define hv_msi_prepare NULL 743 744 struct hv_pci_chip_data { 745 DECLARE_BITMAP(spi_map, HV_PCI_MSI_SPI_NR); 746 struct mutex map_lock; 747 }; 748 749 /* Hyper-V vPCI MSI GIC IRQ domain */ 750 static struct irq_domain *hv_msi_gic_irq_domain; 751 752 /* Hyper-V PCI MSI IRQ chip */ 753 static struct irq_chip hv_arm64_msi_irq_chip = { 754 .name = "MSI", 755 .irq_set_affinity = irq_chip_set_affinity_parent, 756 .irq_eoi = irq_chip_eoi_parent, 757 .irq_mask = irq_chip_mask_parent, 758 .irq_unmask = irq_chip_unmask_parent 759 }; 760 761 static unsigned int hv_msi_get_int_vector(struct irq_data *irqd) 762 { 763 return irqd->parent_data->hwirq; 764 } 765 766 /* 767 * @nr_bm_irqs: Indicates the number of IRQs that were allocated from 768 * the bitmap. 769 * @nr_dom_irqs: Indicates the number of IRQs that were allocated from 770 * the parent domain. 771 */ 772 static void hv_pci_vec_irq_free(struct irq_domain *domain, 773 unsigned int virq, 774 unsigned int nr_bm_irqs, 775 unsigned int nr_dom_irqs) 776 { 777 struct hv_pci_chip_data *chip_data = domain->host_data; 778 struct irq_data *d = irq_domain_get_irq_data(domain, virq); 779 int first = d->hwirq - HV_PCI_MSI_SPI_START; 780 int i; 781 782 mutex_lock(&chip_data->map_lock); 783 bitmap_release_region(chip_data->spi_map, 784 first, 785 get_count_order(nr_bm_irqs)); 786 mutex_unlock(&chip_data->map_lock); 787 for (i = 0; i < nr_dom_irqs; i++) { 788 if (i) 789 d = irq_domain_get_irq_data(domain, virq + i); 790 irq_domain_reset_irq_data(d); 791 } 792 793 irq_domain_free_irqs_parent(domain, virq, nr_dom_irqs); 794 } 795 796 static void hv_pci_vec_irq_domain_free(struct irq_domain *domain, 797 unsigned int virq, 798 unsigned int nr_irqs) 799 { 800 hv_pci_vec_irq_free(domain, virq, nr_irqs, nr_irqs); 801 } 802 803 static int hv_pci_vec_alloc_device_irq(struct irq_domain *domain, 804 unsigned int nr_irqs, 805 irq_hw_number_t *hwirq) 806 { 807 struct hv_pci_chip_data *chip_data = domain->host_data; 808 int index; 809 810 /* Find and allocate region from the SPI bitmap */ 811 mutex_lock(&chip_data->map_lock); 812 index = bitmap_find_free_region(chip_data->spi_map, 813 HV_PCI_MSI_SPI_NR, 814 get_count_order(nr_irqs)); 815 mutex_unlock(&chip_data->map_lock); 816 if (index < 0) 817 return -ENOSPC; 818 819 *hwirq = index + HV_PCI_MSI_SPI_START; 820 821 return 0; 822 } 823 824 static int hv_pci_vec_irq_gic_domain_alloc(struct irq_domain *domain, 825 unsigned int virq, 826 irq_hw_number_t hwirq) 827 { 828 struct irq_fwspec fwspec; 829 struct irq_data *d; 830 int ret; 831 832 fwspec.fwnode = domain->parent->fwnode; 833 if (is_of_node(fwspec.fwnode)) { 834 /* SPI lines for OF translations start at offset 32 */ 835 fwspec.param_count = 3; 836 fwspec.param[0] = 0; 837 fwspec.param[1] = hwirq - 32; 838 fwspec.param[2] = IRQ_TYPE_EDGE_RISING; 839 } else { 840 fwspec.param_count = 2; 841 fwspec.param[0] = hwirq; 842 fwspec.param[1] = IRQ_TYPE_EDGE_RISING; 843 } 844 845 ret = irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec); 846 if (ret) 847 return ret; 848 849 /* 850 * Since the interrupt specifier is not coming from ACPI or DT, the 851 * trigger type will need to be set explicitly. Otherwise, it will be 852 * set to whatever is in the GIC configuration. 853 */ 854 d = irq_domain_get_irq_data(domain->parent, virq); 855 856 return d->chip->irq_set_type(d, IRQ_TYPE_EDGE_RISING); 857 } 858 859 static int hv_pci_vec_irq_domain_alloc(struct irq_domain *domain, 860 unsigned int virq, unsigned int nr_irqs, 861 void *args) 862 { 863 irq_hw_number_t hwirq; 864 unsigned int i; 865 int ret; 866 867 ret = hv_pci_vec_alloc_device_irq(domain, nr_irqs, &hwirq); 868 if (ret) 869 return ret; 870 871 for (i = 0; i < nr_irqs; i++) { 872 ret = hv_pci_vec_irq_gic_domain_alloc(domain, virq + i, 873 hwirq + i); 874 if (ret) { 875 hv_pci_vec_irq_free(domain, virq, nr_irqs, i); 876 return ret; 877 } 878 879 irq_domain_set_hwirq_and_chip(domain, virq + i, 880 hwirq + i, 881 &hv_arm64_msi_irq_chip, 882 domain->host_data); 883 pr_debug("pID:%d vID:%u\n", (int)(hwirq + i), virq + i); 884 } 885 886 return 0; 887 } 888 889 /* 890 * Pick the first cpu as the irq affinity that can be temporarily used for 891 * composing MSI from the hypervisor. GIC will eventually set the right 892 * affinity for the irq and the 'unmask' will retarget the interrupt to that 893 * cpu. 894 */ 895 static int hv_pci_vec_irq_domain_activate(struct irq_domain *domain, 896 struct irq_data *irqd, bool reserve) 897 { 898 int cpu = cpumask_first(cpu_present_mask); 899 900 irq_data_update_effective_affinity(irqd, cpumask_of(cpu)); 901 902 return 0; 903 } 904 905 static const struct irq_domain_ops hv_pci_domain_ops = { 906 .alloc = hv_pci_vec_irq_domain_alloc, 907 .free = hv_pci_vec_irq_domain_free, 908 .activate = hv_pci_vec_irq_domain_activate, 909 }; 910 911 #ifdef CONFIG_OF 912 913 static struct irq_domain *hv_pci_of_irq_domain_parent(void) 914 { 915 struct device_node *parent; 916 struct irq_domain *domain; 917 918 parent = of_irq_find_parent(hv_get_vmbus_root_device()->of_node); 919 if (!parent) 920 return NULL; 921 domain = irq_find_host(parent); 922 of_node_put(parent); 923 924 return domain; 925 } 926 927 #endif 928 929 #ifdef CONFIG_ACPI 930 931 static struct irq_domain *hv_pci_acpi_irq_domain_parent(void) 932 { 933 acpi_gsi_domain_disp_fn gsi_domain_disp_fn; 934 935 gsi_domain_disp_fn = acpi_get_gsi_dispatcher(); 936 if (!gsi_domain_disp_fn) 937 return NULL; 938 return irq_find_matching_fwnode(gsi_domain_disp_fn(0), 939 DOMAIN_BUS_ANY); 940 } 941 942 #endif 943 944 static int hv_pci_irqchip_init(void) 945 { 946 static struct hv_pci_chip_data *chip_data; 947 struct fwnode_handle *fn = NULL; 948 struct irq_domain *irq_domain_parent = NULL; 949 int ret = -ENOMEM; 950 951 chip_data = kzalloc(sizeof(*chip_data), GFP_KERNEL); 952 if (!chip_data) 953 return ret; 954 955 mutex_init(&chip_data->map_lock); 956 fn = irq_domain_alloc_named_fwnode("hv_vpci_arm64"); 957 if (!fn) 958 goto free_chip; 959 960 /* 961 * IRQ domain once enabled, should not be removed since there is no 962 * way to ensure that all the corresponding devices are also gone and 963 * no interrupts will be generated. 964 */ 965 #ifdef CONFIG_ACPI 966 if (!acpi_disabled) 967 irq_domain_parent = hv_pci_acpi_irq_domain_parent(); 968 #endif 969 #ifdef CONFIG_OF 970 if (!irq_domain_parent) 971 irq_domain_parent = hv_pci_of_irq_domain_parent(); 972 #endif 973 if (!irq_domain_parent) { 974 WARN_ONCE(1, "Invalid firmware configuration for VMBus interrupts\n"); 975 ret = -EINVAL; 976 goto free_chip; 977 } 978 979 hv_msi_gic_irq_domain = irq_domain_create_hierarchy(irq_domain_parent, 0, 980 HV_PCI_MSI_SPI_NR, 981 fn, &hv_pci_domain_ops, 982 chip_data); 983 984 if (!hv_msi_gic_irq_domain) { 985 pr_err("Failed to create Hyper-V arm64 vPCI MSI IRQ domain\n"); 986 goto free_chip; 987 } 988 989 return 0; 990 991 free_chip: 992 kfree(chip_data); 993 if (fn) 994 irq_domain_free_fwnode(fn); 995 996 return ret; 997 } 998 999 static struct irq_domain *hv_pci_get_root_domain(void) 1000 { 1001 return hv_msi_gic_irq_domain; 1002 } 1003 1004 /* 1005 * SPIs are used for interrupts of PCI devices and SPIs is managed via GICD 1006 * registers which Hyper-V already supports, so no hypercall needed. 1007 */ 1008 static void hv_arch_irq_unmask(struct irq_data *data) { } 1009 #endif /* CONFIG_ARM64 */ 1010 1011 /** 1012 * hv_pci_generic_compl() - Invoked for a completion packet 1013 * @context: Set up by the sender of the packet. 1014 * @resp: The response packet 1015 * @resp_packet_size: Size in bytes of the packet 1016 * 1017 * This function is used to trigger an event and report status 1018 * for any message for which the completion packet contains a 1019 * status and nothing else. 1020 */ 1021 static void hv_pci_generic_compl(void *context, struct pci_response *resp, 1022 int resp_packet_size) 1023 { 1024 struct hv_pci_compl *comp_pkt = context; 1025 1026 comp_pkt->completion_status = resp->status; 1027 complete(&comp_pkt->host_event); 1028 } 1029 1030 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 1031 u32 wslot); 1032 1033 static void get_pcichild(struct hv_pci_dev *hpdev) 1034 { 1035 refcount_inc(&hpdev->refs); 1036 } 1037 1038 static void put_pcichild(struct hv_pci_dev *hpdev) 1039 { 1040 if (refcount_dec_and_test(&hpdev->refs)) 1041 kfree(hpdev); 1042 } 1043 1044 /* 1045 * There is no good way to get notified from vmbus_onoffer_rescind(), 1046 * so let's use polling here, since this is not a hot path. 1047 */ 1048 static int wait_for_response(struct hv_device *hdev, 1049 struct completion *comp) 1050 { 1051 while (true) { 1052 if (hdev->channel->rescind) { 1053 dev_warn_once(&hdev->device, "The device is gone.\n"); 1054 return -ENODEV; 1055 } 1056 1057 if (wait_for_completion_timeout(comp, HZ / 10)) 1058 break; 1059 } 1060 1061 return 0; 1062 } 1063 1064 /** 1065 * devfn_to_wslot() - Convert from Linux PCI slot to Windows 1066 * @devfn: The Linux representation of PCI slot 1067 * 1068 * Windows uses a slightly different representation of PCI slot. 1069 * 1070 * Return: The Windows representation 1071 */ 1072 static u32 devfn_to_wslot(int devfn) 1073 { 1074 union win_slot_encoding wslot; 1075 1076 wslot.slot = 0; 1077 wslot.bits.dev = PCI_SLOT(devfn); 1078 wslot.bits.func = PCI_FUNC(devfn); 1079 1080 return wslot.slot; 1081 } 1082 1083 /** 1084 * wslot_to_devfn() - Convert from Windows PCI slot to Linux 1085 * @wslot: The Windows representation of PCI slot 1086 * 1087 * Windows uses a slightly different representation of PCI slot. 1088 * 1089 * Return: The Linux representation 1090 */ 1091 static int wslot_to_devfn(u32 wslot) 1092 { 1093 union win_slot_encoding slot_no; 1094 1095 slot_no.slot = wslot; 1096 return PCI_DEVFN(slot_no.bits.dev, slot_no.bits.func); 1097 } 1098 1099 static void hv_pci_read_mmio(struct device *dev, phys_addr_t gpa, int size, u32 *val) 1100 { 1101 struct hv_mmio_read_input *in; 1102 struct hv_mmio_read_output *out; 1103 u64 ret; 1104 1105 /* 1106 * Must be called with interrupts disabled so it is safe 1107 * to use the per-cpu input argument page. Use it for 1108 * both input and output. 1109 */ 1110 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1111 out = *this_cpu_ptr(hyperv_pcpu_input_arg) + sizeof(*in); 1112 in->gpa = gpa; 1113 in->size = size; 1114 1115 ret = hv_do_hypercall(HVCALL_MMIO_READ, in, out); 1116 if (hv_result_success(ret)) { 1117 switch (size) { 1118 case 1: 1119 *val = *(u8 *)(out->data); 1120 break; 1121 case 2: 1122 *val = *(u16 *)(out->data); 1123 break; 1124 default: 1125 *val = *(u32 *)(out->data); 1126 break; 1127 } 1128 } else 1129 dev_err(dev, "MMIO read hypercall error %llx addr %llx size %d\n", 1130 ret, gpa, size); 1131 } 1132 1133 static void hv_pci_write_mmio(struct device *dev, phys_addr_t gpa, int size, u32 val) 1134 { 1135 struct hv_mmio_write_input *in; 1136 u64 ret; 1137 1138 /* 1139 * Must be called with interrupts disabled so it is safe 1140 * to use the per-cpu input argument memory. 1141 */ 1142 in = *this_cpu_ptr(hyperv_pcpu_input_arg); 1143 in->gpa = gpa; 1144 in->size = size; 1145 switch (size) { 1146 case 1: 1147 *(u8 *)(in->data) = val; 1148 break; 1149 case 2: 1150 *(u16 *)(in->data) = val; 1151 break; 1152 default: 1153 *(u32 *)(in->data) = val; 1154 break; 1155 } 1156 1157 ret = hv_do_hypercall(HVCALL_MMIO_WRITE, in, NULL); 1158 if (!hv_result_success(ret)) 1159 dev_err(dev, "MMIO write hypercall error %llx addr %llx size %d\n", 1160 ret, gpa, size); 1161 } 1162 1163 /* 1164 * PCI Configuration Space for these root PCI buses is implemented as a pair 1165 * of pages in memory-mapped I/O space. Writing to the first page chooses 1166 * the PCI function being written or read. Once the first page has been 1167 * written to, the following page maps in the entire configuration space of 1168 * the function. 1169 */ 1170 1171 /** 1172 * _hv_pcifront_read_config() - Internal PCI config read 1173 * @hpdev: The PCI driver's representation of the device 1174 * @where: Offset within config space 1175 * @size: Size of the transfer 1176 * @val: Pointer to the buffer receiving the data 1177 */ 1178 static void _hv_pcifront_read_config(struct hv_pci_dev *hpdev, int where, 1179 int size, u32 *val) 1180 { 1181 struct hv_pcibus_device *hbus = hpdev->hbus; 1182 struct device *dev = &hbus->hdev->device; 1183 int offset = where + CFG_PAGE_OFFSET; 1184 unsigned long flags; 1185 1186 /* 1187 * If the attempt is to read the IDs or the ROM BAR, simulate that. 1188 */ 1189 if (where + size <= PCI_COMMAND) { 1190 memcpy(val, ((u8 *)&hpdev->desc.v_id) + where, size); 1191 } else if (where >= PCI_CLASS_REVISION && where + size <= 1192 PCI_CACHE_LINE_SIZE) { 1193 memcpy(val, ((u8 *)&hpdev->desc.rev) + where - 1194 PCI_CLASS_REVISION, size); 1195 } else if (where >= PCI_SUBSYSTEM_VENDOR_ID && where + size <= 1196 PCI_ROM_ADDRESS) { 1197 memcpy(val, (u8 *)&hpdev->desc.subsystem_id + where - 1198 PCI_SUBSYSTEM_VENDOR_ID, size); 1199 } else if (where >= PCI_ROM_ADDRESS && where + size <= 1200 PCI_CAPABILITY_LIST) { 1201 /* ROM BARs are unimplemented */ 1202 *val = 0; 1203 } else if ((where >= PCI_INTERRUPT_LINE && where + size <= PCI_INTERRUPT_PIN) || 1204 (where >= PCI_INTERRUPT_PIN && where + size <= PCI_MIN_GNT)) { 1205 /* 1206 * Interrupt Line and Interrupt PIN are hard-wired to zero 1207 * because this front-end only supports message-signaled 1208 * interrupts. 1209 */ 1210 *val = 0; 1211 } else if (where + size <= CFG_PAGE_SIZE) { 1212 1213 spin_lock_irqsave(&hbus->config_lock, flags); 1214 if (hbus->use_calls) { 1215 phys_addr_t addr = hbus->mem_config->start + offset; 1216 1217 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1218 hpdev->desc.win_slot.slot); 1219 hv_pci_read_mmio(dev, addr, size, val); 1220 } else { 1221 void __iomem *addr = hbus->cfg_addr + offset; 1222 1223 /* Choose the function to be read. (See comment above) */ 1224 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1225 /* Make sure the function was chosen before reading. */ 1226 mb(); 1227 /* Read from that function's config space. */ 1228 switch (size) { 1229 case 1: 1230 *val = readb(addr); 1231 break; 1232 case 2: 1233 *val = readw(addr); 1234 break; 1235 default: 1236 *val = readl(addr); 1237 break; 1238 } 1239 /* 1240 * Make sure the read was done before we release the 1241 * spinlock allowing consecutive reads/writes. 1242 */ 1243 mb(); 1244 } 1245 spin_unlock_irqrestore(&hbus->config_lock, flags); 1246 } else { 1247 dev_err(dev, "Attempt to read beyond a function's config space.\n"); 1248 } 1249 } 1250 1251 static u16 hv_pcifront_get_vendor_id(struct hv_pci_dev *hpdev) 1252 { 1253 struct hv_pcibus_device *hbus = hpdev->hbus; 1254 struct device *dev = &hbus->hdev->device; 1255 u32 val; 1256 u16 ret; 1257 unsigned long flags; 1258 1259 spin_lock_irqsave(&hbus->config_lock, flags); 1260 1261 if (hbus->use_calls) { 1262 phys_addr_t addr = hbus->mem_config->start + 1263 CFG_PAGE_OFFSET + PCI_VENDOR_ID; 1264 1265 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1266 hpdev->desc.win_slot.slot); 1267 hv_pci_read_mmio(dev, addr, 2, &val); 1268 ret = val; /* Truncates to 16 bits */ 1269 } else { 1270 void __iomem *addr = hbus->cfg_addr + CFG_PAGE_OFFSET + 1271 PCI_VENDOR_ID; 1272 /* Choose the function to be read. (See comment above) */ 1273 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1274 /* Make sure the function was chosen before we start reading. */ 1275 mb(); 1276 /* Read from that function's config space. */ 1277 ret = readw(addr); 1278 /* 1279 * mb() is not required here, because the 1280 * spin_unlock_irqrestore() is a barrier. 1281 */ 1282 } 1283 1284 spin_unlock_irqrestore(&hbus->config_lock, flags); 1285 1286 return ret; 1287 } 1288 1289 /** 1290 * _hv_pcifront_write_config() - Internal PCI config write 1291 * @hpdev: The PCI driver's representation of the device 1292 * @where: Offset within config space 1293 * @size: Size of the transfer 1294 * @val: The data being transferred 1295 */ 1296 static void _hv_pcifront_write_config(struct hv_pci_dev *hpdev, int where, 1297 int size, u32 val) 1298 { 1299 struct hv_pcibus_device *hbus = hpdev->hbus; 1300 struct device *dev = &hbus->hdev->device; 1301 int offset = where + CFG_PAGE_OFFSET; 1302 unsigned long flags; 1303 1304 if (where >= PCI_SUBSYSTEM_VENDOR_ID && 1305 where + size <= PCI_CAPABILITY_LIST) { 1306 /* SSIDs and ROM BARs are read-only */ 1307 } else if (where >= PCI_COMMAND && where + size <= CFG_PAGE_SIZE) { 1308 spin_lock_irqsave(&hbus->config_lock, flags); 1309 1310 if (hbus->use_calls) { 1311 phys_addr_t addr = hbus->mem_config->start + offset; 1312 1313 hv_pci_write_mmio(dev, hbus->mem_config->start, 4, 1314 hpdev->desc.win_slot.slot); 1315 hv_pci_write_mmio(dev, addr, size, val); 1316 } else { 1317 void __iomem *addr = hbus->cfg_addr + offset; 1318 1319 /* Choose the function to write. (See comment above) */ 1320 writel(hpdev->desc.win_slot.slot, hbus->cfg_addr); 1321 /* Make sure the function was chosen before writing. */ 1322 wmb(); 1323 /* Write to that function's config space. */ 1324 switch (size) { 1325 case 1: 1326 writeb(val, addr); 1327 break; 1328 case 2: 1329 writew(val, addr); 1330 break; 1331 default: 1332 writel(val, addr); 1333 break; 1334 } 1335 /* 1336 * Make sure the write was done before we release the 1337 * spinlock allowing consecutive reads/writes. 1338 */ 1339 mb(); 1340 } 1341 spin_unlock_irqrestore(&hbus->config_lock, flags); 1342 } else { 1343 dev_err(dev, "Attempt to write beyond a function's config space.\n"); 1344 } 1345 } 1346 1347 /** 1348 * hv_pcifront_read_config() - Read configuration space 1349 * @bus: PCI Bus structure 1350 * @devfn: Device/function 1351 * @where: Offset from base 1352 * @size: Byte/word/dword 1353 * @val: Value to be read 1354 * 1355 * Return: PCIBIOS_SUCCESSFUL on success 1356 * PCIBIOS_DEVICE_NOT_FOUND on failure 1357 */ 1358 static int hv_pcifront_read_config(struct pci_bus *bus, unsigned int devfn, 1359 int where, int size, u32 *val) 1360 { 1361 struct hv_pcibus_device *hbus = 1362 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1363 struct hv_pci_dev *hpdev; 1364 1365 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1366 if (!hpdev) 1367 return PCIBIOS_DEVICE_NOT_FOUND; 1368 1369 _hv_pcifront_read_config(hpdev, where, size, val); 1370 1371 put_pcichild(hpdev); 1372 return PCIBIOS_SUCCESSFUL; 1373 } 1374 1375 /** 1376 * hv_pcifront_write_config() - Write configuration space 1377 * @bus: PCI Bus structure 1378 * @devfn: Device/function 1379 * @where: Offset from base 1380 * @size: Byte/word/dword 1381 * @val: Value to be written to device 1382 * 1383 * Return: PCIBIOS_SUCCESSFUL on success 1384 * PCIBIOS_DEVICE_NOT_FOUND on failure 1385 */ 1386 static int hv_pcifront_write_config(struct pci_bus *bus, unsigned int devfn, 1387 int where, int size, u32 val) 1388 { 1389 struct hv_pcibus_device *hbus = 1390 container_of(bus->sysdata, struct hv_pcibus_device, sysdata); 1391 struct hv_pci_dev *hpdev; 1392 1393 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(devfn)); 1394 if (!hpdev) 1395 return PCIBIOS_DEVICE_NOT_FOUND; 1396 1397 _hv_pcifront_write_config(hpdev, where, size, val); 1398 1399 put_pcichild(hpdev); 1400 return PCIBIOS_SUCCESSFUL; 1401 } 1402 1403 /* PCIe operations */ 1404 static struct pci_ops hv_pcifront_ops = { 1405 .read = hv_pcifront_read_config, 1406 .write = hv_pcifront_write_config, 1407 }; 1408 1409 /* 1410 * Paravirtual backchannel 1411 * 1412 * Hyper-V SR-IOV provides a backchannel mechanism in software for 1413 * communication between a VF driver and a PF driver. These 1414 * "configuration blocks" are similar in concept to PCI configuration space, 1415 * but instead of doing reads and writes in 32-bit chunks through a very slow 1416 * path, packets of up to 128 bytes can be sent or received asynchronously. 1417 * 1418 * Nearly every SR-IOV device contains just such a communications channel in 1419 * hardware, so using this one in software is usually optional. Using the 1420 * software channel, however, allows driver implementers to leverage software 1421 * tools that fuzz the communications channel looking for vulnerabilities. 1422 * 1423 * The usage model for these packets puts the responsibility for reading or 1424 * writing on the VF driver. The VF driver sends a read or a write packet, 1425 * indicating which "block" is being referred to by number. 1426 * 1427 * If the PF driver wishes to initiate communication, it can "invalidate" one or 1428 * more of the first 64 blocks. This invalidation is delivered via a callback 1429 * supplied to the VF driver by this driver. 1430 * 1431 * No protocol is implied, except that supplied by the PF and VF drivers. 1432 */ 1433 1434 struct hv_read_config_compl { 1435 struct hv_pci_compl comp_pkt; 1436 void *buf; 1437 unsigned int len; 1438 unsigned int bytes_returned; 1439 }; 1440 1441 /** 1442 * hv_pci_read_config_compl() - Invoked when a response packet 1443 * for a read config block operation arrives. 1444 * @context: Identifies the read config operation 1445 * @resp: The response packet itself 1446 * @resp_packet_size: Size in bytes of the response packet 1447 */ 1448 static void hv_pci_read_config_compl(void *context, struct pci_response *resp, 1449 int resp_packet_size) 1450 { 1451 struct hv_read_config_compl *comp = context; 1452 struct pci_read_block_response *read_resp = 1453 (struct pci_read_block_response *)resp; 1454 unsigned int data_len, hdr_len; 1455 1456 hdr_len = offsetof(struct pci_read_block_response, bytes); 1457 if (resp_packet_size < hdr_len) { 1458 comp->comp_pkt.completion_status = -1; 1459 goto out; 1460 } 1461 1462 data_len = resp_packet_size - hdr_len; 1463 if (data_len > 0 && read_resp->status == 0) { 1464 comp->bytes_returned = min(comp->len, data_len); 1465 memcpy(comp->buf, read_resp->bytes, comp->bytes_returned); 1466 } else { 1467 comp->bytes_returned = 0; 1468 } 1469 1470 comp->comp_pkt.completion_status = read_resp->status; 1471 out: 1472 complete(&comp->comp_pkt.host_event); 1473 } 1474 1475 /** 1476 * hv_read_config_block() - Sends a read config block request to 1477 * the back-end driver running in the Hyper-V parent partition. 1478 * @pdev: The PCI driver's representation for this device. 1479 * @buf: Buffer into which the config block will be copied. 1480 * @len: Size in bytes of buf. 1481 * @block_id: Identifies the config block which has been requested. 1482 * @bytes_returned: Size which came back from the back-end driver. 1483 * 1484 * Return: 0 on success, -errno on failure 1485 */ 1486 static int hv_read_config_block(struct pci_dev *pdev, void *buf, 1487 unsigned int len, unsigned int block_id, 1488 unsigned int *bytes_returned) 1489 { 1490 struct hv_pcibus_device *hbus = 1491 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1492 sysdata); 1493 struct { 1494 struct pci_packet pkt; 1495 char buf[sizeof(struct pci_read_block)]; 1496 } pkt; 1497 struct hv_read_config_compl comp_pkt; 1498 struct pci_read_block *read_blk; 1499 int ret; 1500 1501 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1502 return -EINVAL; 1503 1504 init_completion(&comp_pkt.comp_pkt.host_event); 1505 comp_pkt.buf = buf; 1506 comp_pkt.len = len; 1507 1508 memset(&pkt, 0, sizeof(pkt)); 1509 pkt.pkt.completion_func = hv_pci_read_config_compl; 1510 pkt.pkt.compl_ctxt = &comp_pkt; 1511 read_blk = (struct pci_read_block *)pkt.buf; 1512 read_blk->message_type.type = PCI_READ_BLOCK; 1513 read_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1514 read_blk->block_id = block_id; 1515 read_blk->bytes_requested = len; 1516 1517 ret = vmbus_sendpacket(hbus->hdev->channel, read_blk, 1518 sizeof(*read_blk), (unsigned long)&pkt.pkt, 1519 VM_PKT_DATA_INBAND, 1520 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1521 if (ret) 1522 return ret; 1523 1524 ret = wait_for_response(hbus->hdev, &comp_pkt.comp_pkt.host_event); 1525 if (ret) 1526 return ret; 1527 1528 if (comp_pkt.comp_pkt.completion_status != 0 || 1529 comp_pkt.bytes_returned == 0) { 1530 dev_err(&hbus->hdev->device, 1531 "Read Config Block failed: 0x%x, bytes_returned=%d\n", 1532 comp_pkt.comp_pkt.completion_status, 1533 comp_pkt.bytes_returned); 1534 return -EIO; 1535 } 1536 1537 *bytes_returned = comp_pkt.bytes_returned; 1538 return 0; 1539 } 1540 1541 /** 1542 * hv_pci_write_config_compl() - Invoked when a response packet for a write 1543 * config block operation arrives. 1544 * @context: Identifies the write config operation 1545 * @resp: The response packet itself 1546 * @resp_packet_size: Size in bytes of the response packet 1547 */ 1548 static void hv_pci_write_config_compl(void *context, struct pci_response *resp, 1549 int resp_packet_size) 1550 { 1551 struct hv_pci_compl *comp_pkt = context; 1552 1553 comp_pkt->completion_status = resp->status; 1554 complete(&comp_pkt->host_event); 1555 } 1556 1557 /** 1558 * hv_write_config_block() - Sends a write config block request to the 1559 * back-end driver running in the Hyper-V parent partition. 1560 * @pdev: The PCI driver's representation for this device. 1561 * @buf: Buffer from which the config block will be copied. 1562 * @len: Size in bytes of buf. 1563 * @block_id: Identifies the config block which is being written. 1564 * 1565 * Return: 0 on success, -errno on failure 1566 */ 1567 static int hv_write_config_block(struct pci_dev *pdev, void *buf, 1568 unsigned int len, unsigned int block_id) 1569 { 1570 struct hv_pcibus_device *hbus = 1571 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1572 sysdata); 1573 struct { 1574 struct pci_packet pkt; 1575 char buf[sizeof(struct pci_write_block)]; 1576 u32 reserved; 1577 } pkt; 1578 struct hv_pci_compl comp_pkt; 1579 struct pci_write_block *write_blk; 1580 u32 pkt_size; 1581 int ret; 1582 1583 if (len == 0 || len > HV_CONFIG_BLOCK_SIZE_MAX) 1584 return -EINVAL; 1585 1586 init_completion(&comp_pkt.host_event); 1587 1588 memset(&pkt, 0, sizeof(pkt)); 1589 pkt.pkt.completion_func = hv_pci_write_config_compl; 1590 pkt.pkt.compl_ctxt = &comp_pkt; 1591 write_blk = (struct pci_write_block *)pkt.buf; 1592 write_blk->message_type.type = PCI_WRITE_BLOCK; 1593 write_blk->wslot.slot = devfn_to_wslot(pdev->devfn); 1594 write_blk->block_id = block_id; 1595 write_blk->byte_count = len; 1596 memcpy(write_blk->bytes, buf, len); 1597 pkt_size = offsetof(struct pci_write_block, bytes) + len; 1598 /* 1599 * This quirk is required on some hosts shipped around 2018, because 1600 * these hosts don't check the pkt_size correctly (new hosts have been 1601 * fixed since early 2019). The quirk is also safe on very old hosts 1602 * and new hosts, because, on them, what really matters is the length 1603 * specified in write_blk->byte_count. 1604 */ 1605 pkt_size += sizeof(pkt.reserved); 1606 1607 ret = vmbus_sendpacket(hbus->hdev->channel, write_blk, pkt_size, 1608 (unsigned long)&pkt.pkt, VM_PKT_DATA_INBAND, 1609 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 1610 if (ret) 1611 return ret; 1612 1613 ret = wait_for_response(hbus->hdev, &comp_pkt.host_event); 1614 if (ret) 1615 return ret; 1616 1617 if (comp_pkt.completion_status != 0) { 1618 dev_err(&hbus->hdev->device, 1619 "Write Config Block failed: 0x%x\n", 1620 comp_pkt.completion_status); 1621 return -EIO; 1622 } 1623 1624 return 0; 1625 } 1626 1627 /** 1628 * hv_register_block_invalidate() - Invoked when a config block invalidation 1629 * arrives from the back-end driver. 1630 * @pdev: The PCI driver's representation for this device. 1631 * @context: Identifies the device. 1632 * @block_invalidate: Identifies all of the blocks being invalidated. 1633 * 1634 * Return: 0 on success, -errno on failure 1635 */ 1636 static int hv_register_block_invalidate(struct pci_dev *pdev, void *context, 1637 void (*block_invalidate)(void *context, 1638 u64 block_mask)) 1639 { 1640 struct hv_pcibus_device *hbus = 1641 container_of(pdev->bus->sysdata, struct hv_pcibus_device, 1642 sysdata); 1643 struct hv_pci_dev *hpdev; 1644 1645 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1646 if (!hpdev) 1647 return -ENODEV; 1648 1649 hpdev->block_invalidate = block_invalidate; 1650 hpdev->invalidate_context = context; 1651 1652 put_pcichild(hpdev); 1653 return 0; 1654 1655 } 1656 1657 /* Interrupt management hooks */ 1658 static void hv_int_desc_free(struct hv_pci_dev *hpdev, 1659 struct tran_int_desc *int_desc) 1660 { 1661 struct pci_delete_interrupt *int_pkt; 1662 struct { 1663 struct pci_packet pkt; 1664 u8 buffer[sizeof(struct pci_delete_interrupt)]; 1665 } ctxt; 1666 1667 if (!int_desc->vector_count) { 1668 kfree(int_desc); 1669 return; 1670 } 1671 memset(&ctxt, 0, sizeof(ctxt)); 1672 int_pkt = (struct pci_delete_interrupt *)ctxt.buffer; 1673 int_pkt->message_type.type = 1674 PCI_DELETE_INTERRUPT_MESSAGE; 1675 int_pkt->wslot.slot = hpdev->desc.win_slot.slot; 1676 int_pkt->int_desc = *int_desc; 1677 vmbus_sendpacket(hpdev->hbus->hdev->channel, int_pkt, sizeof(*int_pkt), 1678 0, VM_PKT_DATA_INBAND, 0); 1679 kfree(int_desc); 1680 } 1681 1682 /** 1683 * hv_msi_free() - Free the MSI. 1684 * @domain: The interrupt domain pointer 1685 * @info: Extra MSI-related context 1686 * @irq: Identifies the IRQ. 1687 * 1688 * The Hyper-V parent partition and hypervisor are tracking the 1689 * messages that are in use, keeping the interrupt redirection 1690 * table up to date. This callback sends a message that frees 1691 * the IRT entry and related tracking nonsense. 1692 */ 1693 static void hv_msi_free(struct irq_domain *domain, struct msi_domain_info *info, 1694 unsigned int irq) 1695 { 1696 struct hv_pcibus_device *hbus; 1697 struct hv_pci_dev *hpdev; 1698 struct pci_dev *pdev; 1699 struct tran_int_desc *int_desc; 1700 struct irq_data *irq_data = irq_domain_get_irq_data(domain, irq); 1701 struct msi_desc *msi = irq_data_get_msi_desc(irq_data); 1702 1703 pdev = msi_desc_to_pci_dev(msi); 1704 hbus = info->data; 1705 int_desc = irq_data_get_irq_chip_data(irq_data); 1706 if (!int_desc) 1707 return; 1708 1709 irq_data->chip_data = NULL; 1710 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1711 if (!hpdev) { 1712 kfree(int_desc); 1713 return; 1714 } 1715 1716 hv_int_desc_free(hpdev, int_desc); 1717 put_pcichild(hpdev); 1718 } 1719 1720 static void hv_irq_mask(struct irq_data *data) 1721 { 1722 pci_msi_mask_irq(data); 1723 if (data->parent_data->chip->irq_mask) 1724 irq_chip_mask_parent(data); 1725 } 1726 1727 static void hv_irq_unmask(struct irq_data *data) 1728 { 1729 hv_arch_irq_unmask(data); 1730 1731 if (data->parent_data->chip->irq_unmask) 1732 irq_chip_unmask_parent(data); 1733 pci_msi_unmask_irq(data); 1734 } 1735 1736 struct compose_comp_ctxt { 1737 struct hv_pci_compl comp_pkt; 1738 struct tran_int_desc int_desc; 1739 }; 1740 1741 static void hv_pci_compose_compl(void *context, struct pci_response *resp, 1742 int resp_packet_size) 1743 { 1744 struct compose_comp_ctxt *comp_pkt = context; 1745 struct pci_create_int_response *int_resp = 1746 (struct pci_create_int_response *)resp; 1747 1748 if (resp_packet_size < sizeof(*int_resp)) { 1749 comp_pkt->comp_pkt.completion_status = -1; 1750 goto out; 1751 } 1752 comp_pkt->comp_pkt.completion_status = resp->status; 1753 comp_pkt->int_desc = int_resp->int_desc; 1754 out: 1755 complete(&comp_pkt->comp_pkt.host_event); 1756 } 1757 1758 static u32 hv_compose_msi_req_v1( 1759 struct pci_create_interrupt *int_pkt, 1760 u32 slot, u8 vector, u16 vector_count) 1761 { 1762 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE; 1763 int_pkt->wslot.slot = slot; 1764 int_pkt->int_desc.vector = vector; 1765 int_pkt->int_desc.vector_count = vector_count; 1766 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1767 1768 /* 1769 * Create MSI w/ dummy vCPU set, overwritten by subsequent retarget in 1770 * hv_irq_unmask(). 1771 */ 1772 int_pkt->int_desc.cpu_mask = CPU_AFFINITY_ALL; 1773 1774 return sizeof(*int_pkt); 1775 } 1776 1777 /* 1778 * The vCPU selected by hv_compose_multi_msi_req_get_cpu() and 1779 * hv_compose_msi_req_get_cpu() is a "dummy" vCPU because the final vCPU to be 1780 * interrupted is specified later in hv_irq_unmask() and communicated to Hyper-V 1781 * via the HVCALL_RETARGET_INTERRUPT hypercall. But the choice of dummy vCPU is 1782 * not irrelevant because Hyper-V chooses the physical CPU to handle the 1783 * interrupts based on the vCPU specified in message sent to the vPCI VSP in 1784 * hv_compose_msi_msg(). Hyper-V's choice of pCPU is not visible to the guest, 1785 * but assigning too many vPCI device interrupts to the same pCPU can cause a 1786 * performance bottleneck. So we spread out the dummy vCPUs to influence Hyper-V 1787 * to spread out the pCPUs that it selects. 1788 * 1789 * For the single-MSI and MSI-X cases, it's OK for hv_compose_msi_req_get_cpu() 1790 * to always return the same dummy vCPU, because a second call to 1791 * hv_compose_msi_msg() contains the "real" vCPU, causing Hyper-V to choose a 1792 * new pCPU for the interrupt. But for the multi-MSI case, the second call to 1793 * hv_compose_msi_msg() exits without sending a message to the vPCI VSP, so the 1794 * original dummy vCPU is used. This dummy vCPU must be round-robin'ed so that 1795 * the pCPUs are spread out. All interrupts for a multi-MSI device end up using 1796 * the same pCPU, even though the vCPUs will be spread out by later calls 1797 * to hv_irq_unmask(), but that is the best we can do now. 1798 * 1799 * With Hyper-V in Nov 2022, the HVCALL_RETARGET_INTERRUPT hypercall does *not* 1800 * cause Hyper-V to reselect the pCPU based on the specified vCPU. Such an 1801 * enhancement is planned for a future version. With that enhancement, the 1802 * dummy vCPU selection won't matter, and interrupts for the same multi-MSI 1803 * device will be spread across multiple pCPUs. 1804 */ 1805 1806 /* 1807 * Create MSI w/ dummy vCPU set targeting just one vCPU, overwritten 1808 * by subsequent retarget in hv_irq_unmask(). 1809 */ 1810 static int hv_compose_msi_req_get_cpu(const struct cpumask *affinity) 1811 { 1812 return cpumask_first_and(affinity, cpu_online_mask); 1813 } 1814 1815 /* 1816 * Make sure the dummy vCPU values for multi-MSI don't all point to vCPU0. 1817 */ 1818 static int hv_compose_multi_msi_req_get_cpu(void) 1819 { 1820 static DEFINE_SPINLOCK(multi_msi_cpu_lock); 1821 1822 /* -1 means starting with CPU 0 */ 1823 static int cpu_next = -1; 1824 1825 unsigned long flags; 1826 int cpu; 1827 1828 spin_lock_irqsave(&multi_msi_cpu_lock, flags); 1829 1830 cpu_next = cpumask_next_wrap(cpu_next, cpu_online_mask); 1831 cpu = cpu_next; 1832 1833 spin_unlock_irqrestore(&multi_msi_cpu_lock, flags); 1834 1835 return cpu; 1836 } 1837 1838 static u32 hv_compose_msi_req_v2( 1839 struct pci_create_interrupt2 *int_pkt, int cpu, 1840 u32 slot, u8 vector, u16 vector_count) 1841 { 1842 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE2; 1843 int_pkt->wslot.slot = slot; 1844 int_pkt->int_desc.vector = vector; 1845 int_pkt->int_desc.vector_count = vector_count; 1846 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1847 int_pkt->int_desc.processor_array[0] = 1848 hv_cpu_number_to_vp_number(cpu); 1849 int_pkt->int_desc.processor_count = 1; 1850 1851 return sizeof(*int_pkt); 1852 } 1853 1854 static u32 hv_compose_msi_req_v3( 1855 struct pci_create_interrupt3 *int_pkt, int cpu, 1856 u32 slot, u32 vector, u16 vector_count) 1857 { 1858 int_pkt->message_type.type = PCI_CREATE_INTERRUPT_MESSAGE3; 1859 int_pkt->wslot.slot = slot; 1860 int_pkt->int_desc.vector = vector; 1861 int_pkt->int_desc.reserved = 0; 1862 int_pkt->int_desc.vector_count = vector_count; 1863 int_pkt->int_desc.delivery_mode = DELIVERY_MODE; 1864 int_pkt->int_desc.processor_array[0] = 1865 hv_cpu_number_to_vp_number(cpu); 1866 int_pkt->int_desc.processor_count = 1; 1867 1868 return sizeof(*int_pkt); 1869 } 1870 1871 /** 1872 * hv_compose_msi_msg() - Supplies a valid MSI address/data 1873 * @data: Everything about this MSI 1874 * @msg: Buffer that is filled in by this function 1875 * 1876 * This function unpacks the IRQ looking for target CPU set, IDT 1877 * vector and mode and sends a message to the parent partition 1878 * asking for a mapping for that tuple in this partition. The 1879 * response supplies a data value and address to which that data 1880 * should be written to trigger that interrupt. 1881 */ 1882 static void hv_compose_msi_msg(struct irq_data *data, struct msi_msg *msg) 1883 { 1884 struct hv_pcibus_device *hbus; 1885 struct vmbus_channel *channel; 1886 struct hv_pci_dev *hpdev; 1887 struct pci_bus *pbus; 1888 struct pci_dev *pdev; 1889 const struct cpumask *dest; 1890 struct compose_comp_ctxt comp; 1891 struct tran_int_desc *int_desc; 1892 struct msi_desc *msi_desc; 1893 /* 1894 * vector_count should be u16: see hv_msi_desc, hv_msi_desc2 1895 * and hv_msi_desc3. vector must be u32: see hv_msi_desc3. 1896 */ 1897 u16 vector_count; 1898 u32 vector; 1899 struct { 1900 struct pci_packet pci_pkt; 1901 union { 1902 struct pci_create_interrupt v1; 1903 struct pci_create_interrupt2 v2; 1904 struct pci_create_interrupt3 v3; 1905 } int_pkts; 1906 } __packed ctxt; 1907 bool multi_msi; 1908 u64 trans_id; 1909 u32 size; 1910 int ret; 1911 int cpu; 1912 1913 msi_desc = irq_data_get_msi_desc(data); 1914 multi_msi = !msi_desc->pci.msi_attrib.is_msix && 1915 msi_desc->nvec_used > 1; 1916 1917 /* Reuse the previous allocation */ 1918 if (data->chip_data && multi_msi) { 1919 int_desc = data->chip_data; 1920 msg->address_hi = int_desc->address >> 32; 1921 msg->address_lo = int_desc->address & 0xffffffff; 1922 msg->data = int_desc->data; 1923 return; 1924 } 1925 1926 pdev = msi_desc_to_pci_dev(msi_desc); 1927 dest = irq_data_get_effective_affinity_mask(data); 1928 pbus = pdev->bus; 1929 hbus = container_of(pbus->sysdata, struct hv_pcibus_device, sysdata); 1930 channel = hbus->hdev->channel; 1931 hpdev = get_pcichild_wslot(hbus, devfn_to_wslot(pdev->devfn)); 1932 if (!hpdev) 1933 goto return_null_message; 1934 1935 /* Free any previous message that might have already been composed. */ 1936 if (data->chip_data && !multi_msi) { 1937 int_desc = data->chip_data; 1938 data->chip_data = NULL; 1939 hv_int_desc_free(hpdev, int_desc); 1940 } 1941 1942 int_desc = kzalloc(sizeof(*int_desc), GFP_ATOMIC); 1943 if (!int_desc) 1944 goto drop_reference; 1945 1946 if (multi_msi) { 1947 /* 1948 * If this is not the first MSI of Multi MSI, we already have 1949 * a mapping. Can exit early. 1950 */ 1951 if (msi_desc->irq != data->irq) { 1952 data->chip_data = int_desc; 1953 int_desc->address = msi_desc->msg.address_lo | 1954 (u64)msi_desc->msg.address_hi << 32; 1955 int_desc->data = msi_desc->msg.data + 1956 (data->irq - msi_desc->irq); 1957 msg->address_hi = msi_desc->msg.address_hi; 1958 msg->address_lo = msi_desc->msg.address_lo; 1959 msg->data = int_desc->data; 1960 put_pcichild(hpdev); 1961 return; 1962 } 1963 /* 1964 * The vector we select here is a dummy value. The correct 1965 * value gets sent to the hypervisor in unmask(). This needs 1966 * to be aligned with the count, and also not zero. Multi-msi 1967 * is powers of 2 up to 32, so 32 will always work here. 1968 */ 1969 vector = 32; 1970 vector_count = msi_desc->nvec_used; 1971 cpu = hv_compose_multi_msi_req_get_cpu(); 1972 } else { 1973 vector = hv_msi_get_int_vector(data); 1974 vector_count = 1; 1975 cpu = hv_compose_msi_req_get_cpu(dest); 1976 } 1977 1978 /* 1979 * hv_compose_msi_req_v1 and v2 are for x86 only, meaning 'vector' 1980 * can't exceed u8. Cast 'vector' down to u8 for v1/v2 explicitly 1981 * for better readability. 1982 */ 1983 memset(&ctxt, 0, sizeof(ctxt)); 1984 init_completion(&comp.comp_pkt.host_event); 1985 ctxt.pci_pkt.completion_func = hv_pci_compose_compl; 1986 ctxt.pci_pkt.compl_ctxt = ∁ 1987 1988 switch (hbus->protocol_version) { 1989 case PCI_PROTOCOL_VERSION_1_1: 1990 size = hv_compose_msi_req_v1(&ctxt.int_pkts.v1, 1991 hpdev->desc.win_slot.slot, 1992 (u8)vector, 1993 vector_count); 1994 break; 1995 1996 case PCI_PROTOCOL_VERSION_1_2: 1997 case PCI_PROTOCOL_VERSION_1_3: 1998 size = hv_compose_msi_req_v2(&ctxt.int_pkts.v2, 1999 cpu, 2000 hpdev->desc.win_slot.slot, 2001 (u8)vector, 2002 vector_count); 2003 break; 2004 2005 case PCI_PROTOCOL_VERSION_1_4: 2006 size = hv_compose_msi_req_v3(&ctxt.int_pkts.v3, 2007 cpu, 2008 hpdev->desc.win_slot.slot, 2009 vector, 2010 vector_count); 2011 break; 2012 2013 default: 2014 /* As we only negotiate protocol versions known to this driver, 2015 * this path should never hit. However, this is it not a hot 2016 * path so we print a message to aid future updates. 2017 */ 2018 dev_err(&hbus->hdev->device, 2019 "Unexpected vPCI protocol, update driver."); 2020 goto free_int_desc; 2021 } 2022 2023 ret = vmbus_sendpacket_getid(hpdev->hbus->hdev->channel, &ctxt.int_pkts, 2024 size, (unsigned long)&ctxt.pci_pkt, 2025 &trans_id, VM_PKT_DATA_INBAND, 2026 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2027 if (ret) { 2028 dev_err(&hbus->hdev->device, 2029 "Sending request for interrupt failed: 0x%x", 2030 comp.comp_pkt.completion_status); 2031 goto free_int_desc; 2032 } 2033 2034 /* 2035 * Prevents hv_pci_onchannelcallback() from running concurrently 2036 * in the tasklet. 2037 */ 2038 tasklet_disable_in_atomic(&channel->callback_event); 2039 2040 /* 2041 * Since this function is called with IRQ locks held, can't 2042 * do normal wait for completion; instead poll. 2043 */ 2044 while (!try_wait_for_completion(&comp.comp_pkt.host_event)) { 2045 unsigned long flags; 2046 2047 /* 0xFFFF means an invalid PCI VENDOR ID. */ 2048 if (hv_pcifront_get_vendor_id(hpdev) == 0xFFFF) { 2049 dev_err_once(&hbus->hdev->device, 2050 "the device has gone\n"); 2051 goto enable_tasklet; 2052 } 2053 2054 /* 2055 * Make sure that the ring buffer data structure doesn't get 2056 * freed while we dereference the ring buffer pointer. Test 2057 * for the channel's onchannel_callback being NULL within a 2058 * sched_lock critical section. See also the inline comments 2059 * in vmbus_reset_channel_cb(). 2060 */ 2061 spin_lock_irqsave(&channel->sched_lock, flags); 2062 if (unlikely(channel->onchannel_callback == NULL)) { 2063 spin_unlock_irqrestore(&channel->sched_lock, flags); 2064 goto enable_tasklet; 2065 } 2066 hv_pci_onchannelcallback(hbus); 2067 spin_unlock_irqrestore(&channel->sched_lock, flags); 2068 2069 udelay(100); 2070 } 2071 2072 tasklet_enable(&channel->callback_event); 2073 2074 if (comp.comp_pkt.completion_status < 0) { 2075 dev_err(&hbus->hdev->device, 2076 "Request for interrupt failed: 0x%x", 2077 comp.comp_pkt.completion_status); 2078 goto free_int_desc; 2079 } 2080 2081 /* 2082 * Record the assignment so that this can be unwound later. Using 2083 * irq_set_chip_data() here would be appropriate, but the lock it takes 2084 * is already held. 2085 */ 2086 *int_desc = comp.int_desc; 2087 data->chip_data = int_desc; 2088 2089 /* Pass up the result. */ 2090 msg->address_hi = comp.int_desc.address >> 32; 2091 msg->address_lo = comp.int_desc.address & 0xffffffff; 2092 msg->data = comp.int_desc.data; 2093 2094 put_pcichild(hpdev); 2095 return; 2096 2097 enable_tasklet: 2098 tasklet_enable(&channel->callback_event); 2099 /* 2100 * The completion packet on the stack becomes invalid after 'return'; 2101 * remove the ID from the VMbus requestor if the identifier is still 2102 * mapped to/associated with the packet. (The identifier could have 2103 * been 're-used', i.e., already removed and (re-)mapped.) 2104 * 2105 * Cf. hv_pci_onchannelcallback(). 2106 */ 2107 vmbus_request_addr_match(channel, trans_id, (unsigned long)&ctxt.pci_pkt); 2108 free_int_desc: 2109 kfree(int_desc); 2110 drop_reference: 2111 put_pcichild(hpdev); 2112 return_null_message: 2113 msg->address_hi = 0; 2114 msg->address_lo = 0; 2115 msg->data = 0; 2116 } 2117 2118 /* HW Interrupt Chip Descriptor */ 2119 static struct irq_chip hv_msi_irq_chip = { 2120 .name = "Hyper-V PCIe MSI", 2121 .irq_compose_msi_msg = hv_compose_msi_msg, 2122 .irq_set_affinity = irq_chip_set_affinity_parent, 2123 #ifdef CONFIG_X86 2124 .irq_ack = irq_chip_ack_parent, 2125 .flags = IRQCHIP_MOVE_DEFERRED, 2126 #elif defined(CONFIG_ARM64) 2127 .irq_eoi = irq_chip_eoi_parent, 2128 #endif 2129 .irq_mask = hv_irq_mask, 2130 .irq_unmask = hv_irq_unmask, 2131 }; 2132 2133 static struct msi_domain_ops hv_msi_ops = { 2134 .msi_prepare = hv_msi_prepare, 2135 .msi_free = hv_msi_free, 2136 }; 2137 2138 /** 2139 * hv_pcie_init_irq_domain() - Initialize IRQ domain 2140 * @hbus: The root PCI bus 2141 * 2142 * This function creates an IRQ domain which will be used for 2143 * interrupts from devices that have been passed through. These 2144 * devices only support MSI and MSI-X, not line-based interrupts 2145 * or simulations of line-based interrupts through PCIe's 2146 * fabric-layer messages. Because interrupts are remapped, we 2147 * can support multi-message MSI here. 2148 * 2149 * Return: '0' on success and error value on failure 2150 */ 2151 static int hv_pcie_init_irq_domain(struct hv_pcibus_device *hbus) 2152 { 2153 hbus->msi_info.chip = &hv_msi_irq_chip; 2154 hbus->msi_info.ops = &hv_msi_ops; 2155 hbus->msi_info.flags = (MSI_FLAG_USE_DEF_DOM_OPS | 2156 MSI_FLAG_USE_DEF_CHIP_OPS | MSI_FLAG_MULTI_PCI_MSI | 2157 MSI_FLAG_PCI_MSIX); 2158 hbus->msi_info.handler = FLOW_HANDLER; 2159 hbus->msi_info.handler_name = FLOW_NAME; 2160 hbus->msi_info.data = hbus; 2161 hbus->irq_domain = pci_msi_create_irq_domain(hbus->fwnode, 2162 &hbus->msi_info, 2163 hv_pci_get_root_domain()); 2164 if (!hbus->irq_domain) { 2165 dev_err(&hbus->hdev->device, 2166 "Failed to build an MSI IRQ domain\n"); 2167 return -ENODEV; 2168 } 2169 2170 dev_set_msi_domain(&hbus->bridge->dev, hbus->irq_domain); 2171 2172 return 0; 2173 } 2174 2175 /** 2176 * get_bar_size() - Get the address space consumed by a BAR 2177 * @bar_val: Value that a BAR returned after -1 was written 2178 * to it. 2179 * 2180 * This function returns the size of the BAR, rounded up to 1 2181 * page. It has to be rounded up because the hypervisor's page 2182 * table entry that maps the BAR into the VM can't specify an 2183 * offset within a page. The invariant is that the hypervisor 2184 * must place any BARs of smaller than page length at the 2185 * beginning of a page. 2186 * 2187 * Return: Size in bytes of the consumed MMIO space. 2188 */ 2189 static u64 get_bar_size(u64 bar_val) 2190 { 2191 return round_up((1 + ~(bar_val & PCI_BASE_ADDRESS_MEM_MASK)), 2192 PAGE_SIZE); 2193 } 2194 2195 /** 2196 * survey_child_resources() - Total all MMIO requirements 2197 * @hbus: Root PCI bus, as understood by this driver 2198 */ 2199 static void survey_child_resources(struct hv_pcibus_device *hbus) 2200 { 2201 struct hv_pci_dev *hpdev; 2202 resource_size_t bar_size = 0; 2203 unsigned long flags; 2204 struct completion *event; 2205 u64 bar_val; 2206 int i; 2207 2208 /* If nobody is waiting on the answer, don't compute it. */ 2209 event = xchg(&hbus->survey_event, NULL); 2210 if (!event) 2211 return; 2212 2213 /* If the answer has already been computed, go with it. */ 2214 if (hbus->low_mmio_space || hbus->high_mmio_space) { 2215 complete(event); 2216 return; 2217 } 2218 2219 spin_lock_irqsave(&hbus->device_list_lock, flags); 2220 2221 /* 2222 * Due to an interesting quirk of the PCI spec, all memory regions 2223 * for a child device are a power of 2 in size and aligned in memory, 2224 * so it's sufficient to just add them up without tracking alignment. 2225 */ 2226 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2227 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2228 if (hpdev->probed_bar[i] & PCI_BASE_ADDRESS_SPACE_IO) 2229 dev_err(&hbus->hdev->device, 2230 "There's an I/O BAR in this list!\n"); 2231 2232 if (hpdev->probed_bar[i] != 0) { 2233 /* 2234 * A probed BAR has all the upper bits set that 2235 * can be changed. 2236 */ 2237 2238 bar_val = hpdev->probed_bar[i]; 2239 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2240 bar_val |= 2241 ((u64)hpdev->probed_bar[++i] << 32); 2242 else 2243 bar_val |= 0xffffffff00000000ULL; 2244 2245 bar_size = get_bar_size(bar_val); 2246 2247 if (bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64) 2248 hbus->high_mmio_space += bar_size; 2249 else 2250 hbus->low_mmio_space += bar_size; 2251 } 2252 } 2253 } 2254 2255 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2256 complete(event); 2257 } 2258 2259 /** 2260 * prepopulate_bars() - Fill in BARs with defaults 2261 * @hbus: Root PCI bus, as understood by this driver 2262 * 2263 * The core PCI driver code seems much, much happier if the BARs 2264 * for a device have values upon first scan. So fill them in. 2265 * The algorithm below works down from large sizes to small, 2266 * attempting to pack the assignments optimally. The assumption, 2267 * enforced in other parts of the code, is that the beginning of 2268 * the memory-mapped I/O space will be aligned on the largest 2269 * BAR size. 2270 */ 2271 static void prepopulate_bars(struct hv_pcibus_device *hbus) 2272 { 2273 resource_size_t high_size = 0; 2274 resource_size_t low_size = 0; 2275 resource_size_t high_base = 0; 2276 resource_size_t low_base = 0; 2277 resource_size_t bar_size; 2278 struct hv_pci_dev *hpdev; 2279 unsigned long flags; 2280 u64 bar_val; 2281 u32 command; 2282 bool high; 2283 int i; 2284 2285 if (hbus->low_mmio_space) { 2286 low_size = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 2287 low_base = hbus->low_mmio_res->start; 2288 } 2289 2290 if (hbus->high_mmio_space) { 2291 high_size = 1ULL << 2292 (63 - __builtin_clzll(hbus->high_mmio_space)); 2293 high_base = hbus->high_mmio_res->start; 2294 } 2295 2296 spin_lock_irqsave(&hbus->device_list_lock, flags); 2297 2298 /* 2299 * Clear the memory enable bit, in case it's already set. This occurs 2300 * in the suspend path of hibernation, where the device is suspended, 2301 * resumed and suspended again: see hibernation_snapshot() and 2302 * hibernation_platform_enter(). 2303 * 2304 * If the memory enable bit is already set, Hyper-V silently ignores 2305 * the below BAR updates, and the related PCI device driver can not 2306 * work, because reading from the device register(s) always returns 2307 * 0xFFFFFFFF (PCI_ERROR_RESPONSE). 2308 */ 2309 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2310 _hv_pcifront_read_config(hpdev, PCI_COMMAND, 2, &command); 2311 command &= ~PCI_COMMAND_MEMORY; 2312 _hv_pcifront_write_config(hpdev, PCI_COMMAND, 2, command); 2313 } 2314 2315 /* Pick addresses for the BARs. */ 2316 do { 2317 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2318 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2319 bar_val = hpdev->probed_bar[i]; 2320 if (bar_val == 0) 2321 continue; 2322 high = bar_val & PCI_BASE_ADDRESS_MEM_TYPE_64; 2323 if (high) { 2324 bar_val |= 2325 ((u64)hpdev->probed_bar[i + 1] 2326 << 32); 2327 } else { 2328 bar_val |= 0xffffffffULL << 32; 2329 } 2330 bar_size = get_bar_size(bar_val); 2331 if (high) { 2332 if (high_size != bar_size) { 2333 i++; 2334 continue; 2335 } 2336 _hv_pcifront_write_config(hpdev, 2337 PCI_BASE_ADDRESS_0 + (4 * i), 2338 4, 2339 (u32)(high_base & 0xffffff00)); 2340 i++; 2341 _hv_pcifront_write_config(hpdev, 2342 PCI_BASE_ADDRESS_0 + (4 * i), 2343 4, (u32)(high_base >> 32)); 2344 high_base += bar_size; 2345 } else { 2346 if (low_size != bar_size) 2347 continue; 2348 _hv_pcifront_write_config(hpdev, 2349 PCI_BASE_ADDRESS_0 + (4 * i), 2350 4, 2351 (u32)(low_base & 0xffffff00)); 2352 low_base += bar_size; 2353 } 2354 } 2355 if (high_size <= 1 && low_size <= 1) { 2356 /* 2357 * No need to set the PCI_COMMAND_MEMORY bit as 2358 * the core PCI driver doesn't require the bit 2359 * to be pre-set. Actually here we intentionally 2360 * keep the bit off so that the PCI BAR probing 2361 * in the core PCI driver doesn't cause Hyper-V 2362 * to unnecessarily unmap/map the virtual BARs 2363 * from/to the physical BARs multiple times. 2364 * This reduces the VM boot time significantly 2365 * if the BAR sizes are huge. 2366 */ 2367 break; 2368 } 2369 } 2370 2371 high_size >>= 1; 2372 low_size >>= 1; 2373 } while (high_size || low_size); 2374 2375 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2376 } 2377 2378 /* 2379 * Assign entries in sysfs pci slot directory. 2380 * 2381 * Note that this function does not need to lock the children list 2382 * because it is called from pci_devices_present_work which 2383 * is serialized with hv_eject_device_work because they are on the 2384 * same ordered workqueue. Therefore hbus->children list will not change 2385 * even when pci_create_slot sleeps. 2386 */ 2387 static void hv_pci_assign_slots(struct hv_pcibus_device *hbus) 2388 { 2389 struct hv_pci_dev *hpdev; 2390 char name[SLOT_NAME_SIZE]; 2391 int slot_nr; 2392 2393 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2394 if (hpdev->pci_slot) 2395 continue; 2396 2397 slot_nr = PCI_SLOT(wslot_to_devfn(hpdev->desc.win_slot.slot)); 2398 snprintf(name, SLOT_NAME_SIZE, "%u", hpdev->desc.ser); 2399 hpdev->pci_slot = pci_create_slot(hbus->bridge->bus, slot_nr, 2400 name, NULL); 2401 if (IS_ERR(hpdev->pci_slot)) { 2402 pr_warn("pci_create slot %s failed\n", name); 2403 hpdev->pci_slot = NULL; 2404 } 2405 } 2406 } 2407 2408 /* 2409 * Remove entries in sysfs pci slot directory. 2410 */ 2411 static void hv_pci_remove_slots(struct hv_pcibus_device *hbus) 2412 { 2413 struct hv_pci_dev *hpdev; 2414 2415 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2416 if (!hpdev->pci_slot) 2417 continue; 2418 pci_destroy_slot(hpdev->pci_slot); 2419 hpdev->pci_slot = NULL; 2420 } 2421 } 2422 2423 /* 2424 * Set NUMA node for the devices on the bus 2425 */ 2426 static void hv_pci_assign_numa_node(struct hv_pcibus_device *hbus) 2427 { 2428 struct pci_dev *dev; 2429 struct pci_bus *bus = hbus->bridge->bus; 2430 struct hv_pci_dev *hv_dev; 2431 2432 list_for_each_entry(dev, &bus->devices, bus_list) { 2433 hv_dev = get_pcichild_wslot(hbus, devfn_to_wslot(dev->devfn)); 2434 if (!hv_dev) 2435 continue; 2436 2437 if (hv_dev->desc.flags & HV_PCI_DEVICE_FLAG_NUMA_AFFINITY && 2438 hv_dev->desc.virtual_numa_node < num_possible_nodes()) 2439 /* 2440 * The kernel may boot with some NUMA nodes offline 2441 * (e.g. in a KDUMP kernel) or with NUMA disabled via 2442 * "numa=off". In those cases, adjust the host provided 2443 * NUMA node to a valid NUMA node used by the kernel. 2444 */ 2445 set_dev_node(&dev->dev, 2446 numa_map_to_online_node( 2447 hv_dev->desc.virtual_numa_node)); 2448 2449 put_pcichild(hv_dev); 2450 } 2451 } 2452 2453 /** 2454 * create_root_hv_pci_bus() - Expose a new root PCI bus 2455 * @hbus: Root PCI bus, as understood by this driver 2456 * 2457 * Return: 0 on success, -errno on failure 2458 */ 2459 static int create_root_hv_pci_bus(struct hv_pcibus_device *hbus) 2460 { 2461 int error; 2462 struct pci_host_bridge *bridge = hbus->bridge; 2463 2464 bridge->dev.parent = &hbus->hdev->device; 2465 bridge->sysdata = &hbus->sysdata; 2466 bridge->ops = &hv_pcifront_ops; 2467 2468 error = pci_scan_root_bus_bridge(bridge); 2469 if (error) 2470 return error; 2471 2472 pci_lock_rescan_remove(); 2473 hv_pci_assign_numa_node(hbus); 2474 pci_bus_assign_resources(bridge->bus); 2475 hv_pci_assign_slots(hbus); 2476 pci_bus_add_devices(bridge->bus); 2477 pci_unlock_rescan_remove(); 2478 hbus->state = hv_pcibus_installed; 2479 return 0; 2480 } 2481 2482 struct q_res_req_compl { 2483 struct completion host_event; 2484 struct hv_pci_dev *hpdev; 2485 }; 2486 2487 /** 2488 * q_resource_requirements() - Query Resource Requirements 2489 * @context: The completion context. 2490 * @resp: The response that came from the host. 2491 * @resp_packet_size: The size in bytes of resp. 2492 * 2493 * This function is invoked on completion of a Query Resource 2494 * Requirements packet. 2495 */ 2496 static void q_resource_requirements(void *context, struct pci_response *resp, 2497 int resp_packet_size) 2498 { 2499 struct q_res_req_compl *completion = context; 2500 struct pci_q_res_req_response *q_res_req = 2501 (struct pci_q_res_req_response *)resp; 2502 s32 status; 2503 int i; 2504 2505 status = (resp_packet_size < sizeof(*q_res_req)) ? -1 : resp->status; 2506 if (status < 0) { 2507 dev_err(&completion->hpdev->hbus->hdev->device, 2508 "query resource requirements failed: %x\n", 2509 status); 2510 } else { 2511 for (i = 0; i < PCI_STD_NUM_BARS; i++) { 2512 completion->hpdev->probed_bar[i] = 2513 q_res_req->probed_bar[i]; 2514 } 2515 } 2516 2517 complete(&completion->host_event); 2518 } 2519 2520 /** 2521 * new_pcichild_device() - Create a new child device 2522 * @hbus: The internal struct tracking this root PCI bus. 2523 * @desc: The information supplied so far from the host 2524 * about the device. 2525 * 2526 * This function creates the tracking structure for a new child 2527 * device and kicks off the process of figuring out what it is. 2528 * 2529 * Return: Pointer to the new tracking struct 2530 */ 2531 static struct hv_pci_dev *new_pcichild_device(struct hv_pcibus_device *hbus, 2532 struct hv_pcidev_description *desc) 2533 { 2534 struct hv_pci_dev *hpdev; 2535 struct pci_child_message *res_req; 2536 struct q_res_req_compl comp_pkt; 2537 struct { 2538 struct pci_packet init_packet; 2539 u8 buffer[sizeof(struct pci_child_message)]; 2540 } pkt; 2541 unsigned long flags; 2542 int ret; 2543 2544 hpdev = kzalloc(sizeof(*hpdev), GFP_KERNEL); 2545 if (!hpdev) 2546 return NULL; 2547 2548 hpdev->hbus = hbus; 2549 2550 memset(&pkt, 0, sizeof(pkt)); 2551 init_completion(&comp_pkt.host_event); 2552 comp_pkt.hpdev = hpdev; 2553 pkt.init_packet.compl_ctxt = &comp_pkt; 2554 pkt.init_packet.completion_func = q_resource_requirements; 2555 res_req = (struct pci_child_message *)pkt.buffer; 2556 res_req->message_type.type = PCI_QUERY_RESOURCE_REQUIREMENTS; 2557 res_req->wslot.slot = desc->win_slot.slot; 2558 2559 ret = vmbus_sendpacket(hbus->hdev->channel, res_req, 2560 sizeof(struct pci_child_message), 2561 (unsigned long)&pkt.init_packet, 2562 VM_PKT_DATA_INBAND, 2563 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 2564 if (ret) 2565 goto error; 2566 2567 if (wait_for_response(hbus->hdev, &comp_pkt.host_event)) 2568 goto error; 2569 2570 hpdev->desc = *desc; 2571 refcount_set(&hpdev->refs, 1); 2572 get_pcichild(hpdev); 2573 spin_lock_irqsave(&hbus->device_list_lock, flags); 2574 2575 list_add_tail(&hpdev->list_entry, &hbus->children); 2576 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2577 return hpdev; 2578 2579 error: 2580 kfree(hpdev); 2581 return NULL; 2582 } 2583 2584 /** 2585 * get_pcichild_wslot() - Find device from slot 2586 * @hbus: Root PCI bus, as understood by this driver 2587 * @wslot: Location on the bus 2588 * 2589 * This function looks up a PCI device and returns the internal 2590 * representation of it. It acquires a reference on it, so that 2591 * the device won't be deleted while somebody is using it. The 2592 * caller is responsible for calling put_pcichild() to release 2593 * this reference. 2594 * 2595 * Return: Internal representation of a PCI device 2596 */ 2597 static struct hv_pci_dev *get_pcichild_wslot(struct hv_pcibus_device *hbus, 2598 u32 wslot) 2599 { 2600 unsigned long flags; 2601 struct hv_pci_dev *iter, *hpdev = NULL; 2602 2603 spin_lock_irqsave(&hbus->device_list_lock, flags); 2604 list_for_each_entry(iter, &hbus->children, list_entry) { 2605 if (iter->desc.win_slot.slot == wslot) { 2606 hpdev = iter; 2607 get_pcichild(hpdev); 2608 break; 2609 } 2610 } 2611 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2612 2613 return hpdev; 2614 } 2615 2616 /** 2617 * pci_devices_present_work() - Handle new list of child devices 2618 * @work: Work struct embedded in struct hv_dr_work 2619 * 2620 * "Bus Relations" is the Windows term for "children of this 2621 * bus." The terminology is preserved here for people trying to 2622 * debug the interaction between Hyper-V and Linux. This 2623 * function is called when the parent partition reports a list 2624 * of functions that should be observed under this PCI Express 2625 * port (bus). 2626 * 2627 * This function updates the list, and must tolerate being 2628 * called multiple times with the same information. The typical 2629 * number of child devices is one, with very atypical cases 2630 * involving three or four, so the algorithms used here can be 2631 * simple and inefficient. 2632 * 2633 * It must also treat the omission of a previously observed device as 2634 * notification that the device no longer exists. 2635 * 2636 * Note that this function is serialized with hv_eject_device_work(), 2637 * because both are pushed to the ordered workqueue hbus->wq. 2638 */ 2639 static void pci_devices_present_work(struct work_struct *work) 2640 { 2641 u32 child_no; 2642 bool found; 2643 struct hv_pcidev_description *new_desc; 2644 struct hv_pci_dev *hpdev; 2645 struct hv_pcibus_device *hbus; 2646 struct list_head removed; 2647 struct hv_dr_work *dr_wrk; 2648 struct hv_dr_state *dr = NULL; 2649 unsigned long flags; 2650 2651 dr_wrk = container_of(work, struct hv_dr_work, wrk); 2652 hbus = dr_wrk->bus; 2653 kfree(dr_wrk); 2654 2655 INIT_LIST_HEAD(&removed); 2656 2657 /* Pull this off the queue and process it if it was the last one. */ 2658 spin_lock_irqsave(&hbus->device_list_lock, flags); 2659 while (!list_empty(&hbus->dr_list)) { 2660 dr = list_first_entry(&hbus->dr_list, struct hv_dr_state, 2661 list_entry); 2662 list_del(&dr->list_entry); 2663 2664 /* Throw this away if the list still has stuff in it. */ 2665 if (!list_empty(&hbus->dr_list)) { 2666 kfree(dr); 2667 continue; 2668 } 2669 } 2670 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2671 2672 if (!dr) 2673 return; 2674 2675 mutex_lock(&hbus->state_lock); 2676 2677 /* First, mark all existing children as reported missing. */ 2678 spin_lock_irqsave(&hbus->device_list_lock, flags); 2679 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2680 hpdev->reported_missing = true; 2681 } 2682 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2683 2684 /* Next, add back any reported devices. */ 2685 for (child_no = 0; child_no < dr->device_count; child_no++) { 2686 found = false; 2687 new_desc = &dr->func[child_no]; 2688 2689 spin_lock_irqsave(&hbus->device_list_lock, flags); 2690 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2691 if ((hpdev->desc.win_slot.slot == new_desc->win_slot.slot) && 2692 (hpdev->desc.v_id == new_desc->v_id) && 2693 (hpdev->desc.d_id == new_desc->d_id) && 2694 (hpdev->desc.ser == new_desc->ser)) { 2695 hpdev->reported_missing = false; 2696 found = true; 2697 } 2698 } 2699 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2700 2701 if (!found) { 2702 hpdev = new_pcichild_device(hbus, new_desc); 2703 if (!hpdev) 2704 dev_err(&hbus->hdev->device, 2705 "couldn't record a child device.\n"); 2706 } 2707 } 2708 2709 /* Move missing children to a list on the stack. */ 2710 spin_lock_irqsave(&hbus->device_list_lock, flags); 2711 do { 2712 found = false; 2713 list_for_each_entry(hpdev, &hbus->children, list_entry) { 2714 if (hpdev->reported_missing) { 2715 found = true; 2716 put_pcichild(hpdev); 2717 list_move_tail(&hpdev->list_entry, &removed); 2718 break; 2719 } 2720 } 2721 } while (found); 2722 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2723 2724 /* Delete everything that should no longer exist. */ 2725 while (!list_empty(&removed)) { 2726 hpdev = list_first_entry(&removed, struct hv_pci_dev, 2727 list_entry); 2728 list_del(&hpdev->list_entry); 2729 2730 if (hpdev->pci_slot) 2731 pci_destroy_slot(hpdev->pci_slot); 2732 2733 put_pcichild(hpdev); 2734 } 2735 2736 switch (hbus->state) { 2737 case hv_pcibus_installed: 2738 /* 2739 * Tell the core to rescan bus 2740 * because there may have been changes. 2741 */ 2742 pci_lock_rescan_remove(); 2743 pci_scan_child_bus(hbus->bridge->bus); 2744 hv_pci_assign_numa_node(hbus); 2745 hv_pci_assign_slots(hbus); 2746 pci_unlock_rescan_remove(); 2747 break; 2748 2749 case hv_pcibus_init: 2750 case hv_pcibus_probed: 2751 survey_child_resources(hbus); 2752 break; 2753 2754 default: 2755 break; 2756 } 2757 2758 mutex_unlock(&hbus->state_lock); 2759 2760 kfree(dr); 2761 } 2762 2763 /** 2764 * hv_pci_start_relations_work() - Queue work to start device discovery 2765 * @hbus: Root PCI bus, as understood by this driver 2766 * @dr: The list of children returned from host 2767 * 2768 * Return: 0 on success, -errno on failure 2769 */ 2770 static int hv_pci_start_relations_work(struct hv_pcibus_device *hbus, 2771 struct hv_dr_state *dr) 2772 { 2773 struct hv_dr_work *dr_wrk; 2774 unsigned long flags; 2775 bool pending_dr; 2776 2777 if (hbus->state == hv_pcibus_removing) { 2778 dev_info(&hbus->hdev->device, 2779 "PCI VMBus BUS_RELATIONS: ignored\n"); 2780 return -ENOENT; 2781 } 2782 2783 dr_wrk = kzalloc(sizeof(*dr_wrk), GFP_NOWAIT); 2784 if (!dr_wrk) 2785 return -ENOMEM; 2786 2787 INIT_WORK(&dr_wrk->wrk, pci_devices_present_work); 2788 dr_wrk->bus = hbus; 2789 2790 spin_lock_irqsave(&hbus->device_list_lock, flags); 2791 /* 2792 * If pending_dr is true, we have already queued a work, 2793 * which will see the new dr. Otherwise, we need to 2794 * queue a new work. 2795 */ 2796 pending_dr = !list_empty(&hbus->dr_list); 2797 list_add_tail(&dr->list_entry, &hbus->dr_list); 2798 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2799 2800 if (pending_dr) 2801 kfree(dr_wrk); 2802 else 2803 queue_work(hbus->wq, &dr_wrk->wrk); 2804 2805 return 0; 2806 } 2807 2808 /** 2809 * hv_pci_devices_present() - Handle list of new children 2810 * @hbus: Root PCI bus, as understood by this driver 2811 * @relations: Packet from host listing children 2812 * 2813 * Process a new list of devices on the bus. The list of devices is 2814 * discovered by VSP and sent to us via VSP message PCI_BUS_RELATIONS, 2815 * whenever a new list of devices for this bus appears. 2816 */ 2817 static void hv_pci_devices_present(struct hv_pcibus_device *hbus, 2818 struct pci_bus_relations *relations) 2819 { 2820 struct hv_dr_state *dr; 2821 int i; 2822 2823 dr = kzalloc(struct_size(dr, func, relations->device_count), 2824 GFP_NOWAIT); 2825 if (!dr) 2826 return; 2827 2828 dr->device_count = relations->device_count; 2829 for (i = 0; i < dr->device_count; i++) { 2830 dr->func[i].v_id = relations->func[i].v_id; 2831 dr->func[i].d_id = relations->func[i].d_id; 2832 dr->func[i].rev = relations->func[i].rev; 2833 dr->func[i].prog_intf = relations->func[i].prog_intf; 2834 dr->func[i].subclass = relations->func[i].subclass; 2835 dr->func[i].base_class = relations->func[i].base_class; 2836 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2837 dr->func[i].win_slot = relations->func[i].win_slot; 2838 dr->func[i].ser = relations->func[i].ser; 2839 } 2840 2841 if (hv_pci_start_relations_work(hbus, dr)) 2842 kfree(dr); 2843 } 2844 2845 /** 2846 * hv_pci_devices_present2() - Handle list of new children 2847 * @hbus: Root PCI bus, as understood by this driver 2848 * @relations: Packet from host listing children 2849 * 2850 * This function is the v2 version of hv_pci_devices_present() 2851 */ 2852 static void hv_pci_devices_present2(struct hv_pcibus_device *hbus, 2853 struct pci_bus_relations2 *relations) 2854 { 2855 struct hv_dr_state *dr; 2856 int i; 2857 2858 dr = kzalloc(struct_size(dr, func, relations->device_count), 2859 GFP_NOWAIT); 2860 if (!dr) 2861 return; 2862 2863 dr->device_count = relations->device_count; 2864 for (i = 0; i < dr->device_count; i++) { 2865 dr->func[i].v_id = relations->func[i].v_id; 2866 dr->func[i].d_id = relations->func[i].d_id; 2867 dr->func[i].rev = relations->func[i].rev; 2868 dr->func[i].prog_intf = relations->func[i].prog_intf; 2869 dr->func[i].subclass = relations->func[i].subclass; 2870 dr->func[i].base_class = relations->func[i].base_class; 2871 dr->func[i].subsystem_id = relations->func[i].subsystem_id; 2872 dr->func[i].win_slot = relations->func[i].win_slot; 2873 dr->func[i].ser = relations->func[i].ser; 2874 dr->func[i].flags = relations->func[i].flags; 2875 dr->func[i].virtual_numa_node = 2876 relations->func[i].virtual_numa_node; 2877 } 2878 2879 if (hv_pci_start_relations_work(hbus, dr)) 2880 kfree(dr); 2881 } 2882 2883 /** 2884 * hv_eject_device_work() - Asynchronously handles ejection 2885 * @work: Work struct embedded in internal device struct 2886 * 2887 * This function handles ejecting a device. Windows will 2888 * attempt to gracefully eject a device, waiting 60 seconds to 2889 * hear back from the guest OS that this completed successfully. 2890 * If this timer expires, the device will be forcibly removed. 2891 */ 2892 static void hv_eject_device_work(struct work_struct *work) 2893 { 2894 struct pci_eject_response *ejct_pkt; 2895 struct hv_pcibus_device *hbus; 2896 struct hv_pci_dev *hpdev; 2897 struct pci_dev *pdev; 2898 unsigned long flags; 2899 int wslot; 2900 struct { 2901 struct pci_packet pkt; 2902 u8 buffer[sizeof(struct pci_eject_response)]; 2903 } ctxt; 2904 2905 hpdev = container_of(work, struct hv_pci_dev, wrk); 2906 hbus = hpdev->hbus; 2907 2908 mutex_lock(&hbus->state_lock); 2909 2910 /* 2911 * Ejection can come before or after the PCI bus has been set up, so 2912 * attempt to find it and tear down the bus state, if it exists. This 2913 * must be done without constructs like pci_domain_nr(hbus->bridge->bus) 2914 * because hbus->bridge->bus may not exist yet. 2915 */ 2916 wslot = wslot_to_devfn(hpdev->desc.win_slot.slot); 2917 pdev = pci_get_domain_bus_and_slot(hbus->bridge->domain_nr, 0, wslot); 2918 if (pdev) { 2919 pci_lock_rescan_remove(); 2920 pci_stop_and_remove_bus_device(pdev); 2921 pci_dev_put(pdev); 2922 pci_unlock_rescan_remove(); 2923 } 2924 2925 spin_lock_irqsave(&hbus->device_list_lock, flags); 2926 list_del(&hpdev->list_entry); 2927 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 2928 2929 if (hpdev->pci_slot) 2930 pci_destroy_slot(hpdev->pci_slot); 2931 2932 memset(&ctxt, 0, sizeof(ctxt)); 2933 ejct_pkt = (struct pci_eject_response *)ctxt.buffer; 2934 ejct_pkt->message_type.type = PCI_EJECTION_COMPLETE; 2935 ejct_pkt->wslot.slot = hpdev->desc.win_slot.slot; 2936 vmbus_sendpacket(hbus->hdev->channel, ejct_pkt, 2937 sizeof(*ejct_pkt), 0, 2938 VM_PKT_DATA_INBAND, 0); 2939 2940 /* For the get_pcichild() in hv_pci_eject_device() */ 2941 put_pcichild(hpdev); 2942 /* For the two refs got in new_pcichild_device() */ 2943 put_pcichild(hpdev); 2944 put_pcichild(hpdev); 2945 /* hpdev has been freed. Do not use it any more. */ 2946 2947 mutex_unlock(&hbus->state_lock); 2948 } 2949 2950 /** 2951 * hv_pci_eject_device() - Handles device ejection 2952 * @hpdev: Internal device tracking struct 2953 * 2954 * This function is invoked when an ejection packet arrives. It 2955 * just schedules work so that we don't re-enter the packet 2956 * delivery code handling the ejection. 2957 */ 2958 static void hv_pci_eject_device(struct hv_pci_dev *hpdev) 2959 { 2960 struct hv_pcibus_device *hbus = hpdev->hbus; 2961 struct hv_device *hdev = hbus->hdev; 2962 2963 if (hbus->state == hv_pcibus_removing) { 2964 dev_info(&hdev->device, "PCI VMBus EJECT: ignored\n"); 2965 return; 2966 } 2967 2968 get_pcichild(hpdev); 2969 INIT_WORK(&hpdev->wrk, hv_eject_device_work); 2970 queue_work(hbus->wq, &hpdev->wrk); 2971 } 2972 2973 /** 2974 * hv_pci_onchannelcallback() - Handles incoming packets 2975 * @context: Internal bus tracking struct 2976 * 2977 * This function is invoked whenever the host sends a packet to 2978 * this channel (which is private to this root PCI bus). 2979 */ 2980 static void hv_pci_onchannelcallback(void *context) 2981 { 2982 const int packet_size = 0x100; 2983 int ret; 2984 struct hv_pcibus_device *hbus = context; 2985 struct vmbus_channel *chan = hbus->hdev->channel; 2986 u32 bytes_recvd; 2987 u64 req_id, req_addr; 2988 struct vmpacket_descriptor *desc; 2989 unsigned char *buffer; 2990 int bufferlen = packet_size; 2991 struct pci_packet *comp_packet; 2992 struct pci_response *response; 2993 struct pci_incoming_message *new_message; 2994 struct pci_bus_relations *bus_rel; 2995 struct pci_bus_relations2 *bus_rel2; 2996 struct pci_dev_inval_block *inval; 2997 struct pci_dev_incoming *dev_message; 2998 struct hv_pci_dev *hpdev; 2999 unsigned long flags; 3000 3001 buffer = kmalloc(bufferlen, GFP_ATOMIC); 3002 if (!buffer) 3003 return; 3004 3005 while (1) { 3006 ret = vmbus_recvpacket_raw(chan, buffer, bufferlen, 3007 &bytes_recvd, &req_id); 3008 3009 if (ret == -ENOBUFS) { 3010 kfree(buffer); 3011 /* Handle large packet */ 3012 bufferlen = bytes_recvd; 3013 buffer = kmalloc(bytes_recvd, GFP_ATOMIC); 3014 if (!buffer) 3015 return; 3016 continue; 3017 } 3018 3019 /* Zero length indicates there are no more packets. */ 3020 if (ret || !bytes_recvd) 3021 break; 3022 3023 /* 3024 * All incoming packets must be at least as large as a 3025 * response. 3026 */ 3027 if (bytes_recvd <= sizeof(struct pci_response)) 3028 continue; 3029 desc = (struct vmpacket_descriptor *)buffer; 3030 3031 switch (desc->type) { 3032 case VM_PKT_COMP: 3033 3034 lock_requestor(chan, flags); 3035 req_addr = __vmbus_request_addr_match(chan, req_id, 3036 VMBUS_RQST_ADDR_ANY); 3037 if (req_addr == VMBUS_RQST_ERROR) { 3038 unlock_requestor(chan, flags); 3039 dev_err(&hbus->hdev->device, 3040 "Invalid transaction ID %llx\n", 3041 req_id); 3042 break; 3043 } 3044 comp_packet = (struct pci_packet *)req_addr; 3045 response = (struct pci_response *)buffer; 3046 /* 3047 * Call ->completion_func() within the critical section to make 3048 * sure that the packet pointer is still valid during the call: 3049 * here 'valid' means that there's a task still waiting for the 3050 * completion, and that the packet data is still on the waiting 3051 * task's stack. Cf. hv_compose_msi_msg(). 3052 */ 3053 comp_packet->completion_func(comp_packet->compl_ctxt, 3054 response, 3055 bytes_recvd); 3056 unlock_requestor(chan, flags); 3057 break; 3058 3059 case VM_PKT_DATA_INBAND: 3060 3061 new_message = (struct pci_incoming_message *)buffer; 3062 switch (new_message->message_type.type) { 3063 case PCI_BUS_RELATIONS: 3064 3065 bus_rel = (struct pci_bus_relations *)buffer; 3066 if (bytes_recvd < sizeof(*bus_rel) || 3067 bytes_recvd < 3068 struct_size(bus_rel, func, 3069 bus_rel->device_count)) { 3070 dev_err(&hbus->hdev->device, 3071 "bus relations too small\n"); 3072 break; 3073 } 3074 3075 hv_pci_devices_present(hbus, bus_rel); 3076 break; 3077 3078 case PCI_BUS_RELATIONS2: 3079 3080 bus_rel2 = (struct pci_bus_relations2 *)buffer; 3081 if (bytes_recvd < sizeof(*bus_rel2) || 3082 bytes_recvd < 3083 struct_size(bus_rel2, func, 3084 bus_rel2->device_count)) { 3085 dev_err(&hbus->hdev->device, 3086 "bus relations v2 too small\n"); 3087 break; 3088 } 3089 3090 hv_pci_devices_present2(hbus, bus_rel2); 3091 break; 3092 3093 case PCI_EJECT: 3094 3095 dev_message = (struct pci_dev_incoming *)buffer; 3096 if (bytes_recvd < sizeof(*dev_message)) { 3097 dev_err(&hbus->hdev->device, 3098 "eject message too small\n"); 3099 break; 3100 } 3101 hpdev = get_pcichild_wslot(hbus, 3102 dev_message->wslot.slot); 3103 if (hpdev) { 3104 hv_pci_eject_device(hpdev); 3105 put_pcichild(hpdev); 3106 } 3107 break; 3108 3109 case PCI_INVALIDATE_BLOCK: 3110 3111 inval = (struct pci_dev_inval_block *)buffer; 3112 if (bytes_recvd < sizeof(*inval)) { 3113 dev_err(&hbus->hdev->device, 3114 "invalidate message too small\n"); 3115 break; 3116 } 3117 hpdev = get_pcichild_wslot(hbus, 3118 inval->wslot.slot); 3119 if (hpdev) { 3120 if (hpdev->block_invalidate) { 3121 hpdev->block_invalidate( 3122 hpdev->invalidate_context, 3123 inval->block_mask); 3124 } 3125 put_pcichild(hpdev); 3126 } 3127 break; 3128 3129 default: 3130 dev_warn(&hbus->hdev->device, 3131 "Unimplemented protocol message %x\n", 3132 new_message->message_type.type); 3133 break; 3134 } 3135 break; 3136 3137 default: 3138 dev_err(&hbus->hdev->device, 3139 "unhandled packet type %d, tid %llx len %d\n", 3140 desc->type, req_id, bytes_recvd); 3141 break; 3142 } 3143 } 3144 3145 kfree(buffer); 3146 } 3147 3148 /** 3149 * hv_pci_protocol_negotiation() - Set up protocol 3150 * @hdev: VMBus's tracking struct for this root PCI bus. 3151 * @version: Array of supported channel protocol versions in 3152 * the order of probing - highest go first. 3153 * @num_version: Number of elements in the version array. 3154 * 3155 * This driver is intended to support running on Windows 10 3156 * (server) and later versions. It will not run on earlier 3157 * versions, as they assume that many of the operations which 3158 * Linux needs accomplished with a spinlock held were done via 3159 * asynchronous messaging via VMBus. Windows 10 increases the 3160 * surface area of PCI emulation so that these actions can take 3161 * place by suspending a virtual processor for their duration. 3162 * 3163 * This function negotiates the channel protocol version, 3164 * failing if the host doesn't support the necessary protocol 3165 * level. 3166 */ 3167 static int hv_pci_protocol_negotiation(struct hv_device *hdev, 3168 enum pci_protocol_version_t version[], 3169 int num_version) 3170 { 3171 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3172 struct pci_version_request *version_req; 3173 struct hv_pci_compl comp_pkt; 3174 struct pci_packet *pkt; 3175 int ret; 3176 int i; 3177 3178 /* 3179 * Initiate the handshake with the host and negotiate 3180 * a version that the host can support. We start with the 3181 * highest version number and go down if the host cannot 3182 * support it. 3183 */ 3184 pkt = kzalloc(sizeof(*pkt) + sizeof(*version_req), GFP_KERNEL); 3185 if (!pkt) 3186 return -ENOMEM; 3187 3188 init_completion(&comp_pkt.host_event); 3189 pkt->completion_func = hv_pci_generic_compl; 3190 pkt->compl_ctxt = &comp_pkt; 3191 version_req = (struct pci_version_request *)(pkt + 1); 3192 version_req->message_type.type = PCI_QUERY_PROTOCOL_VERSION; 3193 3194 for (i = 0; i < num_version; i++) { 3195 version_req->protocol_version = version[i]; 3196 ret = vmbus_sendpacket(hdev->channel, version_req, 3197 sizeof(struct pci_version_request), 3198 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3199 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3200 if (!ret) 3201 ret = wait_for_response(hdev, &comp_pkt.host_event); 3202 3203 if (ret) { 3204 dev_err(&hdev->device, 3205 "PCI Pass-through VSP failed to request version: %d", 3206 ret); 3207 goto exit; 3208 } 3209 3210 if (comp_pkt.completion_status >= 0) { 3211 hbus->protocol_version = version[i]; 3212 dev_info(&hdev->device, 3213 "PCI VMBus probing: Using version %#x\n", 3214 hbus->protocol_version); 3215 goto exit; 3216 } 3217 3218 if (comp_pkt.completion_status != STATUS_REVISION_MISMATCH) { 3219 dev_err(&hdev->device, 3220 "PCI Pass-through VSP failed version request: %#x", 3221 comp_pkt.completion_status); 3222 ret = -EPROTO; 3223 goto exit; 3224 } 3225 3226 reinit_completion(&comp_pkt.host_event); 3227 } 3228 3229 dev_err(&hdev->device, 3230 "PCI pass-through VSP failed to find supported version"); 3231 ret = -EPROTO; 3232 3233 exit: 3234 kfree(pkt); 3235 return ret; 3236 } 3237 3238 /** 3239 * hv_pci_free_bridge_windows() - Release memory regions for the 3240 * bus 3241 * @hbus: Root PCI bus, as understood by this driver 3242 */ 3243 static void hv_pci_free_bridge_windows(struct hv_pcibus_device *hbus) 3244 { 3245 /* 3246 * Set the resources back to the way they looked when they 3247 * were allocated by setting IORESOURCE_BUSY again. 3248 */ 3249 3250 if (hbus->low_mmio_space && hbus->low_mmio_res) { 3251 hbus->low_mmio_res->flags |= IORESOURCE_BUSY; 3252 vmbus_free_mmio(hbus->low_mmio_res->start, 3253 resource_size(hbus->low_mmio_res)); 3254 } 3255 3256 if (hbus->high_mmio_space && hbus->high_mmio_res) { 3257 hbus->high_mmio_res->flags |= IORESOURCE_BUSY; 3258 vmbus_free_mmio(hbus->high_mmio_res->start, 3259 resource_size(hbus->high_mmio_res)); 3260 } 3261 } 3262 3263 /** 3264 * hv_pci_allocate_bridge_windows() - Allocate memory regions 3265 * for the bus 3266 * @hbus: Root PCI bus, as understood by this driver 3267 * 3268 * This function calls vmbus_allocate_mmio(), which is itself a 3269 * bit of a compromise. Ideally, we might change the pnp layer 3270 * in the kernel such that it comprehends either PCI devices 3271 * which are "grandchildren of ACPI," with some intermediate bus 3272 * node (in this case, VMBus) or change it such that it 3273 * understands VMBus. The pnp layer, however, has been declared 3274 * deprecated, and not subject to change. 3275 * 3276 * The workaround, implemented here, is to ask VMBus to allocate 3277 * MMIO space for this bus. VMBus itself knows which ranges are 3278 * appropriate by looking at its own ACPI objects. Then, after 3279 * these ranges are claimed, they're modified to look like they 3280 * would have looked if the ACPI and pnp code had allocated 3281 * bridge windows. These descriptors have to exist in this form 3282 * in order to satisfy the code which will get invoked when the 3283 * endpoint PCI function driver calls request_mem_region() or 3284 * request_mem_region_exclusive(). 3285 * 3286 * Return: 0 on success, -errno on failure 3287 */ 3288 static int hv_pci_allocate_bridge_windows(struct hv_pcibus_device *hbus) 3289 { 3290 resource_size_t align; 3291 int ret; 3292 3293 if (hbus->low_mmio_space) { 3294 align = 1ULL << (63 - __builtin_clzll(hbus->low_mmio_space)); 3295 ret = vmbus_allocate_mmio(&hbus->low_mmio_res, hbus->hdev, 0, 3296 (u64)(u32)0xffffffff, 3297 hbus->low_mmio_space, 3298 align, false); 3299 if (ret) { 3300 dev_err(&hbus->hdev->device, 3301 "Need %#llx of low MMIO space. Consider reconfiguring the VM.\n", 3302 hbus->low_mmio_space); 3303 return ret; 3304 } 3305 3306 /* Modify this resource to become a bridge window. */ 3307 hbus->low_mmio_res->flags |= IORESOURCE_WINDOW; 3308 hbus->low_mmio_res->flags &= ~IORESOURCE_BUSY; 3309 pci_add_resource(&hbus->bridge->windows, hbus->low_mmio_res); 3310 } 3311 3312 if (hbus->high_mmio_space) { 3313 align = 1ULL << (63 - __builtin_clzll(hbus->high_mmio_space)); 3314 ret = vmbus_allocate_mmio(&hbus->high_mmio_res, hbus->hdev, 3315 0x100000000, -1, 3316 hbus->high_mmio_space, align, 3317 false); 3318 if (ret) { 3319 dev_err(&hbus->hdev->device, 3320 "Need %#llx of high MMIO space. Consider reconfiguring the VM.\n", 3321 hbus->high_mmio_space); 3322 goto release_low_mmio; 3323 } 3324 3325 /* Modify this resource to become a bridge window. */ 3326 hbus->high_mmio_res->flags |= IORESOURCE_WINDOW; 3327 hbus->high_mmio_res->flags &= ~IORESOURCE_BUSY; 3328 pci_add_resource(&hbus->bridge->windows, hbus->high_mmio_res); 3329 } 3330 3331 return 0; 3332 3333 release_low_mmio: 3334 if (hbus->low_mmio_res) { 3335 vmbus_free_mmio(hbus->low_mmio_res->start, 3336 resource_size(hbus->low_mmio_res)); 3337 } 3338 3339 return ret; 3340 } 3341 3342 /** 3343 * hv_allocate_config_window() - Find MMIO space for PCI Config 3344 * @hbus: Root PCI bus, as understood by this driver 3345 * 3346 * This function claims memory-mapped I/O space for accessing 3347 * configuration space for the functions on this bus. 3348 * 3349 * Return: 0 on success, -errno on failure 3350 */ 3351 static int hv_allocate_config_window(struct hv_pcibus_device *hbus) 3352 { 3353 int ret; 3354 3355 /* 3356 * Set up a region of MMIO space to use for accessing configuration 3357 * space. 3358 */ 3359 ret = vmbus_allocate_mmio(&hbus->mem_config, hbus->hdev, 0, -1, 3360 PCI_CONFIG_MMIO_LENGTH, 0x1000, false); 3361 if (ret) 3362 return ret; 3363 3364 /* 3365 * vmbus_allocate_mmio() gets used for allocating both device endpoint 3366 * resource claims (those which cannot be overlapped) and the ranges 3367 * which are valid for the children of this bus, which are intended 3368 * to be overlapped by those children. Set the flag on this claim 3369 * meaning that this region can't be overlapped. 3370 */ 3371 3372 hbus->mem_config->flags |= IORESOURCE_BUSY; 3373 3374 return 0; 3375 } 3376 3377 static void hv_free_config_window(struct hv_pcibus_device *hbus) 3378 { 3379 vmbus_free_mmio(hbus->mem_config->start, PCI_CONFIG_MMIO_LENGTH); 3380 } 3381 3382 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs); 3383 3384 /** 3385 * hv_pci_enter_d0() - Bring the "bus" into the D0 power state 3386 * @hdev: VMBus's tracking struct for this root PCI bus 3387 * 3388 * Return: 0 on success, -errno on failure 3389 */ 3390 static int hv_pci_enter_d0(struct hv_device *hdev) 3391 { 3392 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3393 struct pci_bus_d0_entry *d0_entry; 3394 struct hv_pci_compl comp_pkt; 3395 struct pci_packet *pkt; 3396 bool retry = true; 3397 int ret; 3398 3399 enter_d0_retry: 3400 /* 3401 * Tell the host that the bus is ready to use, and moved into the 3402 * powered-on state. This includes telling the host which region 3403 * of memory-mapped I/O space has been chosen for configuration space 3404 * access. 3405 */ 3406 pkt = kzalloc(sizeof(*pkt) + sizeof(*d0_entry), GFP_KERNEL); 3407 if (!pkt) 3408 return -ENOMEM; 3409 3410 init_completion(&comp_pkt.host_event); 3411 pkt->completion_func = hv_pci_generic_compl; 3412 pkt->compl_ctxt = &comp_pkt; 3413 d0_entry = (struct pci_bus_d0_entry *)(pkt + 1); 3414 d0_entry->message_type.type = PCI_BUS_D0ENTRY; 3415 d0_entry->mmio_base = hbus->mem_config->start; 3416 3417 ret = vmbus_sendpacket(hdev->channel, d0_entry, sizeof(*d0_entry), 3418 (unsigned long)pkt, VM_PKT_DATA_INBAND, 3419 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3420 if (!ret) 3421 ret = wait_for_response(hdev, &comp_pkt.host_event); 3422 3423 if (ret) 3424 goto exit; 3425 3426 /* 3427 * In certain case (Kdump) the pci device of interest was 3428 * not cleanly shut down and resource is still held on host 3429 * side, the host could return invalid device status. 3430 * We need to explicitly request host to release the resource 3431 * and try to enter D0 again. 3432 */ 3433 if (comp_pkt.completion_status < 0 && retry) { 3434 retry = false; 3435 3436 dev_err(&hdev->device, "Retrying D0 Entry\n"); 3437 3438 /* 3439 * Hv_pci_bus_exit() calls hv_send_resource_released() 3440 * to free up resources of its child devices. 3441 * In the kdump kernel we need to set the 3442 * wslot_res_allocated to 255 so it scans all child 3443 * devices to release resources allocated in the 3444 * normal kernel before panic happened. 3445 */ 3446 hbus->wslot_res_allocated = 255; 3447 3448 ret = hv_pci_bus_exit(hdev, true); 3449 3450 if (ret == 0) { 3451 kfree(pkt); 3452 goto enter_d0_retry; 3453 } 3454 dev_err(&hdev->device, 3455 "Retrying D0 failed with ret %d\n", ret); 3456 } 3457 3458 if (comp_pkt.completion_status < 0) { 3459 dev_err(&hdev->device, 3460 "PCI Pass-through VSP failed D0 Entry with status %x\n", 3461 comp_pkt.completion_status); 3462 ret = -EPROTO; 3463 goto exit; 3464 } 3465 3466 ret = 0; 3467 3468 exit: 3469 kfree(pkt); 3470 return ret; 3471 } 3472 3473 /** 3474 * hv_pci_query_relations() - Ask host to send list of child 3475 * devices 3476 * @hdev: VMBus's tracking struct for this root PCI bus 3477 * 3478 * Return: 0 on success, -errno on failure 3479 */ 3480 static int hv_pci_query_relations(struct hv_device *hdev) 3481 { 3482 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3483 struct pci_message message; 3484 struct completion comp; 3485 int ret; 3486 3487 /* Ask the host to send along the list of child devices */ 3488 init_completion(&comp); 3489 if (cmpxchg(&hbus->survey_event, NULL, &comp)) 3490 return -ENOTEMPTY; 3491 3492 memset(&message, 0, sizeof(message)); 3493 message.type = PCI_QUERY_BUS_RELATIONS; 3494 3495 ret = vmbus_sendpacket(hdev->channel, &message, sizeof(message), 3496 0, VM_PKT_DATA_INBAND, 0); 3497 if (!ret) 3498 ret = wait_for_response(hdev, &comp); 3499 3500 /* 3501 * In the case of fast device addition/removal, it's possible that 3502 * vmbus_sendpacket() or wait_for_response() returns -ENODEV but we 3503 * already got a PCI_BUS_RELATIONS* message from the host and the 3504 * channel callback already scheduled a work to hbus->wq, which can be 3505 * running pci_devices_present_work() -> survey_child_resources() -> 3506 * complete(&hbus->survey_event), even after hv_pci_query_relations() 3507 * exits and the stack variable 'comp' is no longer valid; as a result, 3508 * a hang or a page fault may happen when the complete() calls 3509 * raw_spin_lock_irqsave(). Flush hbus->wq before we exit from 3510 * hv_pci_query_relations() to avoid the issues. Note: if 'ret' is 3511 * -ENODEV, there can't be any more work item scheduled to hbus->wq 3512 * after the flush_workqueue(): see vmbus_onoffer_rescind() -> 3513 * vmbus_reset_channel_cb(), vmbus_rescind_cleanup() -> 3514 * channel->rescind = true. 3515 */ 3516 flush_workqueue(hbus->wq); 3517 3518 return ret; 3519 } 3520 3521 /** 3522 * hv_send_resources_allocated() - Report local resource choices 3523 * @hdev: VMBus's tracking struct for this root PCI bus 3524 * 3525 * The host OS is expecting to be sent a request as a message 3526 * which contains all the resources that the device will use. 3527 * The response contains those same resources, "translated" 3528 * which is to say, the values which should be used by the 3529 * hardware, when it delivers an interrupt. (MMIO resources are 3530 * used in local terms.) This is nice for Windows, and lines up 3531 * with the FDO/PDO split, which doesn't exist in Linux. Linux 3532 * is deeply expecting to scan an emulated PCI configuration 3533 * space. So this message is sent here only to drive the state 3534 * machine on the host forward. 3535 * 3536 * Return: 0 on success, -errno on failure 3537 */ 3538 static int hv_send_resources_allocated(struct hv_device *hdev) 3539 { 3540 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3541 struct pci_resources_assigned *res_assigned; 3542 struct pci_resources_assigned2 *res_assigned2; 3543 struct hv_pci_compl comp_pkt; 3544 struct hv_pci_dev *hpdev; 3545 struct pci_packet *pkt; 3546 size_t size_res; 3547 int wslot; 3548 int ret; 3549 3550 size_res = (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) 3551 ? sizeof(*res_assigned) : sizeof(*res_assigned2); 3552 3553 pkt = kmalloc(sizeof(*pkt) + size_res, GFP_KERNEL); 3554 if (!pkt) 3555 return -ENOMEM; 3556 3557 ret = 0; 3558 3559 for (wslot = 0; wslot < 256; wslot++) { 3560 hpdev = get_pcichild_wslot(hbus, wslot); 3561 if (!hpdev) 3562 continue; 3563 3564 memset(pkt, 0, sizeof(*pkt) + size_res); 3565 init_completion(&comp_pkt.host_event); 3566 pkt->completion_func = hv_pci_generic_compl; 3567 pkt->compl_ctxt = &comp_pkt; 3568 3569 if (hbus->protocol_version < PCI_PROTOCOL_VERSION_1_2) { 3570 res_assigned = 3571 (struct pci_resources_assigned *)(pkt + 1); 3572 res_assigned->message_type.type = 3573 PCI_RESOURCES_ASSIGNED; 3574 res_assigned->wslot.slot = hpdev->desc.win_slot.slot; 3575 } else { 3576 res_assigned2 = 3577 (struct pci_resources_assigned2 *)(pkt + 1); 3578 res_assigned2->message_type.type = 3579 PCI_RESOURCES_ASSIGNED2; 3580 res_assigned2->wslot.slot = hpdev->desc.win_slot.slot; 3581 } 3582 put_pcichild(hpdev); 3583 3584 ret = vmbus_sendpacket(hdev->channel, pkt + 1, 3585 size_res, (unsigned long)pkt, 3586 VM_PKT_DATA_INBAND, 3587 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3588 if (!ret) 3589 ret = wait_for_response(hdev, &comp_pkt.host_event); 3590 if (ret) 3591 break; 3592 3593 if (comp_pkt.completion_status < 0) { 3594 ret = -EPROTO; 3595 dev_err(&hdev->device, 3596 "resource allocated returned 0x%x", 3597 comp_pkt.completion_status); 3598 break; 3599 } 3600 3601 hbus->wslot_res_allocated = wslot; 3602 } 3603 3604 kfree(pkt); 3605 return ret; 3606 } 3607 3608 /** 3609 * hv_send_resources_released() - Report local resources 3610 * released 3611 * @hdev: VMBus's tracking struct for this root PCI bus 3612 * 3613 * Return: 0 on success, -errno on failure 3614 */ 3615 static int hv_send_resources_released(struct hv_device *hdev) 3616 { 3617 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3618 struct pci_child_message pkt; 3619 struct hv_pci_dev *hpdev; 3620 int wslot; 3621 int ret; 3622 3623 for (wslot = hbus->wslot_res_allocated; wslot >= 0; wslot--) { 3624 hpdev = get_pcichild_wslot(hbus, wslot); 3625 if (!hpdev) 3626 continue; 3627 3628 memset(&pkt, 0, sizeof(pkt)); 3629 pkt.message_type.type = PCI_RESOURCES_RELEASED; 3630 pkt.wslot.slot = hpdev->desc.win_slot.slot; 3631 3632 put_pcichild(hpdev); 3633 3634 ret = vmbus_sendpacket(hdev->channel, &pkt, sizeof(pkt), 0, 3635 VM_PKT_DATA_INBAND, 0); 3636 if (ret) 3637 return ret; 3638 3639 hbus->wslot_res_allocated = wslot - 1; 3640 } 3641 3642 hbus->wslot_res_allocated = -1; 3643 3644 return 0; 3645 } 3646 3647 #define HVPCI_DOM_MAP_SIZE (64 * 1024) 3648 static DECLARE_BITMAP(hvpci_dom_map, HVPCI_DOM_MAP_SIZE); 3649 3650 /* 3651 * PCI domain number 0 is used by emulated devices on Gen1 VMs, so define 0 3652 * as invalid for passthrough PCI devices of this driver. 3653 */ 3654 #define HVPCI_DOM_INVALID 0 3655 3656 /** 3657 * hv_get_dom_num() - Get a valid PCI domain number 3658 * Check if the PCI domain number is in use, and return another number if 3659 * it is in use. 3660 * 3661 * @dom: Requested domain number 3662 * 3663 * return: domain number on success, HVPCI_DOM_INVALID on failure 3664 */ 3665 static u16 hv_get_dom_num(u16 dom) 3666 { 3667 unsigned int i; 3668 3669 if (test_and_set_bit(dom, hvpci_dom_map) == 0) 3670 return dom; 3671 3672 for_each_clear_bit(i, hvpci_dom_map, HVPCI_DOM_MAP_SIZE) { 3673 if (test_and_set_bit(i, hvpci_dom_map) == 0) 3674 return i; 3675 } 3676 3677 return HVPCI_DOM_INVALID; 3678 } 3679 3680 /** 3681 * hv_put_dom_num() - Mark the PCI domain number as free 3682 * @dom: Domain number to be freed 3683 */ 3684 static void hv_put_dom_num(u16 dom) 3685 { 3686 clear_bit(dom, hvpci_dom_map); 3687 } 3688 3689 /** 3690 * hv_pci_probe() - New VMBus channel probe, for a root PCI bus 3691 * @hdev: VMBus's tracking struct for this root PCI bus 3692 * @dev_id: Identifies the device itself 3693 * 3694 * Return: 0 on success, -errno on failure 3695 */ 3696 static int hv_pci_probe(struct hv_device *hdev, 3697 const struct hv_vmbus_device_id *dev_id) 3698 { 3699 struct pci_host_bridge *bridge; 3700 struct hv_pcibus_device *hbus; 3701 u16 dom_req, dom; 3702 char *name; 3703 int ret; 3704 3705 bridge = devm_pci_alloc_host_bridge(&hdev->device, 0); 3706 if (!bridge) 3707 return -ENOMEM; 3708 3709 hbus = kzalloc(sizeof(*hbus), GFP_KERNEL); 3710 if (!hbus) 3711 return -ENOMEM; 3712 3713 hbus->bridge = bridge; 3714 mutex_init(&hbus->state_lock); 3715 hbus->state = hv_pcibus_init; 3716 hbus->wslot_res_allocated = -1; 3717 3718 /* 3719 * The PCI bus "domain" is what is called "segment" in ACPI and other 3720 * specs. Pull it from the instance ID, to get something usually 3721 * unique. In rare cases of collision, we will find out another number 3722 * not in use. 3723 * 3724 * Note that, since this code only runs in a Hyper-V VM, Hyper-V 3725 * together with this guest driver can guarantee that (1) The only 3726 * domain used by Gen1 VMs for something that looks like a physical 3727 * PCI bus (which is actually emulated by the hypervisor) is domain 0. 3728 * (2) There will be no overlap between domains (after fixing possible 3729 * collisions) in the same VM. 3730 */ 3731 dom_req = hdev->dev_instance.b[5] << 8 | hdev->dev_instance.b[4]; 3732 dom = hv_get_dom_num(dom_req); 3733 3734 if (dom == HVPCI_DOM_INVALID) { 3735 dev_err(&hdev->device, 3736 "Unable to use dom# 0x%x or other numbers", dom_req); 3737 ret = -EINVAL; 3738 goto free_bus; 3739 } 3740 3741 if (dom != dom_req) 3742 dev_info(&hdev->device, 3743 "PCI dom# 0x%x has collision, using 0x%x", 3744 dom_req, dom); 3745 3746 hbus->bridge->domain_nr = dom; 3747 #ifdef CONFIG_X86 3748 hbus->sysdata.domain = dom; 3749 hbus->use_calls = !!(ms_hyperv.hints & HV_X64_USE_MMIO_HYPERCALLS); 3750 #elif defined(CONFIG_ARM64) 3751 /* 3752 * Set the PCI bus parent to be the corresponding VMbus 3753 * device. Then the VMbus device will be assigned as the 3754 * ACPI companion in pcibios_root_bridge_prepare() and 3755 * pci_dma_configure() will propagate device coherence 3756 * information to devices created on the bus. 3757 */ 3758 hbus->sysdata.parent = hdev->device.parent; 3759 hbus->use_calls = false; 3760 #endif 3761 3762 hbus->hdev = hdev; 3763 INIT_LIST_HEAD(&hbus->children); 3764 INIT_LIST_HEAD(&hbus->dr_list); 3765 spin_lock_init(&hbus->config_lock); 3766 spin_lock_init(&hbus->device_list_lock); 3767 hbus->wq = alloc_ordered_workqueue("hv_pci_%x", 0, 3768 hbus->bridge->domain_nr); 3769 if (!hbus->wq) { 3770 ret = -ENOMEM; 3771 goto free_dom; 3772 } 3773 3774 hdev->channel->next_request_id_callback = vmbus_next_request_id; 3775 hdev->channel->request_addr_callback = vmbus_request_addr; 3776 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 3777 3778 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 3779 hv_pci_onchannelcallback, hbus); 3780 if (ret) 3781 goto destroy_wq; 3782 3783 hv_set_drvdata(hdev, hbus); 3784 3785 ret = hv_pci_protocol_negotiation(hdev, pci_protocol_versions, 3786 ARRAY_SIZE(pci_protocol_versions)); 3787 if (ret) 3788 goto close; 3789 3790 ret = hv_allocate_config_window(hbus); 3791 if (ret) 3792 goto close; 3793 3794 hbus->cfg_addr = ioremap(hbus->mem_config->start, 3795 PCI_CONFIG_MMIO_LENGTH); 3796 if (!hbus->cfg_addr) { 3797 dev_err(&hdev->device, 3798 "Unable to map a virtual address for config space\n"); 3799 ret = -ENOMEM; 3800 goto free_config; 3801 } 3802 3803 name = kasprintf(GFP_KERNEL, "%pUL", &hdev->dev_instance); 3804 if (!name) { 3805 ret = -ENOMEM; 3806 goto unmap; 3807 } 3808 3809 hbus->fwnode = irq_domain_alloc_named_fwnode(name); 3810 kfree(name); 3811 if (!hbus->fwnode) { 3812 ret = -ENOMEM; 3813 goto unmap; 3814 } 3815 3816 ret = hv_pcie_init_irq_domain(hbus); 3817 if (ret) 3818 goto free_fwnode; 3819 3820 ret = hv_pci_query_relations(hdev); 3821 if (ret) 3822 goto free_irq_domain; 3823 3824 mutex_lock(&hbus->state_lock); 3825 3826 ret = hv_pci_enter_d0(hdev); 3827 if (ret) 3828 goto release_state_lock; 3829 3830 ret = hv_pci_allocate_bridge_windows(hbus); 3831 if (ret) 3832 goto exit_d0; 3833 3834 ret = hv_send_resources_allocated(hdev); 3835 if (ret) 3836 goto free_windows; 3837 3838 prepopulate_bars(hbus); 3839 3840 hbus->state = hv_pcibus_probed; 3841 3842 ret = create_root_hv_pci_bus(hbus); 3843 if (ret) 3844 goto free_windows; 3845 3846 mutex_unlock(&hbus->state_lock); 3847 return 0; 3848 3849 free_windows: 3850 hv_pci_free_bridge_windows(hbus); 3851 exit_d0: 3852 (void) hv_pci_bus_exit(hdev, true); 3853 release_state_lock: 3854 mutex_unlock(&hbus->state_lock); 3855 free_irq_domain: 3856 irq_domain_remove(hbus->irq_domain); 3857 free_fwnode: 3858 irq_domain_free_fwnode(hbus->fwnode); 3859 unmap: 3860 iounmap(hbus->cfg_addr); 3861 free_config: 3862 hv_free_config_window(hbus); 3863 close: 3864 vmbus_close(hdev->channel); 3865 destroy_wq: 3866 destroy_workqueue(hbus->wq); 3867 free_dom: 3868 hv_put_dom_num(hbus->bridge->domain_nr); 3869 free_bus: 3870 kfree(hbus); 3871 return ret; 3872 } 3873 3874 static int hv_pci_bus_exit(struct hv_device *hdev, bool keep_devs) 3875 { 3876 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 3877 struct vmbus_channel *chan = hdev->channel; 3878 struct { 3879 struct pci_packet teardown_packet; 3880 u8 buffer[sizeof(struct pci_message)]; 3881 } pkt; 3882 struct pci_message *msg; 3883 struct hv_pci_compl comp_pkt; 3884 struct hv_pci_dev *hpdev, *tmp; 3885 unsigned long flags; 3886 u64 trans_id; 3887 int ret; 3888 3889 /* 3890 * After the host sends the RESCIND_CHANNEL message, it doesn't 3891 * access the per-channel ringbuffer any longer. 3892 */ 3893 if (chan->rescind) 3894 return 0; 3895 3896 if (!keep_devs) { 3897 struct list_head removed; 3898 3899 /* Move all present children to the list on stack */ 3900 INIT_LIST_HEAD(&removed); 3901 spin_lock_irqsave(&hbus->device_list_lock, flags); 3902 list_for_each_entry_safe(hpdev, tmp, &hbus->children, list_entry) 3903 list_move_tail(&hpdev->list_entry, &removed); 3904 spin_unlock_irqrestore(&hbus->device_list_lock, flags); 3905 3906 /* Remove all children in the list */ 3907 list_for_each_entry_safe(hpdev, tmp, &removed, list_entry) { 3908 list_del(&hpdev->list_entry); 3909 if (hpdev->pci_slot) 3910 pci_destroy_slot(hpdev->pci_slot); 3911 /* For the two refs got in new_pcichild_device() */ 3912 put_pcichild(hpdev); 3913 put_pcichild(hpdev); 3914 } 3915 } 3916 3917 ret = hv_send_resources_released(hdev); 3918 if (ret) { 3919 dev_err(&hdev->device, 3920 "Couldn't send resources released packet(s)\n"); 3921 return ret; 3922 } 3923 3924 memset(&pkt.teardown_packet, 0, sizeof(pkt.teardown_packet)); 3925 init_completion(&comp_pkt.host_event); 3926 pkt.teardown_packet.completion_func = hv_pci_generic_compl; 3927 pkt.teardown_packet.compl_ctxt = &comp_pkt; 3928 msg = (struct pci_message *)pkt.buffer; 3929 msg->type = PCI_BUS_D0EXIT; 3930 3931 ret = vmbus_sendpacket_getid(chan, msg, sizeof(*msg), 3932 (unsigned long)&pkt.teardown_packet, 3933 &trans_id, VM_PKT_DATA_INBAND, 3934 VMBUS_DATA_PACKET_FLAG_COMPLETION_REQUESTED); 3935 if (ret) 3936 return ret; 3937 3938 if (wait_for_completion_timeout(&comp_pkt.host_event, 10 * HZ) == 0) { 3939 /* 3940 * The completion packet on the stack becomes invalid after 3941 * 'return'; remove the ID from the VMbus requestor if the 3942 * identifier is still mapped to/associated with the packet. 3943 * 3944 * Cf. hv_pci_onchannelcallback(). 3945 */ 3946 vmbus_request_addr_match(chan, trans_id, 3947 (unsigned long)&pkt.teardown_packet); 3948 return -ETIMEDOUT; 3949 } 3950 3951 return 0; 3952 } 3953 3954 /** 3955 * hv_pci_remove() - Remove routine for this VMBus channel 3956 * @hdev: VMBus's tracking struct for this root PCI bus 3957 */ 3958 static void hv_pci_remove(struct hv_device *hdev) 3959 { 3960 struct hv_pcibus_device *hbus; 3961 3962 hbus = hv_get_drvdata(hdev); 3963 if (hbus->state == hv_pcibus_installed) { 3964 tasklet_disable(&hdev->channel->callback_event); 3965 hbus->state = hv_pcibus_removing; 3966 tasklet_enable(&hdev->channel->callback_event); 3967 destroy_workqueue(hbus->wq); 3968 hbus->wq = NULL; 3969 /* 3970 * At this point, no work is running or can be scheduled 3971 * on hbus-wq. We can't race with hv_pci_devices_present() 3972 * or hv_pci_eject_device(), it's safe to proceed. 3973 */ 3974 3975 /* Remove the bus from PCI's point of view. */ 3976 pci_lock_rescan_remove(); 3977 pci_stop_root_bus(hbus->bridge->bus); 3978 hv_pci_remove_slots(hbus); 3979 pci_remove_root_bus(hbus->bridge->bus); 3980 pci_unlock_rescan_remove(); 3981 } 3982 3983 hv_pci_bus_exit(hdev, false); 3984 3985 vmbus_close(hdev->channel); 3986 3987 iounmap(hbus->cfg_addr); 3988 hv_free_config_window(hbus); 3989 hv_pci_free_bridge_windows(hbus); 3990 irq_domain_remove(hbus->irq_domain); 3991 irq_domain_free_fwnode(hbus->fwnode); 3992 3993 hv_put_dom_num(hbus->bridge->domain_nr); 3994 3995 kfree(hbus); 3996 } 3997 3998 static int hv_pci_suspend(struct hv_device *hdev) 3999 { 4000 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4001 enum hv_pcibus_state old_state; 4002 int ret; 4003 4004 /* 4005 * hv_pci_suspend() must make sure there are no pending work items 4006 * before calling vmbus_close(), since it runs in a process context 4007 * as a callback in dpm_suspend(). When it starts to run, the channel 4008 * callback hv_pci_onchannelcallback(), which runs in a tasklet 4009 * context, can be still running concurrently and scheduling new work 4010 * items onto hbus->wq in hv_pci_devices_present() and 4011 * hv_pci_eject_device(), and the work item handlers can access the 4012 * vmbus channel, which can be being closed by hv_pci_suspend(), e.g. 4013 * the work item handler pci_devices_present_work() -> 4014 * new_pcichild_device() writes to the vmbus channel. 4015 * 4016 * To eliminate the race, hv_pci_suspend() disables the channel 4017 * callback tasklet, sets hbus->state to hv_pcibus_removing, and 4018 * re-enables the tasklet. This way, when hv_pci_suspend() proceeds, 4019 * it knows that no new work item can be scheduled, and then it flushes 4020 * hbus->wq and safely closes the vmbus channel. 4021 */ 4022 tasklet_disable(&hdev->channel->callback_event); 4023 4024 /* Change the hbus state to prevent new work items. */ 4025 old_state = hbus->state; 4026 if (hbus->state == hv_pcibus_installed) 4027 hbus->state = hv_pcibus_removing; 4028 4029 tasklet_enable(&hdev->channel->callback_event); 4030 4031 if (old_state != hv_pcibus_installed) 4032 return -EINVAL; 4033 4034 flush_workqueue(hbus->wq); 4035 4036 ret = hv_pci_bus_exit(hdev, true); 4037 if (ret) 4038 return ret; 4039 4040 vmbus_close(hdev->channel); 4041 4042 return 0; 4043 } 4044 4045 static int hv_pci_restore_msi_msg(struct pci_dev *pdev, void *arg) 4046 { 4047 struct irq_data *irq_data; 4048 struct msi_desc *entry; 4049 4050 if (!pdev->msi_enabled && !pdev->msix_enabled) 4051 return 0; 4052 4053 guard(msi_descs_lock)(&pdev->dev); 4054 msi_for_each_desc(entry, &pdev->dev, MSI_DESC_ASSOCIATED) { 4055 irq_data = irq_get_irq_data(entry->irq); 4056 if (WARN_ON_ONCE(!irq_data)) 4057 return -EINVAL; 4058 hv_compose_msi_msg(irq_data, &entry->msg); 4059 } 4060 return 0; 4061 } 4062 4063 /* 4064 * Upon resume, pci_restore_msi_state() -> ... -> __pci_write_msi_msg() 4065 * directly writes the MSI/MSI-X registers via MMIO, but since Hyper-V 4066 * doesn't trap and emulate the MMIO accesses, here hv_compose_msi_msg() 4067 * must be used to ask Hyper-V to re-create the IOMMU Interrupt Remapping 4068 * Table entries. 4069 */ 4070 static void hv_pci_restore_msi_state(struct hv_pcibus_device *hbus) 4071 { 4072 pci_walk_bus(hbus->bridge->bus, hv_pci_restore_msi_msg, NULL); 4073 } 4074 4075 static int hv_pci_resume(struct hv_device *hdev) 4076 { 4077 struct hv_pcibus_device *hbus = hv_get_drvdata(hdev); 4078 enum pci_protocol_version_t version[1]; 4079 int ret; 4080 4081 hbus->state = hv_pcibus_init; 4082 4083 hdev->channel->next_request_id_callback = vmbus_next_request_id; 4084 hdev->channel->request_addr_callback = vmbus_request_addr; 4085 hdev->channel->rqstor_size = HV_PCI_RQSTOR_SIZE; 4086 4087 ret = vmbus_open(hdev->channel, pci_ring_size, pci_ring_size, NULL, 0, 4088 hv_pci_onchannelcallback, hbus); 4089 if (ret) 4090 return ret; 4091 4092 /* Only use the version that was in use before hibernation. */ 4093 version[0] = hbus->protocol_version; 4094 ret = hv_pci_protocol_negotiation(hdev, version, 1); 4095 if (ret) 4096 goto out; 4097 4098 ret = hv_pci_query_relations(hdev); 4099 if (ret) 4100 goto out; 4101 4102 mutex_lock(&hbus->state_lock); 4103 4104 ret = hv_pci_enter_d0(hdev); 4105 if (ret) 4106 goto release_state_lock; 4107 4108 ret = hv_send_resources_allocated(hdev); 4109 if (ret) 4110 goto release_state_lock; 4111 4112 prepopulate_bars(hbus); 4113 4114 hv_pci_restore_msi_state(hbus); 4115 4116 hbus->state = hv_pcibus_installed; 4117 mutex_unlock(&hbus->state_lock); 4118 return 0; 4119 4120 release_state_lock: 4121 mutex_unlock(&hbus->state_lock); 4122 out: 4123 vmbus_close(hdev->channel); 4124 return ret; 4125 } 4126 4127 static const struct hv_vmbus_device_id hv_pci_id_table[] = { 4128 /* PCI Pass-through Class ID */ 4129 /* 44C4F61D-4444-4400-9D52-802E27EDE19F */ 4130 { HV_PCIE_GUID, }, 4131 { }, 4132 }; 4133 4134 MODULE_DEVICE_TABLE(vmbus, hv_pci_id_table); 4135 4136 static struct hv_driver hv_pci_drv = { 4137 .name = "hv_pci", 4138 .id_table = hv_pci_id_table, 4139 .probe = hv_pci_probe, 4140 .remove = hv_pci_remove, 4141 .suspend = hv_pci_suspend, 4142 .resume = hv_pci_resume, 4143 }; 4144 4145 static void __exit exit_hv_pci_drv(void) 4146 { 4147 vmbus_driver_unregister(&hv_pci_drv); 4148 4149 hvpci_block_ops.read_block = NULL; 4150 hvpci_block_ops.write_block = NULL; 4151 hvpci_block_ops.reg_blk_invalidate = NULL; 4152 } 4153 4154 static int __init init_hv_pci_drv(void) 4155 { 4156 int ret; 4157 4158 if (!hv_is_hyperv_initialized()) 4159 return -ENODEV; 4160 4161 if (hv_root_partition() && !hv_nested) 4162 return -ENODEV; 4163 4164 ret = hv_pci_irqchip_init(); 4165 if (ret) 4166 return ret; 4167 4168 /* Set the invalid domain number's bit, so it will not be used */ 4169 set_bit(HVPCI_DOM_INVALID, hvpci_dom_map); 4170 4171 /* Initialize PCI block r/w interface */ 4172 hvpci_block_ops.read_block = hv_read_config_block; 4173 hvpci_block_ops.write_block = hv_write_config_block; 4174 hvpci_block_ops.reg_blk_invalidate = hv_register_block_invalidate; 4175 4176 return vmbus_driver_register(&hv_pci_drv); 4177 } 4178 4179 module_init(init_hv_pci_drv); 4180 module_exit(exit_hv_pci_drv); 4181 4182 MODULE_DESCRIPTION("Hyper-V PCI"); 4183 MODULE_LICENSE("GPL v2"); 4184