xref: /linux/drivers/parport/parport_ip32.c (revision 906fd46a65383cd639e5eec72a047efc33045d86)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Low-level parallel port routines for built-in port on SGI IP32
3  *
4  * Author: Arnaud Giersch <arnaud.giersch@free.fr>
5  *
6  * Based on parport_pc.c by
7  *	Phil Blundell, Tim Waugh, Jose Renau, David Campbell,
8  *	Andrea Arcangeli, et al.
9  *
10  * Thanks to Ilya A. Volynets-Evenbakh for his help.
11  *
12  * Copyright (C) 2005, 2006 Arnaud Giersch.
13  */
14 
15 /* Current status:
16  *
17  *	Basic SPP and PS2 modes are supported.
18  *	Support for parallel port IRQ is present.
19  *	Hardware SPP (a.k.a. compatibility), EPP, and ECP modes are
20  *	supported.
21  *	SPP/ECP FIFO can be driven in PIO or DMA mode.  PIO mode can work with
22  *	or without interrupt support.
23  *
24  *	Hardware ECP mode is not fully implemented (ecp_read_data and
25  *	ecp_write_addr are actually missing).
26  *
27  * To do:
28  *
29  *	Fully implement ECP mode.
30  *	EPP and ECP mode need to be tested.  I currently do not own any
31  *	peripheral supporting these extended mode, and cannot test them.
32  *	If DMA mode works well, decide if support for PIO FIFO modes should be
33  *	dropped.
34  *	Use the io{read,write} family functions when they become available in
35  *	the linux-mips.org tree.  Note: the MIPS specific functions readsb()
36  *	and writesb() are to be translated by ioread8_rep() and iowrite8_rep()
37  *	respectively.
38  */
39 
40 /* The built-in parallel port on the SGI 02 workstation (a.k.a. IP32) is an
41  * IEEE 1284 parallel port driven by a Texas Instrument TL16PIR552PH chip[1].
42  * This chip supports SPP, bidirectional, EPP and ECP modes.  It has a 16 byte
43  * FIFO buffer and supports DMA transfers.
44  *
45  * [1] http://focus.ti.com/docs/prod/folders/print/tl16pir552.html
46  *
47  * Theoretically, we could simply use the parport_pc module.  It is however
48  * not so simple.  The parport_pc code assumes that the parallel port
49  * registers are port-mapped.  On the O2, they are memory-mapped.
50  * Furthermore, each register is replicated on 256 consecutive addresses (as
51  * it is for the built-in serial ports on the same chip).
52  */
53 
54 /*--- Some configuration defines ---------------------------------------*/
55 
56 /* DEBUG_PARPORT_IP32
57  *	0	disable debug
58  *	1	standard level: pr_debug1 is enabled
59  *	2	parport_ip32_dump_state is enabled
60  *	>=3	verbose level: pr_debug is enabled
61  */
62 #if !defined(DEBUG_PARPORT_IP32)
63 #	define DEBUG_PARPORT_IP32  0	/* 0 (disabled) for production */
64 #endif
65 
66 /*----------------------------------------------------------------------*/
67 
68 /* Setup DEBUG macros.  This is done before any includes, just in case we
69  * activate pr_debug() with DEBUG_PARPORT_IP32 >= 3.
70  */
71 #if DEBUG_PARPORT_IP32 == 1
72 #	warning DEBUG_PARPORT_IP32 == 1
73 #elif DEBUG_PARPORT_IP32 == 2
74 #	warning DEBUG_PARPORT_IP32 == 2
75 #elif DEBUG_PARPORT_IP32 >= 3
76 #	warning DEBUG_PARPORT_IP32 >= 3
77 #	if !defined(DEBUG)
78 #		define DEBUG /* enable pr_debug() in kernel.h */
79 #	endif
80 #endif
81 
82 #include <linux/completion.h>
83 #include <linux/delay.h>
84 #include <linux/dma-mapping.h>
85 #include <linux/err.h>
86 #include <linux/init.h>
87 #include <linux/interrupt.h>
88 #include <linux/jiffies.h>
89 #include <linux/kernel.h>
90 #include <linux/module.h>
91 #include <linux/parport.h>
92 #include <linux/sched/signal.h>
93 #include <linux/slab.h>
94 #include <linux/spinlock.h>
95 #include <linux/stddef.h>
96 #include <linux/types.h>
97 #include <asm/io.h>
98 #include <asm/ip32/ip32_ints.h>
99 #include <asm/ip32/mace.h>
100 
101 /*--- Global variables -------------------------------------------------*/
102 
103 /* Verbose probing on by default for debugging. */
104 #if DEBUG_PARPORT_IP32 >= 1
105 #	define DEFAULT_VERBOSE_PROBING	1
106 #else
107 #	define DEFAULT_VERBOSE_PROBING	0
108 #endif
109 
110 /* Default prefix for printk */
111 #define PPIP32 "parport_ip32: "
112 
113 /*
114  * These are the module parameters:
115  * @features:		bit mask of features to enable/disable
116  *			(all enabled by default)
117  * @verbose_probing:	log chit-chat during initialization
118  */
119 #define PARPORT_IP32_ENABLE_IRQ	(1U << 0)
120 #define PARPORT_IP32_ENABLE_DMA	(1U << 1)
121 #define PARPORT_IP32_ENABLE_SPP	(1U << 2)
122 #define PARPORT_IP32_ENABLE_EPP	(1U << 3)
123 #define PARPORT_IP32_ENABLE_ECP	(1U << 4)
124 static unsigned int features =	~0U;
125 static bool verbose_probing =	DEFAULT_VERBOSE_PROBING;
126 
127 /* We do not support more than one port. */
128 static struct parport *this_port;
129 
130 /* Timing constants for FIFO modes.  */
131 #define FIFO_NFAULT_TIMEOUT	100	/* milliseconds */
132 #define FIFO_POLLING_INTERVAL	50	/* microseconds */
133 
134 /*--- I/O register definitions -----------------------------------------*/
135 
136 /**
137  * struct parport_ip32_regs - virtual addresses of parallel port registers
138  * @data:	Data Register
139  * @dsr:	Device Status Register
140  * @dcr:	Device Control Register
141  * @eppAddr:	EPP Address Register
142  * @eppData0:	EPP Data Register 0
143  * @eppData1:	EPP Data Register 1
144  * @eppData2:	EPP Data Register 2
145  * @eppData3:	EPP Data Register 3
146  * @ecpAFifo:	ECP Address FIFO
147  * @fifo:	General FIFO register.  The same address is used for:
148  *		- cFifo, the Parallel Port DATA FIFO
149  *		- ecpDFifo, the ECP Data FIFO
150  *		- tFifo, the ECP Test FIFO
151  * @cnfgA:	Configuration Register A
152  * @cnfgB:	Configuration Register B
153  * @ecr:	Extended Control Register
154  */
155 struct parport_ip32_regs {
156 	void __iomem *data;
157 	void __iomem *dsr;
158 	void __iomem *dcr;
159 	void __iomem *eppAddr;
160 	void __iomem *eppData0;
161 	void __iomem *eppData1;
162 	void __iomem *eppData2;
163 	void __iomem *eppData3;
164 	void __iomem *ecpAFifo;
165 	void __iomem *fifo;
166 	void __iomem *cnfgA;
167 	void __iomem *cnfgB;
168 	void __iomem *ecr;
169 };
170 
171 /* Device Status Register */
172 #define DSR_nBUSY		(1U << 7)	/* PARPORT_STATUS_BUSY */
173 #define DSR_nACK		(1U << 6)	/* PARPORT_STATUS_ACK */
174 #define DSR_PERROR		(1U << 5)	/* PARPORT_STATUS_PAPEROUT */
175 #define DSR_SELECT		(1U << 4)	/* PARPORT_STATUS_SELECT */
176 #define DSR_nFAULT		(1U << 3)	/* PARPORT_STATUS_ERROR */
177 #define DSR_nPRINT		(1U << 2)	/* specific to TL16PIR552 */
178 /* #define DSR_reserved		(1U << 1) */
179 #define DSR_TIMEOUT		(1U << 0)	/* EPP timeout */
180 
181 /* Device Control Register */
182 /* #define DCR_reserved		(1U << 7) | (1U <<  6) */
183 #define DCR_DIR			(1U << 5)	/* direction */
184 #define DCR_IRQ			(1U << 4)	/* interrupt on nAck */
185 #define DCR_SELECT		(1U << 3)	/* PARPORT_CONTROL_SELECT */
186 #define DCR_nINIT		(1U << 2)	/* PARPORT_CONTROL_INIT */
187 #define DCR_AUTOFD		(1U << 1)	/* PARPORT_CONTROL_AUTOFD */
188 #define DCR_STROBE		(1U << 0)	/* PARPORT_CONTROL_STROBE */
189 
190 /* ECP Configuration Register A */
191 #define CNFGA_IRQ		(1U << 7)
192 #define CNFGA_ID_MASK		((1U << 6) | (1U << 5) | (1U << 4))
193 #define CNFGA_ID_SHIFT		4
194 #define CNFGA_ID_16		(00U << CNFGA_ID_SHIFT)
195 #define CNFGA_ID_8		(01U << CNFGA_ID_SHIFT)
196 #define CNFGA_ID_32		(02U << CNFGA_ID_SHIFT)
197 /* #define CNFGA_reserved	(1U << 3) */
198 #define CNFGA_nBYTEINTRANS	(1U << 2)
199 #define CNFGA_PWORDLEFT		((1U << 1) | (1U << 0))
200 
201 /* ECP Configuration Register B */
202 #define CNFGB_COMPRESS		(1U << 7)
203 #define CNFGB_INTRVAL		(1U << 6)
204 #define CNFGB_IRQ_MASK		((1U << 5) | (1U << 4) | (1U << 3))
205 #define CNFGB_IRQ_SHIFT		3
206 #define CNFGB_DMA_MASK		((1U << 2) | (1U << 1) | (1U << 0))
207 #define CNFGB_DMA_SHIFT		0
208 
209 /* Extended Control Register */
210 #define ECR_MODE_MASK		((1U << 7) | (1U << 6) | (1U << 5))
211 #define ECR_MODE_SHIFT		5
212 #define ECR_MODE_SPP		(00U << ECR_MODE_SHIFT)
213 #define ECR_MODE_PS2		(01U << ECR_MODE_SHIFT)
214 #define ECR_MODE_PPF		(02U << ECR_MODE_SHIFT)
215 #define ECR_MODE_ECP		(03U << ECR_MODE_SHIFT)
216 #define ECR_MODE_EPP		(04U << ECR_MODE_SHIFT)
217 /* #define ECR_MODE_reserved	(05U << ECR_MODE_SHIFT) */
218 #define ECR_MODE_TST		(06U << ECR_MODE_SHIFT)
219 #define ECR_MODE_CFG		(07U << ECR_MODE_SHIFT)
220 #define ECR_nERRINTR		(1U << 4)
221 #define ECR_DMAEN		(1U << 3)
222 #define ECR_SERVINTR		(1U << 2)
223 #define ECR_F_FULL		(1U << 1)
224 #define ECR_F_EMPTY		(1U << 0)
225 
226 /*--- Private data -----------------------------------------------------*/
227 
228 /**
229  * enum parport_ip32_irq_mode - operation mode of interrupt handler
230  * @PARPORT_IP32_IRQ_FWD:	forward interrupt to the upper parport layer
231  * @PARPORT_IP32_IRQ_HERE:	interrupt is handled locally
232  */
233 enum parport_ip32_irq_mode { PARPORT_IP32_IRQ_FWD, PARPORT_IP32_IRQ_HERE };
234 
235 /**
236  * struct parport_ip32_private - private stuff for &struct parport
237  * @regs:		register addresses
238  * @dcr_cache:		cached contents of DCR
239  * @dcr_writable:	bit mask of writable DCR bits
240  * @pword:		number of bytes per PWord
241  * @fifo_depth:		number of PWords that FIFO will hold
242  * @readIntrThreshold:	minimum number of PWords we can read
243  *			if we get an interrupt
244  * @writeIntrThreshold:	minimum number of PWords we can write
245  *			if we get an interrupt
246  * @irq_mode:		operation mode of interrupt handler for this port
247  * @irq_complete:	mutex used to wait for an interrupt to occur
248  */
249 struct parport_ip32_private {
250 	struct parport_ip32_regs	regs;
251 	unsigned int			dcr_cache;
252 	unsigned int			dcr_writable;
253 	unsigned int			pword;
254 	unsigned int			fifo_depth;
255 	unsigned int			readIntrThreshold;
256 	unsigned int			writeIntrThreshold;
257 	enum parport_ip32_irq_mode	irq_mode;
258 	struct completion		irq_complete;
259 };
260 
261 /*--- Debug code -------------------------------------------------------*/
262 
263 /*
264  * pr_debug1 - print debug messages
265  *
266  * This is like pr_debug(), but is defined for %DEBUG_PARPORT_IP32 >= 1
267  */
268 #if DEBUG_PARPORT_IP32 >= 1
269 #	define pr_debug1(...)	printk(KERN_DEBUG __VA_ARGS__)
270 #else /* DEBUG_PARPORT_IP32 < 1 */
271 #	define pr_debug1(...)	do { } while (0)
272 #endif
273 
274 /*
275  * pr_trace, pr_trace1 - trace function calls
276  * @p:		pointer to &struct parport
277  * @fmt:	printk format string
278  * @...:	parameters for format string
279  *
280  * Macros used to trace function calls.  The given string is formatted after
281  * function name.  pr_trace() uses pr_debug(), and pr_trace1() uses
282  * pr_debug1().  __pr_trace() is the low-level macro and is not to be used
283  * directly.
284  */
285 #define __pr_trace(pr, p, fmt, ...)					\
286 	pr("%s: %s" fmt "\n",						\
287 	   ({ const struct parport *__p = (p);				\
288 		   __p ? __p->name : "parport_ip32"; }),		\
289 	   __func__ , ##__VA_ARGS__)
290 #define pr_trace(p, fmt, ...)	__pr_trace(pr_debug, p, fmt , ##__VA_ARGS__)
291 #define pr_trace1(p, fmt, ...)	__pr_trace(pr_debug1, p, fmt , ##__VA_ARGS__)
292 
293 /*
294  * __pr_probe, pr_probe - print message if @verbose_probing is true
295  * @p:		pointer to &struct parport
296  * @fmt:	printk format string
297  * @...:	parameters for format string
298  *
299  * For new lines, use pr_probe().  Use __pr_probe() for continued lines.
300  */
301 #define __pr_probe(...)							\
302 	do { if (verbose_probing) printk(__VA_ARGS__); } while (0)
303 #define pr_probe(p, fmt, ...)						\
304 	__pr_probe(KERN_INFO PPIP32 "0x%lx: " fmt, (p)->base , ##__VA_ARGS__)
305 
306 /*
307  * parport_ip32_dump_state - print register status of parport
308  * @p:		pointer to &struct parport
309  * @str:	string to add in message
310  * @show_ecp_config:	shall we dump ECP configuration registers too?
311  *
312  * This function is only here for debugging purpose, and should be used with
313  * care.  Reading the parallel port registers may have undesired side effects.
314  * Especially if @show_ecp_config is true, the parallel port is resetted.
315  * This function is only defined if %DEBUG_PARPORT_IP32 >= 2.
316  */
317 #if DEBUG_PARPORT_IP32 >= 2
318 static void parport_ip32_dump_state(struct parport *p, char *str,
319 				    unsigned int show_ecp_config)
320 {
321 	struct parport_ip32_private * const priv = p->physport->private_data;
322 	unsigned int i;
323 
324 	printk(KERN_DEBUG PPIP32 "%s: state (%s):\n", p->name, str);
325 	{
326 		static const char ecr_modes[8][4] = {"SPP", "PS2", "PPF",
327 						     "ECP", "EPP", "???",
328 						     "TST", "CFG"};
329 		unsigned int ecr = readb(priv->regs.ecr);
330 		printk(KERN_DEBUG PPIP32 "    ecr=0x%02x", ecr);
331 		pr_cont(" %s",
332 			ecr_modes[(ecr & ECR_MODE_MASK) >> ECR_MODE_SHIFT]);
333 		if (ecr & ECR_nERRINTR)
334 			pr_cont(",nErrIntrEn");
335 		if (ecr & ECR_DMAEN)
336 			pr_cont(",dmaEn");
337 		if (ecr & ECR_SERVINTR)
338 			pr_cont(",serviceIntr");
339 		if (ecr & ECR_F_FULL)
340 			pr_cont(",f_full");
341 		if (ecr & ECR_F_EMPTY)
342 			pr_cont(",f_empty");
343 		pr_cont("\n");
344 	}
345 	if (show_ecp_config) {
346 		unsigned int oecr, cnfgA, cnfgB;
347 		oecr = readb(priv->regs.ecr);
348 		writeb(ECR_MODE_PS2, priv->regs.ecr);
349 		writeb(ECR_MODE_CFG, priv->regs.ecr);
350 		cnfgA = readb(priv->regs.cnfgA);
351 		cnfgB = readb(priv->regs.cnfgB);
352 		writeb(ECR_MODE_PS2, priv->regs.ecr);
353 		writeb(oecr, priv->regs.ecr);
354 		printk(KERN_DEBUG PPIP32 "    cnfgA=0x%02x", cnfgA);
355 		pr_cont(" ISA-%s", (cnfgA & CNFGA_IRQ) ? "Level" : "Pulses");
356 		switch (cnfgA & CNFGA_ID_MASK) {
357 		case CNFGA_ID_8:
358 			pr_cont(",8 bits");
359 			break;
360 		case CNFGA_ID_16:
361 			pr_cont(",16 bits");
362 			break;
363 		case CNFGA_ID_32:
364 			pr_cont(",32 bits");
365 			break;
366 		default:
367 			pr_cont(",unknown ID");
368 			break;
369 		}
370 		if (!(cnfgA & CNFGA_nBYTEINTRANS))
371 			pr_cont(",ByteInTrans");
372 		if ((cnfgA & CNFGA_ID_MASK) != CNFGA_ID_8)
373 			pr_cont(",%d byte%s left",
374 				cnfgA & CNFGA_PWORDLEFT,
375 				((cnfgA & CNFGA_PWORDLEFT) > 1) ? "s" : "");
376 		pr_cont("\n");
377 		printk(KERN_DEBUG PPIP32 "    cnfgB=0x%02x", cnfgB);
378 		pr_cont(" irq=%u,dma=%u",
379 			(cnfgB & CNFGB_IRQ_MASK) >> CNFGB_IRQ_SHIFT,
380 			(cnfgB & CNFGB_DMA_MASK) >> CNFGB_DMA_SHIFT);
381 		pr_cont(",intrValue=%d", !!(cnfgB & CNFGB_INTRVAL));
382 		if (cnfgB & CNFGB_COMPRESS)
383 			pr_cont(",compress");
384 		pr_cont("\n");
385 	}
386 	for (i = 0; i < 2; i++) {
387 		unsigned int dcr = i ? priv->dcr_cache : readb(priv->regs.dcr);
388 		printk(KERN_DEBUG PPIP32 "    dcr(%s)=0x%02x",
389 		       i ? "soft" : "hard", dcr);
390 		pr_cont(" %s", (dcr & DCR_DIR) ? "rev" : "fwd");
391 		if (dcr & DCR_IRQ)
392 			pr_cont(",ackIntEn");
393 		if (!(dcr & DCR_SELECT))
394 			pr_cont(",nSelectIn");
395 		if (dcr & DCR_nINIT)
396 			pr_cont(",nInit");
397 		if (!(dcr & DCR_AUTOFD))
398 			pr_cont(",nAutoFD");
399 		if (!(dcr & DCR_STROBE))
400 			pr_cont(",nStrobe");
401 		pr_cont("\n");
402 	}
403 #define sep (f++ ? ',' : ' ')
404 	{
405 		unsigned int f = 0;
406 		unsigned int dsr = readb(priv->regs.dsr);
407 		printk(KERN_DEBUG PPIP32 "    dsr=0x%02x", dsr);
408 		if (!(dsr & DSR_nBUSY))
409 			pr_cont("%cBusy", sep);
410 		if (dsr & DSR_nACK)
411 			pr_cont("%cnAck", sep);
412 		if (dsr & DSR_PERROR)
413 			pr_cont("%cPError", sep);
414 		if (dsr & DSR_SELECT)
415 			pr_cont("%cSelect", sep);
416 		if (dsr & DSR_nFAULT)
417 			pr_cont("%cnFault", sep);
418 		if (!(dsr & DSR_nPRINT))
419 			pr_cont("%c(Print)", sep);
420 		if (dsr & DSR_TIMEOUT)
421 			pr_cont("%cTimeout", sep);
422 		pr_cont("\n");
423 	}
424 #undef sep
425 }
426 #else /* DEBUG_PARPORT_IP32 < 2 */
427 #define parport_ip32_dump_state(...)	do { } while (0)
428 #endif
429 
430 /*
431  * CHECK_EXTRA_BITS - track and log extra bits
432  * @p:		pointer to &struct parport
433  * @b:		byte to inspect
434  * @m:		bit mask of authorized bits
435  *
436  * This is used to track and log extra bits that should not be there in
437  * parport_ip32_write_control() and parport_ip32_frob_control().  It is only
438  * defined if %DEBUG_PARPORT_IP32 >= 1.
439  */
440 #if DEBUG_PARPORT_IP32 >= 1
441 #define CHECK_EXTRA_BITS(p, b, m)					\
442 	do {								\
443 		unsigned int __b = (b), __m = (m);			\
444 		if (__b & ~__m)						\
445 			pr_debug1(PPIP32 "%s: extra bits in %s(%s): "	\
446 				  "0x%02x/0x%02x\n",			\
447 				  (p)->name, __func__, #b, __b, __m);	\
448 	} while (0)
449 #else /* DEBUG_PARPORT_IP32 < 1 */
450 #define CHECK_EXTRA_BITS(...)	do { } while (0)
451 #endif
452 
453 /*--- IP32 parallel port DMA operations --------------------------------*/
454 
455 /**
456  * struct parport_ip32_dma_data - private data needed for DMA operation
457  * @dir:	DMA direction (from or to device)
458  * @buf:	buffer physical address
459  * @len:	buffer length
460  * @next:	address of next bytes to DMA transfer
461  * @left:	number of bytes remaining
462  * @ctx:	next context to write (0: context_a; 1: context_b)
463  * @irq_on:	are the DMA IRQs currently enabled?
464  * @lock:	spinlock to protect access to the structure
465  */
466 struct parport_ip32_dma_data {
467 	enum dma_data_direction		dir;
468 	dma_addr_t			buf;
469 	dma_addr_t			next;
470 	size_t				len;
471 	size_t				left;
472 	unsigned int			ctx;
473 	unsigned int			irq_on;
474 	spinlock_t			lock;
475 };
476 static struct parport_ip32_dma_data parport_ip32_dma;
477 
478 /**
479  * parport_ip32_dma_setup_context - setup next DMA context
480  * @limit:	maximum data size for the context
481  *
482  * The alignment constraints must be verified in caller function, and the
483  * parameter @limit must be set accordingly.
484  */
485 static void parport_ip32_dma_setup_context(unsigned int limit)
486 {
487 	unsigned long flags;
488 
489 	spin_lock_irqsave(&parport_ip32_dma.lock, flags);
490 	if (parport_ip32_dma.left > 0) {
491 		/* Note: ctxreg is "volatile" here only because
492 		 * mace->perif.ctrl.parport.context_a and context_b are
493 		 * "volatile".  */
494 		volatile u64 __iomem *ctxreg = (parport_ip32_dma.ctx == 0) ?
495 			&mace->perif.ctrl.parport.context_a :
496 			&mace->perif.ctrl.parport.context_b;
497 		u64 count;
498 		u64 ctxval;
499 		if (parport_ip32_dma.left <= limit) {
500 			count = parport_ip32_dma.left;
501 			ctxval = MACEPAR_CONTEXT_LASTFLAG;
502 		} else {
503 			count = limit;
504 			ctxval = 0;
505 		}
506 
507 		pr_trace(NULL,
508 			 "(%u): 0x%04x:0x%04x, %u -> %u%s",
509 			 limit,
510 			 (unsigned int)parport_ip32_dma.buf,
511 			 (unsigned int)parport_ip32_dma.next,
512 			 (unsigned int)count,
513 			 parport_ip32_dma.ctx, ctxval ? "*" : "");
514 
515 		ctxval |= parport_ip32_dma.next &
516 			MACEPAR_CONTEXT_BASEADDR_MASK;
517 		ctxval |= ((count - 1) << MACEPAR_CONTEXT_DATALEN_SHIFT) &
518 			MACEPAR_CONTEXT_DATALEN_MASK;
519 		writeq(ctxval, ctxreg);
520 		parport_ip32_dma.next += count;
521 		parport_ip32_dma.left -= count;
522 		parport_ip32_dma.ctx ^= 1U;
523 	}
524 	/* If there is nothing more to send, disable IRQs to avoid to
525 	 * face an IRQ storm which can lock the machine.  Disable them
526 	 * only once. */
527 	if (parport_ip32_dma.left == 0 && parport_ip32_dma.irq_on) {
528 		pr_debug(PPIP32 "IRQ off (ctx)\n");
529 		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
530 		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
531 		parport_ip32_dma.irq_on = 0;
532 	}
533 	spin_unlock_irqrestore(&parport_ip32_dma.lock, flags);
534 }
535 
536 /**
537  * parport_ip32_dma_interrupt - DMA interrupt handler
538  * @irq:	interrupt number
539  * @dev_id:	unused
540  */
541 static irqreturn_t parport_ip32_dma_interrupt(int irq, void *dev_id)
542 {
543 	if (parport_ip32_dma.left)
544 		pr_trace(NULL, "(%d): ctx=%d", irq, parport_ip32_dma.ctx);
545 	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
546 	return IRQ_HANDLED;
547 }
548 
549 #if DEBUG_PARPORT_IP32
550 static irqreturn_t parport_ip32_merr_interrupt(int irq, void *dev_id)
551 {
552 	pr_trace1(NULL, "(%d)", irq);
553 	return IRQ_HANDLED;
554 }
555 #endif
556 
557 /**
558  * parport_ip32_dma_start - begins a DMA transfer
559  * @p:		partport to work on
560  * @dir:	DMA direction: DMA_TO_DEVICE or DMA_FROM_DEVICE
561  * @addr:	pointer to data buffer
562  * @count:	buffer size
563  *
564  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
565  * correctly balanced.
566  */
567 static int parport_ip32_dma_start(struct parport *p,
568 		enum dma_data_direction dir, void *addr, size_t count)
569 {
570 	unsigned int limit;
571 	u64 ctrl;
572 
573 	pr_trace(NULL, "(%d, %lu)", dir, (unsigned long)count);
574 
575 	/* FIXME - add support for DMA_FROM_DEVICE.  In this case, buffer must
576 	 * be 64 bytes aligned. */
577 	BUG_ON(dir != DMA_TO_DEVICE);
578 
579 	/* Reset DMA controller */
580 	ctrl = MACEPAR_CTLSTAT_RESET;
581 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
582 
583 	/* DMA IRQs should normally be enabled */
584 	if (!parport_ip32_dma.irq_on) {
585 		WARN_ON(1);
586 		enable_irq(MACEISA_PAR_CTXA_IRQ);
587 		enable_irq(MACEISA_PAR_CTXB_IRQ);
588 		parport_ip32_dma.irq_on = 1;
589 	}
590 
591 	/* Prepare DMA pointers */
592 	parport_ip32_dma.dir = dir;
593 	parport_ip32_dma.buf = dma_map_single(&p->bus_dev, addr, count, dir);
594 	parport_ip32_dma.len = count;
595 	parport_ip32_dma.next = parport_ip32_dma.buf;
596 	parport_ip32_dma.left = parport_ip32_dma.len;
597 	parport_ip32_dma.ctx = 0;
598 
599 	/* Setup DMA direction and first two contexts */
600 	ctrl = (dir == DMA_TO_DEVICE) ? 0 : MACEPAR_CTLSTAT_DIRECTION;
601 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
602 	/* Single transfer should not cross a 4K page boundary */
603 	limit = MACEPAR_CONTEXT_DATA_BOUND -
604 		(parport_ip32_dma.next & (MACEPAR_CONTEXT_DATA_BOUND - 1));
605 	parport_ip32_dma_setup_context(limit);
606 	parport_ip32_dma_setup_context(MACEPAR_CONTEXT_DATA_BOUND);
607 
608 	/* Real start of DMA transfer */
609 	ctrl |= MACEPAR_CTLSTAT_ENABLE;
610 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
611 
612 	return 0;
613 }
614 
615 /**
616  * parport_ip32_dma_stop - ends a running DMA transfer
617  * @p:		partport to work on
618  *
619  * Calls to parport_ip32_dma_start() and parport_ip32_dma_stop() must be
620  * correctly balanced.
621  */
622 static void parport_ip32_dma_stop(struct parport *p)
623 {
624 	u64 ctx_a;
625 	u64 ctx_b;
626 	u64 ctrl;
627 	u64 diag;
628 	size_t res[2];	/* {[0] = res_a, [1] = res_b} */
629 
630 	pr_trace(NULL, "()");
631 
632 	/* Disable IRQs */
633 	spin_lock_irq(&parport_ip32_dma.lock);
634 	if (parport_ip32_dma.irq_on) {
635 		pr_debug(PPIP32 "IRQ off (stop)\n");
636 		disable_irq_nosync(MACEISA_PAR_CTXA_IRQ);
637 		disable_irq_nosync(MACEISA_PAR_CTXB_IRQ);
638 		parport_ip32_dma.irq_on = 0;
639 	}
640 	spin_unlock_irq(&parport_ip32_dma.lock);
641 	/* Force IRQ synchronization, even if the IRQs were disabled
642 	 * elsewhere. */
643 	synchronize_irq(MACEISA_PAR_CTXA_IRQ);
644 	synchronize_irq(MACEISA_PAR_CTXB_IRQ);
645 
646 	/* Stop DMA transfer */
647 	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
648 	ctrl &= ~MACEPAR_CTLSTAT_ENABLE;
649 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
650 
651 	/* Adjust residue (parport_ip32_dma.left) */
652 	ctx_a = readq(&mace->perif.ctrl.parport.context_a);
653 	ctx_b = readq(&mace->perif.ctrl.parport.context_b);
654 	ctrl = readq(&mace->perif.ctrl.parport.cntlstat);
655 	diag = readq(&mace->perif.ctrl.parport.diagnostic);
656 	res[0] = (ctrl & MACEPAR_CTLSTAT_CTXA_VALID) ?
657 		1 + ((ctx_a & MACEPAR_CONTEXT_DATALEN_MASK) >>
658 		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
659 		0;
660 	res[1] = (ctrl & MACEPAR_CTLSTAT_CTXB_VALID) ?
661 		1 + ((ctx_b & MACEPAR_CONTEXT_DATALEN_MASK) >>
662 		     MACEPAR_CONTEXT_DATALEN_SHIFT) :
663 		0;
664 	if (diag & MACEPAR_DIAG_DMACTIVE)
665 		res[(diag & MACEPAR_DIAG_CTXINUSE) != 0] =
666 			1 + ((diag & MACEPAR_DIAG_CTRMASK) >>
667 			     MACEPAR_DIAG_CTRSHIFT);
668 	parport_ip32_dma.left += res[0] + res[1];
669 
670 	/* Reset DMA controller, and re-enable IRQs */
671 	ctrl = MACEPAR_CTLSTAT_RESET;
672 	writeq(ctrl, &mace->perif.ctrl.parport.cntlstat);
673 	pr_debug(PPIP32 "IRQ on (stop)\n");
674 	enable_irq(MACEISA_PAR_CTXA_IRQ);
675 	enable_irq(MACEISA_PAR_CTXB_IRQ);
676 	parport_ip32_dma.irq_on = 1;
677 
678 	dma_unmap_single(&p->bus_dev, parport_ip32_dma.buf,
679 			 parport_ip32_dma.len, parport_ip32_dma.dir);
680 }
681 
682 /**
683  * parport_ip32_dma_get_residue - get residue from last DMA transfer
684  *
685  * Returns the number of bytes remaining from last DMA transfer.
686  */
687 static inline size_t parport_ip32_dma_get_residue(void)
688 {
689 	return parport_ip32_dma.left;
690 }
691 
692 /**
693  * parport_ip32_dma_register - initialize DMA engine
694  *
695  * Returns zero for success.
696  */
697 static int parport_ip32_dma_register(void)
698 {
699 	int err;
700 
701 	spin_lock_init(&parport_ip32_dma.lock);
702 	parport_ip32_dma.irq_on = 1;
703 
704 	/* Reset DMA controller */
705 	writeq(MACEPAR_CTLSTAT_RESET, &mace->perif.ctrl.parport.cntlstat);
706 
707 	/* Request IRQs */
708 	err = request_irq(MACEISA_PAR_CTXA_IRQ, parport_ip32_dma_interrupt,
709 			  0, "parport_ip32", NULL);
710 	if (err)
711 		goto fail_a;
712 	err = request_irq(MACEISA_PAR_CTXB_IRQ, parport_ip32_dma_interrupt,
713 			  0, "parport_ip32", NULL);
714 	if (err)
715 		goto fail_b;
716 #if DEBUG_PARPORT_IP32
717 	/* FIXME - what is this IRQ for? */
718 	err = request_irq(MACEISA_PAR_MERR_IRQ, parport_ip32_merr_interrupt,
719 			  0, "parport_ip32", NULL);
720 	if (err)
721 		goto fail_merr;
722 #endif
723 	return 0;
724 
725 #if DEBUG_PARPORT_IP32
726 fail_merr:
727 	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
728 #endif
729 fail_b:
730 	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
731 fail_a:
732 	return err;
733 }
734 
735 /**
736  * parport_ip32_dma_unregister - release and free resources for DMA engine
737  */
738 static void parport_ip32_dma_unregister(void)
739 {
740 #if DEBUG_PARPORT_IP32
741 	free_irq(MACEISA_PAR_MERR_IRQ, NULL);
742 #endif
743 	free_irq(MACEISA_PAR_CTXB_IRQ, NULL);
744 	free_irq(MACEISA_PAR_CTXA_IRQ, NULL);
745 }
746 
747 /*--- Interrupt handlers and associates --------------------------------*/
748 
749 /**
750  * parport_ip32_wakeup - wakes up code waiting for an interrupt
751  * @p:		pointer to &struct parport
752  */
753 static inline void parport_ip32_wakeup(struct parport *p)
754 {
755 	struct parport_ip32_private * const priv = p->physport->private_data;
756 	complete(&priv->irq_complete);
757 }
758 
759 /**
760  * parport_ip32_interrupt - interrupt handler
761  * @irq:	interrupt number
762  * @dev_id:	pointer to &struct parport
763  *
764  * Caught interrupts are forwarded to the upper parport layer if IRQ_mode is
765  * %PARPORT_IP32_IRQ_FWD.
766  */
767 static irqreturn_t parport_ip32_interrupt(int irq, void *dev_id)
768 {
769 	struct parport * const p = dev_id;
770 	struct parport_ip32_private * const priv = p->physport->private_data;
771 	enum parport_ip32_irq_mode irq_mode = priv->irq_mode;
772 
773 	switch (irq_mode) {
774 	case PARPORT_IP32_IRQ_FWD:
775 		return parport_irq_handler(irq, dev_id);
776 
777 	case PARPORT_IP32_IRQ_HERE:
778 		parport_ip32_wakeup(p);
779 		break;
780 	}
781 
782 	return IRQ_HANDLED;
783 }
784 
785 /*--- Some utility function to manipulate ECR register -----------------*/
786 
787 /**
788  * parport_ip32_read_econtrol - read contents of the ECR register
789  * @p:		pointer to &struct parport
790  */
791 static inline unsigned int parport_ip32_read_econtrol(struct parport *p)
792 {
793 	struct parport_ip32_private * const priv = p->physport->private_data;
794 	return readb(priv->regs.ecr);
795 }
796 
797 /**
798  * parport_ip32_write_econtrol - write new contents to the ECR register
799  * @p:		pointer to &struct parport
800  * @c:		new value to write
801  */
802 static inline void parport_ip32_write_econtrol(struct parport *p,
803 					       unsigned int c)
804 {
805 	struct parport_ip32_private * const priv = p->physport->private_data;
806 	writeb(c, priv->regs.ecr);
807 }
808 
809 /**
810  * parport_ip32_frob_econtrol - change bits from the ECR register
811  * @p:		pointer to &struct parport
812  * @mask:	bit mask of bits to change
813  * @val:	new value for changed bits
814  *
815  * Read from the ECR, mask out the bits in @mask, exclusive-or with the bits
816  * in @val, and write the result to the ECR.
817  */
818 static inline void parport_ip32_frob_econtrol(struct parport *p,
819 					      unsigned int mask,
820 					      unsigned int val)
821 {
822 	unsigned int c;
823 	c = (parport_ip32_read_econtrol(p) & ~mask) ^ val;
824 	parport_ip32_write_econtrol(p, c);
825 }
826 
827 /**
828  * parport_ip32_set_mode - change mode of ECP port
829  * @p:		pointer to &struct parport
830  * @mode:	new mode to write in ECR
831  *
832  * ECR is reset in a sane state (interrupts and DMA disabled), and placed in
833  * mode @mode.  Go through PS2 mode if needed.
834  */
835 static void parport_ip32_set_mode(struct parport *p, unsigned int mode)
836 {
837 	unsigned int omode;
838 
839 	mode &= ECR_MODE_MASK;
840 	omode = parport_ip32_read_econtrol(p) & ECR_MODE_MASK;
841 
842 	if (!(mode == ECR_MODE_SPP || mode == ECR_MODE_PS2
843 	      || omode == ECR_MODE_SPP || omode == ECR_MODE_PS2)) {
844 		/* We have to go through PS2 mode */
845 		unsigned int ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
846 		parport_ip32_write_econtrol(p, ecr);
847 	}
848 	parport_ip32_write_econtrol(p, mode | ECR_nERRINTR | ECR_SERVINTR);
849 }
850 
851 /*--- Basic functions needed for parport -------------------------------*/
852 
853 /**
854  * parport_ip32_read_data - return current contents of the DATA register
855  * @p:		pointer to &struct parport
856  */
857 static inline unsigned char parport_ip32_read_data(struct parport *p)
858 {
859 	struct parport_ip32_private * const priv = p->physport->private_data;
860 	return readb(priv->regs.data);
861 }
862 
863 /**
864  * parport_ip32_write_data - set new contents for the DATA register
865  * @p:		pointer to &struct parport
866  * @d:		new value to write
867  */
868 static inline void parport_ip32_write_data(struct parport *p, unsigned char d)
869 {
870 	struct parport_ip32_private * const priv = p->physport->private_data;
871 	writeb(d, priv->regs.data);
872 }
873 
874 /**
875  * parport_ip32_read_status - return current contents of the DSR register
876  * @p:		pointer to &struct parport
877  */
878 static inline unsigned char parport_ip32_read_status(struct parport *p)
879 {
880 	struct parport_ip32_private * const priv = p->physport->private_data;
881 	return readb(priv->regs.dsr);
882 }
883 
884 /**
885  * __parport_ip32_read_control - return cached contents of the DCR register
886  * @p:		pointer to &struct parport
887  */
888 static inline unsigned int __parport_ip32_read_control(struct parport *p)
889 {
890 	struct parport_ip32_private * const priv = p->physport->private_data;
891 	return priv->dcr_cache; /* use soft copy */
892 }
893 
894 /**
895  * __parport_ip32_write_control - set new contents for the DCR register
896  * @p:		pointer to &struct parport
897  * @c:		new value to write
898  */
899 static inline void __parport_ip32_write_control(struct parport *p,
900 						unsigned int c)
901 {
902 	struct parport_ip32_private * const priv = p->physport->private_data;
903 	CHECK_EXTRA_BITS(p, c, priv->dcr_writable);
904 	c &= priv->dcr_writable; /* only writable bits */
905 	writeb(c, priv->regs.dcr);
906 	priv->dcr_cache = c;		/* update soft copy */
907 }
908 
909 /**
910  * __parport_ip32_frob_control - change bits from the DCR register
911  * @p:		pointer to &struct parport
912  * @mask:	bit mask of bits to change
913  * @val:	new value for changed bits
914  *
915  * This is equivalent to read from the DCR, mask out the bits in @mask,
916  * exclusive-or with the bits in @val, and write the result to the DCR.
917  * Actually, the cached contents of the DCR is used.
918  */
919 static inline void __parport_ip32_frob_control(struct parport *p,
920 					       unsigned int mask,
921 					       unsigned int val)
922 {
923 	unsigned int c;
924 	c = (__parport_ip32_read_control(p) & ~mask) ^ val;
925 	__parport_ip32_write_control(p, c);
926 }
927 
928 /**
929  * parport_ip32_read_control - return cached contents of the DCR register
930  * @p:		pointer to &struct parport
931  *
932  * The return value is masked so as to only return the value of %DCR_STROBE,
933  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
934  */
935 static inline unsigned char parport_ip32_read_control(struct parport *p)
936 {
937 	const unsigned int rm =
938 		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
939 	return __parport_ip32_read_control(p) & rm;
940 }
941 
942 /**
943  * parport_ip32_write_control - set new contents for the DCR register
944  * @p:		pointer to &struct parport
945  * @c:		new value to write
946  *
947  * The value is masked so as to only change the value of %DCR_STROBE,
948  * %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
949  */
950 static inline void parport_ip32_write_control(struct parport *p,
951 					      unsigned char c)
952 {
953 	const unsigned int wm =
954 		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
955 	CHECK_EXTRA_BITS(p, c, wm);
956 	__parport_ip32_frob_control(p, wm, c & wm);
957 }
958 
959 /**
960  * parport_ip32_frob_control - change bits from the DCR register
961  * @p:		pointer to &struct parport
962  * @mask:	bit mask of bits to change
963  * @val:	new value for changed bits
964  *
965  * This differs from __parport_ip32_frob_control() in that it only allows to
966  * change the value of %DCR_STROBE, %DCR_AUTOFD, %DCR_nINIT, and %DCR_SELECT.
967  */
968 static inline unsigned char parport_ip32_frob_control(struct parport *p,
969 						      unsigned char mask,
970 						      unsigned char val)
971 {
972 	const unsigned int wm =
973 		DCR_STROBE | DCR_AUTOFD | DCR_nINIT | DCR_SELECT;
974 	CHECK_EXTRA_BITS(p, mask, wm);
975 	CHECK_EXTRA_BITS(p, val, wm);
976 	__parport_ip32_frob_control(p, mask & wm, val & wm);
977 	return parport_ip32_read_control(p);
978 }
979 
980 /**
981  * parport_ip32_disable_irq - disable interrupts on the rising edge of nACK
982  * @p:		pointer to &struct parport
983  */
984 static inline void parport_ip32_disable_irq(struct parport *p)
985 {
986 	__parport_ip32_frob_control(p, DCR_IRQ, 0);
987 }
988 
989 /**
990  * parport_ip32_enable_irq - enable interrupts on the rising edge of nACK
991  * @p:		pointer to &struct parport
992  */
993 static inline void parport_ip32_enable_irq(struct parport *p)
994 {
995 	__parport_ip32_frob_control(p, DCR_IRQ, DCR_IRQ);
996 }
997 
998 /**
999  * parport_ip32_data_forward - enable host-to-peripheral communications
1000  * @p:		pointer to &struct parport
1001  *
1002  * Enable the data line drivers, for 8-bit host-to-peripheral communications.
1003  */
1004 static inline void parport_ip32_data_forward(struct parport *p)
1005 {
1006 	__parport_ip32_frob_control(p, DCR_DIR, 0);
1007 }
1008 
1009 /**
1010  * parport_ip32_data_reverse - enable peripheral-to-host communications
1011  * @p:		pointer to &struct parport
1012  *
1013  * Place the data bus in a high impedance state, if @p->modes has the
1014  * PARPORT_MODE_TRISTATE bit set.
1015  */
1016 static inline void parport_ip32_data_reverse(struct parport *p)
1017 {
1018 	__parport_ip32_frob_control(p, DCR_DIR, DCR_DIR);
1019 }
1020 
1021 /**
1022  * parport_ip32_init_state - for core parport code
1023  * @dev:	pointer to &struct pardevice
1024  * @s:		pointer to &struct parport_state to initialize
1025  */
1026 static void parport_ip32_init_state(struct pardevice *dev,
1027 				    struct parport_state *s)
1028 {
1029 	s->u.ip32.dcr = DCR_SELECT | DCR_nINIT;
1030 	s->u.ip32.ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1031 }
1032 
1033 /**
1034  * parport_ip32_save_state - for core parport code
1035  * @p:		pointer to &struct parport
1036  * @s:		pointer to &struct parport_state to save state to
1037  */
1038 static void parport_ip32_save_state(struct parport *p,
1039 				    struct parport_state *s)
1040 {
1041 	s->u.ip32.dcr = __parport_ip32_read_control(p);
1042 	s->u.ip32.ecr = parport_ip32_read_econtrol(p);
1043 }
1044 
1045 /**
1046  * parport_ip32_restore_state - for core parport code
1047  * @p:		pointer to &struct parport
1048  * @s:		pointer to &struct parport_state to restore state from
1049  */
1050 static void parport_ip32_restore_state(struct parport *p,
1051 				       struct parport_state *s)
1052 {
1053 	parport_ip32_set_mode(p, s->u.ip32.ecr & ECR_MODE_MASK);
1054 	parport_ip32_write_econtrol(p, s->u.ip32.ecr);
1055 	__parport_ip32_write_control(p, s->u.ip32.dcr);
1056 }
1057 
1058 /*--- EPP mode functions -----------------------------------------------*/
1059 
1060 /**
1061  * parport_ip32_clear_epp_timeout - clear Timeout bit in EPP mode
1062  * @p:		pointer to &struct parport
1063  *
1064  * Returns 1 if the Timeout bit is clear, and 0 otherwise.
1065  */
1066 static unsigned int parport_ip32_clear_epp_timeout(struct parport *p)
1067 {
1068 	struct parport_ip32_private * const priv = p->physport->private_data;
1069 	unsigned int cleared;
1070 
1071 	if (!(parport_ip32_read_status(p) & DSR_TIMEOUT))
1072 		cleared = 1;
1073 	else {
1074 		unsigned int r;
1075 		/* To clear timeout some chips require double read */
1076 		parport_ip32_read_status(p);
1077 		r = parport_ip32_read_status(p);
1078 		/* Some reset by writing 1 */
1079 		writeb(r | DSR_TIMEOUT, priv->regs.dsr);
1080 		/* Others by writing 0 */
1081 		writeb(r & ~DSR_TIMEOUT, priv->regs.dsr);
1082 
1083 		r = parport_ip32_read_status(p);
1084 		cleared = !(r & DSR_TIMEOUT);
1085 	}
1086 
1087 	pr_trace(p, "(): %s", cleared ? "cleared" : "failed");
1088 	return cleared;
1089 }
1090 
1091 /**
1092  * parport_ip32_epp_read - generic EPP read function
1093  * @eppreg:	I/O register to read from
1094  * @p:		pointer to &struct parport
1095  * @buf:	buffer to store read data
1096  * @len:	length of buffer @buf
1097  * @flags:	may be PARPORT_EPP_FAST
1098  */
1099 static size_t parport_ip32_epp_read(void __iomem *eppreg,
1100 				    struct parport *p, void *buf,
1101 				    size_t len, int flags)
1102 {
1103 	struct parport_ip32_private * const priv = p->physport->private_data;
1104 	size_t got;
1105 	parport_ip32_set_mode(p, ECR_MODE_EPP);
1106 	parport_ip32_data_reverse(p);
1107 	parport_ip32_write_control(p, DCR_nINIT);
1108 	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1109 		readsb(eppreg, buf, len);
1110 		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1111 			parport_ip32_clear_epp_timeout(p);
1112 			return -EIO;
1113 		}
1114 		got = len;
1115 	} else {
1116 		u8 *bufp = buf;
1117 		for (got = 0; got < len; got++) {
1118 			*bufp++ = readb(eppreg);
1119 			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1120 				parport_ip32_clear_epp_timeout(p);
1121 				break;
1122 			}
1123 		}
1124 	}
1125 	parport_ip32_data_forward(p);
1126 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1127 	return got;
1128 }
1129 
1130 /**
1131  * parport_ip32_epp_write - generic EPP write function
1132  * @eppreg:	I/O register to write to
1133  * @p:		pointer to &struct parport
1134  * @buf:	buffer of data to write
1135  * @len:	length of buffer @buf
1136  * @flags:	may be PARPORT_EPP_FAST
1137  */
1138 static size_t parport_ip32_epp_write(void __iomem *eppreg,
1139 				     struct parport *p, const void *buf,
1140 				     size_t len, int flags)
1141 {
1142 	struct parport_ip32_private * const priv = p->physport->private_data;
1143 	size_t written;
1144 	parport_ip32_set_mode(p, ECR_MODE_EPP);
1145 	parport_ip32_data_forward(p);
1146 	parport_ip32_write_control(p, DCR_nINIT);
1147 	if ((flags & PARPORT_EPP_FAST) && (len > 1)) {
1148 		writesb(eppreg, buf, len);
1149 		if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1150 			parport_ip32_clear_epp_timeout(p);
1151 			return -EIO;
1152 		}
1153 		written = len;
1154 	} else {
1155 		const u8 *bufp = buf;
1156 		for (written = 0; written < len; written++) {
1157 			writeb(*bufp++, eppreg);
1158 			if (readb(priv->regs.dsr) & DSR_TIMEOUT) {
1159 				parport_ip32_clear_epp_timeout(p);
1160 				break;
1161 			}
1162 		}
1163 	}
1164 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1165 	return written;
1166 }
1167 
1168 /**
1169  * parport_ip32_epp_read_data - read a block of data in EPP mode
1170  * @p:		pointer to &struct parport
1171  * @buf:	buffer to store read data
1172  * @len:	length of buffer @buf
1173  * @flags:	may be PARPORT_EPP_FAST
1174  */
1175 static size_t parport_ip32_epp_read_data(struct parport *p, void *buf,
1176 					 size_t len, int flags)
1177 {
1178 	struct parport_ip32_private * const priv = p->physport->private_data;
1179 	return parport_ip32_epp_read(priv->regs.eppData0, p, buf, len, flags);
1180 }
1181 
1182 /**
1183  * parport_ip32_epp_write_data - write a block of data in EPP mode
1184  * @p:		pointer to &struct parport
1185  * @buf:	buffer of data to write
1186  * @len:	length of buffer @buf
1187  * @flags:	may be PARPORT_EPP_FAST
1188  */
1189 static size_t parport_ip32_epp_write_data(struct parport *p, const void *buf,
1190 					  size_t len, int flags)
1191 {
1192 	struct parport_ip32_private * const priv = p->physport->private_data;
1193 	return parport_ip32_epp_write(priv->regs.eppData0, p, buf, len, flags);
1194 }
1195 
1196 /**
1197  * parport_ip32_epp_read_addr - read a block of addresses in EPP mode
1198  * @p:		pointer to &struct parport
1199  * @buf:	buffer to store read data
1200  * @len:	length of buffer @buf
1201  * @flags:	may be PARPORT_EPP_FAST
1202  */
1203 static size_t parport_ip32_epp_read_addr(struct parport *p, void *buf,
1204 					 size_t len, int flags)
1205 {
1206 	struct parport_ip32_private * const priv = p->physport->private_data;
1207 	return parport_ip32_epp_read(priv->regs.eppAddr, p, buf, len, flags);
1208 }
1209 
1210 /**
1211  * parport_ip32_epp_write_addr - write a block of addresses in EPP mode
1212  * @p:		pointer to &struct parport
1213  * @buf:	buffer of data to write
1214  * @len:	length of buffer @buf
1215  * @flags:	may be PARPORT_EPP_FAST
1216  */
1217 static size_t parport_ip32_epp_write_addr(struct parport *p, const void *buf,
1218 					  size_t len, int flags)
1219 {
1220 	struct parport_ip32_private * const priv = p->physport->private_data;
1221 	return parport_ip32_epp_write(priv->regs.eppAddr, p, buf, len, flags);
1222 }
1223 
1224 /*--- ECP mode functions (FIFO) ----------------------------------------*/
1225 
1226 /**
1227  * parport_ip32_fifo_wait_break - check if the waiting function should return
1228  * @p:		pointer to &struct parport
1229  * @expire:	timeout expiring date, in jiffies
1230  *
1231  * parport_ip32_fifo_wait_break() checks if the waiting function should return
1232  * immediately or not.  The break conditions are:
1233  *	- expired timeout;
1234  *	- a pending signal;
1235  *	- nFault asserted low.
1236  * This function also calls cond_resched().
1237  */
1238 static unsigned int parport_ip32_fifo_wait_break(struct parport *p,
1239 						 unsigned long expire)
1240 {
1241 	cond_resched();
1242 	if (time_after(jiffies, expire)) {
1243 		pr_debug1(PPIP32 "%s: FIFO write timed out\n", p->name);
1244 		return 1;
1245 	}
1246 	if (signal_pending(current)) {
1247 		pr_debug1(PPIP32 "%s: Signal pending\n", p->name);
1248 		return 1;
1249 	}
1250 	if (!(parport_ip32_read_status(p) & DSR_nFAULT)) {
1251 		pr_debug1(PPIP32 "%s: nFault asserted low\n", p->name);
1252 		return 1;
1253 	}
1254 	return 0;
1255 }
1256 
1257 /**
1258  * parport_ip32_fwp_wait_polling - wait for FIFO to empty (polling)
1259  * @p:		pointer to &struct parport
1260  *
1261  * Returns the number of bytes that can safely be written in the FIFO.  A
1262  * return value of zero means that the calling function should terminate as
1263  * fast as possible.
1264  */
1265 static unsigned int parport_ip32_fwp_wait_polling(struct parport *p)
1266 {
1267 	struct parport_ip32_private * const priv = p->physport->private_data;
1268 	struct parport * const physport = p->physport;
1269 	unsigned long expire;
1270 	unsigned int count;
1271 	unsigned int ecr;
1272 
1273 	expire = jiffies + physport->cad->timeout;
1274 	count = 0;
1275 	while (1) {
1276 		if (parport_ip32_fifo_wait_break(p, expire))
1277 			break;
1278 
1279 		/* Check FIFO state.  We do nothing when the FIFO is nor full,
1280 		 * nor empty.  It appears that the FIFO full bit is not always
1281 		 * reliable, the FIFO state is sometimes wrongly reported, and
1282 		 * the chip gets confused if we give it another byte. */
1283 		ecr = parport_ip32_read_econtrol(p);
1284 		if (ecr & ECR_F_EMPTY) {
1285 			/* FIFO is empty, fill it up */
1286 			count = priv->fifo_depth;
1287 			break;
1288 		}
1289 
1290 		/* Wait a moment... */
1291 		udelay(FIFO_POLLING_INTERVAL);
1292 	} /* while (1) */
1293 
1294 	return count;
1295 }
1296 
1297 /**
1298  * parport_ip32_fwp_wait_interrupt - wait for FIFO to empty (interrupt-driven)
1299  * @p:		pointer to &struct parport
1300  *
1301  * Returns the number of bytes that can safely be written in the FIFO.  A
1302  * return value of zero means that the calling function should terminate as
1303  * fast as possible.
1304  */
1305 static unsigned int parport_ip32_fwp_wait_interrupt(struct parport *p)
1306 {
1307 	static unsigned int lost_interrupt = 0;
1308 	struct parport_ip32_private * const priv = p->physport->private_data;
1309 	struct parport * const physport = p->physport;
1310 	unsigned long nfault_timeout;
1311 	unsigned long expire;
1312 	unsigned int count;
1313 	unsigned int ecr;
1314 
1315 	nfault_timeout = min((unsigned long)physport->cad->timeout,
1316 			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1317 	expire = jiffies + physport->cad->timeout;
1318 	count = 0;
1319 	while (1) {
1320 		if (parport_ip32_fifo_wait_break(p, expire))
1321 			break;
1322 
1323 		/* Initialize mutex used to take interrupts into account */
1324 		reinit_completion(&priv->irq_complete);
1325 
1326 		/* Enable serviceIntr */
1327 		parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1328 
1329 		/* Enabling serviceIntr while the FIFO is empty does not
1330 		 * always generate an interrupt, so check for emptiness
1331 		 * now. */
1332 		ecr = parport_ip32_read_econtrol(p);
1333 		if (!(ecr & ECR_F_EMPTY)) {
1334 			/* FIFO is not empty: wait for an interrupt or a
1335 			 * timeout to occur */
1336 			wait_for_completion_interruptible_timeout(
1337 				&priv->irq_complete, nfault_timeout);
1338 			ecr = parport_ip32_read_econtrol(p);
1339 			if ((ecr & ECR_F_EMPTY) && !(ecr & ECR_SERVINTR)
1340 			    && !lost_interrupt) {
1341 				pr_warn(PPIP32 "%s: lost interrupt in %s\n",
1342 					p->name, __func__);
1343 				lost_interrupt = 1;
1344 			}
1345 		}
1346 
1347 		/* Disable serviceIntr */
1348 		parport_ip32_frob_econtrol(p, ECR_SERVINTR, ECR_SERVINTR);
1349 
1350 		/* Check FIFO state */
1351 		if (ecr & ECR_F_EMPTY) {
1352 			/* FIFO is empty, fill it up */
1353 			count = priv->fifo_depth;
1354 			break;
1355 		} else if (ecr & ECR_SERVINTR) {
1356 			/* FIFO is not empty, but we know that can safely push
1357 			 * writeIntrThreshold bytes into it */
1358 			count = priv->writeIntrThreshold;
1359 			break;
1360 		}
1361 		/* FIFO is not empty, and we did not get any interrupt.
1362 		 * Either it's time to check for nFault, or a signal is
1363 		 * pending.  This is verified in
1364 		 * parport_ip32_fifo_wait_break(), so we continue the loop. */
1365 	} /* while (1) */
1366 
1367 	return count;
1368 }
1369 
1370 /**
1371  * parport_ip32_fifo_write_block_pio - write a block of data (PIO mode)
1372  * @p:		pointer to &struct parport
1373  * @buf:	buffer of data to write
1374  * @len:	length of buffer @buf
1375  *
1376  * Uses PIO to write the contents of the buffer @buf into the parallel port
1377  * FIFO.  Returns the number of bytes that were actually written.  It can work
1378  * with or without the help of interrupts.  The parallel port must be
1379  * correctly initialized before calling parport_ip32_fifo_write_block_pio().
1380  */
1381 static size_t parport_ip32_fifo_write_block_pio(struct parport *p,
1382 						const void *buf, size_t len)
1383 {
1384 	struct parport_ip32_private * const priv = p->physport->private_data;
1385 	const u8 *bufp = buf;
1386 	size_t left = len;
1387 
1388 	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1389 
1390 	while (left > 0) {
1391 		unsigned int count;
1392 
1393 		count = (p->irq == PARPORT_IRQ_NONE) ?
1394 			parport_ip32_fwp_wait_polling(p) :
1395 			parport_ip32_fwp_wait_interrupt(p);
1396 		if (count == 0)
1397 			break;	/* Transmission should be stopped */
1398 		if (count > left)
1399 			count = left;
1400 		if (count == 1) {
1401 			writeb(*bufp, priv->regs.fifo);
1402 			bufp++, left--;
1403 		} else {
1404 			writesb(priv->regs.fifo, bufp, count);
1405 			bufp += count, left -= count;
1406 		}
1407 	}
1408 
1409 	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1410 
1411 	return len - left;
1412 }
1413 
1414 /**
1415  * parport_ip32_fifo_write_block_dma - write a block of data (DMA mode)
1416  * @p:		pointer to &struct parport
1417  * @buf:	buffer of data to write
1418  * @len:	length of buffer @buf
1419  *
1420  * Uses DMA to write the contents of the buffer @buf into the parallel port
1421  * FIFO.  Returns the number of bytes that were actually written.  The
1422  * parallel port must be correctly initialized before calling
1423  * parport_ip32_fifo_write_block_dma().
1424  */
1425 static size_t parport_ip32_fifo_write_block_dma(struct parport *p,
1426 						const void *buf, size_t len)
1427 {
1428 	struct parport_ip32_private * const priv = p->physport->private_data;
1429 	struct parport * const physport = p->physport;
1430 	unsigned long nfault_timeout;
1431 	unsigned long expire;
1432 	size_t written;
1433 	unsigned int ecr;
1434 
1435 	priv->irq_mode = PARPORT_IP32_IRQ_HERE;
1436 
1437 	parport_ip32_dma_start(p, DMA_TO_DEVICE, (void *)buf, len);
1438 	reinit_completion(&priv->irq_complete);
1439 	parport_ip32_frob_econtrol(p, ECR_DMAEN | ECR_SERVINTR, ECR_DMAEN);
1440 
1441 	nfault_timeout = min((unsigned long)physport->cad->timeout,
1442 			     msecs_to_jiffies(FIFO_NFAULT_TIMEOUT));
1443 	expire = jiffies + physport->cad->timeout;
1444 	while (1) {
1445 		if (parport_ip32_fifo_wait_break(p, expire))
1446 			break;
1447 		wait_for_completion_interruptible_timeout(&priv->irq_complete,
1448 							  nfault_timeout);
1449 		ecr = parport_ip32_read_econtrol(p);
1450 		if (ecr & ECR_SERVINTR)
1451 			break;	/* DMA transfer just finished */
1452 	}
1453 	parport_ip32_dma_stop(p);
1454 	written = len - parport_ip32_dma_get_residue();
1455 
1456 	priv->irq_mode = PARPORT_IP32_IRQ_FWD;
1457 
1458 	return written;
1459 }
1460 
1461 /**
1462  * parport_ip32_fifo_write_block - write a block of data
1463  * @p:		pointer to &struct parport
1464  * @buf:	buffer of data to write
1465  * @len:	length of buffer @buf
1466  *
1467  * Uses PIO or DMA to write the contents of the buffer @buf into the parallel
1468  * p FIFO.  Returns the number of bytes that were actually written.
1469  */
1470 static size_t parport_ip32_fifo_write_block(struct parport *p,
1471 					    const void *buf, size_t len)
1472 {
1473 	size_t written = 0;
1474 	if (len)
1475 		/* FIXME - Maybe some threshold value should be set for @len
1476 		 * under which we revert to PIO mode? */
1477 		written = (p->modes & PARPORT_MODE_DMA) ?
1478 			parport_ip32_fifo_write_block_dma(p, buf, len) :
1479 			parport_ip32_fifo_write_block_pio(p, buf, len);
1480 	return written;
1481 }
1482 
1483 /**
1484  * parport_ip32_drain_fifo - wait for FIFO to empty
1485  * @p:		pointer to &struct parport
1486  * @timeout:	timeout, in jiffies
1487  *
1488  * This function waits for FIFO to empty.  It returns 1 when FIFO is empty, or
1489  * 0 if the timeout @timeout is reached before, or if a signal is pending.
1490  */
1491 static unsigned int parport_ip32_drain_fifo(struct parport *p,
1492 					    unsigned long timeout)
1493 {
1494 	unsigned long expire = jiffies + timeout;
1495 	unsigned int polling_interval;
1496 	unsigned int counter;
1497 
1498 	/* Busy wait for approx. 200us */
1499 	for (counter = 0; counter < 40; counter++) {
1500 		if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1501 			break;
1502 		if (time_after(jiffies, expire))
1503 			break;
1504 		if (signal_pending(current))
1505 			break;
1506 		udelay(5);
1507 	}
1508 	/* Poll slowly.  Polling interval starts with 1 millisecond, and is
1509 	 * increased exponentially until 128.  */
1510 	polling_interval = 1; /* msecs */
1511 	while (!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY)) {
1512 		if (time_after_eq(jiffies, expire))
1513 			break;
1514 		msleep_interruptible(polling_interval);
1515 		if (signal_pending(current))
1516 			break;
1517 		if (polling_interval < 128)
1518 			polling_interval *= 2;
1519 	}
1520 
1521 	return !!(parport_ip32_read_econtrol(p) & ECR_F_EMPTY);
1522 }
1523 
1524 /**
1525  * parport_ip32_get_fifo_residue - reset FIFO
1526  * @p:		pointer to &struct parport
1527  * @mode:	current operation mode (ECR_MODE_PPF or ECR_MODE_ECP)
1528  *
1529  * This function resets FIFO, and returns the number of bytes remaining in it.
1530  */
1531 static unsigned int parport_ip32_get_fifo_residue(struct parport *p,
1532 						  unsigned int mode)
1533 {
1534 	struct parport_ip32_private * const priv = p->physport->private_data;
1535 	unsigned int residue;
1536 	unsigned int cnfga;
1537 
1538 	/* FIXME - We are missing one byte if the printer is off-line.  I
1539 	 * don't know how to detect this.  It looks that the full bit is not
1540 	 * always reliable.  For the moment, the problem is avoided in most
1541 	 * cases by testing for BUSY in parport_ip32_compat_write_data().
1542 	 */
1543 	if (parport_ip32_read_econtrol(p) & ECR_F_EMPTY)
1544 		residue = 0;
1545 	else {
1546 		pr_debug1(PPIP32 "%s: FIFO is stuck\n", p->name);
1547 
1548 		/* Stop all transfers.
1549 		 *
1550 		 * Microsoft's document instructs to drive DCR_STROBE to 0,
1551 		 * but it doesn't work (at least in Compatibility mode, not
1552 		 * tested in ECP mode).  Switching directly to Test mode (as
1553 		 * in parport_pc) is not an option: it does confuse the port,
1554 		 * ECP service interrupts are no more working after that.  A
1555 		 * hard reset is then needed to revert to a sane state.
1556 		 *
1557 		 * Let's hope that the FIFO is really stuck and that the
1558 		 * peripheral doesn't wake up now.
1559 		 */
1560 		parport_ip32_frob_control(p, DCR_STROBE, 0);
1561 
1562 		/* Fill up FIFO */
1563 		for (residue = priv->fifo_depth; residue > 0; residue--) {
1564 			if (parport_ip32_read_econtrol(p) & ECR_F_FULL)
1565 				break;
1566 			writeb(0x00, priv->regs.fifo);
1567 		}
1568 	}
1569 	if (residue)
1570 		pr_debug1(PPIP32 "%s: %d PWord%s left in FIFO\n",
1571 			  p->name, residue,
1572 			  (residue == 1) ? " was" : "s were");
1573 
1574 	/* Now reset the FIFO */
1575 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1576 
1577 	/* Host recovery for ECP mode */
1578 	if (mode == ECR_MODE_ECP) {
1579 		parport_ip32_data_reverse(p);
1580 		parport_ip32_frob_control(p, DCR_nINIT, 0);
1581 		if (parport_wait_peripheral(p, DSR_PERROR, 0))
1582 			pr_debug1(PPIP32 "%s: PEerror timeout 1 in %s\n",
1583 				  p->name, __func__);
1584 		parport_ip32_frob_control(p, DCR_STROBE, DCR_STROBE);
1585 		parport_ip32_frob_control(p, DCR_nINIT, DCR_nINIT);
1586 		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR))
1587 			pr_debug1(PPIP32 "%s: PEerror timeout 2 in %s\n",
1588 				  p->name, __func__);
1589 	}
1590 
1591 	/* Adjust residue if needed */
1592 	parport_ip32_set_mode(p, ECR_MODE_CFG);
1593 	cnfga = readb(priv->regs.cnfgA);
1594 	if (!(cnfga & CNFGA_nBYTEINTRANS)) {
1595 		pr_debug1(PPIP32 "%s: cnfgA contains 0x%02x\n",
1596 			  p->name, cnfga);
1597 		pr_debug1(PPIP32 "%s: Accounting for extra byte\n",
1598 			  p->name);
1599 		residue++;
1600 	}
1601 
1602 	/* Don't care about partial PWords since we do not support
1603 	 * PWord != 1 byte. */
1604 
1605 	/* Back to forward PS2 mode. */
1606 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1607 	parport_ip32_data_forward(p);
1608 
1609 	return residue;
1610 }
1611 
1612 /**
1613  * parport_ip32_compat_write_data - write a block of data in SPP mode
1614  * @p:		pointer to &struct parport
1615  * @buf:	buffer of data to write
1616  * @len:	length of buffer @buf
1617  * @flags:	ignored
1618  */
1619 static size_t parport_ip32_compat_write_data(struct parport *p,
1620 					     const void *buf, size_t len,
1621 					     int flags)
1622 {
1623 	static unsigned int ready_before = 1;
1624 	struct parport_ip32_private * const priv = p->physport->private_data;
1625 	struct parport * const physport = p->physport;
1626 	size_t written = 0;
1627 
1628 	/* Special case: a timeout of zero means we cannot call schedule().
1629 	 * Also if O_NONBLOCK is set then use the default implementation. */
1630 	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1631 		return parport_ieee1284_write_compat(p, buf, len, flags);
1632 
1633 	/* Reset FIFO, go in forward mode, and disable ackIntEn */
1634 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1635 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1636 	parport_ip32_data_forward(p);
1637 	parport_ip32_disable_irq(p);
1638 	parport_ip32_set_mode(p, ECR_MODE_PPF);
1639 	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1640 
1641 	/* Wait for peripheral to become ready */
1642 	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1643 				       DSR_nBUSY | DSR_nFAULT)) {
1644 		/* Avoid to flood the logs */
1645 		if (ready_before)
1646 			pr_info(PPIP32 "%s: not ready in %s\n",
1647 				p->name, __func__);
1648 		ready_before = 0;
1649 		goto stop;
1650 	}
1651 	ready_before = 1;
1652 
1653 	written = parport_ip32_fifo_write_block(p, buf, len);
1654 
1655 	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1656 	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1657 
1658 	/* Check for a potential residue */
1659 	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_PPF);
1660 
1661 	/* Then, wait for BUSY to get low. */
1662 	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1663 		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1664 		       p->name, __func__);
1665 
1666 stop:
1667 	/* Reset FIFO */
1668 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1669 	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1670 
1671 	return written;
1672 }
1673 
1674 /*
1675  * FIXME - Insert here parport_ip32_ecp_read_data().
1676  */
1677 
1678 /**
1679  * parport_ip32_ecp_write_data - write a block of data in ECP mode
1680  * @p:		pointer to &struct parport
1681  * @buf:	buffer of data to write
1682  * @len:	length of buffer @buf
1683  * @flags:	ignored
1684  */
1685 static size_t parport_ip32_ecp_write_data(struct parport *p,
1686 					  const void *buf, size_t len,
1687 					  int flags)
1688 {
1689 	static unsigned int ready_before = 1;
1690 	struct parport_ip32_private * const priv = p->physport->private_data;
1691 	struct parport * const physport = p->physport;
1692 	size_t written = 0;
1693 
1694 	/* Special case: a timeout of zero means we cannot call schedule().
1695 	 * Also if O_NONBLOCK is set then use the default implementation. */
1696 	if (physport->cad->timeout <= PARPORT_INACTIVITY_O_NONBLOCK)
1697 		return parport_ieee1284_ecp_write_data(p, buf, len, flags);
1698 
1699 	/* Negotiate to forward mode if necessary. */
1700 	if (physport->ieee1284.phase != IEEE1284_PH_FWD_IDLE) {
1701 		/* Event 47: Set nInit high. */
1702 		parport_ip32_frob_control(p, DCR_nINIT | DCR_AUTOFD,
1703 					     DCR_nINIT | DCR_AUTOFD);
1704 
1705 		/* Event 49: PError goes high. */
1706 		if (parport_wait_peripheral(p, DSR_PERROR, DSR_PERROR)) {
1707 			printk(KERN_DEBUG PPIP32 "%s: PError timeout in %s\n",
1708 			       p->name, __func__);
1709 			physport->ieee1284.phase = IEEE1284_PH_ECP_DIR_UNKNOWN;
1710 			return 0;
1711 		}
1712 	}
1713 
1714 	/* Reset FIFO, go in forward mode, and disable ackIntEn */
1715 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1716 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1717 	parport_ip32_data_forward(p);
1718 	parport_ip32_disable_irq(p);
1719 	parport_ip32_set_mode(p, ECR_MODE_ECP);
1720 	physport->ieee1284.phase = IEEE1284_PH_FWD_DATA;
1721 
1722 	/* Wait for peripheral to become ready */
1723 	if (parport_wait_peripheral(p, DSR_nBUSY | DSR_nFAULT,
1724 				       DSR_nBUSY | DSR_nFAULT)) {
1725 		/* Avoid to flood the logs */
1726 		if (ready_before)
1727 			pr_info(PPIP32 "%s: not ready in %s\n",
1728 				p->name, __func__);
1729 		ready_before = 0;
1730 		goto stop;
1731 	}
1732 	ready_before = 1;
1733 
1734 	written = parport_ip32_fifo_write_block(p, buf, len);
1735 
1736 	/* Wait FIFO to empty.  Timeout is proportional to FIFO_depth.  */
1737 	parport_ip32_drain_fifo(p, physport->cad->timeout * priv->fifo_depth);
1738 
1739 	/* Check for a potential residue */
1740 	written -= parport_ip32_get_fifo_residue(p, ECR_MODE_ECP);
1741 
1742 	/* Then, wait for BUSY to get low. */
1743 	if (parport_wait_peripheral(p, DSR_nBUSY, DSR_nBUSY))
1744 		printk(KERN_DEBUG PPIP32 "%s: BUSY timeout in %s\n",
1745 		       p->name, __func__);
1746 
1747 stop:
1748 	/* Reset FIFO */
1749 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1750 	physport->ieee1284.phase = IEEE1284_PH_FWD_IDLE;
1751 
1752 	return written;
1753 }
1754 
1755 /*
1756  * FIXME - Insert here parport_ip32_ecp_write_addr().
1757  */
1758 
1759 /*--- Default parport operations ---------------------------------------*/
1760 
1761 static const struct parport_operations parport_ip32_ops __initconst = {
1762 	.write_data		= parport_ip32_write_data,
1763 	.read_data		= parport_ip32_read_data,
1764 
1765 	.write_control		= parport_ip32_write_control,
1766 	.read_control		= parport_ip32_read_control,
1767 	.frob_control		= parport_ip32_frob_control,
1768 
1769 	.read_status		= parport_ip32_read_status,
1770 
1771 	.enable_irq		= parport_ip32_enable_irq,
1772 	.disable_irq		= parport_ip32_disable_irq,
1773 
1774 	.data_forward		= parport_ip32_data_forward,
1775 	.data_reverse		= parport_ip32_data_reverse,
1776 
1777 	.init_state		= parport_ip32_init_state,
1778 	.save_state		= parport_ip32_save_state,
1779 	.restore_state		= parport_ip32_restore_state,
1780 
1781 	.epp_write_data		= parport_ieee1284_epp_write_data,
1782 	.epp_read_data		= parport_ieee1284_epp_read_data,
1783 	.epp_write_addr		= parport_ieee1284_epp_write_addr,
1784 	.epp_read_addr		= parport_ieee1284_epp_read_addr,
1785 
1786 	.ecp_write_data		= parport_ieee1284_ecp_write_data,
1787 	.ecp_read_data		= parport_ieee1284_ecp_read_data,
1788 	.ecp_write_addr		= parport_ieee1284_ecp_write_addr,
1789 
1790 	.compat_write_data	= parport_ieee1284_write_compat,
1791 	.nibble_read_data	= parport_ieee1284_read_nibble,
1792 	.byte_read_data		= parport_ieee1284_read_byte,
1793 
1794 	.owner			= THIS_MODULE,
1795 };
1796 
1797 /*--- Device detection -------------------------------------------------*/
1798 
1799 /**
1800  * parport_ip32_ecp_supported - check for an ECP port
1801  * @p:		pointer to the &parport structure
1802  *
1803  * Returns 1 if an ECP port is found, and 0 otherwise.  This function actually
1804  * checks if an Extended Control Register seems to be present.  On successful
1805  * return, the port is placed in SPP mode.
1806  */
1807 static __init unsigned int parport_ip32_ecp_supported(struct parport *p)
1808 {
1809 	struct parport_ip32_private * const priv = p->physport->private_data;
1810 	unsigned int ecr;
1811 
1812 	ecr = ECR_MODE_PS2 | ECR_nERRINTR | ECR_SERVINTR;
1813 	writeb(ecr, priv->regs.ecr);
1814 	if (readb(priv->regs.ecr) != (ecr | ECR_F_EMPTY))
1815 		goto fail;
1816 
1817 	pr_probe(p, "Found working ECR register\n");
1818 	parport_ip32_set_mode(p, ECR_MODE_SPP);
1819 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
1820 	return 1;
1821 
1822 fail:
1823 	pr_probe(p, "ECR register not found\n");
1824 	return 0;
1825 }
1826 
1827 /**
1828  * parport_ip32_fifo_supported - check for FIFO parameters
1829  * @p:		pointer to the &parport structure
1830  *
1831  * Check for FIFO parameters of an Extended Capabilities Port.  Returns 1 on
1832  * success, and 0 otherwise.  Adjust FIFO parameters in the parport structure.
1833  * On return, the port is placed in SPP mode.
1834  */
1835 static __init unsigned int parport_ip32_fifo_supported(struct parport *p)
1836 {
1837 	struct parport_ip32_private * const priv = p->physport->private_data;
1838 	unsigned int configa, configb;
1839 	unsigned int pword;
1840 	unsigned int i;
1841 
1842 	/* Configuration mode */
1843 	parport_ip32_set_mode(p, ECR_MODE_CFG);
1844 	configa = readb(priv->regs.cnfgA);
1845 	configb = readb(priv->regs.cnfgB);
1846 
1847 	/* Find out PWord size */
1848 	switch (configa & CNFGA_ID_MASK) {
1849 	case CNFGA_ID_8:
1850 		pword = 1;
1851 		break;
1852 	case CNFGA_ID_16:
1853 		pword = 2;
1854 		break;
1855 	case CNFGA_ID_32:
1856 		pword = 4;
1857 		break;
1858 	default:
1859 		pr_probe(p, "Unknown implementation ID: 0x%0x\n",
1860 			 (configa & CNFGA_ID_MASK) >> CNFGA_ID_SHIFT);
1861 		goto fail;
1862 		break;
1863 	}
1864 	if (pword != 1) {
1865 		pr_probe(p, "Unsupported PWord size: %u\n", pword);
1866 		goto fail;
1867 	}
1868 	priv->pword = pword;
1869 	pr_probe(p, "PWord is %u bits\n", 8 * priv->pword);
1870 
1871 	/* Check for compression support */
1872 	writeb(configb | CNFGB_COMPRESS, priv->regs.cnfgB);
1873 	if (readb(priv->regs.cnfgB) & CNFGB_COMPRESS)
1874 		pr_probe(p, "Hardware compression detected (unsupported)\n");
1875 	writeb(configb & ~CNFGB_COMPRESS, priv->regs.cnfgB);
1876 
1877 	/* Reset FIFO and go in test mode (no interrupt, no DMA) */
1878 	parport_ip32_set_mode(p, ECR_MODE_TST);
1879 
1880 	/* FIFO must be empty now */
1881 	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1882 		pr_probe(p, "FIFO not reset\n");
1883 		goto fail;
1884 	}
1885 
1886 	/* Find out FIFO depth. */
1887 	priv->fifo_depth = 0;
1888 	for (i = 0; i < 1024; i++) {
1889 		if (readb(priv->regs.ecr) & ECR_F_FULL) {
1890 			/* FIFO full */
1891 			priv->fifo_depth = i;
1892 			break;
1893 		}
1894 		writeb((u8)i, priv->regs.fifo);
1895 	}
1896 	if (i >= 1024) {
1897 		pr_probe(p, "Can't fill FIFO\n");
1898 		goto fail;
1899 	}
1900 	if (!priv->fifo_depth) {
1901 		pr_probe(p, "Can't get FIFO depth\n");
1902 		goto fail;
1903 	}
1904 	pr_probe(p, "FIFO is %u PWords deep\n", priv->fifo_depth);
1905 
1906 	/* Enable interrupts */
1907 	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1908 
1909 	/* Find out writeIntrThreshold: number of PWords we know we can write
1910 	 * if we get an interrupt. */
1911 	priv->writeIntrThreshold = 0;
1912 	for (i = 0; i < priv->fifo_depth; i++) {
1913 		if (readb(priv->regs.fifo) != (u8)i) {
1914 			pr_probe(p, "Invalid data in FIFO\n");
1915 			goto fail;
1916 		}
1917 		if (!priv->writeIntrThreshold
1918 		    && readb(priv->regs.ecr) & ECR_SERVINTR)
1919 			/* writeIntrThreshold reached */
1920 			priv->writeIntrThreshold = i + 1;
1921 		if (i + 1 < priv->fifo_depth
1922 		    && readb(priv->regs.ecr) & ECR_F_EMPTY) {
1923 			/* FIFO empty before the last byte? */
1924 			pr_probe(p, "Data lost in FIFO\n");
1925 			goto fail;
1926 		}
1927 	}
1928 	if (!priv->writeIntrThreshold) {
1929 		pr_probe(p, "Can't get writeIntrThreshold\n");
1930 		goto fail;
1931 	}
1932 	pr_probe(p, "writeIntrThreshold is %u\n", priv->writeIntrThreshold);
1933 
1934 	/* FIFO must be empty now */
1935 	if (!(readb(priv->regs.ecr) & ECR_F_EMPTY)) {
1936 		pr_probe(p, "Can't empty FIFO\n");
1937 		goto fail;
1938 	}
1939 
1940 	/* Reset FIFO */
1941 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1942 	/* Set reverse direction (must be in PS2 mode) */
1943 	parport_ip32_data_reverse(p);
1944 	/* Test FIFO, no interrupt, no DMA */
1945 	parport_ip32_set_mode(p, ECR_MODE_TST);
1946 	/* Enable interrupts */
1947 	parport_ip32_frob_econtrol(p, ECR_SERVINTR, 0);
1948 
1949 	/* Find out readIntrThreshold: number of PWords we can read if we get
1950 	 * an interrupt. */
1951 	priv->readIntrThreshold = 0;
1952 	for (i = 0; i < priv->fifo_depth; i++) {
1953 		writeb(0xaa, priv->regs.fifo);
1954 		if (readb(priv->regs.ecr) & ECR_SERVINTR) {
1955 			/* readIntrThreshold reached */
1956 			priv->readIntrThreshold = i + 1;
1957 			break;
1958 		}
1959 	}
1960 	if (!priv->readIntrThreshold) {
1961 		pr_probe(p, "Can't get readIntrThreshold\n");
1962 		goto fail;
1963 	}
1964 	pr_probe(p, "readIntrThreshold is %u\n", priv->readIntrThreshold);
1965 
1966 	/* Reset ECR */
1967 	parport_ip32_set_mode(p, ECR_MODE_PS2);
1968 	parport_ip32_data_forward(p);
1969 	parport_ip32_set_mode(p, ECR_MODE_SPP);
1970 	return 1;
1971 
1972 fail:
1973 	priv->fifo_depth = 0;
1974 	parport_ip32_set_mode(p, ECR_MODE_SPP);
1975 	return 0;
1976 }
1977 
1978 /*--- Initialization code ----------------------------------------------*/
1979 
1980 /**
1981  * parport_ip32_make_isa_registers - compute (ISA) register addresses
1982  * @regs:	pointer to &struct parport_ip32_regs to fill
1983  * @base:	base address of standard and EPP registers
1984  * @base_hi:	base address of ECP registers
1985  * @regshift:	how much to shift register offset by
1986  *
1987  * Compute register addresses, according to the ISA standard.  The addresses
1988  * of the standard and EPP registers are computed from address @base.  The
1989  * addresses of the ECP registers are computed from address @base_hi.
1990  */
1991 static void __init
1992 parport_ip32_make_isa_registers(struct parport_ip32_regs *regs,
1993 				void __iomem *base, void __iomem *base_hi,
1994 				unsigned int regshift)
1995 {
1996 #define r_base(offset)    ((u8 __iomem *)base    + ((offset) << regshift))
1997 #define r_base_hi(offset) ((u8 __iomem *)base_hi + ((offset) << regshift))
1998 	*regs = (struct parport_ip32_regs){
1999 		.data		= r_base(0),
2000 		.dsr		= r_base(1),
2001 		.dcr		= r_base(2),
2002 		.eppAddr	= r_base(3),
2003 		.eppData0	= r_base(4),
2004 		.eppData1	= r_base(5),
2005 		.eppData2	= r_base(6),
2006 		.eppData3	= r_base(7),
2007 		.ecpAFifo	= r_base(0),
2008 		.fifo		= r_base_hi(0),
2009 		.cnfgA		= r_base_hi(0),
2010 		.cnfgB		= r_base_hi(1),
2011 		.ecr		= r_base_hi(2)
2012 	};
2013 #undef r_base_hi
2014 #undef r_base
2015 }
2016 
2017 /**
2018  * parport_ip32_probe_port - probe and register IP32 built-in parallel port
2019  *
2020  * Returns the new allocated &parport structure.  On error, an error code is
2021  * encoded in return value with the ERR_PTR function.
2022  */
2023 static __init struct parport *parport_ip32_probe_port(void)
2024 {
2025 	struct parport_ip32_regs regs;
2026 	struct parport_ip32_private *priv = NULL;
2027 	struct parport_operations *ops = NULL;
2028 	struct parport *p = NULL;
2029 	int err;
2030 
2031 	parport_ip32_make_isa_registers(&regs, &mace->isa.parallel,
2032 					&mace->isa.ecp1284, 8 /* regshift */);
2033 
2034 	ops = kmalloc(sizeof(struct parport_operations), GFP_KERNEL);
2035 	priv = kmalloc(sizeof(struct parport_ip32_private), GFP_KERNEL);
2036 	p = parport_register_port(0, PARPORT_IRQ_NONE, PARPORT_DMA_NONE, ops);
2037 	if (ops == NULL || priv == NULL || p == NULL) {
2038 		err = -ENOMEM;
2039 		goto fail;
2040 	}
2041 	p->base = MACE_BASE + offsetof(struct sgi_mace, isa.parallel);
2042 	p->base_hi = MACE_BASE + offsetof(struct sgi_mace, isa.ecp1284);
2043 	p->private_data = priv;
2044 
2045 	*ops = parport_ip32_ops;
2046 	*priv = (struct parport_ip32_private){
2047 		.regs			= regs,
2048 		.dcr_writable		= DCR_DIR | DCR_SELECT | DCR_nINIT |
2049 					  DCR_AUTOFD | DCR_STROBE,
2050 		.irq_mode		= PARPORT_IP32_IRQ_FWD,
2051 	};
2052 	init_completion(&priv->irq_complete);
2053 
2054 	/* Probe port. */
2055 	if (!parport_ip32_ecp_supported(p)) {
2056 		err = -ENODEV;
2057 		goto fail;
2058 	}
2059 	parport_ip32_dump_state(p, "begin init", 0);
2060 
2061 	/* We found what looks like a working ECR register.  Simply assume
2062 	 * that all modes are correctly supported.  Enable basic modes. */
2063 	p->modes = PARPORT_MODE_PCSPP | PARPORT_MODE_SAFEININT;
2064 	p->modes |= PARPORT_MODE_TRISTATE;
2065 
2066 	if (!parport_ip32_fifo_supported(p)) {
2067 		pr_warn(PPIP32 "%s: error: FIFO disabled\n", p->name);
2068 		/* Disable hardware modes depending on a working FIFO. */
2069 		features &= ~PARPORT_IP32_ENABLE_SPP;
2070 		features &= ~PARPORT_IP32_ENABLE_ECP;
2071 		/* DMA is not needed if FIFO is not supported.  */
2072 		features &= ~PARPORT_IP32_ENABLE_DMA;
2073 	}
2074 
2075 	/* Request IRQ */
2076 	if (features & PARPORT_IP32_ENABLE_IRQ) {
2077 		int irq = MACEISA_PARALLEL_IRQ;
2078 		if (request_irq(irq, parport_ip32_interrupt, 0, p->name, p)) {
2079 			pr_warn(PPIP32 "%s: error: IRQ disabled\n", p->name);
2080 			/* DMA cannot work without interrupts. */
2081 			features &= ~PARPORT_IP32_ENABLE_DMA;
2082 		} else {
2083 			pr_probe(p, "Interrupt support enabled\n");
2084 			p->irq = irq;
2085 			priv->dcr_writable |= DCR_IRQ;
2086 		}
2087 	}
2088 
2089 	/* Allocate DMA resources */
2090 	if (features & PARPORT_IP32_ENABLE_DMA) {
2091 		if (parport_ip32_dma_register())
2092 			pr_warn(PPIP32 "%s: error: DMA disabled\n", p->name);
2093 		else {
2094 			pr_probe(p, "DMA support enabled\n");
2095 			p->dma = 0; /* arbitrary value != PARPORT_DMA_NONE */
2096 			p->modes |= PARPORT_MODE_DMA;
2097 		}
2098 	}
2099 
2100 	if (features & PARPORT_IP32_ENABLE_SPP) {
2101 		/* Enable compatibility FIFO mode */
2102 		p->ops->compat_write_data = parport_ip32_compat_write_data;
2103 		p->modes |= PARPORT_MODE_COMPAT;
2104 		pr_probe(p, "Hardware support for SPP mode enabled\n");
2105 	}
2106 	if (features & PARPORT_IP32_ENABLE_EPP) {
2107 		/* Set up access functions to use EPP hardware. */
2108 		p->ops->epp_read_data = parport_ip32_epp_read_data;
2109 		p->ops->epp_write_data = parport_ip32_epp_write_data;
2110 		p->ops->epp_read_addr = parport_ip32_epp_read_addr;
2111 		p->ops->epp_write_addr = parport_ip32_epp_write_addr;
2112 		p->modes |= PARPORT_MODE_EPP;
2113 		pr_probe(p, "Hardware support for EPP mode enabled\n");
2114 	}
2115 	if (features & PARPORT_IP32_ENABLE_ECP) {
2116 		/* Enable ECP FIFO mode */
2117 		p->ops->ecp_write_data = parport_ip32_ecp_write_data;
2118 		/* FIXME - not implemented */
2119 /*		p->ops->ecp_read_data  = parport_ip32_ecp_read_data; */
2120 /*		p->ops->ecp_write_addr = parport_ip32_ecp_write_addr; */
2121 		p->modes |= PARPORT_MODE_ECP;
2122 		pr_probe(p, "Hardware support for ECP mode enabled\n");
2123 	}
2124 
2125 	/* Initialize the port with sensible values */
2126 	parport_ip32_set_mode(p, ECR_MODE_PS2);
2127 	parport_ip32_write_control(p, DCR_SELECT | DCR_nINIT);
2128 	parport_ip32_data_forward(p);
2129 	parport_ip32_disable_irq(p);
2130 	parport_ip32_write_data(p, 0x00);
2131 	parport_ip32_dump_state(p, "end init", 0);
2132 
2133 	/* Print out what we found */
2134 	pr_info("%s: SGI IP32 at 0x%lx (0x%lx)", p->name, p->base, p->base_hi);
2135 	if (p->irq != PARPORT_IRQ_NONE)
2136 		pr_cont(", irq %d", p->irq);
2137 	pr_cont(" [");
2138 #define printmode(x)							\
2139 do {									\
2140 	if (p->modes & PARPORT_MODE_##x)				\
2141 		pr_cont("%s%s", f++ ? "," : "", #x);			\
2142 } while (0)
2143 	{
2144 		unsigned int f = 0;
2145 		printmode(PCSPP);
2146 		printmode(TRISTATE);
2147 		printmode(COMPAT);
2148 		printmode(EPP);
2149 		printmode(ECP);
2150 		printmode(DMA);
2151 	}
2152 #undef printmode
2153 	pr_cont("]\n");
2154 
2155 	parport_announce_port(p);
2156 	return p;
2157 
2158 fail:
2159 	if (p)
2160 		parport_put_port(p);
2161 	kfree(priv);
2162 	kfree(ops);
2163 	return ERR_PTR(err);
2164 }
2165 
2166 /**
2167  * parport_ip32_unregister_port - unregister a parallel port
2168  * @p:		pointer to the &struct parport
2169  *
2170  * Unregisters a parallel port and free previously allocated resources
2171  * (memory, IRQ, ...).
2172  */
2173 static __exit void parport_ip32_unregister_port(struct parport *p)
2174 {
2175 	struct parport_ip32_private * const priv = p->physport->private_data;
2176 	struct parport_operations *ops = p->ops;
2177 
2178 	parport_remove_port(p);
2179 	if (p->modes & PARPORT_MODE_DMA)
2180 		parport_ip32_dma_unregister();
2181 	if (p->irq != PARPORT_IRQ_NONE)
2182 		free_irq(p->irq, p);
2183 	parport_put_port(p);
2184 	kfree(priv);
2185 	kfree(ops);
2186 }
2187 
2188 /**
2189  * parport_ip32_init - module initialization function
2190  */
2191 static int __init parport_ip32_init(void)
2192 {
2193 	pr_info(PPIP32 "SGI IP32 built-in parallel port driver v0.6\n");
2194 	this_port = parport_ip32_probe_port();
2195 	return PTR_ERR_OR_ZERO(this_port);
2196 }
2197 
2198 /**
2199  * parport_ip32_exit - module termination function
2200  */
2201 static void __exit parport_ip32_exit(void)
2202 {
2203 	parport_ip32_unregister_port(this_port);
2204 }
2205 
2206 /*--- Module stuff -----------------------------------------------------*/
2207 
2208 MODULE_AUTHOR("Arnaud Giersch <arnaud.giersch@free.fr>");
2209 MODULE_DESCRIPTION("SGI IP32 built-in parallel port driver");
2210 MODULE_LICENSE("GPL");
2211 MODULE_VERSION("0.6");		/* update in parport_ip32_init() too */
2212 
2213 module_init(parport_ip32_init);
2214 module_exit(parport_ip32_exit);
2215 
2216 module_param(verbose_probing, bool, S_IRUGO);
2217 MODULE_PARM_DESC(verbose_probing, "Log chit-chat during initialization");
2218 
2219 module_param(features, uint, S_IRUGO);
2220 MODULE_PARM_DESC(features,
2221 		 "Bit mask of features to enable"
2222 		 ", bit 0: IRQ support"
2223 		 ", bit 1: DMA support"
2224 		 ", bit 2: hardware SPP mode"
2225 		 ", bit 3: hardware EPP mode"
2226 		 ", bit 4: hardware ECP mode");
2227