xref: /linux/drivers/parisc/sba_iommu.c (revision f6154d8babbb8a98f0d3ea325aafae2e33bfd8be)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 **  System Bus Adapter (SBA) I/O MMU manager
4 **
5 **	(c) Copyright 2000-2004 Grant Grundler <grundler @ parisc-linux x org>
6 **	(c) Copyright 2004 Naresh Kumar Inna <knaresh at india x hp x com>
7 **	(c) Copyright 2000-2004 Hewlett-Packard Company
8 **
9 **	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
10 **
11 **
12 **
13 ** This module initializes the IOC (I/O Controller) found on B1000/C3000/
14 ** J5000/J7000/N-class/L-class machines and their successors.
15 **
16 ** FIXME: add DMA hint support programming in both sba and lba modules.
17 */
18 
19 #include <linux/types.h>
20 #include <linux/kernel.h>
21 #include <linux/spinlock.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 
25 #include <linux/mm.h>
26 #include <linux/string.h>
27 #include <linux/pci.h>
28 #include <linux/dma-map-ops.h>
29 #include <linux/scatterlist.h>
30 #include <linux/iommu-helper.h>
31 /*
32  * The semantics of 64 register access on 32bit systems can't be guaranteed
33  * by the C standard, we hope the _lo_hi() macros defining readq and writeq
34  * here will behave as expected.
35  */
36 #include <linux/io-64-nonatomic-lo-hi.h>
37 
38 #include <asm/byteorder.h>
39 #include <asm/io.h>
40 #include <asm/dma.h>		/* for DMA_CHUNK_SIZE */
41 
42 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
43 
44 #include <linux/proc_fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/module.h>
47 
48 #include <asm/ropes.h>
49 #include <asm/page.h>		/* for PAGE0 */
50 #include <asm/pdc.h>		/* for PDC_MODEL_* */
51 #include <asm/pdcpat.h>		/* for is_pdc_pat() */
52 #include <asm/parisc-device.h>
53 
54 #include "iommu.h"
55 
56 #define MODULE_NAME "SBA"
57 
58 /*
59 ** The number of debug flags is a clue - this code is fragile.
60 ** Don't even think about messing with it unless you have
61 ** plenty of 710's to sacrifice to the computer gods. :^)
62 */
63 #undef DEBUG_SBA_INIT
64 #undef DEBUG_SBA_RUN
65 #undef DEBUG_SBA_RUN_SG
66 #undef DEBUG_SBA_RESOURCE
67 #undef ASSERT_PDIR_SANITY
68 #undef DEBUG_LARGE_SG_ENTRIES
69 #undef DEBUG_DMB_TRAP
70 
71 #ifdef DEBUG_SBA_INIT
72 #define DBG_INIT(x...)	printk(x)
73 #else
74 #define DBG_INIT(x...)
75 #endif
76 
77 #ifdef DEBUG_SBA_RUN
78 #define DBG_RUN(x...)	printk(x)
79 #else
80 #define DBG_RUN(x...)
81 #endif
82 
83 #ifdef DEBUG_SBA_RUN_SG
84 #define DBG_RUN_SG(x...)	printk(x)
85 #else
86 #define DBG_RUN_SG(x...)
87 #endif
88 
89 
90 #ifdef DEBUG_SBA_RESOURCE
91 #define DBG_RES(x...)	printk(x)
92 #else
93 #define DBG_RES(x...)
94 #endif
95 
96 #define DEFAULT_DMA_HINT_REG	0
97 
98 struct sba_device *sba_list;
99 EXPORT_SYMBOL_GPL(sba_list);
100 
101 static unsigned long ioc_needs_fdc = 0;
102 
103 /* global count of IOMMUs in the system */
104 static unsigned int global_ioc_cnt = 0;
105 
106 /* PA8700 (Piranha 2.2) bug workaround */
107 static unsigned long piranha_bad_128k = 0;
108 
109 /* Looks nice and keeps the compiler happy */
110 #define SBA_DEV(d) ((struct sba_device *) (d))
111 
112 #ifdef CONFIG_AGP_PARISC
113 #define SBA_AGP_SUPPORT
114 #endif /*CONFIG_AGP_PARISC*/
115 
116 #ifdef SBA_AGP_SUPPORT
117 static int sba_reserve_agpgart = 1;
118 module_param(sba_reserve_agpgart, int, 0444);
119 MODULE_PARM_DESC(sba_reserve_agpgart, "Reserve half of IO pdir as AGPGART");
120 #endif
121 
122 static struct proc_dir_entry *proc_runway_root __ro_after_init;
123 static struct proc_dir_entry *proc_mckinley_root __ro_after_init;
124 
125 /************************************
126 ** SBA register read and write support
127 **
128 ** BE WARNED: register writes are posted.
129 **  (ie follow writes which must reach HW with a read)
130 **
131 ** Superdome (in particular, REO) allows only 64-bit CSR accesses.
132 */
133 #define READ_REG32(addr)	readl(addr)
134 #define READ_REG64(addr)	readq(addr)
135 #define WRITE_REG32(val, addr)	writel((val), (addr))
136 #define WRITE_REG64(val, addr)	writeq((val), (addr))
137 
138 #ifdef CONFIG_64BIT
139 #define READ_REG(addr)		READ_REG64(addr)
140 #define WRITE_REG(value, addr)	WRITE_REG64(value, addr)
141 #else
142 #define READ_REG(addr)		READ_REG32(addr)
143 #define WRITE_REG(value, addr)	WRITE_REG32(value, addr)
144 #endif
145 
146 #ifdef DEBUG_SBA_INIT
147 
148 /* NOTE: When CONFIG_64BIT isn't defined, READ_REG64() is two 32-bit reads */
149 
150 /**
151  * sba_dump_ranges - debugging only - print ranges assigned to this IOA
152  * @hpa: base address of the sba
153  *
154  * Print the MMIO and IO Port address ranges forwarded by an Astro/Ike/RIO
155  * IO Adapter (aka Bus Converter).
156  */
157 static void
158 sba_dump_ranges(void __iomem *hpa)
159 {
160 	DBG_INIT("SBA at 0x%p\n", hpa);
161 	DBG_INIT("IOS_DIST_BASE   : %Lx\n", READ_REG64(hpa+IOS_DIST_BASE));
162 	DBG_INIT("IOS_DIST_MASK   : %Lx\n", READ_REG64(hpa+IOS_DIST_MASK));
163 	DBG_INIT("IOS_DIST_ROUTE  : %Lx\n", READ_REG64(hpa+IOS_DIST_ROUTE));
164 	DBG_INIT("\n");
165 	DBG_INIT("IOS_DIRECT_BASE : %Lx\n", READ_REG64(hpa+IOS_DIRECT_BASE));
166 	DBG_INIT("IOS_DIRECT_MASK : %Lx\n", READ_REG64(hpa+IOS_DIRECT_MASK));
167 	DBG_INIT("IOS_DIRECT_ROUTE: %Lx\n", READ_REG64(hpa+IOS_DIRECT_ROUTE));
168 }
169 
170 /**
171  * sba_dump_tlb - debugging only - print IOMMU operating parameters
172  * @hpa: base address of the IOMMU
173  *
174  * Print the size/location of the IO MMU PDIR.
175  */
176 static void sba_dump_tlb(void __iomem *hpa)
177 {
178 	DBG_INIT("IO TLB at 0x%p\n", hpa);
179 	DBG_INIT("IOC_IBASE    : 0x%Lx\n", READ_REG64(hpa+IOC_IBASE));
180 	DBG_INIT("IOC_IMASK    : 0x%Lx\n", READ_REG64(hpa+IOC_IMASK));
181 	DBG_INIT("IOC_TCNFG    : 0x%Lx\n", READ_REG64(hpa+IOC_TCNFG));
182 	DBG_INIT("IOC_PDIR_BASE: 0x%Lx\n", READ_REG64(hpa+IOC_PDIR_BASE));
183 	DBG_INIT("\n");
184 }
185 #else
186 #define sba_dump_ranges(x)
187 #define sba_dump_tlb(x)
188 #endif	/* DEBUG_SBA_INIT */
189 
190 
191 #ifdef ASSERT_PDIR_SANITY
192 
193 /**
194  * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
195  * @ioc: IO MMU structure which owns the pdir we are interested in.
196  * @msg: text to print ont the output line.
197  * @pide: pdir index.
198  *
199  * Print one entry of the IO MMU PDIR in human readable form.
200  */
201 static void
202 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
203 {
204 	/* start printing from lowest pde in rval */
205 	__le64 *ptr = &(ioc->pdir_base[pide & (~0U * BITS_PER_LONG)]);
206 	unsigned long *rptr = (unsigned long *) &(ioc->res_map[(pide >>3) & ~(sizeof(unsigned long) - 1)]);
207 	uint rcnt;
208 
209 	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
210 		 msg,
211 		 rptr, pide & (BITS_PER_LONG - 1), *rptr);
212 
213 	rcnt = 0;
214 	while (rcnt < BITS_PER_LONG) {
215 		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
216 			(rcnt == (pide & (BITS_PER_LONG - 1)))
217 				? "    -->" : "       ",
218 			rcnt, ptr, *ptr );
219 		rcnt++;
220 		ptr++;
221 	}
222 	printk(KERN_DEBUG "%s", msg);
223 }
224 
225 
226 /**
227  * sba_check_pdir - debugging only - consistency checker
228  * @ioc: IO MMU structure which owns the pdir we are interested in.
229  * @msg: text to print ont the output line.
230  *
231  * Verify the resource map and pdir state is consistent
232  */
233 static int
234 sba_check_pdir(struct ioc *ioc, char *msg)
235 {
236 	u32 *rptr_end = (u32 *) &(ioc->res_map[ioc->res_size]);
237 	u32 *rptr = (u32 *) ioc->res_map;	/* resource map ptr */
238 	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
239 	uint pide = 0;
240 
241 	while (rptr < rptr_end) {
242 		u32 rval = *rptr;
243 		int rcnt = 32;	/* number of bits we might check */
244 
245 		while (rcnt) {
246 			/* Get last byte and highest bit from that */
247 			u32 pde = ((u32) (((char *)pptr)[7])) << 24;
248 			if ((rval ^ pde) & 0x80000000)
249 			{
250 				/*
251 				** BUMMER!  -- res_map != pdir --
252 				** Dump rval and matching pdir entries
253 				*/
254 				sba_dump_pdir_entry(ioc, msg, pide);
255 				return(1);
256 			}
257 			rcnt--;
258 			rval <<= 1;	/* try the next bit */
259 			pptr++;
260 			pide++;
261 		}
262 		rptr++;	/* look at next word of res_map */
263 	}
264 	/* It'd be nice if we always got here :^) */
265 	return 0;
266 }
267 
268 
269 /**
270  * sba_dump_sg - debugging only - print Scatter-Gather list
271  * @ioc: IO MMU structure which owns the pdir we are interested in.
272  * @startsg: head of the SG list
273  * @nents: number of entries in SG list
274  *
275  * print the SG list so we can verify it's correct by hand.
276  */
277 static void
278 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
279 {
280 	while (nents-- > 0) {
281 		printk(KERN_DEBUG " %d : %08lx/%05x %p/%05x\n",
282 				nents,
283 				(unsigned long) sg_dma_address(startsg),
284 				sg_dma_len(startsg),
285 				sg_virt(startsg), startsg->length);
286 		startsg++;
287 	}
288 }
289 
290 #endif /* ASSERT_PDIR_SANITY */
291 
292 
293 
294 
295 /**************************************************************
296 *
297 *   I/O Pdir Resource Management
298 *
299 *   Bits set in the resource map are in use.
300 *   Each bit can represent a number of pages.
301 *   LSbs represent lower addresses (IOVA's).
302 *
303 ***************************************************************/
304 #define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
305 
306 /* Convert from IOVP to IOVA and vice versa. */
307 
308 #ifdef ZX1_SUPPORT
309 /* Pluto (aka ZX1) boxes need to set or clear the ibase bits appropriately */
310 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((ioc->ibase) | (iovp) | (offset))
311 #define SBA_IOVP(ioc,iova) ((iova) & (ioc)->iovp_mask)
312 #else
313 /* only support Astro and ancestors. Saves a few cycles in key places */
314 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((iovp) | (offset))
315 #define SBA_IOVP(ioc,iova) (iova)
316 #endif
317 
318 #define PDIR_INDEX(iovp)   ((iovp)>>IOVP_SHIFT)
319 
320 #define RESMAP_MASK(n)    (~0UL << (BITS_PER_LONG - (n)))
321 #define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
322 
323 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
324 				 unsigned int bitshiftcnt)
325 {
326 	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
327 		+ bitshiftcnt;
328 }
329 
330 /**
331  * sba_search_bitmap - find free space in IO PDIR resource bitmap
332  * @ioc: IO MMU structure which owns the pdir we are interested in.
333  * @dev: device to query the bitmap for
334  * @bits_wanted: number of entries we need.
335  *
336  * Find consecutive free bits in resource bitmap.
337  * Each bit represents one entry in the IO Pdir.
338  * Cool perf optimization: search for log2(size) bits at a time.
339  */
340 static unsigned long
341 sba_search_bitmap(struct ioc *ioc, struct device *dev,
342 		  unsigned long bits_wanted)
343 {
344 	unsigned long *res_ptr = ioc->res_hint;
345 	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
346 	unsigned long pide = ~0UL, tpide;
347 	unsigned long boundary_size;
348 	unsigned long shift;
349 	int ret;
350 
351 	boundary_size = dma_get_seg_boundary_nr_pages(dev, IOVP_SHIFT);
352 
353 #if defined(ZX1_SUPPORT)
354 	BUG_ON(ioc->ibase & ~IOVP_MASK);
355 	shift = ioc->ibase >> IOVP_SHIFT;
356 #else
357 	shift = 0;
358 #endif
359 
360 	if (bits_wanted > (BITS_PER_LONG/2)) {
361 		/* Search word at a time - no mask needed */
362 		for(; res_ptr < res_end; ++res_ptr) {
363 			tpide = ptr_to_pide(ioc, res_ptr, 0);
364 			ret = iommu_is_span_boundary(tpide, bits_wanted,
365 						     shift,
366 						     boundary_size);
367 			if ((*res_ptr == 0) && !ret) {
368 				*res_ptr = RESMAP_MASK(bits_wanted);
369 				pide = tpide;
370 				break;
371 			}
372 		}
373 		/* point to the next word on next pass */
374 		res_ptr++;
375 		ioc->res_bitshift = 0;
376 	} else {
377 		/*
378 		** Search the resource bit map on well-aligned values.
379 		** "o" is the alignment.
380 		** We need the alignment to invalidate I/O TLB using
381 		** SBA HW features in the unmap path.
382 		*/
383 		unsigned long o = 1 << get_order(bits_wanted << PAGE_SHIFT);
384 		uint bitshiftcnt = ALIGN(ioc->res_bitshift, o);
385 		unsigned long mask;
386 
387 		if (bitshiftcnt >= BITS_PER_LONG) {
388 			bitshiftcnt = 0;
389 			res_ptr++;
390 		}
391 		mask = RESMAP_MASK(bits_wanted) >> bitshiftcnt;
392 
393 		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
394 		while(res_ptr < res_end)
395 		{
396 			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
397 			WARN_ON(mask == 0);
398 			tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
399 			ret = iommu_is_span_boundary(tpide, bits_wanted,
400 						     shift,
401 						     boundary_size);
402 			if ((((*res_ptr) & mask) == 0) && !ret) {
403 				*res_ptr |= mask;     /* mark resources busy! */
404 				pide = tpide;
405 				break;
406 			}
407 			mask >>= o;
408 			bitshiftcnt += o;
409 			if (mask == 0) {
410 				mask = RESMAP_MASK(bits_wanted);
411 				bitshiftcnt=0;
412 				res_ptr++;
413 			}
414 		}
415 		/* look in the same word on the next pass */
416 		ioc->res_bitshift = bitshiftcnt + bits_wanted;
417 	}
418 
419 	/* wrapped ? */
420 	if (res_end <= res_ptr) {
421 		ioc->res_hint = (unsigned long *) ioc->res_map;
422 		ioc->res_bitshift = 0;
423 	} else {
424 		ioc->res_hint = res_ptr;
425 	}
426 	return (pide);
427 }
428 
429 
430 /**
431  * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
432  * @ioc: IO MMU structure which owns the pdir we are interested in.
433  * @dev: device for which pages should be alloced
434  * @size: number of bytes to create a mapping for
435  *
436  * Given a size, find consecutive unmarked and then mark those bits in the
437  * resource bit map.
438  */
439 static int
440 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
441 {
442 	unsigned int pages_needed = size >> IOVP_SHIFT;
443 #ifdef SBA_COLLECT_STATS
444 	unsigned long cr_start = mfctl(16);
445 #endif
446 	unsigned long pide;
447 
448 	pide = sba_search_bitmap(ioc, dev, pages_needed);
449 	if (pide >= (ioc->res_size << 3)) {
450 		pide = sba_search_bitmap(ioc, dev, pages_needed);
451 		if (pide >= (ioc->res_size << 3))
452 			panic("%s: I/O MMU @ %p is out of mapping resources\n",
453 			      __FILE__, ioc->ioc_hpa);
454 	}
455 
456 #ifdef ASSERT_PDIR_SANITY
457 	/* verify the first enable bit is clear */
458 	if(0x00 != ((u8 *) ioc->pdir_base)[pide*sizeof(u64) + 7]) {
459 		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
460 	}
461 #endif
462 
463 	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
464 		__func__, size, pages_needed, pide,
465 		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
466 		ioc->res_bitshift );
467 
468 #ifdef SBA_COLLECT_STATS
469 	{
470 		unsigned long cr_end = mfctl(16);
471 		unsigned long tmp = cr_end - cr_start;
472 		/* check for roll over */
473 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
474 	}
475 	ioc->avg_search[ioc->avg_idx++] = cr_start;
476 	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
477 
478 	ioc->used_pages += pages_needed;
479 #endif
480 
481 	return (pide);
482 }
483 
484 
485 /**
486  * sba_free_range - unmark bits in IO PDIR resource bitmap
487  * @ioc: IO MMU structure which owns the pdir we are interested in.
488  * @iova: IO virtual address which was previously allocated.
489  * @size: number of bytes to create a mapping for
490  *
491  * clear bits in the ioc's resource map
492  */
493 static void
494 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
495 {
496 	unsigned long iovp = SBA_IOVP(ioc, iova);
497 	unsigned int pide = PDIR_INDEX(iovp);
498 	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
499 	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
500 
501 	int bits_not_wanted = size >> IOVP_SHIFT;
502 
503 	/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
504 	unsigned long m = RESMAP_MASK(bits_not_wanted) >> (pide & (BITS_PER_LONG - 1));
505 
506 	DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n",
507 		__func__, (uint) iova, size,
508 		bits_not_wanted, m, pide, res_ptr, *res_ptr);
509 
510 #ifdef SBA_COLLECT_STATS
511 	ioc->used_pages -= bits_not_wanted;
512 #endif
513 
514 	*res_ptr &= ~m;
515 }
516 
517 
518 /**************************************************************
519 *
520 *   "Dynamic DMA Mapping" support (aka "Coherent I/O")
521 *
522 ***************************************************************/
523 
524 #ifdef SBA_HINT_SUPPORT
525 #define SBA_DMA_HINT(ioc, val) ((val) << (ioc)->hint_shift_pdir)
526 #endif
527 
528 typedef unsigned long space_t;
529 #define KERNEL_SPACE 0
530 
531 /**
532  * sba_io_pdir_entry - fill in one IO PDIR entry
533  * @pdir_ptr:  pointer to IO PDIR entry
534  * @sid: process Space ID - currently only support KERNEL_SPACE
535  * @vba: Virtual CPU address of buffer to map
536  * @hint: DMA hint set to use for this mapping
537  *
538  * SBA Mapping Routine
539  *
540  * Given a virtual address (vba, arg2) and space id, (sid, arg1)
541  * sba_io_pdir_entry() loads the I/O PDIR entry pointed to by
542  * pdir_ptr (arg0).
543  * Using the bass-ackwards HP bit numbering, Each IO Pdir entry
544  * for Astro/Ike looks like:
545  *
546  *
547  *  0                    19                                 51   55       63
548  * +-+---------------------+----------------------------------+----+--------+
549  * |V|        U            |            PPN[43:12]            | U  |   VI   |
550  * +-+---------------------+----------------------------------+----+--------+
551  *
552  * Pluto is basically identical, supports fewer physical address bits:
553  *
554  *  0                       23                              51   55       63
555  * +-+------------------------+-------------------------------+----+--------+
556  * |V|        U               |         PPN[39:12]            | U  |   VI   |
557  * +-+------------------------+-------------------------------+----+--------+
558  *
559  *  V  == Valid Bit  (Most Significant Bit is bit 0)
560  *  U  == Unused
561  * PPN == Physical Page Number
562  * VI  == Virtual Index (aka Coherent Index)
563  *
564  * LPA instruction output is put into PPN field.
565  * LCI (Load Coherence Index) instruction provides the "VI" bits.
566  *
567  * We pre-swap the bytes since PCX-W is Big Endian and the
568  * IOMMU uses little endian for the pdir.
569  */
570 
571 static void
572 sba_io_pdir_entry(__le64 *pdir_ptr, space_t sid, unsigned long vba,
573 		  unsigned long hint)
574 {
575 	u64 pa; /* physical address */
576 	register unsigned ci; /* coherent index */
577 
578 	pa = lpa(vba);
579 	pa &= IOVP_MASK;
580 
581 	asm("lci 0(%1), %0" : "=r" (ci) : "r" (vba));
582 	pa |= (ci >> PAGE_SHIFT) & 0xff;  /* move CI (8 bits) into lowest byte */
583 
584 	pa |= SBA_PDIR_VALID_BIT;	/* set "valid" bit */
585 	*pdir_ptr = cpu_to_le64(pa);	/* swap and store into I/O Pdir */
586 
587 	/*
588 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
589 	 * (bit #61, big endian), we have to flush and sync every time
590 	 * IO-PDIR is changed in Ike/Astro.
591 	 */
592 	asm_io_fdc(pdir_ptr);
593 }
594 
595 
596 /**
597  * sba_mark_invalid - invalidate one or more IO PDIR entries
598  * @ioc: IO MMU structure which owns the pdir we are interested in.
599  * @iova:  IO Virtual Address mapped earlier
600  * @byte_cnt:  number of bytes this mapping covers.
601  *
602  * Marking the IO PDIR entry(ies) as Invalid and invalidate
603  * corresponding IO TLB entry. The Ike PCOM (Purge Command Register)
604  * is to purge stale entries in the IO TLB when unmapping entries.
605  *
606  * The PCOM register supports purging of multiple pages, with a minium
607  * of 1 page and a maximum of 2GB. Hardware requires the address be
608  * aligned to the size of the range being purged. The size of the range
609  * must be a power of 2. The "Cool perf optimization" in the
610  * allocation routine helps keep that true.
611  */
612 static void
613 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
614 {
615 	u32 iovp = (u32) SBA_IOVP(ioc,iova);
616 	__le64 *pdir_ptr = &ioc->pdir_base[PDIR_INDEX(iovp)];
617 
618 #ifdef ASSERT_PDIR_SANITY
619 	/* Assert first pdir entry is set.
620 	**
621 	** Even though this is a big-endian machine, the entries
622 	** in the iopdir are little endian. That's why we look at
623 	** the byte at +7 instead of at +0.
624 	*/
625 	if (0x80 != (((u8 *) pdir_ptr)[7])) {
626 		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
627 	}
628 #endif
629 
630 	if (byte_cnt > IOVP_SIZE)
631 	{
632 #if 0
633 		unsigned long entries_per_cacheline = ioc_needs_fdc ?
634 				L1_CACHE_ALIGN(((unsigned long) pdir_ptr))
635 					- (unsigned long) pdir_ptr;
636 				: 262144;
637 #endif
638 
639 		/* set "size" field for PCOM */
640 		iovp |= get_order(byte_cnt) + PAGE_SHIFT;
641 
642 		do {
643 			/* clear I/O Pdir entry "valid" bit first */
644 			((u8 *) pdir_ptr)[7] = 0;
645 			asm_io_fdc(pdir_ptr);
646 			if (ioc_needs_fdc) {
647 #if 0
648 				entries_per_cacheline = L1_CACHE_SHIFT - 3;
649 #endif
650 			}
651 			pdir_ptr++;
652 			byte_cnt -= IOVP_SIZE;
653 		} while (byte_cnt > IOVP_SIZE);
654 	} else
655 		iovp |= IOVP_SHIFT;     /* set "size" field for PCOM */
656 
657 	/*
658 	** clear I/O PDIR entry "valid" bit.
659 	** We have to R/M/W the cacheline regardless how much of the
660 	** pdir entry that we clobber.
661 	** The rest of the entry would be useful for debugging if we
662 	** could dump core on HPMC.
663 	*/
664 	((u8 *) pdir_ptr)[7] = 0;
665 	asm_io_fdc(pdir_ptr);
666 
667 	WRITE_REG( SBA_IOVA(ioc, iovp, 0, 0), ioc->ioc_hpa+IOC_PCOM);
668 }
669 
670 /**
671  * sba_dma_supported - PCI driver can query DMA support
672  * @dev: instance of PCI owned by the driver that's asking
673  * @mask:  number of address bits this PCI device can handle
674  *
675  * See Documentation/core-api/dma-api-howto.rst
676  */
677 static int sba_dma_supported( struct device *dev, u64 mask)
678 {
679 	struct ioc *ioc;
680 
681 	if (dev == NULL) {
682 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
683 		BUG();
684 		return(0);
685 	}
686 
687 	ioc = GET_IOC(dev);
688 	if (!ioc)
689 		return 0;
690 
691 	/*
692 	 * check if mask is >= than the current max IO Virt Address
693 	 * The max IO Virt address will *always* < 30 bits.
694 	 */
695 	return((int)(mask >= (ioc->ibase - 1 +
696 			(ioc->pdir_size / sizeof(u64) * IOVP_SIZE) )));
697 }
698 
699 
700 /**
701  * sba_map_single - map one buffer and return IOVA for DMA
702  * @dev: instance of PCI owned by the driver that's asking.
703  * @addr:  driver buffer to map.
704  * @size:  number of bytes to map in driver buffer.
705  * @direction:  R/W or both.
706  *
707  * See Documentation/core-api/dma-api-howto.rst
708  */
709 static dma_addr_t
710 sba_map_single(struct device *dev, void *addr, size_t size,
711 	       enum dma_data_direction direction)
712 {
713 	struct ioc *ioc;
714 	unsigned long flags;
715 	dma_addr_t iovp;
716 	dma_addr_t offset;
717 	__le64 *pdir_start;
718 	int pide;
719 
720 	ioc = GET_IOC(dev);
721 	if (!ioc)
722 		return DMA_MAPPING_ERROR;
723 
724 	/* save offset bits */
725 	offset = ((dma_addr_t) (long) addr) & ~IOVP_MASK;
726 
727 	/* round up to nearest IOVP_SIZE */
728 	size = (size + offset + ~IOVP_MASK) & IOVP_MASK;
729 
730 	spin_lock_irqsave(&ioc->res_lock, flags);
731 #ifdef ASSERT_PDIR_SANITY
732 	sba_check_pdir(ioc,"Check before sba_map_single()");
733 #endif
734 
735 #ifdef SBA_COLLECT_STATS
736 	ioc->msingle_calls++;
737 	ioc->msingle_pages += size >> IOVP_SHIFT;
738 #endif
739 	pide = sba_alloc_range(ioc, dev, size);
740 	iovp = (dma_addr_t) pide << IOVP_SHIFT;
741 
742 	DBG_RUN("%s() 0x%p -> 0x%lx\n",
743 		__func__, addr, (long) iovp | offset);
744 
745 	pdir_start = &(ioc->pdir_base[pide]);
746 
747 	while (size > 0) {
748 		sba_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long) addr, 0);
749 
750 		DBG_RUN("	pdir 0x%p %02x%02x%02x%02x%02x%02x%02x%02x\n",
751 			pdir_start,
752 			(u8) (((u8 *) pdir_start)[7]),
753 			(u8) (((u8 *) pdir_start)[6]),
754 			(u8) (((u8 *) pdir_start)[5]),
755 			(u8) (((u8 *) pdir_start)[4]),
756 			(u8) (((u8 *) pdir_start)[3]),
757 			(u8) (((u8 *) pdir_start)[2]),
758 			(u8) (((u8 *) pdir_start)[1]),
759 			(u8) (((u8 *) pdir_start)[0])
760 			);
761 
762 		addr += IOVP_SIZE;
763 		size -= IOVP_SIZE;
764 		pdir_start++;
765 	}
766 
767 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
768 	asm_io_sync();
769 
770 #ifdef ASSERT_PDIR_SANITY
771 	sba_check_pdir(ioc,"Check after sba_map_single()");
772 #endif
773 	spin_unlock_irqrestore(&ioc->res_lock, flags);
774 
775 	/* form complete address */
776 	return SBA_IOVA(ioc, iovp, offset, DEFAULT_DMA_HINT_REG);
777 }
778 
779 
780 static dma_addr_t
781 sba_map_page(struct device *dev, struct page *page, unsigned long offset,
782 		size_t size, enum dma_data_direction direction,
783 		unsigned long attrs)
784 {
785 	return sba_map_single(dev, page_address(page) + offset, size,
786 			direction);
787 }
788 
789 
790 /**
791  * sba_unmap_page - unmap one IOVA and free resources
792  * @dev: instance of PCI owned by the driver that's asking.
793  * @iova:  IOVA of driver buffer previously mapped.
794  * @size:  number of bytes mapped in driver buffer.
795  * @direction:  R/W or both.
796  * @attrs: attributes
797  *
798  * See Documentation/core-api/dma-api-howto.rst
799  */
800 static void
801 sba_unmap_page(struct device *dev, dma_addr_t iova, size_t size,
802 		enum dma_data_direction direction, unsigned long attrs)
803 {
804 	struct ioc *ioc;
805 #if DELAYED_RESOURCE_CNT > 0
806 	struct sba_dma_pair *d;
807 #endif
808 	unsigned long flags;
809 	dma_addr_t offset;
810 
811 	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
812 
813 	ioc = GET_IOC(dev);
814 	if (!ioc) {
815 		WARN_ON(!ioc);
816 		return;
817 	}
818 	offset = iova & ~IOVP_MASK;
819 	iova ^= offset;        /* clear offset bits */
820 	size += offset;
821 	size = ALIGN(size, IOVP_SIZE);
822 
823 	spin_lock_irqsave(&ioc->res_lock, flags);
824 
825 #ifdef SBA_COLLECT_STATS
826 	ioc->usingle_calls++;
827 	ioc->usingle_pages += size >> IOVP_SHIFT;
828 #endif
829 
830 	sba_mark_invalid(ioc, iova, size);
831 
832 #if DELAYED_RESOURCE_CNT > 0
833 	/* Delaying when we re-use a IO Pdir entry reduces the number
834 	 * of MMIO reads needed to flush writes to the PCOM register.
835 	 */
836 	d = &(ioc->saved[ioc->saved_cnt]);
837 	d->iova = iova;
838 	d->size = size;
839 	if (++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT) {
840 		int cnt = ioc->saved_cnt;
841 		while (cnt--) {
842 			sba_free_range(ioc, d->iova, d->size);
843 			d--;
844 		}
845 		ioc->saved_cnt = 0;
846 
847 		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
848 	}
849 #else /* DELAYED_RESOURCE_CNT == 0 */
850 	sba_free_range(ioc, iova, size);
851 
852 	/* If fdc's were issued, force fdc's to be visible now */
853 	asm_io_sync();
854 
855 	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
856 #endif /* DELAYED_RESOURCE_CNT == 0 */
857 
858 	spin_unlock_irqrestore(&ioc->res_lock, flags);
859 
860 	/* XXX REVISIT for 2.5 Linux - need syncdma for zero-copy support.
861 	** For Astro based systems this isn't a big deal WRT performance.
862 	** As long as 2.4 kernels copyin/copyout data from/to userspace,
863 	** we don't need the syncdma. The issue here is I/O MMU cachelines
864 	** are *not* coherent in all cases.  May be hwrev dependent.
865 	** Need to investigate more.
866 	asm volatile("syncdma");
867 	*/
868 }
869 
870 
871 /**
872  * sba_alloc - allocate/map shared mem for DMA
873  * @hwdev: instance of PCI owned by the driver that's asking.
874  * @size:  number of bytes mapped in driver buffer.
875  * @dma_handle:  IOVA of new buffer.
876  * @gfp: allocation flags
877  * @attrs: attributes
878  *
879  * See Documentation/core-api/dma-api-howto.rst
880  */
881 static void *sba_alloc(struct device *hwdev, size_t size, dma_addr_t *dma_handle,
882 		gfp_t gfp, unsigned long attrs)
883 {
884 	void *ret;
885 
886 	if (!hwdev) {
887 		/* only support PCI */
888 		*dma_handle = 0;
889 		return NULL;
890 	}
891 
892         ret = (void *) __get_free_pages(gfp, get_order(size));
893 
894 	if (ret) {
895 		memset(ret, 0, size);
896 		*dma_handle = sba_map_single(hwdev, ret, size, 0);
897 	}
898 
899 	return ret;
900 }
901 
902 
903 /**
904  * sba_free - free/unmap shared mem for DMA
905  * @hwdev: instance of PCI owned by the driver that's asking.
906  * @size:  number of bytes mapped in driver buffer.
907  * @vaddr:  virtual address IOVA of "consistent" buffer.
908  * @dma_handle:  IO virtual address of "consistent" buffer.
909  * @attrs: attributes
910  *
911  * See Documentation/core-api/dma-api-howto.rst
912  */
913 static void
914 sba_free(struct device *hwdev, size_t size, void *vaddr,
915 		    dma_addr_t dma_handle, unsigned long attrs)
916 {
917 	sba_unmap_page(hwdev, dma_handle, size, 0, 0);
918 	free_pages((unsigned long) vaddr, get_order(size));
919 }
920 
921 
922 /*
923 ** Since 0 is a valid pdir_base index value, can't use that
924 ** to determine if a value is valid or not. Use a flag to indicate
925 ** the SG list entry contains a valid pdir index.
926 */
927 #define PIDE_FLAG 0x80000000UL
928 
929 #ifdef SBA_COLLECT_STATS
930 #define IOMMU_MAP_STATS
931 #endif
932 #include "iommu-helpers.h"
933 
934 #ifdef DEBUG_LARGE_SG_ENTRIES
935 int dump_run_sg = 0;
936 #endif
937 
938 
939 /**
940  * sba_map_sg - map Scatter/Gather list
941  * @dev: instance of PCI owned by the driver that's asking.
942  * @sglist:  array of buffer/length pairs
943  * @nents:  number of entries in list
944  * @direction:  R/W or both.
945  * @attrs: attributes
946  *
947  * See Documentation/core-api/dma-api-howto.rst
948  */
949 static int
950 sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
951 	   enum dma_data_direction direction, unsigned long attrs)
952 {
953 	struct ioc *ioc;
954 	int filled = 0;
955 	unsigned long flags;
956 
957 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
958 
959 	ioc = GET_IOC(dev);
960 	if (!ioc)
961 		return -EINVAL;
962 
963 	/* Fast path single entry scatterlists. */
964 	if (nents == 1) {
965 		sg_dma_address(sglist) = sba_map_single(dev, sg_virt(sglist),
966 						sglist->length, direction);
967 		sg_dma_len(sglist)     = sglist->length;
968 		return 1;
969 	}
970 
971 	spin_lock_irqsave(&ioc->res_lock, flags);
972 
973 #ifdef ASSERT_PDIR_SANITY
974 	if (sba_check_pdir(ioc,"Check before sba_map_sg()"))
975 	{
976 		sba_dump_sg(ioc, sglist, nents);
977 		panic("Check before sba_map_sg()");
978 	}
979 #endif
980 
981 #ifdef SBA_COLLECT_STATS
982 	ioc->msg_calls++;
983 #endif
984 
985 	/*
986 	** First coalesce the chunks and allocate I/O pdir space
987 	**
988 	** If this is one DMA stream, we can properly map using the
989 	** correct virtual address associated with each DMA page.
990 	** w/o this association, we wouldn't have coherent DMA!
991 	** Access to the virtual address is what forces a two pass algorithm.
992 	*/
993 	iommu_coalesce_chunks(ioc, dev, sglist, nents, sba_alloc_range);
994 
995 	/*
996 	** Program the I/O Pdir
997 	**
998 	** map the virtual addresses to the I/O Pdir
999 	** o dma_address will contain the pdir index
1000 	** o dma_len will contain the number of bytes to map
1001 	** o address contains the virtual address.
1002 	*/
1003 	filled = iommu_fill_pdir(ioc, sglist, nents, 0, sba_io_pdir_entry);
1004 
1005 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
1006 	asm_io_sync();
1007 
1008 #ifdef ASSERT_PDIR_SANITY
1009 	if (sba_check_pdir(ioc,"Check after sba_map_sg()"))
1010 	{
1011 		sba_dump_sg(ioc, sglist, nents);
1012 		panic("Check after sba_map_sg()\n");
1013 	}
1014 #endif
1015 
1016 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1017 
1018 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1019 
1020 	return filled;
1021 }
1022 
1023 
1024 /**
1025  * sba_unmap_sg - unmap Scatter/Gather list
1026  * @dev: instance of PCI owned by the driver that's asking.
1027  * @sglist:  array of buffer/length pairs
1028  * @nents:  number of entries in list
1029  * @direction:  R/W or both.
1030  * @attrs: attributes
1031  *
1032  * See Documentation/core-api/dma-api-howto.rst
1033  */
1034 static void
1035 sba_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
1036 	     enum dma_data_direction direction, unsigned long attrs)
1037 {
1038 	struct ioc *ioc;
1039 #ifdef ASSERT_PDIR_SANITY
1040 	unsigned long flags;
1041 #endif
1042 
1043 	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1044 		__func__, nents, sg_virt(sglist), sglist->length);
1045 
1046 	ioc = GET_IOC(dev);
1047 	if (!ioc) {
1048 		WARN_ON(!ioc);
1049 		return;
1050 	}
1051 
1052 #ifdef SBA_COLLECT_STATS
1053 	ioc->usg_calls++;
1054 #endif
1055 
1056 #ifdef ASSERT_PDIR_SANITY
1057 	spin_lock_irqsave(&ioc->res_lock, flags);
1058 	sba_check_pdir(ioc,"Check before sba_unmap_sg()");
1059 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1060 #endif
1061 
1062 	while (nents && sg_dma_len(sglist)) {
1063 
1064 		sba_unmap_page(dev, sg_dma_address(sglist), sg_dma_len(sglist),
1065 				direction, 0);
1066 #ifdef SBA_COLLECT_STATS
1067 		ioc->usg_pages += ((sg_dma_address(sglist) & ~IOVP_MASK) + sg_dma_len(sglist) + IOVP_SIZE - 1) >> PAGE_SHIFT;
1068 		ioc->usingle_calls--;	/* kluge since call is unmap_sg() */
1069 #endif
1070 		++sglist;
1071 		nents--;
1072 	}
1073 
1074 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1075 
1076 #ifdef ASSERT_PDIR_SANITY
1077 	spin_lock_irqsave(&ioc->res_lock, flags);
1078 	sba_check_pdir(ioc,"Check after sba_unmap_sg()");
1079 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1080 #endif
1081 
1082 }
1083 
1084 static const struct dma_map_ops sba_ops = {
1085 	.dma_supported =	sba_dma_supported,
1086 	.alloc =		sba_alloc,
1087 	.free =			sba_free,
1088 	.map_page =		sba_map_page,
1089 	.unmap_page =		sba_unmap_page,
1090 	.map_sg =		sba_map_sg,
1091 	.unmap_sg =		sba_unmap_sg,
1092 	.get_sgtable =		dma_common_get_sgtable,
1093 	.alloc_pages =		dma_common_alloc_pages,
1094 	.free_pages =		dma_common_free_pages,
1095 };
1096 
1097 
1098 /**************************************************************************
1099 **
1100 **   SBA PAT PDC support
1101 **
1102 **   o call pdc_pat_cell_module()
1103 **   o store ranges in PCI "resource" structures
1104 **
1105 **************************************************************************/
1106 
1107 static void
1108 sba_get_pat_resources(struct sba_device *sba_dev)
1109 {
1110 #if 0
1111 /*
1112 ** TODO/REVISIT/FIXME: support for directed ranges requires calls to
1113 **      PAT PDC to program the SBA/LBA directed range registers...this
1114 **      burden may fall on the LBA code since it directly supports the
1115 **      PCI subsystem. It's not clear yet. - ggg
1116 */
1117 PAT_MOD(mod)->mod_info.mod_pages   = PAT_GET_MOD_PAGES(temp);
1118 	FIXME : ???
1119 PAT_MOD(mod)->mod_info.dvi         = PAT_GET_DVI(temp);
1120 	Tells where the dvi bits are located in the address.
1121 PAT_MOD(mod)->mod_info.ioc         = PAT_GET_IOC(temp);
1122 	FIXME : ???
1123 #endif
1124 }
1125 
1126 
1127 /**************************************************************
1128 *
1129 *   Initialization and claim
1130 *
1131 ***************************************************************/
1132 #define PIRANHA_ADDR_MASK	0x00160000UL /* bit 17,18,20 */
1133 #define PIRANHA_ADDR_VAL	0x00060000UL /* bit 17,18 on */
1134 static void *
1135 sba_alloc_pdir(unsigned int pdir_size)
1136 {
1137         unsigned long pdir_base;
1138 	unsigned long pdir_order = get_order(pdir_size);
1139 
1140 	pdir_base = __get_free_pages(GFP_KERNEL, pdir_order);
1141 	if (NULL == (void *) pdir_base)	{
1142 		panic("%s() could not allocate I/O Page Table\n",
1143 			__func__);
1144 	}
1145 
1146 	/* If this is not PA8700 (PCX-W2)
1147 	**	OR newer than ver 2.2
1148 	**	OR in a system that doesn't need VINDEX bits from SBA,
1149 	**
1150 	** then we aren't exposed to the HW bug.
1151 	*/
1152 	if ( ((boot_cpu_data.pdc.cpuid >> 5) & 0x7f) != 0x13
1153 			|| (boot_cpu_data.pdc.versions > 0x202)
1154 			|| (boot_cpu_data.pdc.capabilities & 0x08L) )
1155 		return (void *) pdir_base;
1156 
1157 	/*
1158 	 * PA8700 (PCX-W2, aka piranha) silent data corruption fix
1159 	 *
1160 	 * An interaction between PA8700 CPU (Ver 2.2 or older) and
1161 	 * Ike/Astro can cause silent data corruption. This is only
1162 	 * a problem if the I/O PDIR is located in memory such that
1163 	 * (little-endian)  bits 17 and 18 are on and bit 20 is off.
1164 	 *
1165 	 * Since the max IO Pdir size is 2MB, by cleverly allocating the
1166 	 * right physical address, we can either avoid (IOPDIR <= 1MB)
1167 	 * or minimize (2MB IO Pdir) the problem if we restrict the
1168 	 * IO Pdir to a maximum size of 2MB-128K (1902K).
1169 	 *
1170 	 * Because we always allocate 2^N sized IO pdirs, either of the
1171 	 * "bad" regions will be the last 128K if at all. That's easy
1172 	 * to test for.
1173 	 *
1174 	 */
1175 	if (pdir_order <= (19-12)) {
1176 		if (((virt_to_phys(pdir_base)+pdir_size-1) & PIRANHA_ADDR_MASK) == PIRANHA_ADDR_VAL) {
1177 			/* allocate a new one on 512k alignment */
1178 			unsigned long new_pdir = __get_free_pages(GFP_KERNEL, (19-12));
1179 			/* release original */
1180 			free_pages(pdir_base, pdir_order);
1181 
1182 			pdir_base = new_pdir;
1183 
1184 			/* release excess */
1185 			while (pdir_order < (19-12)) {
1186 				new_pdir += pdir_size;
1187 				free_pages(new_pdir, pdir_order);
1188 				pdir_order +=1;
1189 				pdir_size <<=1;
1190 			}
1191 		}
1192 	} else {
1193 		/*
1194 		** 1MB or 2MB Pdir
1195 		** Needs to be aligned on an "odd" 1MB boundary.
1196 		*/
1197 		unsigned long new_pdir = __get_free_pages(GFP_KERNEL, pdir_order+1); /* 2 or 4MB */
1198 
1199 		/* release original */
1200 		free_pages( pdir_base, pdir_order);
1201 
1202 		/* release first 1MB */
1203 		free_pages(new_pdir, 20-12);
1204 
1205 		pdir_base = new_pdir + 1024*1024;
1206 
1207 		if (pdir_order > (20-12)) {
1208 			/*
1209 			** 2MB Pdir.
1210 			**
1211 			** Flag tells init_bitmap() to mark bad 128k as used
1212 			** and to reduce the size by 128k.
1213 			*/
1214 			piranha_bad_128k = 1;
1215 
1216 			new_pdir += 3*1024*1024;
1217 			/* release last 1MB */
1218 			free_pages(new_pdir, 20-12);
1219 
1220 			/* release unusable 128KB */
1221 			free_pages(new_pdir - 128*1024 , 17-12);
1222 
1223 			pdir_size -= 128*1024;
1224 		}
1225 	}
1226 
1227 	memset((void *) pdir_base, 0, pdir_size);
1228 	return (void *) pdir_base;
1229 }
1230 
1231 struct ibase_data_struct {
1232 	struct ioc *ioc;
1233 	int ioc_num;
1234 };
1235 
1236 static int setup_ibase_imask_callback(struct device *dev, void *data)
1237 {
1238 	struct parisc_device *lba = to_parisc_device(dev);
1239 	struct ibase_data_struct *ibd = data;
1240 	int rope_num = (lba->hpa.start >> 13) & 0xf;
1241 	if (rope_num >> 3 == ibd->ioc_num)
1242 		lba_set_iregs(lba, ibd->ioc->ibase, ibd->ioc->imask);
1243 	return 0;
1244 }
1245 
1246 /* setup Mercury or Elroy IBASE/IMASK registers. */
1247 static void
1248 setup_ibase_imask(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1249 {
1250 	struct ibase_data_struct ibase_data = {
1251 		.ioc		= ioc,
1252 		.ioc_num	= ioc_num,
1253 	};
1254 
1255 	device_for_each_child(&sba->dev, &ibase_data,
1256 			      setup_ibase_imask_callback);
1257 }
1258 
1259 #ifdef SBA_AGP_SUPPORT
1260 static int
1261 sba_ioc_find_quicksilver(struct device *dev, void *data)
1262 {
1263 	int *agp_found = data;
1264 	struct parisc_device *lba = to_parisc_device(dev);
1265 
1266 	if (IS_QUICKSILVER(lba))
1267 		*agp_found = 1;
1268 	return 0;
1269 }
1270 #endif
1271 
1272 static void
1273 sba_ioc_init_pluto(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1274 {
1275 	u32 iova_space_mask;
1276 	u32 iova_space_size;
1277 	int iov_order, tcnfg;
1278 #ifdef SBA_AGP_SUPPORT
1279 	int agp_found = 0;
1280 #endif
1281 	/*
1282 	** Firmware programs the base and size of a "safe IOVA space"
1283 	** (one that doesn't overlap memory or LMMIO space) in the
1284 	** IBASE and IMASK registers.
1285 	*/
1286 	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE) & ~0x1fffffULL;
1287 	iova_space_size = ~(READ_REG(ioc->ioc_hpa + IOC_IMASK) & 0xFFFFFFFFUL) + 1;
1288 
1289 	if ((ioc->ibase < 0xfed00000UL) && ((ioc->ibase + iova_space_size) > 0xfee00000UL)) {
1290 		printk("WARNING: IOV space overlaps local config and interrupt message, truncating\n");
1291 		iova_space_size /= 2;
1292 	}
1293 
1294 	/*
1295 	** iov_order is always based on a 1GB IOVA space since we want to
1296 	** turn on the other half for AGP GART.
1297 	*/
1298 	iov_order = get_order(iova_space_size >> (IOVP_SHIFT - PAGE_SHIFT));
1299 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1300 
1301 	DBG_INIT("%s() hpa 0x%p IOV %dMB (%d bits)\n",
1302 		__func__, ioc->ioc_hpa, iova_space_size >> 20,
1303 		iov_order + PAGE_SHIFT);
1304 
1305 	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1306 						   get_order(ioc->pdir_size));
1307 	if (!ioc->pdir_base)
1308 		panic("Couldn't allocate I/O Page Table\n");
1309 
1310 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1311 
1312 	DBG_INIT("%s() pdir %p size %x\n",
1313 			__func__, ioc->pdir_base, ioc->pdir_size);
1314 
1315 #ifdef SBA_HINT_SUPPORT
1316 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1317 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1318 
1319 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1320 		ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1321 #endif
1322 
1323 	WARN_ON((((unsigned long) ioc->pdir_base) & PAGE_MASK) != (unsigned long) ioc->pdir_base);
1324 	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1325 
1326 	/* build IMASK for IOC and Elroy */
1327 	iova_space_mask =  0xffffffff;
1328 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1329 	ioc->imask = iova_space_mask;
1330 #ifdef ZX1_SUPPORT
1331 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1332 #endif
1333 	sba_dump_tlb(ioc->ioc_hpa);
1334 
1335 	setup_ibase_imask(sba, ioc, ioc_num);
1336 
1337 	WRITE_REG(ioc->imask, ioc->ioc_hpa + IOC_IMASK);
1338 
1339 #ifdef CONFIG_64BIT
1340 	/*
1341 	** Setting the upper bits makes checking for bypass addresses
1342 	** a little faster later on.
1343 	*/
1344 	ioc->imask |= 0xFFFFFFFF00000000UL;
1345 #endif
1346 
1347 	/* Set I/O PDIR Page size to system page size */
1348 	switch (PAGE_SHIFT) {
1349 		case 12: tcnfg = 0; break;	/*  4K */
1350 		case 13: tcnfg = 1; break;	/*  8K */
1351 		case 14: tcnfg = 2; break;	/* 16K */
1352 		case 16: tcnfg = 3; break;	/* 64K */
1353 		default:
1354 			panic(__FILE__ "Unsupported system page size %d",
1355 				1 << PAGE_SHIFT);
1356 			break;
1357 	}
1358 	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1359 
1360 	/*
1361 	** Program the IOC's ibase and enable IOVA translation
1362 	** Bit zero == enable bit.
1363 	*/
1364 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1365 
1366 	/*
1367 	** Clear I/O TLB of any possible entries.
1368 	** (Yes. This is a bit paranoid...but so what)
1369 	*/
1370 	WRITE_REG(ioc->ibase | 31, ioc->ioc_hpa + IOC_PCOM);
1371 
1372 #ifdef SBA_AGP_SUPPORT
1373 
1374 	/*
1375 	** If an AGP device is present, only use half of the IOV space
1376 	** for PCI DMA.  Unfortunately we can't know ahead of time
1377 	** whether GART support will actually be used, for now we
1378 	** can just key on any AGP device found in the system.
1379 	** We program the next pdir index after we stop w/ a key for
1380 	** the GART code to handshake on.
1381 	*/
1382 	device_for_each_child(&sba->dev, &agp_found, sba_ioc_find_quicksilver);
1383 
1384 	if (agp_found && sba_reserve_agpgart) {
1385 		printk(KERN_INFO "%s: reserving %dMb of IOVA space for agpgart\n",
1386 		       __func__, (iova_space_size/2) >> 20);
1387 		ioc->pdir_size /= 2;
1388 		ioc->pdir_base[PDIR_INDEX(iova_space_size/2)] = SBA_AGPGART_COOKIE;
1389 	}
1390 #endif /*SBA_AGP_SUPPORT*/
1391 }
1392 
1393 static void
1394 sba_ioc_init(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1395 {
1396 	u32 iova_space_size, iova_space_mask;
1397 	unsigned int pdir_size, iov_order, tcnfg;
1398 
1399 	/*
1400 	** Determine IOVA Space size from memory size.
1401 	**
1402 	** Ideally, PCI drivers would register the maximum number
1403 	** of DMA they can have outstanding for each device they
1404 	** own.  Next best thing would be to guess how much DMA
1405 	** can be outstanding based on PCI Class/sub-class. Both
1406 	** methods still require some "extra" to support PCI
1407 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1408 	**
1409 	** While we have 32-bits "IOVA" space, top two 2 bits are used
1410 	** for DMA hints - ergo only 30 bits max.
1411 	*/
1412 
1413 	iova_space_size = (u32) (totalram_pages()/global_ioc_cnt);
1414 
1415 	/* limit IOVA space size to 1MB-1GB */
1416 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1417 		iova_space_size = 1 << (20 - PAGE_SHIFT);
1418 	}
1419 	else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1420 		iova_space_size = 1 << (30 - PAGE_SHIFT);
1421 	}
1422 
1423 	/*
1424 	** iova space must be log2() in size.
1425 	** thus, pdir/res_map will also be log2().
1426 	** PIRANHA BUG: Exception is when IO Pdir is 2MB (gets reduced)
1427 	*/
1428 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1429 
1430 	/* iova_space_size is now bytes, not pages */
1431 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1432 
1433 	ioc->pdir_size = pdir_size = (iova_space_size/IOVP_SIZE) * sizeof(u64);
1434 
1435 	DBG_INIT("%s() hpa %px mem %ldMB IOV %dMB (%d bits)\n",
1436 			__func__,
1437 			ioc->ioc_hpa,
1438 			(unsigned long) totalram_pages() >> (20 - PAGE_SHIFT),
1439 			iova_space_size>>20,
1440 			iov_order + PAGE_SHIFT);
1441 
1442 	ioc->pdir_base = sba_alloc_pdir(pdir_size);
1443 
1444 	DBG_INIT("%s() pdir %p size %x\n",
1445 			__func__, ioc->pdir_base, pdir_size);
1446 
1447 #ifdef SBA_HINT_SUPPORT
1448 	/* FIXME : DMA HINTs not used */
1449 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1450 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1451 
1452 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1453 			ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1454 #endif
1455 
1456 	WRITE_REG64(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1457 
1458 	/* build IMASK for IOC and Elroy */
1459 	iova_space_mask =  0xffffffff;
1460 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1461 
1462 	/*
1463 	** On C3000 w/512MB mem, HP-UX 10.20 reports:
1464 	**     ibase=0, imask=0xFE000000, size=0x2000000.
1465 	*/
1466 	ioc->ibase = 0;
1467 	ioc->imask = iova_space_mask;	/* save it */
1468 #ifdef ZX1_SUPPORT
1469 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1470 #endif
1471 
1472 	DBG_INIT("%s() IOV base %#lx mask %#0lx\n",
1473 		__func__, ioc->ibase, ioc->imask);
1474 
1475 	/*
1476 	** FIXME: Hint registers are programmed with default hint
1477 	** values during boot, so hints should be sane even if we
1478 	** can't reprogram them the way drivers want.
1479 	*/
1480 
1481 	setup_ibase_imask(sba, ioc, ioc_num);
1482 
1483 	/*
1484 	** Program the IOC's ibase and enable IOVA translation
1485 	*/
1486 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa+IOC_IBASE);
1487 	WRITE_REG(ioc->imask, ioc->ioc_hpa+IOC_IMASK);
1488 
1489 	/* Set I/O PDIR Page size to system page size */
1490 	switch (PAGE_SHIFT) {
1491 		case 12: tcnfg = 0; break;	/*  4K */
1492 		case 13: tcnfg = 1; break;	/*  8K */
1493 		case 14: tcnfg = 2; break;	/* 16K */
1494 		case 16: tcnfg = 3; break;	/* 64K */
1495 		default:
1496 			panic(__FILE__ "Unsupported system page size %d",
1497 				1 << PAGE_SHIFT);
1498 			break;
1499 	}
1500 	/* Set I/O PDIR Page size to PAGE_SIZE (4k/16k/...) */
1501 	WRITE_REG(tcnfg, ioc->ioc_hpa+IOC_TCNFG);
1502 
1503 	/*
1504 	** Clear I/O TLB of any possible entries.
1505 	** (Yes. This is a bit paranoid...but so what)
1506 	*/
1507 	WRITE_REG(0 | 31, ioc->ioc_hpa+IOC_PCOM);
1508 
1509 	ioc->ibase = 0; /* used by SBA_IOVA and related macros */
1510 
1511 	DBG_INIT("%s() DONE\n", __func__);
1512 }
1513 
1514 
1515 
1516 /**************************************************************************
1517 **
1518 **   SBA initialization code (HW and SW)
1519 **
1520 **   o identify SBA chip itself
1521 **   o initialize SBA chip modes (HardFail)
1522 **   o initialize SBA chip modes (HardFail)
1523 **   o FIXME: initialize DMA hints for reasonable defaults
1524 **
1525 **************************************************************************/
1526 
1527 static void __iomem *ioc_remap(struct sba_device *sba_dev, unsigned int offset)
1528 {
1529 	return ioremap(sba_dev->dev->hpa.start + offset, SBA_FUNC_SIZE);
1530 }
1531 
1532 static void sba_hw_init(struct sba_device *sba_dev)
1533 {
1534 	int i;
1535 	int num_ioc;
1536 	u64 ioc_ctl;
1537 
1538 	if (!is_pdc_pat()) {
1539 		/* Shutdown the USB controller on Astro-based workstations.
1540 		** Once we reprogram the IOMMU, the next DMA performed by
1541 		** USB will HPMC the box. USB is only enabled if a
1542 		** keyboard is present and found.
1543 		**
1544 		** With serial console, j6k v5.0 firmware says:
1545 		**   mem_kbd hpa 0xfee003f8 sba 0x0 pad 0x0 cl_class 0x7
1546 		**
1547 		** FIXME: Using GFX+USB console at power up but direct
1548 		**	linux to serial console is still broken.
1549 		**	USB could generate DMA so we must reset USB.
1550 		**	The proper sequence would be:
1551 		**	o block console output
1552 		**	o reset USB device
1553 		**	o reprogram serial port
1554 		**	o unblock console output
1555 		*/
1556 		if (PAGE0->mem_kbd.cl_class == CL_KEYBD) {
1557 			pdc_io_reset_devices();
1558 		}
1559 
1560 	}
1561 
1562 
1563 #if 0
1564 printk("sba_hw_init(): mem_boot 0x%x 0x%x 0x%x 0x%x\n", PAGE0->mem_boot.hpa,
1565 	PAGE0->mem_boot.spa, PAGE0->mem_boot.pad, PAGE0->mem_boot.cl_class);
1566 
1567 	/*
1568 	** Need to deal with DMA from LAN.
1569 	**	Maybe use page zero boot device as a handle to talk
1570 	**	to PDC about which device to shutdown.
1571 	**
1572 	** Netbooting, j6k v5.0 firmware says:
1573 	** 	mem_boot hpa 0xf4008000 sba 0x0 pad 0x0 cl_class 0x1002
1574 	** ARGH! invalid class.
1575 	*/
1576 	if ((PAGE0->mem_boot.cl_class != CL_RANDOM)
1577 		&& (PAGE0->mem_boot.cl_class != CL_SEQU)) {
1578 			pdc_io_reset();
1579 	}
1580 #endif
1581 
1582 	if (!IS_PLUTO(sba_dev->dev)) {
1583 		ioc_ctl = READ_REG(sba_dev->sba_hpa+IOC_CTRL);
1584 		DBG_INIT("%s() hpa %px ioc_ctl 0x%Lx ->",
1585 			__func__, sba_dev->sba_hpa, ioc_ctl);
1586 		ioc_ctl &= ~(IOC_CTRL_RM | IOC_CTRL_NC | IOC_CTRL_CE);
1587 		ioc_ctl |= IOC_CTRL_DD | IOC_CTRL_D4 | IOC_CTRL_TC;
1588 			/* j6700 v1.6 firmware sets 0x294f */
1589 			/* A500 firmware sets 0x4d */
1590 
1591 		WRITE_REG(ioc_ctl, sba_dev->sba_hpa+IOC_CTRL);
1592 
1593 #ifdef DEBUG_SBA_INIT
1594 		ioc_ctl = READ_REG64(sba_dev->sba_hpa+IOC_CTRL);
1595 		DBG_INIT(" 0x%Lx\n", ioc_ctl);
1596 #endif
1597 	} /* if !PLUTO */
1598 
1599 	if (IS_ASTRO(sba_dev->dev)) {
1600 		int err;
1601 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, ASTRO_IOC_OFFSET);
1602 		num_ioc = 1;
1603 
1604 		sba_dev->chip_resv.name = "Astro Intr Ack";
1605 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfef00000UL;
1606 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff000000UL - 1) ;
1607 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1608 		BUG_ON(err < 0);
1609 
1610 	} else if (IS_PLUTO(sba_dev->dev)) {
1611 		int err;
1612 
1613 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, PLUTO_IOC_OFFSET);
1614 		num_ioc = 1;
1615 
1616 		sba_dev->chip_resv.name = "Pluto Intr/PIOP/VGA";
1617 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfee00000UL;
1618 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff200000UL - 1);
1619 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1620 		WARN_ON(err < 0);
1621 
1622 		sba_dev->iommu_resv.name = "IOVA Space";
1623 		sba_dev->iommu_resv.start = 0x40000000UL;
1624 		sba_dev->iommu_resv.end   = 0x50000000UL - 1;
1625 		err = request_resource(&iomem_resource, &(sba_dev->iommu_resv));
1626 		WARN_ON(err < 0);
1627 	} else {
1628 		/* IKE, REO */
1629 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(0));
1630 		sba_dev->ioc[1].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(1));
1631 		num_ioc = 2;
1632 
1633 		/* TODO - LOOKUP Ike/Stretch chipset mem map */
1634 	}
1635 	/* XXX: What about Reo Grande? */
1636 
1637 	sba_dev->num_ioc = num_ioc;
1638 	for (i = 0; i < num_ioc; i++) {
1639 		void __iomem *ioc_hpa = sba_dev->ioc[i].ioc_hpa;
1640 		unsigned int j;
1641 
1642 		for (j=0; j < sizeof(u64) * ROPES_PER_IOC; j+=sizeof(u64)) {
1643 
1644 			/*
1645 			 * Clear ROPE(N)_CONFIG AO bit.
1646 			 * Disables "NT Ordering" (~= !"Relaxed Ordering")
1647 			 * Overrides bit 1 in DMA Hint Sets.
1648 			 * Improves netperf UDP_STREAM by ~10% for bcm5701.
1649 			 */
1650 			if (IS_PLUTO(sba_dev->dev)) {
1651 				void __iomem *rope_cfg;
1652 				unsigned long cfg_val;
1653 
1654 				rope_cfg = ioc_hpa + IOC_ROPE0_CFG + j;
1655 				cfg_val = READ_REG(rope_cfg);
1656 				cfg_val &= ~IOC_ROPE_AO;
1657 				WRITE_REG(cfg_val, rope_cfg);
1658 			}
1659 
1660 			/*
1661 			** Make sure the box crashes on rope errors.
1662 			*/
1663 			WRITE_REG(HF_ENABLE, ioc_hpa + ROPE0_CTL + j);
1664 		}
1665 
1666 		/* flush out the last writes */
1667 		READ_REG(sba_dev->ioc[i].ioc_hpa + ROPE7_CTL);
1668 
1669 		DBG_INIT("	ioc[%d] ROPE_CFG %#lx  ROPE_DBG %lx\n",
1670 				i,
1671 				(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x40),
1672 				(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x50)
1673 			);
1674 		DBG_INIT("	STATUS_CONTROL %#lx  FLUSH_CTRL %#lx\n",
1675 				(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x108),
1676 				(unsigned long) READ_REG(sba_dev->ioc[i].ioc_hpa + 0x400)
1677 			);
1678 
1679 		if (IS_PLUTO(sba_dev->dev)) {
1680 			sba_ioc_init_pluto(sba_dev->dev, &(sba_dev->ioc[i]), i);
1681 		} else {
1682 			sba_ioc_init(sba_dev->dev, &(sba_dev->ioc[i]), i);
1683 		}
1684 	}
1685 }
1686 
1687 static void
1688 sba_common_init(struct sba_device *sba_dev)
1689 {
1690 	int i;
1691 
1692 	/* add this one to the head of the list (order doesn't matter)
1693 	** This will be useful for debugging - especially if we get coredumps
1694 	*/
1695 	sba_dev->next = sba_list;
1696 	sba_list = sba_dev;
1697 
1698 	for(i=0; i< sba_dev->num_ioc; i++) {
1699 		int res_size;
1700 #ifdef DEBUG_DMB_TRAP
1701 		extern void iterate_pages(unsigned long , unsigned long ,
1702 					  void (*)(pte_t * , unsigned long),
1703 					  unsigned long );
1704 		void set_data_memory_break(pte_t * , unsigned long);
1705 #endif
1706 		/* resource map size dictated by pdir_size */
1707 		res_size = sba_dev->ioc[i].pdir_size/sizeof(u64); /* entries */
1708 
1709 		/* Second part of PIRANHA BUG */
1710 		if (piranha_bad_128k) {
1711 			res_size -= (128*1024)/sizeof(u64);
1712 		}
1713 
1714 		res_size >>= 3;  /* convert bit count to byte count */
1715 		DBG_INIT("%s() res_size 0x%x\n",
1716 			__func__, res_size);
1717 
1718 		sba_dev->ioc[i].res_size = res_size;
1719 		sba_dev->ioc[i].res_map = (char *) __get_free_pages(GFP_KERNEL, get_order(res_size));
1720 
1721 #ifdef DEBUG_DMB_TRAP
1722 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1723 				set_data_memory_break, 0);
1724 #endif
1725 
1726 		if (NULL == sba_dev->ioc[i].res_map)
1727 		{
1728 			panic("%s:%s() could not allocate resource map\n",
1729 			      __FILE__, __func__ );
1730 		}
1731 
1732 		memset(sba_dev->ioc[i].res_map, 0, res_size);
1733 		/* next available IOVP - circular search */
1734 		sba_dev->ioc[i].res_hint = (unsigned long *)
1735 				&(sba_dev->ioc[i].res_map[L1_CACHE_BYTES]);
1736 
1737 #ifdef ASSERT_PDIR_SANITY
1738 		/* Mark first bit busy - ie no IOVA 0 */
1739 		sba_dev->ioc[i].res_map[0] = 0x80;
1740 		sba_dev->ioc[i].pdir_base[0] = (__force __le64) 0xeeffc0addbba0080ULL;
1741 #endif
1742 
1743 		/* Third (and last) part of PIRANHA BUG */
1744 		if (piranha_bad_128k) {
1745 			/* region from +1408K to +1536 is un-usable. */
1746 
1747 			int idx_start = (1408*1024/sizeof(u64)) >> 3;
1748 			int idx_end   = (1536*1024/sizeof(u64)) >> 3;
1749 			long *p_start = (long *) &(sba_dev->ioc[i].res_map[idx_start]);
1750 			long *p_end   = (long *) &(sba_dev->ioc[i].res_map[idx_end]);
1751 
1752 			/* mark that part of the io pdir busy */
1753 			while (p_start < p_end)
1754 				*p_start++ = -1;
1755 
1756 		}
1757 
1758 #ifdef DEBUG_DMB_TRAP
1759 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1760 				set_data_memory_break, 0);
1761 		iterate_pages( sba_dev->ioc[i].pdir_base, sba_dev->ioc[i].pdir_size,
1762 				set_data_memory_break, 0);
1763 #endif
1764 
1765 		DBG_INIT("%s() %d res_map %x %p\n",
1766 			__func__, i, res_size, sba_dev->ioc[i].res_map);
1767 	}
1768 
1769 	spin_lock_init(&sba_dev->sba_lock);
1770 	ioc_needs_fdc = boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC;
1771 
1772 #ifdef DEBUG_SBA_INIT
1773 	/*
1774 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
1775 	 * (bit #61, big endian), we have to flush and sync every time
1776 	 * IO-PDIR is changed in Ike/Astro.
1777 	 */
1778 	if (ioc_needs_fdc) {
1779 		printk(KERN_INFO MODULE_NAME " FDC/SYNC required.\n");
1780 	} else {
1781 		printk(KERN_INFO MODULE_NAME " IOC has cache coherent PDIR.\n");
1782 	}
1783 #endif
1784 }
1785 
1786 #ifdef CONFIG_PROC_FS
1787 static int sba_proc_info(struct seq_file *m, void *p)
1788 {
1789 	struct sba_device *sba_dev = sba_list;
1790 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1791 	int total_pages = (int) (ioc->res_size << 3); /* 8 bits per byte */
1792 #ifdef SBA_COLLECT_STATS
1793 	unsigned long avg = 0, min, max;
1794 #endif
1795 	int i;
1796 
1797 	seq_printf(m, "%s rev %d.%d\n",
1798 		   sba_dev->name,
1799 		   (sba_dev->hw_rev & 0x7) + 1,
1800 		   (sba_dev->hw_rev & 0x18) >> 3);
1801 	seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1802 		   (int)((ioc->res_size << 3) * sizeof(u64)), /* 8 bits/byte */
1803 		   total_pages);
1804 
1805 	seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1806 		   ioc->res_size, ioc->res_size << 3);   /* 8 bits per byte */
1807 
1808 	seq_printf(m, "LMMIO_BASE/MASK/ROUTE %08x %08x %08x\n",
1809 		   READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_BASE),
1810 		   READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_MASK),
1811 		   READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_ROUTE));
1812 
1813 	for (i=0; i<4; i++)
1814 		seq_printf(m, "DIR%d_BASE/MASK/ROUTE %08x %08x %08x\n",
1815 			   i,
1816 			   READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_BASE  + i*0x18),
1817 			   READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_MASK  + i*0x18),
1818 			   READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_ROUTE + i*0x18));
1819 
1820 #ifdef SBA_COLLECT_STATS
1821 	seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1822 		   total_pages - ioc->used_pages, ioc->used_pages,
1823 		   (int)(ioc->used_pages * 100 / total_pages));
1824 
1825 	min = max = ioc->avg_search[0];
1826 	for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1827 		avg += ioc->avg_search[i];
1828 		if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1829 		if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1830 	}
1831 	avg /= SBA_SEARCH_SAMPLE;
1832 	seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1833 		   min, avg, max);
1834 
1835 	seq_printf(m, "pci_map_single(): %12ld calls  %12ld pages (avg %d/1000)\n",
1836 		   ioc->msingle_calls, ioc->msingle_pages,
1837 		   (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1838 
1839 	/* KLUGE - unmap_sg calls unmap_single for each mapped page */
1840 	min = ioc->usingle_calls;
1841 	max = ioc->usingle_pages - ioc->usg_pages;
1842 	seq_printf(m, "pci_unmap_single: %12ld calls  %12ld pages (avg %d/1000)\n",
1843 		   min, max, (int)((max * 1000)/min));
1844 
1845 	seq_printf(m, "pci_map_sg()    : %12ld calls  %12ld pages (avg %d/1000)\n",
1846 		   ioc->msg_calls, ioc->msg_pages,
1847 		   (int)((ioc->msg_pages * 1000)/ioc->msg_calls));
1848 
1849 	seq_printf(m, "pci_unmap_sg()  : %12ld calls  %12ld pages (avg %d/1000)\n",
1850 		   ioc->usg_calls, ioc->usg_pages,
1851 		   (int)((ioc->usg_pages * 1000)/ioc->usg_calls));
1852 #endif
1853 
1854 	return 0;
1855 }
1856 
1857 static int
1858 sba_proc_bitmap_info(struct seq_file *m, void *p)
1859 {
1860 	struct sba_device *sba_dev = sba_list;
1861 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1862 
1863 	seq_hex_dump(m, "   ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map,
1864 		     ioc->res_size, false);
1865 	seq_putc(m, '\n');
1866 
1867 	return 0;
1868 }
1869 #endif /* CONFIG_PROC_FS */
1870 
1871 static const struct parisc_device_id sba_tbl[] __initconst = {
1872 	{ HPHW_IOA, HVERSION_REV_ANY_ID, ASTRO_RUNWAY_PORT, 0xb },
1873 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, IKE_MERCED_PORT, 0xc },
1874 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REO_MERCED_PORT, 0xc },
1875 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REOG_MERCED_PORT, 0xc },
1876 	{ HPHW_IOA, HVERSION_REV_ANY_ID, PLUTO_MCKINLEY_PORT, 0xc },
1877 	{ 0, }
1878 };
1879 
1880 static int sba_driver_callback(struct parisc_device *);
1881 
1882 static struct parisc_driver sba_driver __refdata = {
1883 	.name =		MODULE_NAME,
1884 	.id_table =	sba_tbl,
1885 	.probe =	sba_driver_callback,
1886 };
1887 
1888 /*
1889 ** Determine if sba should claim this chip (return 0) or not (return 1).
1890 ** If so, initialize the chip and tell other partners in crime they
1891 ** have work to do.
1892 */
1893 static int __init sba_driver_callback(struct parisc_device *dev)
1894 {
1895 	struct sba_device *sba_dev;
1896 	u32 func_class;
1897 	int i;
1898 	char *version;
1899 	void __iomem *sba_addr = ioremap(dev->hpa.start, SBA_FUNC_SIZE);
1900 	struct proc_dir_entry *root __maybe_unused;
1901 
1902 	sba_dump_ranges(sba_addr);
1903 
1904 	/* Read HW Rev First */
1905 	func_class = READ_REG(sba_addr + SBA_FCLASS);
1906 
1907 	if (IS_ASTRO(dev)) {
1908 		unsigned long fclass;
1909 		static char astro_rev[]="Astro ?.?";
1910 
1911 		/* Astro is broken...Read HW Rev First */
1912 		fclass = READ_REG(sba_addr);
1913 
1914 		astro_rev[6] = '1' + (char) (fclass & 0x7);
1915 		astro_rev[8] = '0' + (char) ((fclass & 0x18) >> 3);
1916 		version = astro_rev;
1917 
1918 	} else if (IS_IKE(dev)) {
1919 		static char ike_rev[] = "Ike rev ?";
1920 		ike_rev[8] = '0' + (char) (func_class & 0xff);
1921 		version = ike_rev;
1922 	} else if (IS_PLUTO(dev)) {
1923 		static char pluto_rev[]="Pluto ?.?";
1924 		pluto_rev[6] = '0' + (char) ((func_class & 0xf0) >> 4);
1925 		pluto_rev[8] = '0' + (char) (func_class & 0x0f);
1926 		version = pluto_rev;
1927 	} else {
1928 		static char reo_rev[] = "REO rev ?";
1929 		reo_rev[8] = '0' + (char) (func_class & 0xff);
1930 		version = reo_rev;
1931 	}
1932 
1933 	if (!global_ioc_cnt) {
1934 		global_ioc_cnt = count_parisc_driver(&sba_driver);
1935 
1936 		/* Astro and Pluto have one IOC per SBA */
1937 		if ((!IS_ASTRO(dev)) || (!IS_PLUTO(dev)))
1938 			global_ioc_cnt *= 2;
1939 	}
1940 
1941 	printk(KERN_INFO "%s found %s at 0x%llx\n",
1942 		MODULE_NAME, version, (unsigned long long)dev->hpa.start);
1943 
1944 	sba_dev = kzalloc(sizeof(struct sba_device), GFP_KERNEL);
1945 	if (!sba_dev) {
1946 		printk(KERN_ERR MODULE_NAME " - couldn't alloc sba_device\n");
1947 		return -ENOMEM;
1948 	}
1949 
1950 	parisc_set_drvdata(dev, sba_dev);
1951 
1952 	for(i=0; i<MAX_IOC; i++)
1953 		spin_lock_init(&(sba_dev->ioc[i].res_lock));
1954 
1955 	sba_dev->dev = dev;
1956 	sba_dev->hw_rev = func_class;
1957 	sba_dev->name = dev->name;
1958 	sba_dev->sba_hpa = sba_addr;
1959 
1960 	sba_get_pat_resources(sba_dev);
1961 	sba_hw_init(sba_dev);
1962 	sba_common_init(sba_dev);
1963 
1964 	hppa_dma_ops = &sba_ops;
1965 
1966 	switch (dev->id.hversion) {
1967 	case PLUTO_MCKINLEY_PORT:
1968 		if (!proc_mckinley_root)
1969 			proc_mckinley_root = proc_mkdir("bus/mckinley", NULL);
1970 		root = proc_mckinley_root;
1971 		break;
1972 	case ASTRO_RUNWAY_PORT:
1973 	case IKE_MERCED_PORT:
1974 	default:
1975 		if (!proc_runway_root)
1976 			proc_runway_root = proc_mkdir("bus/runway", NULL);
1977 		root = proc_runway_root;
1978 		break;
1979 	}
1980 
1981 	proc_create_single("sba_iommu", 0, root, sba_proc_info);
1982 	proc_create_single("sba_iommu-bitmap", 0, root, sba_proc_bitmap_info);
1983 	return 0;
1984 }
1985 
1986 /*
1987 ** One time initialization to let the world know the SBA was found.
1988 ** This is the only routine which is NOT static.
1989 ** Must be called exactly once before pci_init().
1990 */
1991 static int __init sba_init(void)
1992 {
1993 	return register_parisc_driver(&sba_driver);
1994 }
1995 arch_initcall(sba_init);
1996 
1997 
1998 /**
1999  * sba_get_iommu - Assign the iommu pointer for the pci bus controller.
2000  * @pci_hba: The parisc device.
2001  *
2002  * Returns the appropriate IOMMU data for the given parisc PCI controller.
2003  * This is cached and used later for PCI DMA Mapping.
2004  */
2005 void * sba_get_iommu(struct parisc_device *pci_hba)
2006 {
2007 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2008 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2009 	char t = sba_dev->id.hw_type;
2010 	int iocnum = (pci_hba->hw_path >> 3);	/* IOC # */
2011 
2012 	WARN_ON((t != HPHW_IOA) && (t != HPHW_BCPORT));
2013 
2014 	return &(sba->ioc[iocnum]);
2015 }
2016 
2017 
2018 /**
2019  * sba_directed_lmmio - return first directed LMMIO range routed to rope
2020  * @pci_hba: The parisc device.
2021  * @r: resource PCI host controller wants start/end fields assigned.
2022  *
2023  * For the given parisc PCI controller, determine if any direct ranges
2024  * are routed down the corresponding rope.
2025  */
2026 void sba_directed_lmmio(struct parisc_device *pci_hba, struct resource *r)
2027 {
2028 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2029 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2030 	char t = sba_dev->id.hw_type;
2031 	int i;
2032 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2033 
2034 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2035 
2036 	r->start = r->end = 0;
2037 
2038 	/* Astro has 4 directed ranges. Not sure about Ike/Pluto/et al */
2039 	for (i=0; i<4; i++) {
2040 		int base, size;
2041 		void __iomem *reg = sba->sba_hpa + i*0x18;
2042 
2043 		base = READ_REG32(reg + LMMIO_DIRECT0_BASE);
2044 		if ((base & 1) == 0)
2045 			continue;	/* not enabled */
2046 
2047 		size = READ_REG32(reg + LMMIO_DIRECT0_ROUTE);
2048 
2049 		if ((size & (ROPES_PER_IOC-1)) != rope)
2050 			continue;	/* directed down different rope */
2051 
2052 		r->start = (base & ~1UL) | PCI_F_EXTEND;
2053 		size = ~ READ_REG32(reg + LMMIO_DIRECT0_MASK);
2054 		r->end = r->start + size;
2055 		r->flags = IORESOURCE_MEM;
2056 	}
2057 }
2058 
2059 
2060 /**
2061  * sba_distributed_lmmio - return portion of distributed LMMIO range
2062  * @pci_hba: The parisc device.
2063  * @r: resource PCI host controller wants start/end fields assigned.
2064  *
2065  * For the given parisc PCI controller, return portion of distributed LMMIO
2066  * range. The distributed LMMIO is always present and it's just a question
2067  * of the base address and size of the range.
2068  */
2069 void sba_distributed_lmmio(struct parisc_device *pci_hba, struct resource *r )
2070 {
2071 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2072 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2073 	char t = sba_dev->id.hw_type;
2074 	int base, size;
2075 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2076 
2077 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2078 
2079 	r->start = r->end = 0;
2080 
2081 	base = READ_REG32(sba->sba_hpa + LMMIO_DIST_BASE);
2082 	if ((base & 1) == 0) {
2083 		BUG();	/* Gah! Distr Range wasn't enabled! */
2084 		return;
2085 	}
2086 
2087 	r->start = (base & ~1UL) | PCI_F_EXTEND;
2088 
2089 	size = (~READ_REG32(sba->sba_hpa + LMMIO_DIST_MASK)) / ROPES_PER_IOC;
2090 	r->start += rope * (size + 1);	/* adjust base for this rope */
2091 	r->end = r->start + size;
2092 	r->flags = IORESOURCE_MEM;
2093 }
2094