xref: /linux/drivers/pci/access.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 #include <linux/delay.h>
2 #include <linux/pci.h>
3 #include <linux/module.h>
4 #include <linux/sched/signal.h>
5 #include <linux/slab.h>
6 #include <linux/ioport.h>
7 #include <linux/wait.h>
8 
9 #include "pci.h"
10 
11 /*
12  * This interrupt-safe spinlock protects all accesses to PCI
13  * configuration space.
14  */
15 
16 DEFINE_RAW_SPINLOCK(pci_lock);
17 
18 /*
19  *  Wrappers for all PCI configuration access functions.  They just check
20  *  alignment, do locking and call the low-level functions pointed to
21  *  by pci_dev->ops.
22  */
23 
24 #define PCI_byte_BAD 0
25 #define PCI_word_BAD (pos & 1)
26 #define PCI_dword_BAD (pos & 3)
27 
28 #define PCI_OP_READ(size, type, len) \
29 int pci_bus_read_config_##size \
30 	(struct pci_bus *bus, unsigned int devfn, int pos, type *value)	\
31 {									\
32 	int res;							\
33 	unsigned long flags;						\
34 	u32 data = 0;							\
35 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
36 	raw_spin_lock_irqsave(&pci_lock, flags);			\
37 	res = bus->ops->read(bus, devfn, pos, len, &data);		\
38 	*value = (type)data;						\
39 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
40 	return res;							\
41 }
42 
43 #define PCI_OP_WRITE(size, type, len) \
44 int pci_bus_write_config_##size \
45 	(struct pci_bus *bus, unsigned int devfn, int pos, type value)	\
46 {									\
47 	int res;							\
48 	unsigned long flags;						\
49 	if (PCI_##size##_BAD) return PCIBIOS_BAD_REGISTER_NUMBER;	\
50 	raw_spin_lock_irqsave(&pci_lock, flags);			\
51 	res = bus->ops->write(bus, devfn, pos, len, value);		\
52 	raw_spin_unlock_irqrestore(&pci_lock, flags);		\
53 	return res;							\
54 }
55 
56 PCI_OP_READ(byte, u8, 1)
57 PCI_OP_READ(word, u16, 2)
58 PCI_OP_READ(dword, u32, 4)
59 PCI_OP_WRITE(byte, u8, 1)
60 PCI_OP_WRITE(word, u16, 2)
61 PCI_OP_WRITE(dword, u32, 4)
62 
63 EXPORT_SYMBOL(pci_bus_read_config_byte);
64 EXPORT_SYMBOL(pci_bus_read_config_word);
65 EXPORT_SYMBOL(pci_bus_read_config_dword);
66 EXPORT_SYMBOL(pci_bus_write_config_byte);
67 EXPORT_SYMBOL(pci_bus_write_config_word);
68 EXPORT_SYMBOL(pci_bus_write_config_dword);
69 
70 int pci_generic_config_read(struct pci_bus *bus, unsigned int devfn,
71 			    int where, int size, u32 *val)
72 {
73 	void __iomem *addr;
74 
75 	addr = bus->ops->map_bus(bus, devfn, where);
76 	if (!addr) {
77 		*val = ~0;
78 		return PCIBIOS_DEVICE_NOT_FOUND;
79 	}
80 
81 	if (size == 1)
82 		*val = readb(addr);
83 	else if (size == 2)
84 		*val = readw(addr);
85 	else
86 		*val = readl(addr);
87 
88 	return PCIBIOS_SUCCESSFUL;
89 }
90 EXPORT_SYMBOL_GPL(pci_generic_config_read);
91 
92 int pci_generic_config_write(struct pci_bus *bus, unsigned int devfn,
93 			     int where, int size, u32 val)
94 {
95 	void __iomem *addr;
96 
97 	addr = bus->ops->map_bus(bus, devfn, where);
98 	if (!addr)
99 		return PCIBIOS_DEVICE_NOT_FOUND;
100 
101 	if (size == 1)
102 		writeb(val, addr);
103 	else if (size == 2)
104 		writew(val, addr);
105 	else
106 		writel(val, addr);
107 
108 	return PCIBIOS_SUCCESSFUL;
109 }
110 EXPORT_SYMBOL_GPL(pci_generic_config_write);
111 
112 int pci_generic_config_read32(struct pci_bus *bus, unsigned int devfn,
113 			      int where, int size, u32 *val)
114 {
115 	void __iomem *addr;
116 
117 	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
118 	if (!addr) {
119 		*val = ~0;
120 		return PCIBIOS_DEVICE_NOT_FOUND;
121 	}
122 
123 	*val = readl(addr);
124 
125 	if (size <= 2)
126 		*val = (*val >> (8 * (where & 3))) & ((1 << (size * 8)) - 1);
127 
128 	return PCIBIOS_SUCCESSFUL;
129 }
130 EXPORT_SYMBOL_GPL(pci_generic_config_read32);
131 
132 int pci_generic_config_write32(struct pci_bus *bus, unsigned int devfn,
133 			       int where, int size, u32 val)
134 {
135 	void __iomem *addr;
136 	u32 mask, tmp;
137 
138 	addr = bus->ops->map_bus(bus, devfn, where & ~0x3);
139 	if (!addr)
140 		return PCIBIOS_DEVICE_NOT_FOUND;
141 
142 	if (size == 4) {
143 		writel(val, addr);
144 		return PCIBIOS_SUCCESSFUL;
145 	}
146 
147 	/*
148 	 * In general, hardware that supports only 32-bit writes on PCI is
149 	 * not spec-compliant.  For example, software may perform a 16-bit
150 	 * write.  If the hardware only supports 32-bit accesses, we must
151 	 * do a 32-bit read, merge in the 16 bits we intend to write,
152 	 * followed by a 32-bit write.  If the 16 bits we *don't* intend to
153 	 * write happen to have any RW1C (write-one-to-clear) bits set, we
154 	 * just inadvertently cleared something we shouldn't have.
155 	 */
156 	dev_warn_ratelimited(&bus->dev, "%d-byte config write to %04x:%02x:%02x.%d offset %#x may corrupt adjacent RW1C bits\n",
157 			     size, pci_domain_nr(bus), bus->number,
158 			     PCI_SLOT(devfn), PCI_FUNC(devfn), where);
159 
160 	mask = ~(((1 << (size * 8)) - 1) << ((where & 0x3) * 8));
161 	tmp = readl(addr) & mask;
162 	tmp |= val << ((where & 0x3) * 8);
163 	writel(tmp, addr);
164 
165 	return PCIBIOS_SUCCESSFUL;
166 }
167 EXPORT_SYMBOL_GPL(pci_generic_config_write32);
168 
169 /**
170  * pci_bus_set_ops - Set raw operations of pci bus
171  * @bus:	pci bus struct
172  * @ops:	new raw operations
173  *
174  * Return previous raw operations
175  */
176 struct pci_ops *pci_bus_set_ops(struct pci_bus *bus, struct pci_ops *ops)
177 {
178 	struct pci_ops *old_ops;
179 	unsigned long flags;
180 
181 	raw_spin_lock_irqsave(&pci_lock, flags);
182 	old_ops = bus->ops;
183 	bus->ops = ops;
184 	raw_spin_unlock_irqrestore(&pci_lock, flags);
185 	return old_ops;
186 }
187 EXPORT_SYMBOL(pci_bus_set_ops);
188 
189 /*
190  * The following routines are to prevent the user from accessing PCI config
191  * space when it's unsafe to do so.  Some devices require this during BIST and
192  * we're required to prevent it during D-state transitions.
193  *
194  * We have a bit per device to indicate it's blocked and a global wait queue
195  * for callers to sleep on until devices are unblocked.
196  */
197 static DECLARE_WAIT_QUEUE_HEAD(pci_cfg_wait);
198 
199 static noinline void pci_wait_cfg(struct pci_dev *dev)
200 {
201 	DECLARE_WAITQUEUE(wait, current);
202 
203 	__add_wait_queue(&pci_cfg_wait, &wait);
204 	do {
205 		set_current_state(TASK_UNINTERRUPTIBLE);
206 		raw_spin_unlock_irq(&pci_lock);
207 		schedule();
208 		raw_spin_lock_irq(&pci_lock);
209 	} while (dev->block_cfg_access);
210 	__remove_wait_queue(&pci_cfg_wait, &wait);
211 }
212 
213 /* Returns 0 on success, negative values indicate error. */
214 #define PCI_USER_READ_CONFIG(size, type)					\
215 int pci_user_read_config_##size						\
216 	(struct pci_dev *dev, int pos, type *val)			\
217 {									\
218 	int ret = PCIBIOS_SUCCESSFUL;					\
219 	u32 data = -1;							\
220 	if (PCI_##size##_BAD)						\
221 		return -EINVAL;						\
222 	raw_spin_lock_irq(&pci_lock);				\
223 	if (unlikely(dev->block_cfg_access))				\
224 		pci_wait_cfg(dev);					\
225 	ret = dev->bus->ops->read(dev->bus, dev->devfn,			\
226 					pos, sizeof(type), &data);	\
227 	raw_spin_unlock_irq(&pci_lock);				\
228 	*val = (type)data;						\
229 	return pcibios_err_to_errno(ret);				\
230 }									\
231 EXPORT_SYMBOL_GPL(pci_user_read_config_##size);
232 
233 /* Returns 0 on success, negative values indicate error. */
234 #define PCI_USER_WRITE_CONFIG(size, type)				\
235 int pci_user_write_config_##size					\
236 	(struct pci_dev *dev, int pos, type val)			\
237 {									\
238 	int ret = PCIBIOS_SUCCESSFUL;					\
239 	if (PCI_##size##_BAD)						\
240 		return -EINVAL;						\
241 	raw_spin_lock_irq(&pci_lock);				\
242 	if (unlikely(dev->block_cfg_access))				\
243 		pci_wait_cfg(dev);					\
244 	ret = dev->bus->ops->write(dev->bus, dev->devfn,		\
245 					pos, sizeof(type), val);	\
246 	raw_spin_unlock_irq(&pci_lock);				\
247 	return pcibios_err_to_errno(ret);				\
248 }									\
249 EXPORT_SYMBOL_GPL(pci_user_write_config_##size);
250 
251 PCI_USER_READ_CONFIG(byte, u8)
252 PCI_USER_READ_CONFIG(word, u16)
253 PCI_USER_READ_CONFIG(dword, u32)
254 PCI_USER_WRITE_CONFIG(byte, u8)
255 PCI_USER_WRITE_CONFIG(word, u16)
256 PCI_USER_WRITE_CONFIG(dword, u32)
257 
258 /* VPD access through PCI 2.2+ VPD capability */
259 
260 /**
261  * pci_read_vpd - Read one entry from Vital Product Data
262  * @dev:	pci device struct
263  * @pos:	offset in vpd space
264  * @count:	number of bytes to read
265  * @buf:	pointer to where to store result
266  */
267 ssize_t pci_read_vpd(struct pci_dev *dev, loff_t pos, size_t count, void *buf)
268 {
269 	if (!dev->vpd || !dev->vpd->ops)
270 		return -ENODEV;
271 	return dev->vpd->ops->read(dev, pos, count, buf);
272 }
273 EXPORT_SYMBOL(pci_read_vpd);
274 
275 /**
276  * pci_write_vpd - Write entry to Vital Product Data
277  * @dev:	pci device struct
278  * @pos:	offset in vpd space
279  * @count:	number of bytes to write
280  * @buf:	buffer containing write data
281  */
282 ssize_t pci_write_vpd(struct pci_dev *dev, loff_t pos, size_t count, const void *buf)
283 {
284 	if (!dev->vpd || !dev->vpd->ops)
285 		return -ENODEV;
286 	return dev->vpd->ops->write(dev, pos, count, buf);
287 }
288 EXPORT_SYMBOL(pci_write_vpd);
289 
290 /**
291  * pci_set_vpd_size - Set size of Vital Product Data space
292  * @dev:	pci device struct
293  * @len:	size of vpd space
294  */
295 int pci_set_vpd_size(struct pci_dev *dev, size_t len)
296 {
297 	if (!dev->vpd || !dev->vpd->ops)
298 		return -ENODEV;
299 	return dev->vpd->ops->set_size(dev, len);
300 }
301 EXPORT_SYMBOL(pci_set_vpd_size);
302 
303 #define PCI_VPD_MAX_SIZE (PCI_VPD_ADDR_MASK + 1)
304 
305 /**
306  * pci_vpd_size - determine actual size of Vital Product Data
307  * @dev:	pci device struct
308  * @old_size:	current assumed size, also maximum allowed size
309  */
310 static size_t pci_vpd_size(struct pci_dev *dev, size_t old_size)
311 {
312 	size_t off = 0;
313 	unsigned char header[1+2];	/* 1 byte tag, 2 bytes length */
314 
315 	while (off < old_size &&
316 	       pci_read_vpd(dev, off, 1, header) == 1) {
317 		unsigned char tag;
318 
319 		if (header[0] & PCI_VPD_LRDT) {
320 			/* Large Resource Data Type Tag */
321 			tag = pci_vpd_lrdt_tag(header);
322 			/* Only read length from known tag items */
323 			if ((tag == PCI_VPD_LTIN_ID_STRING) ||
324 			    (tag == PCI_VPD_LTIN_RO_DATA) ||
325 			    (tag == PCI_VPD_LTIN_RW_DATA)) {
326 				if (pci_read_vpd(dev, off+1, 2,
327 						 &header[1]) != 2) {
328 					dev_warn(&dev->dev,
329 						 "invalid large VPD tag %02x size at offset %zu",
330 						 tag, off + 1);
331 					return 0;
332 				}
333 				off += PCI_VPD_LRDT_TAG_SIZE +
334 					pci_vpd_lrdt_size(header);
335 			}
336 		} else {
337 			/* Short Resource Data Type Tag */
338 			off += PCI_VPD_SRDT_TAG_SIZE +
339 				pci_vpd_srdt_size(header);
340 			tag = pci_vpd_srdt_tag(header);
341 		}
342 
343 		if (tag == PCI_VPD_STIN_END)	/* End tag descriptor */
344 			return off;
345 
346 		if ((tag != PCI_VPD_LTIN_ID_STRING) &&
347 		    (tag != PCI_VPD_LTIN_RO_DATA) &&
348 		    (tag != PCI_VPD_LTIN_RW_DATA)) {
349 			dev_warn(&dev->dev,
350 				 "invalid %s VPD tag %02x at offset %zu",
351 				 (header[0] & PCI_VPD_LRDT) ? "large" : "short",
352 				 tag, off);
353 			return 0;
354 		}
355 	}
356 	return 0;
357 }
358 
359 /*
360  * Wait for last operation to complete.
361  * This code has to spin since there is no other notification from the PCI
362  * hardware. Since the VPD is often implemented by serial attachment to an
363  * EEPROM, it may take many milliseconds to complete.
364  *
365  * Returns 0 on success, negative values indicate error.
366  */
367 static int pci_vpd_wait(struct pci_dev *dev)
368 {
369 	struct pci_vpd *vpd = dev->vpd;
370 	unsigned long timeout = jiffies + msecs_to_jiffies(125);
371 	unsigned long max_sleep = 16;
372 	u16 status;
373 	int ret;
374 
375 	if (!vpd->busy)
376 		return 0;
377 
378 	while (time_before(jiffies, timeout)) {
379 		ret = pci_user_read_config_word(dev, vpd->cap + PCI_VPD_ADDR,
380 						&status);
381 		if (ret < 0)
382 			return ret;
383 
384 		if ((status & PCI_VPD_ADDR_F) == vpd->flag) {
385 			vpd->busy = 0;
386 			return 0;
387 		}
388 
389 		if (fatal_signal_pending(current))
390 			return -EINTR;
391 
392 		usleep_range(10, max_sleep);
393 		if (max_sleep < 1024)
394 			max_sleep *= 2;
395 	}
396 
397 	dev_warn(&dev->dev, "VPD access failed.  This is likely a firmware bug on this device.  Contact the card vendor for a firmware update\n");
398 	return -ETIMEDOUT;
399 }
400 
401 static ssize_t pci_vpd_read(struct pci_dev *dev, loff_t pos, size_t count,
402 			    void *arg)
403 {
404 	struct pci_vpd *vpd = dev->vpd;
405 	int ret;
406 	loff_t end = pos + count;
407 	u8 *buf = arg;
408 
409 	if (pos < 0)
410 		return -EINVAL;
411 
412 	if (!vpd->valid) {
413 		vpd->valid = 1;
414 		vpd->len = pci_vpd_size(dev, vpd->len);
415 	}
416 
417 	if (vpd->len == 0)
418 		return -EIO;
419 
420 	if (pos > vpd->len)
421 		return 0;
422 
423 	if (end > vpd->len) {
424 		end = vpd->len;
425 		count = end - pos;
426 	}
427 
428 	if (mutex_lock_killable(&vpd->lock))
429 		return -EINTR;
430 
431 	ret = pci_vpd_wait(dev);
432 	if (ret < 0)
433 		goto out;
434 
435 	while (pos < end) {
436 		u32 val;
437 		unsigned int i, skip;
438 
439 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
440 						 pos & ~3);
441 		if (ret < 0)
442 			break;
443 		vpd->busy = 1;
444 		vpd->flag = PCI_VPD_ADDR_F;
445 		ret = pci_vpd_wait(dev);
446 		if (ret < 0)
447 			break;
448 
449 		ret = pci_user_read_config_dword(dev, vpd->cap + PCI_VPD_DATA, &val);
450 		if (ret < 0)
451 			break;
452 
453 		skip = pos & 3;
454 		for (i = 0;  i < sizeof(u32); i++) {
455 			if (i >= skip) {
456 				*buf++ = val;
457 				if (++pos == end)
458 					break;
459 			}
460 			val >>= 8;
461 		}
462 	}
463 out:
464 	mutex_unlock(&vpd->lock);
465 	return ret ? ret : count;
466 }
467 
468 static ssize_t pci_vpd_write(struct pci_dev *dev, loff_t pos, size_t count,
469 			     const void *arg)
470 {
471 	struct pci_vpd *vpd = dev->vpd;
472 	const u8 *buf = arg;
473 	loff_t end = pos + count;
474 	int ret = 0;
475 
476 	if (pos < 0 || (pos & 3) || (count & 3))
477 		return -EINVAL;
478 
479 	if (!vpd->valid) {
480 		vpd->valid = 1;
481 		vpd->len = pci_vpd_size(dev, vpd->len);
482 	}
483 
484 	if (vpd->len == 0)
485 		return -EIO;
486 
487 	if (end > vpd->len)
488 		return -EINVAL;
489 
490 	if (mutex_lock_killable(&vpd->lock))
491 		return -EINTR;
492 
493 	ret = pci_vpd_wait(dev);
494 	if (ret < 0)
495 		goto out;
496 
497 	while (pos < end) {
498 		u32 val;
499 
500 		val = *buf++;
501 		val |= *buf++ << 8;
502 		val |= *buf++ << 16;
503 		val |= *buf++ << 24;
504 
505 		ret = pci_user_write_config_dword(dev, vpd->cap + PCI_VPD_DATA, val);
506 		if (ret < 0)
507 			break;
508 		ret = pci_user_write_config_word(dev, vpd->cap + PCI_VPD_ADDR,
509 						 pos | PCI_VPD_ADDR_F);
510 		if (ret < 0)
511 			break;
512 
513 		vpd->busy = 1;
514 		vpd->flag = 0;
515 		ret = pci_vpd_wait(dev);
516 		if (ret < 0)
517 			break;
518 
519 		pos += sizeof(u32);
520 	}
521 out:
522 	mutex_unlock(&vpd->lock);
523 	return ret ? ret : count;
524 }
525 
526 static int pci_vpd_set_size(struct pci_dev *dev, size_t len)
527 {
528 	struct pci_vpd *vpd = dev->vpd;
529 
530 	if (len == 0 || len > PCI_VPD_MAX_SIZE)
531 		return -EIO;
532 
533 	vpd->valid = 1;
534 	vpd->len = len;
535 
536 	return 0;
537 }
538 
539 static const struct pci_vpd_ops pci_vpd_ops = {
540 	.read = pci_vpd_read,
541 	.write = pci_vpd_write,
542 	.set_size = pci_vpd_set_size,
543 };
544 
545 static ssize_t pci_vpd_f0_read(struct pci_dev *dev, loff_t pos, size_t count,
546 			       void *arg)
547 {
548 	struct pci_dev *tdev = pci_get_slot(dev->bus,
549 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
550 	ssize_t ret;
551 
552 	if (!tdev)
553 		return -ENODEV;
554 
555 	ret = pci_read_vpd(tdev, pos, count, arg);
556 	pci_dev_put(tdev);
557 	return ret;
558 }
559 
560 static ssize_t pci_vpd_f0_write(struct pci_dev *dev, loff_t pos, size_t count,
561 				const void *arg)
562 {
563 	struct pci_dev *tdev = pci_get_slot(dev->bus,
564 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
565 	ssize_t ret;
566 
567 	if (!tdev)
568 		return -ENODEV;
569 
570 	ret = pci_write_vpd(tdev, pos, count, arg);
571 	pci_dev_put(tdev);
572 	return ret;
573 }
574 
575 static int pci_vpd_f0_set_size(struct pci_dev *dev, size_t len)
576 {
577 	struct pci_dev *tdev = pci_get_slot(dev->bus,
578 					    PCI_DEVFN(PCI_SLOT(dev->devfn), 0));
579 	int ret;
580 
581 	if (!tdev)
582 		return -ENODEV;
583 
584 	ret = pci_set_vpd_size(tdev, len);
585 	pci_dev_put(tdev);
586 	return ret;
587 }
588 
589 static const struct pci_vpd_ops pci_vpd_f0_ops = {
590 	.read = pci_vpd_f0_read,
591 	.write = pci_vpd_f0_write,
592 	.set_size = pci_vpd_f0_set_size,
593 };
594 
595 int pci_vpd_init(struct pci_dev *dev)
596 {
597 	struct pci_vpd *vpd;
598 	u8 cap;
599 
600 	cap = pci_find_capability(dev, PCI_CAP_ID_VPD);
601 	if (!cap)
602 		return -ENODEV;
603 
604 	vpd = kzalloc(sizeof(*vpd), GFP_ATOMIC);
605 	if (!vpd)
606 		return -ENOMEM;
607 
608 	vpd->len = PCI_VPD_MAX_SIZE;
609 	if (dev->dev_flags & PCI_DEV_FLAGS_VPD_REF_F0)
610 		vpd->ops = &pci_vpd_f0_ops;
611 	else
612 		vpd->ops = &pci_vpd_ops;
613 	mutex_init(&vpd->lock);
614 	vpd->cap = cap;
615 	vpd->busy = 0;
616 	vpd->valid = 0;
617 	dev->vpd = vpd;
618 	return 0;
619 }
620 
621 void pci_vpd_release(struct pci_dev *dev)
622 {
623 	kfree(dev->vpd);
624 }
625 
626 /**
627  * pci_cfg_access_lock - Lock PCI config reads/writes
628  * @dev:	pci device struct
629  *
630  * When access is locked, any userspace reads or writes to config
631  * space and concurrent lock requests will sleep until access is
632  * allowed via pci_cfg_access_unlocked again.
633  */
634 void pci_cfg_access_lock(struct pci_dev *dev)
635 {
636 	might_sleep();
637 
638 	raw_spin_lock_irq(&pci_lock);
639 	if (dev->block_cfg_access)
640 		pci_wait_cfg(dev);
641 	dev->block_cfg_access = 1;
642 	raw_spin_unlock_irq(&pci_lock);
643 }
644 EXPORT_SYMBOL_GPL(pci_cfg_access_lock);
645 
646 /**
647  * pci_cfg_access_trylock - try to lock PCI config reads/writes
648  * @dev:	pci device struct
649  *
650  * Same as pci_cfg_access_lock, but will return 0 if access is
651  * already locked, 1 otherwise. This function can be used from
652  * atomic contexts.
653  */
654 bool pci_cfg_access_trylock(struct pci_dev *dev)
655 {
656 	unsigned long flags;
657 	bool locked = true;
658 
659 	raw_spin_lock_irqsave(&pci_lock, flags);
660 	if (dev->block_cfg_access)
661 		locked = false;
662 	else
663 		dev->block_cfg_access = 1;
664 	raw_spin_unlock_irqrestore(&pci_lock, flags);
665 
666 	return locked;
667 }
668 EXPORT_SYMBOL_GPL(pci_cfg_access_trylock);
669 
670 /**
671  * pci_cfg_access_unlock - Unlock PCI config reads/writes
672  * @dev:	pci device struct
673  *
674  * This function allows PCI config accesses to resume.
675  */
676 void pci_cfg_access_unlock(struct pci_dev *dev)
677 {
678 	unsigned long flags;
679 
680 	raw_spin_lock_irqsave(&pci_lock, flags);
681 
682 	/* This indicates a problem in the caller, but we don't need
683 	 * to kill them, unlike a double-block above. */
684 	WARN_ON(!dev->block_cfg_access);
685 
686 	dev->block_cfg_access = 0;
687 	raw_spin_unlock_irqrestore(&pci_lock, flags);
688 
689 	wake_up_all(&pci_cfg_wait);
690 }
691 EXPORT_SYMBOL_GPL(pci_cfg_access_unlock);
692 
693 static inline int pcie_cap_version(const struct pci_dev *dev)
694 {
695 	return pcie_caps_reg(dev) & PCI_EXP_FLAGS_VERS;
696 }
697 
698 static bool pcie_downstream_port(const struct pci_dev *dev)
699 {
700 	int type = pci_pcie_type(dev);
701 
702 	return type == PCI_EXP_TYPE_ROOT_PORT ||
703 	       type == PCI_EXP_TYPE_DOWNSTREAM;
704 }
705 
706 bool pcie_cap_has_lnkctl(const struct pci_dev *dev)
707 {
708 	int type = pci_pcie_type(dev);
709 
710 	return type == PCI_EXP_TYPE_ENDPOINT ||
711 	       type == PCI_EXP_TYPE_LEG_END ||
712 	       type == PCI_EXP_TYPE_ROOT_PORT ||
713 	       type == PCI_EXP_TYPE_UPSTREAM ||
714 	       type == PCI_EXP_TYPE_DOWNSTREAM ||
715 	       type == PCI_EXP_TYPE_PCI_BRIDGE ||
716 	       type == PCI_EXP_TYPE_PCIE_BRIDGE;
717 }
718 
719 static inline bool pcie_cap_has_sltctl(const struct pci_dev *dev)
720 {
721 	return pcie_downstream_port(dev) &&
722 	       pcie_caps_reg(dev) & PCI_EXP_FLAGS_SLOT;
723 }
724 
725 static inline bool pcie_cap_has_rtctl(const struct pci_dev *dev)
726 {
727 	int type = pci_pcie_type(dev);
728 
729 	return type == PCI_EXP_TYPE_ROOT_PORT ||
730 	       type == PCI_EXP_TYPE_RC_EC;
731 }
732 
733 static bool pcie_capability_reg_implemented(struct pci_dev *dev, int pos)
734 {
735 	if (!pci_is_pcie(dev))
736 		return false;
737 
738 	switch (pos) {
739 	case PCI_EXP_FLAGS:
740 		return true;
741 	case PCI_EXP_DEVCAP:
742 	case PCI_EXP_DEVCTL:
743 	case PCI_EXP_DEVSTA:
744 		return true;
745 	case PCI_EXP_LNKCAP:
746 	case PCI_EXP_LNKCTL:
747 	case PCI_EXP_LNKSTA:
748 		return pcie_cap_has_lnkctl(dev);
749 	case PCI_EXP_SLTCAP:
750 	case PCI_EXP_SLTCTL:
751 	case PCI_EXP_SLTSTA:
752 		return pcie_cap_has_sltctl(dev);
753 	case PCI_EXP_RTCTL:
754 	case PCI_EXP_RTCAP:
755 	case PCI_EXP_RTSTA:
756 		return pcie_cap_has_rtctl(dev);
757 	case PCI_EXP_DEVCAP2:
758 	case PCI_EXP_DEVCTL2:
759 	case PCI_EXP_LNKCAP2:
760 	case PCI_EXP_LNKCTL2:
761 	case PCI_EXP_LNKSTA2:
762 		return pcie_cap_version(dev) > 1;
763 	default:
764 		return false;
765 	}
766 }
767 
768 /*
769  * Note that these accessor functions are only for the "PCI Express
770  * Capability" (see PCIe spec r3.0, sec 7.8).  They do not apply to the
771  * other "PCI Express Extended Capabilities" (AER, VC, ACS, MFVC, etc.)
772  */
773 int pcie_capability_read_word(struct pci_dev *dev, int pos, u16 *val)
774 {
775 	int ret;
776 
777 	*val = 0;
778 	if (pos & 1)
779 		return -EINVAL;
780 
781 	if (pcie_capability_reg_implemented(dev, pos)) {
782 		ret = pci_read_config_word(dev, pci_pcie_cap(dev) + pos, val);
783 		/*
784 		 * Reset *val to 0 if pci_read_config_word() fails, it may
785 		 * have been written as 0xFFFF if hardware error happens
786 		 * during pci_read_config_word().
787 		 */
788 		if (ret)
789 			*val = 0;
790 		return ret;
791 	}
792 
793 	/*
794 	 * For Functions that do not implement the Slot Capabilities,
795 	 * Slot Status, and Slot Control registers, these spaces must
796 	 * be hardwired to 0b, with the exception of the Presence Detect
797 	 * State bit in the Slot Status register of Downstream Ports,
798 	 * which must be hardwired to 1b.  (PCIe Base Spec 3.0, sec 7.8)
799 	 */
800 	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
801 	    pos == PCI_EXP_SLTSTA)
802 		*val = PCI_EXP_SLTSTA_PDS;
803 
804 	return 0;
805 }
806 EXPORT_SYMBOL(pcie_capability_read_word);
807 
808 int pcie_capability_read_dword(struct pci_dev *dev, int pos, u32 *val)
809 {
810 	int ret;
811 
812 	*val = 0;
813 	if (pos & 3)
814 		return -EINVAL;
815 
816 	if (pcie_capability_reg_implemented(dev, pos)) {
817 		ret = pci_read_config_dword(dev, pci_pcie_cap(dev) + pos, val);
818 		/*
819 		 * Reset *val to 0 if pci_read_config_dword() fails, it may
820 		 * have been written as 0xFFFFFFFF if hardware error happens
821 		 * during pci_read_config_dword().
822 		 */
823 		if (ret)
824 			*val = 0;
825 		return ret;
826 	}
827 
828 	if (pci_is_pcie(dev) && pcie_downstream_port(dev) &&
829 	    pos == PCI_EXP_SLTSTA)
830 		*val = PCI_EXP_SLTSTA_PDS;
831 
832 	return 0;
833 }
834 EXPORT_SYMBOL(pcie_capability_read_dword);
835 
836 int pcie_capability_write_word(struct pci_dev *dev, int pos, u16 val)
837 {
838 	if (pos & 1)
839 		return -EINVAL;
840 
841 	if (!pcie_capability_reg_implemented(dev, pos))
842 		return 0;
843 
844 	return pci_write_config_word(dev, pci_pcie_cap(dev) + pos, val);
845 }
846 EXPORT_SYMBOL(pcie_capability_write_word);
847 
848 int pcie_capability_write_dword(struct pci_dev *dev, int pos, u32 val)
849 {
850 	if (pos & 3)
851 		return -EINVAL;
852 
853 	if (!pcie_capability_reg_implemented(dev, pos))
854 		return 0;
855 
856 	return pci_write_config_dword(dev, pci_pcie_cap(dev) + pos, val);
857 }
858 EXPORT_SYMBOL(pcie_capability_write_dword);
859 
860 int pcie_capability_clear_and_set_word(struct pci_dev *dev, int pos,
861 				       u16 clear, u16 set)
862 {
863 	int ret;
864 	u16 val;
865 
866 	ret = pcie_capability_read_word(dev, pos, &val);
867 	if (!ret) {
868 		val &= ~clear;
869 		val |= set;
870 		ret = pcie_capability_write_word(dev, pos, val);
871 	}
872 
873 	return ret;
874 }
875 EXPORT_SYMBOL(pcie_capability_clear_and_set_word);
876 
877 int pcie_capability_clear_and_set_dword(struct pci_dev *dev, int pos,
878 					u32 clear, u32 set)
879 {
880 	int ret;
881 	u32 val;
882 
883 	ret = pcie_capability_read_dword(dev, pos, &val);
884 	if (!ret) {
885 		val &= ~clear;
886 		val |= set;
887 		ret = pcie_capability_write_dword(dev, pos, val);
888 	}
889 
890 	return ret;
891 }
892 EXPORT_SYMBOL(pcie_capability_clear_and_set_dword);
893