xref: /linux/drivers/parport/parport_ip32.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /* Low-level parallel port routines for built-in port on SGI IP32
2  *
3  * Author: Arnaud Giersch <arnaud.giersch@free.fr>
4  *
5  * Based on parport_pc.c by
6  *	Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
7  *	Andrea Arcangeli, et al.
8  *
9  * Thanks to Ilya A. Volynets-Evenbakh for his help.
10  *
11  * Copyright (C) 2005, 2006 Arnaud Giersch.
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms of the GNU General Public License as published by the Free
15  * Software Foundation; either version 2 of the License, or (at your option)
16  * any later version.
17  *
18  * This program is distributed in the hope that it will be useful, but WITHOUT
19  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
20  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
21  * more details.
22  *
23  * You should have received a copy of the GNU General Public License along
24  * with this program; if not, write to the Free Software Foundation, Inc., 59
25  * Temple Place - Suite 330, Boston, MA 02111-1307, USA.
26  */
27 
28 /* Current status:
29  *
30  *	Basic SPP and PS2 modes are supported.
31  *	Support for parallel port IRQ is present.
32  *	Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
33  *	supported.
34  *	SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
35  *	or without interrupt support.
36  *
37  *	Hardware ECP mode is not fully implemented (ecp_read_data and
38  *	ecp_write_addr are actually missing).
39  *
40  * To do:
41  *
42  *	Fully implement ECP mode.
43  *	EPP and ECP mode need to be tested.  I currently do not own any
44  *	peripheral supporting these extended mode, and cannot test them.
45  *	If DMA mode works well, decide if support for PIO FIFO modes should be
46  *	dropped.
47  *	Use the io{read,write} family functions when they become available in
48  *	the linux-mips.org tree.  Note: the MIPS specific functions readsb()
49  *	and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
50  *	respectively.
51  */
52 
53 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
54  * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
55  * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
56  * FIFO buffer and supports DMA transfers.
57  *
58  * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
59  *
60  * Theoretically, we could simply use the parport_pc module.  It is however
61  * not so simple.  The parport_pc code assumes that the parallel port
62  * registers are port-mapped.  On the O2, they are memory-mapped.
63  * Furthermore, each register is replicated on 256 consecutive addresses (as
64  * it is for the built-in serial ports on the same chip).
65  */
66 
67 /*--- Some configuration defines ---------------------------------------*/
68 
69 /* DEBUG_PARPORT_IP32
70  *	0	disable debug
71  *	1	standard level: pr_debug1 is enabled
72  *	2	parport_ip32_dump_state is enabled
73  *	>=3	verbose level: pr_debug is enabled
74  */
75 #if !defined(DEBUG_PARPORT_IP32)
76 #	define DEBUG_PARPORT_IP32  0	/* 0 (disabled) for production */
77 #endif
78 
79 /*----------------------------------------------------------------------*/
80 
81 /* Setup DEBUG macros.  This is done before any includes, just in case we
82  * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
83  */
84 #if DEBUG_PARPORT_IP32 == 1
85 #	warning DEBUG_PARPORT_IP32 == 1
86 #elif DEBUG_PARPORT_IP32 == 2
87 #	warning DEBUG_PARPORT_IP32 == 2
88 #elif DEBUG_PARPORT_IP32 >= 3
89 #	warning DEBUG_PARPORT_IP32 >= 3
90 #	if !defined(DEBUG)
91 #		define DEBUG /* enable pr_debug() in kernel.h */
92 #	endif
93 #endif
94 
95 #include <linux/completion.h>
96 #include <linux/delay.h>
97 #include <linux/dma-mapping.h>
98 #include <linux/err.h>
99 #include <linux/init.h>
100 #include <linux/interrupt.h>
101 #include <linux/jiffies.h>
102 #include <linux/kernel.h>
103 #include <linux/module.h>
104 #include <linux/parport.h>
105 #include <linux/sched/signal.h>
106 #include <linux/slab.h>
107 #include <linux/spinlock.h>
108 #include <linux/stddef.h>
109 #include <linux/types.h>
110 #include <asm/io.h>
111 #include <asm/ip32/ip32_ints.h>
112 #include <asm/ip32/mace.h>
113 
114 /*--- Global variables -------------------------------------------------*/
115 
116 /* Verbose probing on by default for debugging. */
117 #if DEBUG_PARPORT_IP32 >= 1
118 #	define DEFAULT_VERBOSE_PROBING	1
119 #else
120 #	define DEFAULT_VERBOSE_PROBING	0
121 #endif
122 
123 /* Default prefix for printk */
124 #define PPIP32 "parport_ip32: "
125 
126 /*
127  * These are the module parameters:
128  * @features:		bit mask of features to enable/disable
129  *			(all enabled by default)
130  * @verbose_probing:	log chit-chat during initialization
131  */
132 #define PARPORT_IP32_ENABLE_IRQ	(1U << 0)
133 #define PARPORT_IP32_ENABLE_DMA	(1U << 1)
134 #define PARPORT_IP32_ENABLE_SPP	(1U << 2)
135 #define PARPORT_IP32_ENABLE_EPP	(1U << 3)
136 #define PARPORT_IP32_ENABLE_ECP	(1U << 4)
137 static unsigned int features =	~0U;
138 static bool verbose_probing =	DEFAULT_VERBOSE_PROBING;
139 
140 /* We do not support more than one port. */
141 static struct parport *this_port;
142 
143 /* Timing constants for FIFO modes.  */
144 #define FIFO_NFAULT_TIMEOUT	100	/* milliseconds */
145 #define FIFO_POLLING_INTERVAL	50	/* microseconds */
146 
147 /*--- I/O register definitions -----------------------------------------*/
148 
149 /**
150  * struct parport_ip32_regs - virtual addresses of parallel port registers
151  * @data:	Data Register
152  * @dsr:	Device Status Register
153  * @dcr:	Device Control Register
154  * @eppAddr:	EPP Address Register
155  * @eppData0:	EPP Data Register 0
156  * @eppData1:	EPP Data Register 1
157  * @eppData2:	EPP Data Register 2
158  * @eppData3:	EPP Data Register 3
159  * @ecpAFifo:	ECP Address FIFO
160  * @fifo:	General FIFO register.  The same address is used for:
161  *		- cFifo, the Parallel Port DATA FIFO
162  *		- ecpDFifo, the ECP Data FIFO
163  *		- tFifo, the ECP Test FIFO
164  * @cnfgA:	Configuration Register A
165  * @cnfgB:	Configuration Register B
166  * @ecr:	Extended Control Register
167  */
168 struct parport_ip32_regs {
169 	void __iomem *data;
170 	void __iomem *dsr;
171 	void __iomem *dcr;
172 	void __iomem *eppAddr;
173 	void __iomem *eppData0;
174 	void __iomem *eppData1;
175 	void __iomem *eppData2;
176 	void __iomem *eppData3;
177 	void __iomem *ecpAFifo;
178 	void __iomem *fifo;
179 	void __iomem *cnfgA;
180 	void __iomem *cnfgB;
181 	void __iomem *ecr;
182 };
183 
184 /* Device Status Register */
185 #define DSR_nBUSY		(1U << 7)	/* PARPORT_STATUS_BUSY */
186 #define DSR_nACK		(1U << 6)	/* PARPORT_STATUS_ACK */
187 #define DSR_PERROR		(1U << 5)	/* PARPORT_STATUS_PAPEROUT */
188 #define DSR_SELECT		(1U << 4)	/* PARPORT_STATUS_SELECT */
189 #define DSR_nFAULT		(1U << 3)	/* PARPORT_STATUS_ERROR */
190 #define DSR_nPRINT		(1U << 2)	/* specific to TL16PIR552 */
191 /* #define DSR_reserved		(1U << 1) */
192 #define DSR_TIMEOUT		(1U << 0)	/* EPP timeout */
193 
194 /* Device Control Register */
195 /* #define DCR_reserved		(1U << 7) | (1U <<  6) */
196 #define DCR_DIR			(1U << 5)	/* direction */
197 #define DCR_IRQ			(1U << 4)	/* interrupt on nAck */
198 #define DCR_SELECT		(1U << 3)	/* PARPORT_CONTROL_SELECT */
199 #define DCR_nINIT		(1U << 2)	/* PARPORT_CONTROL_INIT */
200 #define DCR_AUTOFD		(1U << 1)	/* PARPORT_CONTROL_AUTOFD */
201 #define DCR_STROBE		(1U << 0)	/* PARPORT_CONTROL_STROBE */
202 
203 /* ECP Configuration Register A */
204 #define CNFGA_IRQ		(1U << 7)
205 #define CNFGA_ID_MASK		((1U << 6) | (1U << 5) | (1U << 4))
206 #define CNFGA_ID_SHIFT		4
207 #define CNFGA_ID_16		(00U << CNFGA_ID_SHIFT)
208 #define CNFGA_ID_8		(01U << CNFGA_ID_SHIFT)
209 #define CNFGA_ID_32		(02U << CNFGA_ID_SHIFT)
210 /* #define CNFGA_reserved	(1U << 3) */
211 #define CNFGA_nBYTEINTRANS	(1U << 2)
212 #define CNFGA_PWORDLEFT		((1U << 1) | (1U << 0))
213 
214 /* ECP Configuration Register B */
215 #define CNFGB_COMPRESS		(1U << 7)
216 #define CNFGB_INTRVAL		(1U << 6)
217 #define CNFGB_IRQ_MASK		((1U << 5) | (1U << 4) | (1U << 3))
218 #define CNFGB_IRQ_SHIFT		3
219 #define CNFGB_DMA_MASK		((1U << 2) | (1U << 1) | (1U << 0))
220 #define CNFGB_DMA_SHIFT		0
221 
222 /* Extended Control Register */
223 #define ECR_MODE_MASK		((1U << 7) | (1U << 6) | (1U << 5))
224 #define ECR_MODE_SHIFT		5
225 #define ECR_MODE_SPP		(00U << ECR_MODE_SHIFT)
226 #define ECR_MODE_PS2		(01U << ECR_MODE_SHIFT)
227 #define ECR_MODE_PPF		(02U << ECR_MODE_SHIFT)
228 #define ECR_MODE_ECP		(03U << ECR_MODE_SHIFT)
229 #define ECR_MODE_EPP		(04U << ECR_MODE_SHIFT)
230 /* #define ECR_MODE_reserved	(05U << ECR_MODE_SHIFT) */
231 #define ECR_MODE_TST		(06U << ECR_MODE_SHIFT)
232 #define ECR_MODE_CFG		(07U << ECR_MODE_SHIFT)
233 #define ECR_nERRINTR		(1U << 4)
234 #define ECR_DMAEN		(1U << 3)
235 #define ECR_SERVINTR		(1U << 2)
236 #define ECR_F_FULL		(1U << 1)
237 #define ECR_F_EMPTY		(1U << 0)
238 
239 /*--- Private data -----------------------------------------------------*/
240 
241 /**
242  * enum parport_ip32_irq_mode - operation mode of interrupt handler
243  * @PARPORT_IP32_IRQ_FWD:	forward interrupt to the upper parport layer
244  * @PARPORT_IP32_IRQ_HERE:	interrupt is handled locally
245  */
246 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
247 
248 /**
249  * struct parport_ip32_private - private stuff for &struct parport
250  * @regs:		register addresses
251  * @dcr_cache:		cached contents of DCR
252  * @dcr_writable:	bit mask of writable DCR bits
253  * @pword:		number of bytes per PWord
254  * @fifo_depth:		number of PWords that FIFO will hold
255  * @readIntrThreshold:	minimum number of PWords we can read
256  *			if we get an interrupt
257  * @writeIntrThreshold:	minimum number of PWords we can write
258  *			if we get an interrupt
259  * @irq_mode:		operation mode of interrupt handler for this port
260  * @irq_complete:	mutex used to wait for an interrupt to occur
261  */
262 struct parport_ip32_private {
263 	struct parport_ip32_regs	regs;
264 	unsigned int			dcr_cache;
265 	unsigned int			dcr_writable;
266 	unsigned int			pword;
267 	unsigned int			fifo_depth;
268 	unsigned int			readIntrThreshold;
269 	unsigned int			writeIntrThreshold;
270 	enum parport_ip32_irq_mode	irq_mode;
271 	struct completion		irq_complete;
272 };
273 
274 /*--- Debug code -------------------------------------------------------*/
275 
276 /*
277  * pr_debug1 - print debug messages
278  *
279  * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
280  */
281 #if DEBUG_PARPORT_IP32 >= 1
282 #	define pr_debug1(...)	printk(KERN_DEBUG __VA_ARGS__)
283 #else /* DEBUG_PARPORT_IP32 < 1 */
284 #	define pr_debug1(...)	do { } while (0)
285 #endif
286 
287 /*
288  * pr_trace, pr_trace1 - trace function calls
289  * @p:		pointer to &struct parport
290  * @fmt:	printk format string
291  * @...:	parameters for format string
292  *
293  * Macros used to trace function calls.  The given string is formatted after
294  * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
295  * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
296  * directly.
297  */
298 #define __pr_trace(pr, p, fmt, ...)					\
299 	pr("%s: %s" fmt "\n",						\
300 	   ({ const struct parport *__p = (p);				\
301 		   __p ? __p->name : "parport_ip32"; }),		\
302 	   __func__ , ##__VA_ARGS__)
303 #define pr_trace(p, fmt, ...)	__pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
304 #define pr_trace1(p, fmt, ...)	__pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
305 
306 /*
307  * __pr_probe, pr_probe - print message if @verbose_probing is true
308  * @p:		pointer to &struct parport
309  * @fmt:	printk format string
310  * @...:	parameters for format string
311  *
312  * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
313  */
314 #define __pr_probe(...)							\
315 	do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
316 #define pr_probe(p, fmt, ...)						\
317 	__pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
318 
319 /*
320  * parport_ip32_dump_state - print register status of parport
321  * @p:		pointer to &struct parport
322  * @str:	string to add in message
323  * @show_ecp_config:	shall we dump ECP configuration registers too?
324  *
325  * This function is only here for debugging purpose, and should be used with
326  * care.  Reading the parallel port registers may have undesired side effects.
327  * Especially if @show_ecp_config is true, the parallel port is resetted.
328  * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
329  */
330 #if DEBUG_PARPORT_IP32 >= 2
331 static void parport_ip32_dump_state(struct parport *p, char *str,
332 				    unsigned int show_ecp_config)
333 {
334 	struct parport_ip32_private * const priv = p->physport->private_data;
335 	unsigned int i;
336 
337 	printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
338 	{
339 		static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
340 						     "ECP", "EPP", "???",
341 						     "TST", "CFG"};
342 		unsigned int ecr = readb(priv->regs.ecr);
343 		printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
344 		printk(" %s",
345 		       ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
346 		if (ecr & ECR_nERRINTR)
347 			printk(",nErrIntrEn");
348 		if (ecr & ECR_DMAEN)
349 			printk(",dmaEn");
350 		if (ecr & ECR_SERVINTR)
351 			printk(",serviceIntr");
352 		if (ecr & ECR_F_FULL)
353 			printk(",f_full");
354 		if (ecr & ECR_F_EMPTY)
355 			printk(",f_empty");
356 		printk("\n");
357 	}
358 	if (show_ecp_config) {
359 		unsigned int oecr, cnfgA, cnfgB;
360 		oecr = readb(priv->regs.ecr);
361 		writeb(ECR_MODE_PS2, priv->regs.ecr);
362 		writeb(ECR_MODE_CFG, priv->regs.ecr);
363 		cnfgA = readb(priv->regs.cnfgA);
364 		cnfgB = readb(priv->regs.cnfgB);
365 		writeb(ECR_MODE_PS2, priv->regs.ecr);
366 		writeb(oecr, priv->regs.ecr);
367 		printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
368 		printk(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
369 		switch (cnfgA & CNFGA_ID_MASK) {
370 		case CNFGA_ID_8:
371 			printk(",8 bits");
372 			break;
373 		case CNFGA_ID_16:
374 			printk(",16 bits");
375 			break;
376 		case CNFGA_ID_32:
377 			printk(",32 bits");
378 			break;
379 		default:
380 			printk(",unknown ID");
381 			break;
382 		}
383 		if (!(cnfgA & CNFGA_nBYTEINTRANS))
384 			printk(",ByteInTrans");
385 		if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
386 			printk(",%d byte%s left", cnfgA & CNFGA_PWORDLEFT,
387 			       ((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
388 		printk("\n");
389 		printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
390 		printk(" irq=%u,dma=%u",
391 		       (cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
392 		       (cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
393 		printk(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
394 		if (cnfgB & CNFGB_COMPRESS)
395 			printk(",compress");
396 		printk("\n");
397 	}
398 	for (i = 0; i < 2; i++) {
399 		unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
400 		printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
401 		       i ? "soft" : "hard", dcr);
402 		printk(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
403 		if (dcr & DCR_IRQ)
404 			printk(",ackIntEn");
405 		if (!(dcr & DCR_SELECT))
406 			printk(",nSelectIn");
407 		if (dcr & DCR_nINIT)
408 			printk(",nInit");
409 		if (!(dcr & DCR_AUTOFD))
410 			printk(",nAutoFD");
411 		if (!(dcr & DCR_STROBE))
412 			printk(",nStrobe");
413 		printk("\n");
414 	}
415 #define sep (f++ ? ',' : ' ')
416 	{
417 		unsigned int f = 0;
418 		unsigned int dsr = readb(priv->regs.dsr);
419 		printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
420 		if (!(dsr & DSR_nBUSY))
421 			printk("%cBusy", sep);
422 		if (dsr & DSR_nACK)
423 			printk("%cnAck", sep);
424 		if (dsr & DSR_PERROR)
425 			printk("%cPError", sep);
426 		if (dsr & DSR_SELECT)
427 			printk("%cSelect", sep);
428 		if (dsr & DSR_nFAULT)
429 			printk("%cnFault", sep);
430 		if (!(dsr & DSR_nPRINT))
431 			printk("%c(Print)", sep);
432 		if (dsr & DSR_TIMEOUT)
433 			printk("%cTimeout", sep);
434 		printk("\n");
435 	}
436 #undef sep
437 }
438 #else /* DEBUG_PARPORT_IP32 < 2 */
439 #define parport_ip32_dump_state(...)	do { } while (0)
440 #endif
441 
442 /*
443  * CHECK_EXTRA_BITS - track and log extra bits
444  * @p:		pointer to &struct parport
445  * @b:		byte to inspect
446  * @m:		bit mask of authorized bits
447  *
448  * This is used to track and log extra bits that should not be there in
449  * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
450  * defined if %DEBUG_PARPORT_IP32 >= 1.
451  */
452 #if DEBUG_PARPORT_IP32 >= 1
453 #define CHECK_EXTRA_BITS(p, b, m)					\
454 	do {								\
455 		unsigned int __b = (b), __m = (m);			\
456 		if (__b & ~__m)						\
457 			pr_debug1(PPIP32 "%s: extra bits in %s(%s): "	\
458 				  "0x%02x/0x%02x\n",			\
459 				  (p)->name, __func__, #b, __b, __m);	\
460 	} while (0)
461 #else /* DEBUG_PARPORT_IP32 < 1 */
462 #define CHECK_EXTRA_BITS(...)	do { } while (0)
463 #endif
464 
465 /*--- IP32 parallel port DMA operations --------------------------------*/
466 
467 /**
468  * struct parport_ip32_dma_data - private data needed for DMA operation
469  * @dir:	DMA direction (from or to device)
470  * @buf:	buffer physical address
471  * @len:	buffer length
472  * @next:	address of next bytes to DMA transfer
473  * @left:	number of bytes remaining
474  * @ctx:	next context to write (0: context_a; 1: context_b)
475  * @irq_on:	are the DMA IRQs currently enabled?
476  * @lock:	spinlock to protect access to the structure
477  */
478 struct parport_ip32_dma_data {
479 	enum dma_data_direction		dir;
480 	dma_addr_t			buf;
481 	dma_addr_t			next;
482 	size_t				len;
483 	size_t				left;
484 	unsigned int			ctx;
485 	unsigned int			irq_on;
486 	spinlock_t			lock;
487 };
488 static struct parport_ip32_dma_data parport_ip32_dma;
489 
490 /**
491  * parport_ip32_dma_setup_context - setup next DMA context
492  * @limit:	maximum data size for the context
493  *
494  * The alignment constraints must be verified in caller function, and the
495  * parameter @limit must be set accordingly.
496  */
497 static void parport_ip32_dma_setup_context(unsigned int limit)
498 {
499 	unsigned long flags;
500 
501 	spin_lock_irqsave(&parport_ip32_dma.lock, flags);
502 	if (parport_ip32_dma.left > 0) {
503 		/* Note: ctxreg is "volatile" here only because
504 		 * mace->perif.ctrl.parport.context_a and context_b are
505 		 * "volatile".  */
506 		volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
507 			&mace->perif.ctrl.parport.context_a :
508 			&mace->perif.ctrl.parport.context_b;
509 		u64 count;
510 		u64 ctxval;
511 		if (parport_ip32_dma.left <= limit) {
512 			count = parport_ip32_dma.left;
513 			ctxval = MACEPAR_CONTEXT_LASTFLAG;
514 		} else {
515 			count = limit;
516 			ctxval = 0;
517 		}
518 
519 		pr_trace(NULL,
520 			 "(%u): 0x%04x:0x%04x, %u -> %u%s",
521 			 limit,
522 			 (unsigned int)parport_ip32_dma.buf,
523 			 (unsigned int)parport_ip32_dma.next,
524 			 (unsigned int)count,
525 			 parport_ip32_dma.ctx, ctxval ? "*" : "");
526 
527 		ctxval |= parport_ip32_dma.next &
528 			MACEPAR_CONTEXT_BASEADDR_MASK;
529 		ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
530 			MACEPAR_CONTEXT_DATALEN_MASK;
531 		writeq(ctxval, ctxreg);
532 		parport_ip32_dma.next += count;
533 		parport_ip32_dma.left -= count;
534 		parport_ip32_dma.ctx ^= 1U;
535 	}
536 	/* If there is nothing more to send, disable IRQs to avoid to
537 	 * face an IRQ storm which can lock the machine.  Disable them
538 	 * only once. */
539 	if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
540 		pr_debug(PPIP32 "IRQ off (ctx)\n");
541 		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
542 		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
543 		parport_ip32_dma.irq_on = 0;
544 	}
545 	spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
546 }
547 
548 /**
549  * parport_ip32_dma_interrupt - DMA interrupt handler
550  * @irq:	interrupt number
551  * @dev_id:	unused
552  */
553 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
554 {
555 	if (parport_ip32_dma.left)
556 		pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
557 	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
558 	return IRQ_HANDLED;
559 }
560 
561 #if DEBUG_PARPORT_IP32
562 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
563 {
564 	pr_trace1(NULL, "(%d)", irq);
565 	return IRQ_HANDLED;
566 }
567 #endif
568 
569 /**
570  * parport_ip32_dma_start - begins a DMA transfer
571  * @dir:	DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
572  * @addr:	pointer to data buffer
573  * @count:	buffer size
574  *
575  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
576  * correctly balanced.
577  */
578 static int parport_ip32_dma_start(enum dma_data_direction dir,
579 				  void *addr, size_t count)
580 {
581 	unsigned int limit;
582 	u64 ctrl;
583 
584 	pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
585 
586 	/* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
587 	 * be 64 bytes aligned. */
588 	BUG_ON(dir != DMA_TO_DEVICE);
589 
590 	/* Reset DMA controller */
591 	ctrl = MACEPAR_CTLSTAT_RESET;
592 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
593 
594 	/* DMA IRQs should normally be enabled */
595 	if (!parport_ip32_dma.irq_on) {
596 		WARN_ON(1);
597 		enable_irq(MACEISA_PAR_CTXA_IRQ);
598 		enable_irq(MACEISA_PAR_CTXB_IRQ);
599 		parport_ip32_dma.irq_on = 1;
600 	}
601 
602 	/* Prepare DMA pointers */
603 	parport_ip32_dma.dir = dir;
604 	parport_ip32_dma.buf = dma_map_single(NULL, addr, count, dir);
605 	parport_ip32_dma.len = count;
606 	parport_ip32_dma.next = parport_ip32_dma.buf;
607 	parport_ip32_dma.left = parport_ip32_dma.len;
608 	parport_ip32_dma.ctx = 0;
609 
610 	/* Setup DMA direction and first two contexts */
611 	ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
612 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
613 	/* Single transfer should not cross a 4K page boundary */
614 	limit = MACEPAR_CONTEXT_DATA_BOUND -
615 		(parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
616 	parport_ip32_dma_setup_context(limit);
617 	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
618 
619 	/* Real start of DMA transfer */
620 	ctrl |= MACEPAR_CTLSTAT_ENABLE;
621 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
622 
623 	return 0;
624 }
625 
626 /**
627  * parport_ip32_dma_stop - ends a running DMA transfer
628  *
629  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
630  * correctly balanced.
631  */
632 static void parport_ip32_dma_stop(void)
633 {
634 	u64 ctx_a;
635 	u64 ctx_b;
636 	u64 ctrl;
637 	u64 diag;
638 	size_t res[2];	/* {[0] = res_a, [1] = res_b} */
639 
640 	pr_trace(NULL, "()");
641 
642 	/* Disable IRQs */
643 	spin_lock_irq(&parport_ip32_dma.lock);
644 	if (parport_ip32_dma.irq_on) {
645 		pr_debug(PPIP32 "IRQ off (stop)\n");
646 		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
647 		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
648 		parport_ip32_dma.irq_on = 0;
649 	}
650 	spin_unlock_irq(&parport_ip32_dma.lock);
651 	/* Force IRQ synchronization, even if the IRQs were disabled
652 	 * elsewhere. */
653 	synchronize_irq(MACEISA_PAR_CTXA_IRQ);
654 	synchronize_irq(MACEISA_PAR_CTXB_IRQ);
655 
656 	/* Stop DMA transfer */
657 	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
658 	ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
659 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
660 
661 	/* Adjust residue (parport_ip32_dma.left) */
662 	ctx_a = readq(&mace->perif.ctrl.parport.context_a);
663 	ctx_b = readq(&mace->perif.ctrl.parport.context_b);
664 	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
665 	diag = readq(&mace->perif.ctrl.parport.diagnostic);
666 	res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
667 		1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
668 		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
669 		0;
670 	res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
671 		1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
672 		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
673 		0;
674 	if (diag & MACEPAR_DIAG_DMACTIVE)
675 		res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
676 			1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
677 			     MACEPAR_DIAG_CTRSHIFT);
678 	parport_ip32_dma.left += res[0] + res[1];
679 
680 	/* Reset DMA controller, and re-enable IRQs */
681 	ctrl = MACEPAR_CTLSTAT_RESET;
682 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
683 	pr_debug(PPIP32 "IRQ on (stop)\n");
684 	enable_irq(MACEISA_PAR_CTXA_IRQ);
685 	enable_irq(MACEISA_PAR_CTXB_IRQ);
686 	parport_ip32_dma.irq_on = 1;
687 
688 	dma_unmap_single(NULL, parport_ip32_dma.buf, parport_ip32_dma.len,
689 			 parport_ip32_dma.dir);
690 }
691 
692 /**
693  * parport_ip32_dma_get_residue - get residue from last DMA transfer
694  *
695  * Returns the number of bytes remaining from last DMA transfer.
696  */
697 static inline size_t parport_ip32_dma_get_residue(void)
698 {
699 	return parport_ip32_dma.left;
700 }
701 
702 /**
703  * parport_ip32_dma_register - initialize DMA engine
704  *
705  * Returns zero for success.
706  */
707 static int parport_ip32_dma_register(void)
708 {
709 	int err;
710 
711 	spin_lock_init(&parport_ip32_dma.lock);
712 	parport_ip32_dma.irq_on = 1;
713 
714 	/* Reset DMA controller */
715 	writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
716 
717 	/* Request IRQs */
718 	err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
719 			  0, "parport_ip32", NULL);
720 	if (err)
721 		goto fail_a;
722 	err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
723 			  0, "parport_ip32", NULL);
724 	if (err)
725 		goto fail_b;
726 #if DEBUG_PARPORT_IP32
727 	/* FIXME - what is this IRQ for? */
728 	err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
729 			  0, "parport_ip32", NULL);
730 	if (err)
731 		goto fail_merr;
732 #endif
733 	return 0;
734 
735 #if DEBUG_PARPORT_IP32
736 fail_merr:
737 	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
738 #endif
739 fail_b:
740 	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
741 fail_a:
742 	return err;
743 }
744 
745 /**
746  * parport_ip32_dma_unregister - release and free resources for DMA engine
747  */
748 static void parport_ip32_dma_unregister(void)
749 {
750 #if DEBUG_PARPORT_IP32
751 	free_irq(MACEISA_PAR_MERR_IRQ, NULL);
752 #endif
753 	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
754 	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
755 }
756 
757 /*--- Interrupt handlers and associates --------------------------------*/
758 
759 /**
760  * parport_ip32_wakeup - wakes up code waiting for an interrupt
761  * @p:		pointer to &struct parport
762  */
763 static inline void parport_ip32_wakeup(struct parport *p)
764 {
765 	struct parport_ip32_private * const priv = p->physport->private_data;
766 	complete(&priv->irq_complete);
767 }
768 
769 /**
770  * parport_ip32_interrupt - interrupt handler
771  * @irq:	interrupt number
772  * @dev_id:	pointer to &struct parport
773  *
774  * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
775  * %PARPORT_IP32_IRQ_FWD.
776  */
777 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
778 {
779 	struct parport * const p = dev_id;
780 	struct parport_ip32_private * const priv = p->physport->private_data;
781 	enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
782 
783 	switch (irq_mode) {
784 	case PARPORT_IP32_IRQ_FWD:
785 		return parport_irq_handler(irq, dev_id);
786 
787 	case PARPORT_IP32_IRQ_HERE:
788 		parport_ip32_wakeup(p);
789 		break;
790 	}
791 
792 	return IRQ_HANDLED;
793 }
794 
795 /*--- Some utility function to manipulate ECR register -----------------*/
796 
797 /**
798  * parport_ip32_read_econtrol - read contents of the ECR register
799  * @p:		pointer to &struct parport
800  */
801 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
802 {
803 	struct parport_ip32_private * const priv = p->physport->private_data;
804 	return readb(priv->regs.ecr);
805 }
806 
807 /**
808  * parport_ip32_write_econtrol - write new contents to the ECR register
809  * @p:		pointer to &struct parport
810  * @c:		new value to write
811  */
812 static inline void parport_ip32_write_econtrol(struct parport *p,
813 					       unsigned int c)
814 {
815 	struct parport_ip32_private * const priv = p->physport->private_data;
816 	writeb(c, priv->regs.ecr);
817 }
818 
819 /**
820  * parport_ip32_frob_econtrol - change bits from the ECR register
821  * @p:		pointer to &struct parport
822  * @mask:	bit mask of bits to change
823  * @val:	new value for changed bits
824  *
825  * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
826  * in @val, and write the result to the ECR.
827  */
828 static inline void parport_ip32_frob_econtrol(struct parport *p,
829 					      unsigned int mask,
830 					      unsigned int val)
831 {
832 	unsigned int c;
833 	c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
834 	parport_ip32_write_econtrol(p, c);
835 }
836 
837 /**
838  * parport_ip32_set_mode - change mode of ECP port
839  * @p:		pointer to &struct parport
840  * @mode:	new mode to write in ECR
841  *
842  * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
843  * mode @mode.  Go through PS2 mode if needed.
844  */
845 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
846 {
847 	unsigned int omode;
848 
849 	mode &= ECR_MODE_MASK;
850 	omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
851 
852 	if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
853 	      || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
854 		/* We have to go through PS2 mode */
855 		unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
856 		parport_ip32_write_econtrol(p, ecr);
857 	}
858 	parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
859 }
860 
861 /*--- Basic functions needed for parport -------------------------------*/
862 
863 /**
864  * parport_ip32_read_data - return current contents of the DATA register
865  * @p:		pointer to &struct parport
866  */
867 static inline unsigned char parport_ip32_read_data(struct parport *p)
868 {
869 	struct parport_ip32_private * const priv = p->physport->private_data;
870 	return readb(priv->regs.data);
871 }
872 
873 /**
874  * parport_ip32_write_data - set new contents for the DATA register
875  * @p:		pointer to &struct parport
876  * @d:		new value to write
877  */
878 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
879 {
880 	struct parport_ip32_private * const priv = p->physport->private_data;
881 	writeb(d, priv->regs.data);
882 }
883 
884 /**
885  * parport_ip32_read_status - return current contents of the DSR register
886  * @p:		pointer to &struct parport
887  */
888 static inline unsigned char parport_ip32_read_status(struct parport *p)
889 {
890 	struct parport_ip32_private * const priv = p->physport->private_data;
891 	return readb(priv->regs.dsr);
892 }
893 
894 /**
895  * __parport_ip32_read_control - return cached contents of the DCR register
896  * @p:		pointer to &struct parport
897  */
898 static inline unsigned int __parport_ip32_read_control(struct parport *p)
899 {
900 	struct parport_ip32_private * const priv = p->physport->private_data;
901 	return priv->dcr_cache; /* use soft copy */
902 }
903 
904 /**
905  * __parport_ip32_write_control - set new contents for the DCR register
906  * @p:		pointer to &struct parport
907  * @c:		new value to write
908  */
909 static inline void __parport_ip32_write_control(struct parport *p,
910 						unsigned int c)
911 {
912 	struct parport_ip32_private * const priv = p->physport->private_data;
913 	CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
914 	c &= priv->dcr_writable; /* only writable bits */
915 	writeb(c, priv->regs.dcr);
916 	priv->dcr_cache = c;		/* update soft copy */
917 }
918 
919 /**
920  * __parport_ip32_frob_control - change bits from the DCR register
921  * @p:		pointer to &struct parport
922  * @mask:	bit mask of bits to change
923  * @val:	new value for changed bits
924  *
925  * This is equivalent to read from the DCR, mask out the bits in @mask,
926  * exclusive-or with the bits in @val, and write the result to the DCR.
927  * Actually, the cached contents of the DCR is used.
928  */
929 static inline void __parport_ip32_frob_control(struct parport *p,
930 					       unsigned int mask,
931 					       unsigned int val)
932 {
933 	unsigned int c;
934 	c = (__parport_ip32_read_control(p) & ~mask) ^ val;
935 	__parport_ip32_write_control(p, c);
936 }
937 
938 /**
939  * parport_ip32_read_control - return cached contents of the DCR register
940  * @p:		pointer to &struct parport
941  *
942  * The return value is masked so as to only return the value of %DCR_STROBE,
943  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
944  */
945 static inline unsigned char parport_ip32_read_control(struct parport *p)
946 {
947 	const unsigned int rm =
948 		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
949 	return __parport_ip32_read_control(p) & rm;
950 }
951 
952 /**
953  * parport_ip32_write_control - set new contents for the DCR register
954  * @p:		pointer to &struct parport
955  * @c:		new value to write
956  *
957  * The value is masked so as to only change the value of %DCR_STROBE,
958  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
959  */
960 static inline void parport_ip32_write_control(struct parport *p,
961 					      unsigned char c)
962 {
963 	const unsigned int wm =
964 		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
965 	CHECK_EXTRA_BITS(p, c, wm);
966 	__parport_ip32_frob_control(p, wm, c & wm);
967 }
968 
969 /**
970  * parport_ip32_frob_control - change bits from the DCR register
971  * @p:		pointer to &struct parport
972  * @mask:	bit mask of bits to change
973  * @val:	new value for changed bits
974  *
975  * This differs from __parport_ip32_frob_control() in that it only allows to
976  * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
977  */
978 static inline unsigned char parport_ip32_frob_control(struct parport *p,
979 						      unsigned char mask,
980 						      unsigned char val)
981 {
982 	const unsigned int wm =
983 		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
984 	CHECK_EXTRA_BITS(p, mask, wm);
985 	CHECK_EXTRA_BITS(p, val, wm);
986 	__parport_ip32_frob_control(p, mask & wm, val & wm);
987 	return parport_ip32_read_control(p);
988 }
989 
990 /**
991  * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
992  * @p:		pointer to &struct parport
993  */
994 static inline void parport_ip32_disable_irq(struct parport *p)
995 {
996 	__parport_ip32_frob_control(p, DCR_IRQ, 0);
997 }
998 
999 /**
1000  * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
1001  * @p:		pointer to &struct parport
1002  */
1003 static inline void parport_ip32_enable_irq(struct parport *p)
1004 {
1005 	__parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
1006 }
1007 
1008 /**
1009  * parport_ip32_data_forward - enable host-to-peripheral communications
1010  * @p:		pointer to &struct parport
1011  *
1012  * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1013  */
1014 static inline void parport_ip32_data_forward(struct parport *p)
1015 {
1016 	__parport_ip32_frob_control(p, DCR_DIR, 0);
1017 }
1018 
1019 /**
1020  * parport_ip32_data_reverse - enable peripheral-to-host communications
1021  * @p:		pointer to &struct parport
1022  *
1023  * Place the data bus in a high impedance state, if @p->modes has the
1024  * PARPORT_MODE_TRISTATE bit set.
1025  */
1026 static inline void parport_ip32_data_reverse(struct parport *p)
1027 {
1028 	__parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1029 }
1030 
1031 /**
1032  * parport_ip32_init_state - for core parport code
1033  * @dev:	pointer to &struct pardevice
1034  * @s:		pointer to &struct parport_state to initialize
1035  */
1036 static void parport_ip32_init_state(struct pardevice *dev,
1037 				    struct parport_state *s)
1038 {
1039 	s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1040 	s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1041 }
1042 
1043 /**
1044  * parport_ip32_save_state - for core parport code
1045  * @p:		pointer to &struct parport
1046  * @s:		pointer to &struct parport_state to save state to
1047  */
1048 static void parport_ip32_save_state(struct parport *p,
1049 				    struct parport_state *s)
1050 {
1051 	s->u.ip32.dcr = __parport_ip32_read_control(p);
1052 	s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1053 }
1054 
1055 /**
1056  * parport_ip32_restore_state - for core parport code
1057  * @p:		pointer to &struct parport
1058  * @s:		pointer to &struct parport_state to restore state from
1059  */
1060 static void parport_ip32_restore_state(struct parport *p,
1061 				       struct parport_state *s)
1062 {
1063 	parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1064 	parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1065 	__parport_ip32_write_control(p, s->u.ip32.dcr);
1066 }
1067 
1068 /*--- EPP mode functions -----------------------------------------------*/
1069 
1070 /**
1071  * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1072  * @p:		pointer to &struct parport
1073  *
1074  * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1075  */
1076 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1077 {
1078 	struct parport_ip32_private * const priv = p->physport->private_data;
1079 	unsigned int cleared;
1080 
1081 	if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1082 		cleared = 1;
1083 	else {
1084 		unsigned int r;
1085 		/* To clear timeout some chips require double read */
1086 		parport_ip32_read_status(p);
1087 		r = parport_ip32_read_status(p);
1088 		/* Some reset by writing 1 */
1089 		writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1090 		/* Others by writing 0 */
1091 		writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1092 
1093 		r = parport_ip32_read_status(p);
1094 		cleared = !(r & DSR_TIMEOUT);
1095 	}
1096 
1097 	pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1098 	return cleared;
1099 }
1100 
1101 /**
1102  * parport_ip32_epp_read - generic EPP read function
1103  * @eppreg:	I/O register to read from
1104  * @p:		pointer to &struct parport
1105  * @buf:	buffer to store read data
1106  * @len:	length of buffer @buf
1107  * @flags:	may be PARPORT_EPP_FAST
1108  */
1109 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1110 				    struct parport *p, void *buf,
1111 				    size_t len, int flags)
1112 {
1113 	struct parport_ip32_private * const priv = p->physport->private_data;
1114 	size_t got;
1115 	parport_ip32_set_mode(p, ECR_MODE_EPP);
1116 	parport_ip32_data_reverse(p);
1117 	parport_ip32_write_control(p, DCR_nINIT);
1118 	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1119 		readsb(eppreg, buf, len);
1120 		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1121 			parport_ip32_clear_epp_timeout(p);
1122 			return -EIO;
1123 		}
1124 		got = len;
1125 	} else {
1126 		u8 *bufp = buf;
1127 		for (got = 0; got < len; got++) {
1128 			*bufp++ = readb(eppreg);
1129 			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1130 				parport_ip32_clear_epp_timeout(p);
1131 				break;
1132 			}
1133 		}
1134 	}
1135 	parport_ip32_data_forward(p);
1136 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1137 	return got;
1138 }
1139 
1140 /**
1141  * parport_ip32_epp_write - generic EPP write function
1142  * @eppreg:	I/O register to write to
1143  * @p:		pointer to &struct parport
1144  * @buf:	buffer of data to write
1145  * @len:	length of buffer @buf
1146  * @flags:	may be PARPORT_EPP_FAST
1147  */
1148 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1149 				     struct parport *p, const void *buf,
1150 				     size_t len, int flags)
1151 {
1152 	struct parport_ip32_private * const priv = p->physport->private_data;
1153 	size_t written;
1154 	parport_ip32_set_mode(p, ECR_MODE_EPP);
1155 	parport_ip32_data_forward(p);
1156 	parport_ip32_write_control(p, DCR_nINIT);
1157 	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1158 		writesb(eppreg, buf, len);
1159 		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1160 			parport_ip32_clear_epp_timeout(p);
1161 			return -EIO;
1162 		}
1163 		written = len;
1164 	} else {
1165 		const u8 *bufp = buf;
1166 		for (written = 0; written < len; written++) {
1167 			writeb(*bufp++, eppreg);
1168 			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1169 				parport_ip32_clear_epp_timeout(p);
1170 				break;
1171 			}
1172 		}
1173 	}
1174 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1175 	return written;
1176 }
1177 
1178 /**
1179  * parport_ip32_epp_read_data - read a block of data in EPP mode
1180  * @p:		pointer to &struct parport
1181  * @buf:	buffer to store read data
1182  * @len:	length of buffer @buf
1183  * @flags:	may be PARPORT_EPP_FAST
1184  */
1185 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1186 					 size_t len, int flags)
1187 {
1188 	struct parport_ip32_private * const priv = p->physport->private_data;
1189 	return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1190 }
1191 
1192 /**
1193  * parport_ip32_epp_write_data - write a block of data in EPP mode
1194  * @p:		pointer to &struct parport
1195  * @buf:	buffer of data to write
1196  * @len:	length of buffer @buf
1197  * @flags:	may be PARPORT_EPP_FAST
1198  */
1199 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1200 					  size_t len, int flags)
1201 {
1202 	struct parport_ip32_private * const priv = p->physport->private_data;
1203 	return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1204 }
1205 
1206 /**
1207  * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1208  * @p:		pointer to &struct parport
1209  * @buf:	buffer to store read data
1210  * @len:	length of buffer @buf
1211  * @flags:	may be PARPORT_EPP_FAST
1212  */
1213 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1214 					 size_t len, int flags)
1215 {
1216 	struct parport_ip32_private * const priv = p->physport->private_data;
1217 	return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1218 }
1219 
1220 /**
1221  * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1222  * @p:		pointer to &struct parport
1223  * @buf:	buffer of data to write
1224  * @len:	length of buffer @buf
1225  * @flags:	may be PARPORT_EPP_FAST
1226  */
1227 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1228 					  size_t len, int flags)
1229 {
1230 	struct parport_ip32_private * const priv = p->physport->private_data;
1231 	return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1232 }
1233 
1234 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1235 
1236 /**
1237  * parport_ip32_fifo_wait_break - check if the waiting function should return
1238  * @p:		pointer to &struct parport
1239  * @expire:	timeout expiring date, in jiffies
1240  *
1241  * parport_ip32_fifo_wait_break() checks if the waiting function should return
1242  * immediately or not.  The break conditions are:
1243  *	- expired timeout;
1244  *	- a pending signal;
1245  *	- nFault asserted low.
1246  * This function also calls cond_resched().
1247  */
1248 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1249 						 unsigned long expire)
1250 {
1251 	cond_resched();
1252 	if (time_after(jiffies, expire)) {
1253 		pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1254 		return 1;
1255 	}
1256 	if (signal_pending(current)) {
1257 		pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1258 		return 1;
1259 	}
1260 	if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1261 		pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1262 		return 1;
1263 	}
1264 	return 0;
1265 }
1266 
1267 /**
1268  * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1269  * @p:		pointer to &struct parport
1270  *
1271  * Returns the number of bytes that can safely be written in the FIFO.  A
1272  * return value of zero means that the calling function should terminate as
1273  * fast as possible.
1274  */
1275 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1276 {
1277 	struct parport_ip32_private * const priv = p->physport->private_data;
1278 	struct parport * const physport = p->physport;
1279 	unsigned long expire;
1280 	unsigned int count;
1281 	unsigned int ecr;
1282 
1283 	expire = jiffies + physport->cad->timeout;
1284 	count = 0;
1285 	while (1) {
1286 		if (parport_ip32_fifo_wait_break(p, expire))
1287 			break;
1288 
1289 		/* Check FIFO state.  We do nothing when the FIFO is nor full,
1290 		 * nor empty.  It appears that the FIFO full bit is not always
1291 		 * reliable, the FIFO state is sometimes wrongly reported, and
1292 		 * the chip gets confused if we give it another byte. */
1293 		ecr = parport_ip32_read_econtrol(p);
1294 		if (ecr & ECR_F_EMPTY) {
1295 			/* FIFO is empty, fill it up */
1296 			count = priv->fifo_depth;
1297 			break;
1298 		}
1299 
1300 		/* Wait a moment... */
1301 		udelay(FIFO_POLLING_INTERVAL);
1302 	} /* while (1) */
1303 
1304 	return count;
1305 }
1306 
1307 /**
1308  * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1309  * @p:		pointer to &struct parport
1310  *
1311  * Returns the number of bytes that can safely be written in the FIFO.  A
1312  * return value of zero means that the calling function should terminate as
1313  * fast as possible.
1314  */
1315 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1316 {
1317 	static unsigned int lost_interrupt = 0;
1318 	struct parport_ip32_private * const priv = p->physport->private_data;
1319 	struct parport * const physport = p->physport;
1320 	unsigned long nfault_timeout;
1321 	unsigned long expire;
1322 	unsigned int count;
1323 	unsigned int ecr;
1324 
1325 	nfault_timeout = min((unsigned long)physport->cad->timeout,
1326 			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1327 	expire = jiffies + physport->cad->timeout;
1328 	count = 0;
1329 	while (1) {
1330 		if (parport_ip32_fifo_wait_break(p, expire))
1331 			break;
1332 
1333 		/* Initialize mutex used to take interrupts into account */
1334 		reinit_completion(&priv->irq_complete);
1335 
1336 		/* Enable serviceIntr */
1337 		parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1338 
1339 		/* Enabling serviceIntr while the FIFO is empty does not
1340 		 * always generate an interrupt, so check for emptiness
1341 		 * now. */
1342 		ecr = parport_ip32_read_econtrol(p);
1343 		if (!(ecr & ECR_F_EMPTY)) {
1344 			/* FIFO is not empty: wait for an interrupt or a
1345 			 * timeout to occur */
1346 			wait_for_completion_interruptible_timeout(
1347 				&priv->irq_complete, nfault_timeout);
1348 			ecr = parport_ip32_read_econtrol(p);
1349 			if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1350 			    && !lost_interrupt) {
1351 				printk(KERN_WARNING PPIP32
1352 				       "%s: lost interrupt in %s\n",
1353 				       p->name, __func__);
1354 				lost_interrupt = 1;
1355 			}
1356 		}
1357 
1358 		/* Disable serviceIntr */
1359 		parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1360 
1361 		/* Check FIFO state */
1362 		if (ecr & ECR_F_EMPTY) {
1363 			/* FIFO is empty, fill it up */
1364 			count = priv->fifo_depth;
1365 			break;
1366 		} else if (ecr & ECR_SERVINTR) {
1367 			/* FIFO is not empty, but we know that can safely push
1368 			 * writeIntrThreshold bytes into it */
1369 			count = priv->writeIntrThreshold;
1370 			break;
1371 		}
1372 		/* FIFO is not empty, and we did not get any interrupt.
1373 		 * Either it's time to check for nFault, or a signal is
1374 		 * pending.  This is verified in
1375 		 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1376 	} /* while (1) */
1377 
1378 	return count;
1379 }
1380 
1381 /**
1382  * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1383  * @p:		pointer to &struct parport
1384  * @buf:	buffer of data to write
1385  * @len:	length of buffer @buf
1386  *
1387  * Uses PIO to write the contents of the buffer @buf into the parallel port
1388  * FIFO.  Returns the number of bytes that were actually written.  It can work
1389  * with or without the help of interrupts.  The parallel port must be
1390  * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1391  */
1392 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1393 						const void *buf, size_t len)
1394 {
1395 	struct parport_ip32_private * const priv = p->physport->private_data;
1396 	const u8 *bufp = buf;
1397 	size_t left = len;
1398 
1399 	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1400 
1401 	while (left > 0) {
1402 		unsigned int count;
1403 
1404 		count = (p->irq == PARPORT_IRQ_NONE) ?
1405 			parport_ip32_fwp_wait_polling(p) :
1406 			parport_ip32_fwp_wait_interrupt(p);
1407 		if (count == 0)
1408 			break;	/* Transmission should be stopped */
1409 		if (count > left)
1410 			count = left;
1411 		if (count == 1) {
1412 			writeb(*bufp, priv->regs.fifo);
1413 			bufp++, left--;
1414 		} else {
1415 			writesb(priv->regs.fifo, bufp, count);
1416 			bufp += count, left -= count;
1417 		}
1418 	}
1419 
1420 	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1421 
1422 	return len - left;
1423 }
1424 
1425 /**
1426  * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1427  * @p:		pointer to &struct parport
1428  * @buf:	buffer of data to write
1429  * @len:	length of buffer @buf
1430  *
1431  * Uses DMA to write the contents of the buffer @buf into the parallel port
1432  * FIFO.  Returns the number of bytes that were actually written.  The
1433  * parallel port must be correctly initialized before calling
1434  * parport_ip32_fifo_write_block_dma().
1435  */
1436 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1437 						const void *buf, size_t len)
1438 {
1439 	struct parport_ip32_private * const priv = p->physport->private_data;
1440 	struct parport * const physport = p->physport;
1441 	unsigned long nfault_timeout;
1442 	unsigned long expire;
1443 	size_t written;
1444 	unsigned int ecr;
1445 
1446 	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1447 
1448 	parport_ip32_dma_start(DMA_TO_DEVICE, (void *)buf, len);
1449 	reinit_completion(&priv->irq_complete);
1450 	parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1451 
1452 	nfault_timeout = min((unsigned long)physport->cad->timeout,
1453 			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1454 	expire = jiffies + physport->cad->timeout;
1455 	while (1) {
1456 		if (parport_ip32_fifo_wait_break(p, expire))
1457 			break;
1458 		wait_for_completion_interruptible_timeout(&priv->irq_complete,
1459 							  nfault_timeout);
1460 		ecr = parport_ip32_read_econtrol(p);
1461 		if (ecr & ECR_SERVINTR)
1462 			break;	/* DMA transfer just finished */
1463 	}
1464 	parport_ip32_dma_stop();
1465 	written = len - parport_ip32_dma_get_residue();
1466 
1467 	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1468 
1469 	return written;
1470 }
1471 
1472 /**
1473  * parport_ip32_fifo_write_block - write a block of data
1474  * @p:		pointer to &struct parport
1475  * @buf:	buffer of data to write
1476  * @len:	length of buffer @buf
1477  *
1478  * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1479  * p FIFO.  Returns the number of bytes that were actually written.
1480  */
1481 static size_t parport_ip32_fifo_write_block(struct parport *p,
1482 					    const void *buf, size_t len)
1483 {
1484 	size_t written = 0;
1485 	if (len)
1486 		/* FIXME - Maybe some threshold value should be set for @len
1487 		 * under which we revert to PIO mode? */
1488 		written = (p->modes & PARPORT_MODE_DMA) ?
1489 			parport_ip32_fifo_write_block_dma(p, buf, len) :
1490 			parport_ip32_fifo_write_block_pio(p, buf, len);
1491 	return written;
1492 }
1493 
1494 /**
1495  * parport_ip32_drain_fifo - wait for FIFO to empty
1496  * @p:		pointer to &struct parport
1497  * @timeout:	timeout, in jiffies
1498  *
1499  * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1500  * 0 if the timeout @timeout is reached before, or if a signal is pending.
1501  */
1502 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1503 					    unsigned long timeout)
1504 {
1505 	unsigned long expire = jiffies + timeout;
1506 	unsigned int polling_interval;
1507 	unsigned int counter;
1508 
1509 	/* Busy wait for approx. 200us */
1510 	for (counter = 0; counter < 40; counter++) {
1511 		if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1512 			break;
1513 		if (time_after(jiffies, expire))
1514 			break;
1515 		if (signal_pending(current))
1516 			break;
1517 		udelay(5);
1518 	}
1519 	/* Poll slowly.  Polling interval starts with 1 millisecond, and is
1520 	 * increased exponentially until 128.  */
1521 	polling_interval = 1; /* msecs */
1522 	while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1523 		if (time_after_eq(jiffies, expire))
1524 			break;
1525 		msleep_interruptible(polling_interval);
1526 		if (signal_pending(current))
1527 			break;
1528 		if (polling_interval < 128)
1529 			polling_interval *= 2;
1530 	}
1531 
1532 	return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1533 }
1534 
1535 /**
1536  * parport_ip32_get_fifo_residue - reset FIFO
1537  * @p:		pointer to &struct parport
1538  * @mode:	current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1539  *
1540  * This function resets FIFO, and returns the number of bytes remaining in it.
1541  */
1542 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1543 						  unsigned int mode)
1544 {
1545 	struct parport_ip32_private * const priv = p->physport->private_data;
1546 	unsigned int residue;
1547 	unsigned int cnfga;
1548 
1549 	/* FIXME - We are missing one byte if the printer is off-line.  I
1550 	 * don't know how to detect this.  It looks that the full bit is not
1551 	 * always reliable.  For the moment, the problem is avoided in most
1552 	 * cases by testing for BUSY in parport_ip32_compat_write_data().
1553 	 */
1554 	if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1555 		residue = 0;
1556 	else {
1557 		pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1558 
1559 		/* Stop all transfers.
1560 		 *
1561 		 * Microsoft's document instructs to drive DCR_STROBE to 0,
1562 		 * but it doesn't work (at least in Compatibility mode, not
1563 		 * tested in ECP mode).  Switching directly to Test mode (as
1564 		 * in parport_pc) is not an option: it does confuse the port,
1565 		 * ECP service interrupts are no more working after that.  A
1566 		 * hard reset is then needed to revert to a sane state.
1567 		 *
1568 		 * Let's hope that the FIFO is really stuck and that the
1569 		 * peripheral doesn't wake up now.
1570 		 */
1571 		parport_ip32_frob_control(p, DCR_STROBE, 0);
1572 
1573 		/* Fill up FIFO */
1574 		for (residue = priv->fifo_depth; residue > 0; residue--) {
1575 			if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1576 				break;
1577 			writeb(0x00, priv->regs.fifo);
1578 		}
1579 	}
1580 	if (residue)
1581 		pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1582 			  p->name, residue,
1583 			  (residue == 1) ? " was" : "s were");
1584 
1585 	/* Now reset the FIFO */
1586 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1587 
1588 	/* Host recovery for ECP mode */
1589 	if (mode == ECR_MODE_ECP) {
1590 		parport_ip32_data_reverse(p);
1591 		parport_ip32_frob_control(p, DCR_nINIT, 0);
1592 		if (parport_wait_peripheral(p, DSR_PERROR, 0))
1593 			pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1594 				  p->name, __func__);
1595 		parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1596 		parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1597 		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1598 			pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1599 				  p->name, __func__);
1600 	}
1601 
1602 	/* Adjust residue if needed */
1603 	parport_ip32_set_mode(p, ECR_MODE_CFG);
1604 	cnfga = readb(priv->regs.cnfgA);
1605 	if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1606 		pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1607 			  p->name, cnfga);
1608 		pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1609 			  p->name);
1610 		residue++;
1611 	}
1612 
1613 	/* Don't care about partial PWords since we do not support
1614 	 * PWord != 1 byte. */
1615 
1616 	/* Back to forward PS2 mode. */
1617 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1618 	parport_ip32_data_forward(p);
1619 
1620 	return residue;
1621 }
1622 
1623 /**
1624  * parport_ip32_compat_write_data - write a block of data in SPP mode
1625  * @p:		pointer to &struct parport
1626  * @buf:	buffer of data to write
1627  * @len:	length of buffer @buf
1628  * @flags:	ignored
1629  */
1630 static size_t parport_ip32_compat_write_data(struct parport *p,
1631 					     const void *buf, size_t len,
1632 					     int flags)
1633 {
1634 	static unsigned int ready_before = 1;
1635 	struct parport_ip32_private * const priv = p->physport->private_data;
1636 	struct parport * const physport = p->physport;
1637 	size_t written = 0;
1638 
1639 	/* Special case: a timeout of zero means we cannot call schedule().
1640 	 * Also if O_NONBLOCK is set then use the default implementation. */
1641 	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1642 		return parport_ieee1284_write_compat(p, buf, len, flags);
1643 
1644 	/* Reset FIFO, go in forward mode, and disable ackIntEn */
1645 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1646 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1647 	parport_ip32_data_forward(p);
1648 	parport_ip32_disable_irq(p);
1649 	parport_ip32_set_mode(p, ECR_MODE_PPF);
1650 	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1651 
1652 	/* Wait for peripheral to become ready */
1653 	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1654 				       DSR_nBUSY | DSR_nFAULT)) {
1655 		/* Avoid to flood the logs */
1656 		if (ready_before)
1657 			printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1658 			       p->name, __func__);
1659 		ready_before = 0;
1660 		goto stop;
1661 	}
1662 	ready_before = 1;
1663 
1664 	written = parport_ip32_fifo_write_block(p, buf, len);
1665 
1666 	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1667 	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1668 
1669 	/* Check for a potential residue */
1670 	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1671 
1672 	/* Then, wait for BUSY to get low. */
1673 	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1674 		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1675 		       p->name, __func__);
1676 
1677 stop:
1678 	/* Reset FIFO */
1679 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1680 	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1681 
1682 	return written;
1683 }
1684 
1685 /*
1686  * FIXME - Insert here parport_ip32_ecp_read_data().
1687  */
1688 
1689 /**
1690  * parport_ip32_ecp_write_data - write a block of data in ECP mode
1691  * @p:		pointer to &struct parport
1692  * @buf:	buffer of data to write
1693  * @len:	length of buffer @buf
1694  * @flags:	ignored
1695  */
1696 static size_t parport_ip32_ecp_write_data(struct parport *p,
1697 					  const void *buf, size_t len,
1698 					  int flags)
1699 {
1700 	static unsigned int ready_before = 1;
1701 	struct parport_ip32_private * const priv = p->physport->private_data;
1702 	struct parport * const physport = p->physport;
1703 	size_t written = 0;
1704 
1705 	/* Special case: a timeout of zero means we cannot call schedule().
1706 	 * Also if O_NONBLOCK is set then use the default implementation. */
1707 	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1708 		return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1709 
1710 	/* Negotiate to forward mode if necessary. */
1711 	if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1712 		/* Event 47: Set nInit high. */
1713 		parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1714 					     DCR_nINIT | DCR_AUTOFD);
1715 
1716 		/* Event 49: PError goes high. */
1717 		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1718 			printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s",
1719 			       p->name, __func__);
1720 			physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1721 			return 0;
1722 		}
1723 	}
1724 
1725 	/* Reset FIFO, go in forward mode, and disable ackIntEn */
1726 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1727 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1728 	parport_ip32_data_forward(p);
1729 	parport_ip32_disable_irq(p);
1730 	parport_ip32_set_mode(p, ECR_MODE_ECP);
1731 	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1732 
1733 	/* Wait for peripheral to become ready */
1734 	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1735 				       DSR_nBUSY | DSR_nFAULT)) {
1736 		/* Avoid to flood the logs */
1737 		if (ready_before)
1738 			printk(KERN_INFO PPIP32 "%s: not ready in %s\n",
1739 			       p->name, __func__);
1740 		ready_before = 0;
1741 		goto stop;
1742 	}
1743 	ready_before = 1;
1744 
1745 	written = parport_ip32_fifo_write_block(p, buf, len);
1746 
1747 	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1748 	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1749 
1750 	/* Check for a potential residue */
1751 	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1752 
1753 	/* Then, wait for BUSY to get low. */
1754 	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1755 		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1756 		       p->name, __func__);
1757 
1758 stop:
1759 	/* Reset FIFO */
1760 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1761 	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1762 
1763 	return written;
1764 }
1765 
1766 /*
1767  * FIXME - Insert here parport_ip32_ecp_write_addr().
1768  */
1769 
1770 /*--- Default parport operations ---------------------------------------*/
1771 
1772 static const struct parport_operations parport_ip32_ops __initconst = {
1773 	.write_data		= parport_ip32_write_data,
1774 	.read_data		= parport_ip32_read_data,
1775 
1776 	.write_control		= parport_ip32_write_control,
1777 	.read_control		= parport_ip32_read_control,
1778 	.frob_control		= parport_ip32_frob_control,
1779 
1780 	.read_status		= parport_ip32_read_status,
1781 
1782 	.enable_irq		= parport_ip32_enable_irq,
1783 	.disable_irq		= parport_ip32_disable_irq,
1784 
1785 	.data_forward		= parport_ip32_data_forward,
1786 	.data_reverse		= parport_ip32_data_reverse,
1787 
1788 	.init_state		= parport_ip32_init_state,
1789 	.save_state		= parport_ip32_save_state,
1790 	.restore_state		= parport_ip32_restore_state,
1791 
1792 	.epp_write_data		= parport_ieee1284_epp_write_data,
1793 	.epp_read_data		= parport_ieee1284_epp_read_data,
1794 	.epp_write_addr		= parport_ieee1284_epp_write_addr,
1795 	.epp_read_addr		= parport_ieee1284_epp_read_addr,
1796 
1797 	.ecp_write_data		= parport_ieee1284_ecp_write_data,
1798 	.ecp_read_data		= parport_ieee1284_ecp_read_data,
1799 	.ecp_write_addr		= parport_ieee1284_ecp_write_addr,
1800 
1801 	.compat_write_data	= parport_ieee1284_write_compat,
1802 	.nibble_read_data	= parport_ieee1284_read_nibble,
1803 	.byte_read_data		= parport_ieee1284_read_byte,
1804 
1805 	.owner			= THIS_MODULE,
1806 };
1807 
1808 /*--- Device detection -------------------------------------------------*/
1809 
1810 /**
1811  * parport_ip32_ecp_supported - check for an ECP port
1812  * @p:		pointer to the &parport structure
1813  *
1814  * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1815  * checks if an Extended Control Register seems to be present.  On successful
1816  * return, the port is placed in SPP mode.
1817  */
1818 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1819 {
1820 	struct parport_ip32_private * const priv = p->physport->private_data;
1821 	unsigned int ecr;
1822 
1823 	ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1824 	writeb(ecr, priv->regs.ecr);
1825 	if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1826 		goto fail;
1827 
1828 	pr_probe(p, "Found working ECR register\n");
1829 	parport_ip32_set_mode(p, ECR_MODE_SPP);
1830 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1831 	return 1;
1832 
1833 fail:
1834 	pr_probe(p, "ECR register not found\n");
1835 	return 0;
1836 }
1837 
1838 /**
1839  * parport_ip32_fifo_supported - check for FIFO parameters
1840  * @p:		pointer to the &parport structure
1841  *
1842  * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1843  * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1844  * On return, the port is placed in SPP mode.
1845  */
1846 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1847 {
1848 	struct parport_ip32_private * const priv = p->physport->private_data;
1849 	unsigned int configa, configb;
1850 	unsigned int pword;
1851 	unsigned int i;
1852 
1853 	/* Configuration mode */
1854 	parport_ip32_set_mode(p, ECR_MODE_CFG);
1855 	configa = readb(priv->regs.cnfgA);
1856 	configb = readb(priv->regs.cnfgB);
1857 
1858 	/* Find out PWord size */
1859 	switch (configa & CNFGA_ID_MASK) {
1860 	case CNFGA_ID_8:
1861 		pword = 1;
1862 		break;
1863 	case CNFGA_ID_16:
1864 		pword = 2;
1865 		break;
1866 	case CNFGA_ID_32:
1867 		pword = 4;
1868 		break;
1869 	default:
1870 		pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1871 			 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1872 		goto fail;
1873 		break;
1874 	}
1875 	if (pword != 1) {
1876 		pr_probe(p, "Unsupported PWord size: %u\n", pword);
1877 		goto fail;
1878 	}
1879 	priv->pword = pword;
1880 	pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1881 
1882 	/* Check for compression support */
1883 	writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1884 	if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1885 		pr_probe(p, "Hardware compression detected (unsupported)\n");
1886 	writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1887 
1888 	/* Reset FIFO and go in test mode (no interrupt, no DMA) */
1889 	parport_ip32_set_mode(p, ECR_MODE_TST);
1890 
1891 	/* FIFO must be empty now */
1892 	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1893 		pr_probe(p, "FIFO not reset\n");
1894 		goto fail;
1895 	}
1896 
1897 	/* Find out FIFO depth. */
1898 	priv->fifo_depth = 0;
1899 	for (i = 0; i < 1024; i++) {
1900 		if (readb(priv->regs.ecr) & ECR_F_FULL) {
1901 			/* FIFO full */
1902 			priv->fifo_depth = i;
1903 			break;
1904 		}
1905 		writeb((u8)i, priv->regs.fifo);
1906 	}
1907 	if (i >= 1024) {
1908 		pr_probe(p, "Can't fill FIFO\n");
1909 		goto fail;
1910 	}
1911 	if (!priv->fifo_depth) {
1912 		pr_probe(p, "Can't get FIFO depth\n");
1913 		goto fail;
1914 	}
1915 	pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1916 
1917 	/* Enable interrupts */
1918 	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1919 
1920 	/* Find out writeIntrThreshold: number of PWords we know we can write
1921 	 * if we get an interrupt. */
1922 	priv->writeIntrThreshold = 0;
1923 	for (i = 0; i < priv->fifo_depth; i++) {
1924 		if (readb(priv->regs.fifo) != (u8)i) {
1925 			pr_probe(p, "Invalid data in FIFO\n");
1926 			goto fail;
1927 		}
1928 		if (!priv->writeIntrThreshold
1929 		    && readb(priv->regs.ecr) & ECR_SERVINTR)
1930 			/* writeIntrThreshold reached */
1931 			priv->writeIntrThreshold = i + 1;
1932 		if (i + 1 < priv->fifo_depth
1933 		    && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1934 			/* FIFO empty before the last byte? */
1935 			pr_probe(p, "Data lost in FIFO\n");
1936 			goto fail;
1937 		}
1938 	}
1939 	if (!priv->writeIntrThreshold) {
1940 		pr_probe(p, "Can't get writeIntrThreshold\n");
1941 		goto fail;
1942 	}
1943 	pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1944 
1945 	/* FIFO must be empty now */
1946 	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1947 		pr_probe(p, "Can't empty FIFO\n");
1948 		goto fail;
1949 	}
1950 
1951 	/* Reset FIFO */
1952 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1953 	/* Set reverse direction (must be in PS2 mode) */
1954 	parport_ip32_data_reverse(p);
1955 	/* Test FIFO, no interrupt, no DMA */
1956 	parport_ip32_set_mode(p, ECR_MODE_TST);
1957 	/* Enable interrupts */
1958 	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1959 
1960 	/* Find out readIntrThreshold: number of PWords we can read if we get
1961 	 * an interrupt. */
1962 	priv->readIntrThreshold = 0;
1963 	for (i = 0; i < priv->fifo_depth; i++) {
1964 		writeb(0xaa, priv->regs.fifo);
1965 		if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1966 			/* readIntrThreshold reached */
1967 			priv->readIntrThreshold = i + 1;
1968 			break;
1969 		}
1970 	}
1971 	if (!priv->readIntrThreshold) {
1972 		pr_probe(p, "Can't get readIntrThreshold\n");
1973 		goto fail;
1974 	}
1975 	pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1976 
1977 	/* Reset ECR */
1978 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1979 	parport_ip32_data_forward(p);
1980 	parport_ip32_set_mode(p, ECR_MODE_SPP);
1981 	return 1;
1982 
1983 fail:
1984 	priv->fifo_depth = 0;
1985 	parport_ip32_set_mode(p, ECR_MODE_SPP);
1986 	return 0;
1987 }
1988 
1989 /*--- Initialization code ----------------------------------------------*/
1990 
1991 /**
1992  * parport_ip32_make_isa_registers - compute (ISA) register addresses
1993  * @regs:	pointer to &struct parport_ip32_regs to fill
1994  * @base:	base address of standard and EPP registers
1995  * @base_hi:	base address of ECP registers
1996  * @regshift:	how much to shift register offset by
1997  *
1998  * Compute register addresses, according to the ISA standard.  The addresses
1999  * of the standard and EPP registers are computed from address @base.  The
2000  * addresses of the ECP registers are computed from address @base_hi.
2001  */
2002 static void __init
2003 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
2004 				void __iomem *base, void __iomem *base_hi,
2005 				unsigned int regshift)
2006 {
2007 #define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
2008 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
2009 	*regs = (struct parport_ip32_regs){
2010 		.data		= r_base(0),
2011 		.dsr		= r_base(1),
2012 		.dcr		= r_base(2),
2013 		.eppAddr	= r_base(3),
2014 		.eppData0	= r_base(4),
2015 		.eppData1	= r_base(5),
2016 		.eppData2	= r_base(6),
2017 		.eppData3	= r_base(7),
2018 		.ecpAFifo	= r_base(0),
2019 		.fifo		= r_base_hi(0),
2020 		.cnfgA		= r_base_hi(0),
2021 		.cnfgB		= r_base_hi(1),
2022 		.ecr		= r_base_hi(2)
2023 	};
2024 #undef r_base_hi
2025 #undef r_base
2026 }
2027 
2028 /**
2029  * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2030  *
2031  * Returns the new allocated &parport structure.  On error, an error code is
2032  * encoded in return value with the ERR_PTR function.
2033  */
2034 static __init struct parport *parport_ip32_probe_port(void)
2035 {
2036 	struct parport_ip32_regs regs;
2037 	struct parport_ip32_private *priv = NULL;
2038 	struct parport_operations *ops = NULL;
2039 	struct parport *p = NULL;
2040 	int err;
2041 
2042 	parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2043 					&mace->isa.ecp1284, 8 /* regshift */);
2044 
2045 	ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2046 	priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2047 	p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2048 	if (ops == NULL || priv == NULL || p == NULL) {
2049 		err = -ENOMEM;
2050 		goto fail;
2051 	}
2052 	p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2053 	p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2054 	p->private_data = priv;
2055 
2056 	*ops = parport_ip32_ops;
2057 	*priv = (struct parport_ip32_private){
2058 		.regs			= regs,
2059 		.dcr_writable		= DCR_DIR | DCR_SELECT | DCR_nINIT |
2060 					  DCR_AUTOFD | DCR_STROBE,
2061 		.irq_mode		= PARPORT_IP32_IRQ_FWD,
2062 	};
2063 	init_completion(&priv->irq_complete);
2064 
2065 	/* Probe port. */
2066 	if (!parport_ip32_ecp_supported(p)) {
2067 		err = -ENODEV;
2068 		goto fail;
2069 	}
2070 	parport_ip32_dump_state(p, "begin init", 0);
2071 
2072 	/* We found what looks like a working ECR register.  Simply assume
2073 	 * that all modes are correctly supported.  Enable basic modes. */
2074 	p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2075 	p->modes |= PARPORT_MODE_TRISTATE;
2076 
2077 	if (!parport_ip32_fifo_supported(p)) {
2078 		printk(KERN_WARNING PPIP32
2079 		       "%s: error: FIFO disabled\n", p->name);
2080 		/* Disable hardware modes depending on a working FIFO. */
2081 		features &= ~PARPORT_IP32_ENABLE_SPP;
2082 		features &= ~PARPORT_IP32_ENABLE_ECP;
2083 		/* DMA is not needed if FIFO is not supported.  */
2084 		features &= ~PARPORT_IP32_ENABLE_DMA;
2085 	}
2086 
2087 	/* Request IRQ */
2088 	if (features & PARPORT_IP32_ENABLE_IRQ) {
2089 		int irq = MACEISA_PARALLEL_IRQ;
2090 		if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2091 			printk(KERN_WARNING PPIP32
2092 			       "%s: error: IRQ disabled\n", p->name);
2093 			/* DMA cannot work without interrupts. */
2094 			features &= ~PARPORT_IP32_ENABLE_DMA;
2095 		} else {
2096 			pr_probe(p, "Interrupt support enabled\n");
2097 			p->irq = irq;
2098 			priv->dcr_writable |= DCR_IRQ;
2099 		}
2100 	}
2101 
2102 	/* Allocate DMA resources */
2103 	if (features & PARPORT_IP32_ENABLE_DMA) {
2104 		if (parport_ip32_dma_register())
2105 			printk(KERN_WARNING PPIP32
2106 			       "%s: error: DMA disabled\n", p->name);
2107 		else {
2108 			pr_probe(p, "DMA support enabled\n");
2109 			p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2110 			p->modes |= PARPORT_MODE_DMA;
2111 		}
2112 	}
2113 
2114 	if (features & PARPORT_IP32_ENABLE_SPP) {
2115 		/* Enable compatibility FIFO mode */
2116 		p->ops->compat_write_data = parport_ip32_compat_write_data;
2117 		p->modes |= PARPORT_MODE_COMPAT;
2118 		pr_probe(p, "Hardware support for SPP mode enabled\n");
2119 	}
2120 	if (features & PARPORT_IP32_ENABLE_EPP) {
2121 		/* Set up access functions to use EPP hardware. */
2122 		p->ops->epp_read_data = parport_ip32_epp_read_data;
2123 		p->ops->epp_write_data = parport_ip32_epp_write_data;
2124 		p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2125 		p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2126 		p->modes |= PARPORT_MODE_EPP;
2127 		pr_probe(p, "Hardware support for EPP mode enabled\n");
2128 	}
2129 	if (features & PARPORT_IP32_ENABLE_ECP) {
2130 		/* Enable ECP FIFO mode */
2131 		p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2132 		/* FIXME - not implemented */
2133 /*		p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2134 /*		p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2135 		p->modes |= PARPORT_MODE_ECP;
2136 		pr_probe(p, "Hardware support for ECP mode enabled\n");
2137 	}
2138 
2139 	/* Initialize the port with sensible values */
2140 	parport_ip32_set_mode(p, ECR_MODE_PS2);
2141 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2142 	parport_ip32_data_forward(p);
2143 	parport_ip32_disable_irq(p);
2144 	parport_ip32_write_data(p, 0x00);
2145 	parport_ip32_dump_state(p, "end init", 0);
2146 
2147 	/* Print out what we found */
2148 	printk(KERN_INFO "%s: SGI IP32 at 0x%lx (0x%lx)",
2149 	       p->name, p->base, p->base_hi);
2150 	if (p->irq != PARPORT_IRQ_NONE)
2151 		printk(", irq %d", p->irq);
2152 	printk(" [");
2153 #define printmode(x)	if (p->modes & PARPORT_MODE_##x)		\
2154 				printk("%s%s", f++ ? "," : "", #x)
2155 	{
2156 		unsigned int f = 0;
2157 		printmode(PCSPP);
2158 		printmode(TRISTATE);
2159 		printmode(COMPAT);
2160 		printmode(EPP);
2161 		printmode(ECP);
2162 		printmode(DMA);
2163 	}
2164 #undef printmode
2165 	printk("]\n");
2166 
2167 	parport_announce_port(p);
2168 	return p;
2169 
2170 fail:
2171 	if (p)
2172 		parport_put_port(p);
2173 	kfree(priv);
2174 	kfree(ops);
2175 	return ERR_PTR(err);
2176 }
2177 
2178 /**
2179  * parport_ip32_unregister_port - unregister a parallel port
2180  * @p:		pointer to the &struct parport
2181  *
2182  * Unregisters a parallel port and free previously allocated resources
2183  * (memory, IRQ, ...).
2184  */
2185 static __exit void parport_ip32_unregister_port(struct parport *p)
2186 {
2187 	struct parport_ip32_private * const priv = p->physport->private_data;
2188 	struct parport_operations *ops = p->ops;
2189 
2190 	parport_remove_port(p);
2191 	if (p->modes & PARPORT_MODE_DMA)
2192 		parport_ip32_dma_unregister();
2193 	if (p->irq != PARPORT_IRQ_NONE)
2194 		free_irq(p->irq, p);
2195 	parport_put_port(p);
2196 	kfree(priv);
2197 	kfree(ops);
2198 }
2199 
2200 /**
2201  * parport_ip32_init - module initialization function
2202  */
2203 static int __init parport_ip32_init(void)
2204 {
2205 	pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2206 	this_port = parport_ip32_probe_port();
2207 	return PTR_ERR_OR_ZERO(this_port);
2208 }
2209 
2210 /**
2211  * parport_ip32_exit - module termination function
2212  */
2213 static void __exit parport_ip32_exit(void)
2214 {
2215 	parport_ip32_unregister_port(this_port);
2216 }
2217 
2218 /*--- Module stuff -----------------------------------------------------*/
2219 
2220 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2221 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2222 MODULE_LICENSE("GPL");
2223 MODULE_VERSION("0.6");		/* update in parport_ip32_init() too */
2224 
2225 module_init(parport_ip32_init);
2226 module_exit(parport_ip32_exit);
2227 
2228 module_param(verbose_probing, bool, S_IRUGO);
2229 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2230 
2231 module_param(features, uint, S_IRUGO);
2232 MODULE_PARM_DESC(features,
2233 		 "Bit mask of features to enable"
2234 		 ", bit 0: IRQ support"
2235 		 ", bit 1: DMA support"
2236 		 ", bit 2: hardware SPP mode"
2237 		 ", bit 3: hardware EPP mode"
2238 		 ", bit 4: hardware ECP mode");
2239 
2240 /*--- Inform (X)Emacs about preferred coding style ---------------------*/
2241 /*
2242  * Local Variables:
2243  * mode: c
2244  * c-file-style: "linux"
2245  * indent-tabs-mode: t
2246  * tab-width: 8
2247  * fill-column: 78
2248  * ispell-local-dictionary: "american"
2249  * End:
2250  */
2251