1 /* 2 ** System Bus Adapter (SBA) I/O MMU manager 3 ** 4 ** (c) Copyright 2000-2004 Grant Grundler <grundler @ parisc-linux x org> 5 ** (c) Copyright 2004 Naresh Kumar Inna <knaresh at india x hp x com> 6 ** (c) Copyright 2000-2004 Hewlett-Packard Company 7 ** 8 ** Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code) 9 ** 10 ** This program is free software; you can redistribute it and/or modify 11 ** it under the terms of the GNU General Public License as published by 12 ** the Free Software Foundation; either version 2 of the License, or 13 ** (at your option) any later version. 14 ** 15 ** 16 ** This module initializes the IOC (I/O Controller) found on B1000/C3000/ 17 ** J5000/J7000/N-class/L-class machines and their successors. 18 ** 19 ** FIXME: add DMA hint support programming in both sba and lba modules. 20 */ 21 22 #include <linux/types.h> 23 #include <linux/kernel.h> 24 #include <linux/spinlock.h> 25 #include <linux/slab.h> 26 #include <linux/init.h> 27 28 #include <linux/mm.h> 29 #include <linux/string.h> 30 #include <linux/pci.h> 31 #include <linux/scatterlist.h> 32 #include <linux/iommu-helper.h> 33 34 #include <asm/byteorder.h> 35 #include <asm/io.h> 36 #include <asm/dma.h> /* for DMA_CHUNK_SIZE */ 37 38 #include <asm/hardware.h> /* for register_parisc_driver() stuff */ 39 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <linux/module.h> 43 44 #include <asm/ropes.h> 45 #include <asm/mckinley.h> /* for proc_mckinley_root */ 46 #include <asm/runway.h> /* for proc_runway_root */ 47 #include <asm/pdc.h> /* for PDC_MODEL_* */ 48 #include <asm/pdcpat.h> /* for is_pdc_pat() */ 49 #include <asm/parisc-device.h> 50 51 #define MODULE_NAME "SBA" 52 53 /* 54 ** The number of debug flags is a clue - this code is fragile. 55 ** Don't even think about messing with it unless you have 56 ** plenty of 710's to sacrifice to the computer gods. :^) 57 */ 58 #undef DEBUG_SBA_INIT 59 #undef DEBUG_SBA_RUN 60 #undef DEBUG_SBA_RUN_SG 61 #undef DEBUG_SBA_RESOURCE 62 #undef ASSERT_PDIR_SANITY 63 #undef DEBUG_LARGE_SG_ENTRIES 64 #undef DEBUG_DMB_TRAP 65 66 #ifdef DEBUG_SBA_INIT 67 #define DBG_INIT(x...) printk(x) 68 #else 69 #define DBG_INIT(x...) 70 #endif 71 72 #ifdef DEBUG_SBA_RUN 73 #define DBG_RUN(x...) printk(x) 74 #else 75 #define DBG_RUN(x...) 76 #endif 77 78 #ifdef DEBUG_SBA_RUN_SG 79 #define DBG_RUN_SG(x...) printk(x) 80 #else 81 #define DBG_RUN_SG(x...) 82 #endif 83 84 85 #ifdef DEBUG_SBA_RESOURCE 86 #define DBG_RES(x...) printk(x) 87 #else 88 #define DBG_RES(x...) 89 #endif 90 91 #define SBA_INLINE __inline__ 92 93 #define DEFAULT_DMA_HINT_REG 0 94 95 struct sba_device *sba_list; 96 EXPORT_SYMBOL_GPL(sba_list); 97 98 static unsigned long ioc_needs_fdc = 0; 99 100 /* global count of IOMMUs in the system */ 101 static unsigned int global_ioc_cnt = 0; 102 103 /* PA8700 (Piranha 2.2) bug workaround */ 104 static unsigned long piranha_bad_128k = 0; 105 106 /* Looks nice and keeps the compiler happy */ 107 #define SBA_DEV(d) ((struct sba_device *) (d)) 108 109 #ifdef CONFIG_AGP_PARISC 110 #define SBA_AGP_SUPPORT 111 #endif /*CONFIG_AGP_PARISC*/ 112 113 #ifdef SBA_AGP_SUPPORT 114 static int sba_reserve_agpgart = 1; 115 module_param(sba_reserve_agpgart, int, 0444); 116 MODULE_PARM_DESC(sba_reserve_agpgart, "Reserve half of IO pdir as AGPGART"); 117 #endif 118 119 120 /************************************ 121 ** SBA register read and write support 122 ** 123 ** BE WARNED: register writes are posted. 124 ** (ie follow writes which must reach HW with a read) 125 ** 126 ** Superdome (in particular, REO) allows only 64-bit CSR accesses. 127 */ 128 #define READ_REG32(addr) readl(addr) 129 #define READ_REG64(addr) readq(addr) 130 #define WRITE_REG32(val, addr) writel((val), (addr)) 131 #define WRITE_REG64(val, addr) writeq((val), (addr)) 132 133 #ifdef CONFIG_64BIT 134 #define READ_REG(addr) READ_REG64(addr) 135 #define WRITE_REG(value, addr) WRITE_REG64(value, addr) 136 #else 137 #define READ_REG(addr) READ_REG32(addr) 138 #define WRITE_REG(value, addr) WRITE_REG32(value, addr) 139 #endif 140 141 #ifdef DEBUG_SBA_INIT 142 143 /* NOTE: When CONFIG_64BIT isn't defined, READ_REG64() is two 32-bit reads */ 144 145 /** 146 * sba_dump_ranges - debugging only - print ranges assigned to this IOA 147 * @hpa: base address of the sba 148 * 149 * Print the MMIO and IO Port address ranges forwarded by an Astro/Ike/RIO 150 * IO Adapter (aka Bus Converter). 151 */ 152 static void 153 sba_dump_ranges(void __iomem *hpa) 154 { 155 DBG_INIT("SBA at 0x%p\n", hpa); 156 DBG_INIT("IOS_DIST_BASE : %Lx\n", READ_REG64(hpa+IOS_DIST_BASE)); 157 DBG_INIT("IOS_DIST_MASK : %Lx\n", READ_REG64(hpa+IOS_DIST_MASK)); 158 DBG_INIT("IOS_DIST_ROUTE : %Lx\n", READ_REG64(hpa+IOS_DIST_ROUTE)); 159 DBG_INIT("\n"); 160 DBG_INIT("IOS_DIRECT_BASE : %Lx\n", READ_REG64(hpa+IOS_DIRECT_BASE)); 161 DBG_INIT("IOS_DIRECT_MASK : %Lx\n", READ_REG64(hpa+IOS_DIRECT_MASK)); 162 DBG_INIT("IOS_DIRECT_ROUTE: %Lx\n", READ_REG64(hpa+IOS_DIRECT_ROUTE)); 163 } 164 165 /** 166 * sba_dump_tlb - debugging only - print IOMMU operating parameters 167 * @hpa: base address of the IOMMU 168 * 169 * Print the size/location of the IO MMU PDIR. 170 */ 171 static void sba_dump_tlb(void __iomem *hpa) 172 { 173 DBG_INIT("IO TLB at 0x%p\n", hpa); 174 DBG_INIT("IOC_IBASE : 0x%Lx\n", READ_REG64(hpa+IOC_IBASE)); 175 DBG_INIT("IOC_IMASK : 0x%Lx\n", READ_REG64(hpa+IOC_IMASK)); 176 DBG_INIT("IOC_TCNFG : 0x%Lx\n", READ_REG64(hpa+IOC_TCNFG)); 177 DBG_INIT("IOC_PDIR_BASE: 0x%Lx\n", READ_REG64(hpa+IOC_PDIR_BASE)); 178 DBG_INIT("\n"); 179 } 180 #else 181 #define sba_dump_ranges(x) 182 #define sba_dump_tlb(x) 183 #endif /* DEBUG_SBA_INIT */ 184 185 186 #ifdef ASSERT_PDIR_SANITY 187 188 /** 189 * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry 190 * @ioc: IO MMU structure which owns the pdir we are interested in. 191 * @msg: text to print ont the output line. 192 * @pide: pdir index. 193 * 194 * Print one entry of the IO MMU PDIR in human readable form. 195 */ 196 static void 197 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide) 198 { 199 /* start printing from lowest pde in rval */ 200 u64 *ptr = &(ioc->pdir_base[pide & (~0U * BITS_PER_LONG)]); 201 unsigned long *rptr = (unsigned long *) &(ioc->res_map[(pide >>3) & ~(sizeof(unsigned long) - 1)]); 202 uint rcnt; 203 204 printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n", 205 msg, 206 rptr, pide & (BITS_PER_LONG - 1), *rptr); 207 208 rcnt = 0; 209 while (rcnt < BITS_PER_LONG) { 210 printk(KERN_DEBUG "%s %2d %p %016Lx\n", 211 (rcnt == (pide & (BITS_PER_LONG - 1))) 212 ? " -->" : " ", 213 rcnt, ptr, *ptr ); 214 rcnt++; 215 ptr++; 216 } 217 printk(KERN_DEBUG "%s", msg); 218 } 219 220 221 /** 222 * sba_check_pdir - debugging only - consistency checker 223 * @ioc: IO MMU structure which owns the pdir we are interested in. 224 * @msg: text to print ont the output line. 225 * 226 * Verify the resource map and pdir state is consistent 227 */ 228 static int 229 sba_check_pdir(struct ioc *ioc, char *msg) 230 { 231 u32 *rptr_end = (u32 *) &(ioc->res_map[ioc->res_size]); 232 u32 *rptr = (u32 *) ioc->res_map; /* resource map ptr */ 233 u64 *pptr = ioc->pdir_base; /* pdir ptr */ 234 uint pide = 0; 235 236 while (rptr < rptr_end) { 237 u32 rval = *rptr; 238 int rcnt = 32; /* number of bits we might check */ 239 240 while (rcnt) { 241 /* Get last byte and highest bit from that */ 242 u32 pde = ((u32) (((char *)pptr)[7])) << 24; 243 if ((rval ^ pde) & 0x80000000) 244 { 245 /* 246 ** BUMMER! -- res_map != pdir -- 247 ** Dump rval and matching pdir entries 248 */ 249 sba_dump_pdir_entry(ioc, msg, pide); 250 return(1); 251 } 252 rcnt--; 253 rval <<= 1; /* try the next bit */ 254 pptr++; 255 pide++; 256 } 257 rptr++; /* look at next word of res_map */ 258 } 259 /* It'd be nice if we always got here :^) */ 260 return 0; 261 } 262 263 264 /** 265 * sba_dump_sg - debugging only - print Scatter-Gather list 266 * @ioc: IO MMU structure which owns the pdir we are interested in. 267 * @startsg: head of the SG list 268 * @nents: number of entries in SG list 269 * 270 * print the SG list so we can verify it's correct by hand. 271 */ 272 static void 273 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents) 274 { 275 while (nents-- > 0) { 276 printk(KERN_DEBUG " %d : %08lx/%05x %p/%05x\n", 277 nents, 278 (unsigned long) sg_dma_address(startsg), 279 sg_dma_len(startsg), 280 sg_virt_addr(startsg), startsg->length); 281 startsg++; 282 } 283 } 284 285 #endif /* ASSERT_PDIR_SANITY */ 286 287 288 289 290 /************************************************************** 291 * 292 * I/O Pdir Resource Management 293 * 294 * Bits set in the resource map are in use. 295 * Each bit can represent a number of pages. 296 * LSbs represent lower addresses (IOVA's). 297 * 298 ***************************************************************/ 299 #define PAGES_PER_RANGE 1 /* could increase this to 4 or 8 if needed */ 300 301 /* Convert from IOVP to IOVA and vice versa. */ 302 303 #ifdef ZX1_SUPPORT 304 /* Pluto (aka ZX1) boxes need to set or clear the ibase bits appropriately */ 305 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((ioc->ibase) | (iovp) | (offset)) 306 #define SBA_IOVP(ioc,iova) ((iova) & (ioc)->iovp_mask) 307 #else 308 /* only support Astro and ancestors. Saves a few cycles in key places */ 309 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((iovp) | (offset)) 310 #define SBA_IOVP(ioc,iova) (iova) 311 #endif 312 313 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) 314 315 #define RESMAP_MASK(n) (~0UL << (BITS_PER_LONG - (n))) 316 #define RESMAP_IDX_MASK (sizeof(unsigned long) - 1) 317 318 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr, 319 unsigned int bitshiftcnt) 320 { 321 return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3) 322 + bitshiftcnt; 323 } 324 325 /** 326 * sba_search_bitmap - find free space in IO PDIR resource bitmap 327 * @ioc: IO MMU structure which owns the pdir we are interested in. 328 * @bits_wanted: number of entries we need. 329 * 330 * Find consecutive free bits in resource bitmap. 331 * Each bit represents one entry in the IO Pdir. 332 * Cool perf optimization: search for log2(size) bits at a time. 333 */ 334 static SBA_INLINE unsigned long 335 sba_search_bitmap(struct ioc *ioc, struct device *dev, 336 unsigned long bits_wanted) 337 { 338 unsigned long *res_ptr = ioc->res_hint; 339 unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]); 340 unsigned long pide = ~0UL, tpide; 341 unsigned long boundary_size; 342 unsigned long shift; 343 int ret; 344 345 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1, 346 1ULL << IOVP_SHIFT) >> IOVP_SHIFT; 347 348 #if defined(ZX1_SUPPORT) 349 BUG_ON(ioc->ibase & ~IOVP_MASK); 350 shift = ioc->ibase >> IOVP_SHIFT; 351 #else 352 shift = 0; 353 #endif 354 355 if (bits_wanted > (BITS_PER_LONG/2)) { 356 /* Search word at a time - no mask needed */ 357 for(; res_ptr < res_end; ++res_ptr) { 358 tpide = ptr_to_pide(ioc, res_ptr, 0); 359 ret = iommu_is_span_boundary(tpide, bits_wanted, 360 shift, 361 boundary_size); 362 if ((*res_ptr == 0) && !ret) { 363 *res_ptr = RESMAP_MASK(bits_wanted); 364 pide = tpide; 365 break; 366 } 367 } 368 /* point to the next word on next pass */ 369 res_ptr++; 370 ioc->res_bitshift = 0; 371 } else { 372 /* 373 ** Search the resource bit map on well-aligned values. 374 ** "o" is the alignment. 375 ** We need the alignment to invalidate I/O TLB using 376 ** SBA HW features in the unmap path. 377 */ 378 unsigned long o = 1 << get_order(bits_wanted << PAGE_SHIFT); 379 uint bitshiftcnt = ALIGN(ioc->res_bitshift, o); 380 unsigned long mask; 381 382 if (bitshiftcnt >= BITS_PER_LONG) { 383 bitshiftcnt = 0; 384 res_ptr++; 385 } 386 mask = RESMAP_MASK(bits_wanted) >> bitshiftcnt; 387 388 DBG_RES("%s() o %ld %p", __func__, o, res_ptr); 389 while(res_ptr < res_end) 390 { 391 DBG_RES(" %p %lx %lx\n", res_ptr, mask, *res_ptr); 392 WARN_ON(mask == 0); 393 tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt); 394 ret = iommu_is_span_boundary(tpide, bits_wanted, 395 shift, 396 boundary_size); 397 if ((((*res_ptr) & mask) == 0) && !ret) { 398 *res_ptr |= mask; /* mark resources busy! */ 399 pide = tpide; 400 break; 401 } 402 mask >>= o; 403 bitshiftcnt += o; 404 if (mask == 0) { 405 mask = RESMAP_MASK(bits_wanted); 406 bitshiftcnt=0; 407 res_ptr++; 408 } 409 } 410 /* look in the same word on the next pass */ 411 ioc->res_bitshift = bitshiftcnt + bits_wanted; 412 } 413 414 /* wrapped ? */ 415 if (res_end <= res_ptr) { 416 ioc->res_hint = (unsigned long *) ioc->res_map; 417 ioc->res_bitshift = 0; 418 } else { 419 ioc->res_hint = res_ptr; 420 } 421 return (pide); 422 } 423 424 425 /** 426 * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap 427 * @ioc: IO MMU structure which owns the pdir we are interested in. 428 * @size: number of bytes to create a mapping for 429 * 430 * Given a size, find consecutive unmarked and then mark those bits in the 431 * resource bit map. 432 */ 433 static int 434 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 435 { 436 unsigned int pages_needed = size >> IOVP_SHIFT; 437 #ifdef SBA_COLLECT_STATS 438 unsigned long cr_start = mfctl(16); 439 #endif 440 unsigned long pide; 441 442 pide = sba_search_bitmap(ioc, dev, pages_needed); 443 if (pide >= (ioc->res_size << 3)) { 444 pide = sba_search_bitmap(ioc, dev, pages_needed); 445 if (pide >= (ioc->res_size << 3)) 446 panic("%s: I/O MMU @ %p is out of mapping resources\n", 447 __FILE__, ioc->ioc_hpa); 448 } 449 450 #ifdef ASSERT_PDIR_SANITY 451 /* verify the first enable bit is clear */ 452 if(0x00 != ((u8 *) ioc->pdir_base)[pide*sizeof(u64) + 7]) { 453 sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide); 454 } 455 #endif 456 457 DBG_RES("%s(%x) %d -> %lx hint %x/%x\n", 458 __func__, size, pages_needed, pide, 459 (uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map), 460 ioc->res_bitshift ); 461 462 #ifdef SBA_COLLECT_STATS 463 { 464 unsigned long cr_end = mfctl(16); 465 unsigned long tmp = cr_end - cr_start; 466 /* check for roll over */ 467 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp); 468 } 469 ioc->avg_search[ioc->avg_idx++] = cr_start; 470 ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1; 471 472 ioc->used_pages += pages_needed; 473 #endif 474 475 return (pide); 476 } 477 478 479 /** 480 * sba_free_range - unmark bits in IO PDIR resource bitmap 481 * @ioc: IO MMU structure which owns the pdir we are interested in. 482 * @iova: IO virtual address which was previously allocated. 483 * @size: number of bytes to create a mapping for 484 * 485 * clear bits in the ioc's resource map 486 */ 487 static SBA_INLINE void 488 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size) 489 { 490 unsigned long iovp = SBA_IOVP(ioc, iova); 491 unsigned int pide = PDIR_INDEX(iovp); 492 unsigned int ridx = pide >> 3; /* convert bit to byte address */ 493 unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]); 494 495 int bits_not_wanted = size >> IOVP_SHIFT; 496 497 /* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */ 498 unsigned long m = RESMAP_MASK(bits_not_wanted) >> (pide & (BITS_PER_LONG - 1)); 499 500 DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n", 501 __func__, (uint) iova, size, 502 bits_not_wanted, m, pide, res_ptr, *res_ptr); 503 504 #ifdef SBA_COLLECT_STATS 505 ioc->used_pages -= bits_not_wanted; 506 #endif 507 508 *res_ptr &= ~m; 509 } 510 511 512 /************************************************************** 513 * 514 * "Dynamic DMA Mapping" support (aka "Coherent I/O") 515 * 516 ***************************************************************/ 517 518 #ifdef SBA_HINT_SUPPORT 519 #define SBA_DMA_HINT(ioc, val) ((val) << (ioc)->hint_shift_pdir) 520 #endif 521 522 typedef unsigned long space_t; 523 #define KERNEL_SPACE 0 524 525 /** 526 * sba_io_pdir_entry - fill in one IO PDIR entry 527 * @pdir_ptr: pointer to IO PDIR entry 528 * @sid: process Space ID - currently only support KERNEL_SPACE 529 * @vba: Virtual CPU address of buffer to map 530 * @hint: DMA hint set to use for this mapping 531 * 532 * SBA Mapping Routine 533 * 534 * Given a virtual address (vba, arg2) and space id, (sid, arg1) 535 * sba_io_pdir_entry() loads the I/O PDIR entry pointed to by 536 * pdir_ptr (arg0). 537 * Using the bass-ackwards HP bit numbering, Each IO Pdir entry 538 * for Astro/Ike looks like: 539 * 540 * 541 * 0 19 51 55 63 542 * +-+---------------------+----------------------------------+----+--------+ 543 * |V| U | PPN[43:12] | U | VI | 544 * +-+---------------------+----------------------------------+----+--------+ 545 * 546 * Pluto is basically identical, supports fewer physical address bits: 547 * 548 * 0 23 51 55 63 549 * +-+------------------------+-------------------------------+----+--------+ 550 * |V| U | PPN[39:12] | U | VI | 551 * +-+------------------------+-------------------------------+----+--------+ 552 * 553 * V == Valid Bit (Most Significant Bit is bit 0) 554 * U == Unused 555 * PPN == Physical Page Number 556 * VI == Virtual Index (aka Coherent Index) 557 * 558 * LPA instruction output is put into PPN field. 559 * LCI (Load Coherence Index) instruction provides the "VI" bits. 560 * 561 * We pre-swap the bytes since PCX-W is Big Endian and the 562 * IOMMU uses little endian for the pdir. 563 */ 564 565 static void SBA_INLINE 566 sba_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba, 567 unsigned long hint) 568 { 569 u64 pa; /* physical address */ 570 register unsigned ci; /* coherent index */ 571 572 pa = virt_to_phys(vba); 573 pa &= IOVP_MASK; 574 575 mtsp(sid,1); 576 asm("lci 0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); 577 pa |= (ci >> 12) & 0xff; /* move CI (8 bits) into lowest byte */ 578 579 pa |= SBA_PDIR_VALID_BIT; /* set "valid" bit */ 580 *pdir_ptr = cpu_to_le64(pa); /* swap and store into I/O Pdir */ 581 582 /* 583 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set 584 * (bit #61, big endian), we have to flush and sync every time 585 * IO-PDIR is changed in Ike/Astro. 586 */ 587 if (ioc_needs_fdc) 588 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); 589 } 590 591 592 /** 593 * sba_mark_invalid - invalidate one or more IO PDIR entries 594 * @ioc: IO MMU structure which owns the pdir we are interested in. 595 * @iova: IO Virtual Address mapped earlier 596 * @byte_cnt: number of bytes this mapping covers. 597 * 598 * Marking the IO PDIR entry(ies) as Invalid and invalidate 599 * corresponding IO TLB entry. The Ike PCOM (Purge Command Register) 600 * is to purge stale entries in the IO TLB when unmapping entries. 601 * 602 * The PCOM register supports purging of multiple pages, with a minium 603 * of 1 page and a maximum of 2GB. Hardware requires the address be 604 * aligned to the size of the range being purged. The size of the range 605 * must be a power of 2. The "Cool perf optimization" in the 606 * allocation routine helps keep that true. 607 */ 608 static SBA_INLINE void 609 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 610 { 611 u32 iovp = (u32) SBA_IOVP(ioc,iova); 612 u64 *pdir_ptr = &ioc->pdir_base[PDIR_INDEX(iovp)]; 613 614 #ifdef ASSERT_PDIR_SANITY 615 /* Assert first pdir entry is set. 616 ** 617 ** Even though this is a big-endian machine, the entries 618 ** in the iopdir are little endian. That's why we look at 619 ** the byte at +7 instead of at +0. 620 */ 621 if (0x80 != (((u8 *) pdir_ptr)[7])) { 622 sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp)); 623 } 624 #endif 625 626 if (byte_cnt > IOVP_SIZE) 627 { 628 #if 0 629 unsigned long entries_per_cacheline = ioc_needs_fdc ? 630 L1_CACHE_ALIGN(((unsigned long) pdir_ptr)) 631 - (unsigned long) pdir_ptr; 632 : 262144; 633 #endif 634 635 /* set "size" field for PCOM */ 636 iovp |= get_order(byte_cnt) + PAGE_SHIFT; 637 638 do { 639 /* clear I/O Pdir entry "valid" bit first */ 640 ((u8 *) pdir_ptr)[7] = 0; 641 if (ioc_needs_fdc) { 642 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); 643 #if 0 644 entries_per_cacheline = L1_CACHE_SHIFT - 3; 645 #endif 646 } 647 pdir_ptr++; 648 byte_cnt -= IOVP_SIZE; 649 } while (byte_cnt > IOVP_SIZE); 650 } else 651 iovp |= IOVP_SHIFT; /* set "size" field for PCOM */ 652 653 /* 654 ** clear I/O PDIR entry "valid" bit. 655 ** We have to R/M/W the cacheline regardless how much of the 656 ** pdir entry that we clobber. 657 ** The rest of the entry would be useful for debugging if we 658 ** could dump core on HPMC. 659 */ 660 ((u8 *) pdir_ptr)[7] = 0; 661 if (ioc_needs_fdc) 662 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); 663 664 WRITE_REG( SBA_IOVA(ioc, iovp, 0, 0), ioc->ioc_hpa+IOC_PCOM); 665 } 666 667 /** 668 * sba_dma_supported - PCI driver can query DMA support 669 * @dev: instance of PCI owned by the driver that's asking 670 * @mask: number of address bits this PCI device can handle 671 * 672 * See Documentation/DMA-API-HOWTO.txt 673 */ 674 static int sba_dma_supported( struct device *dev, u64 mask) 675 { 676 struct ioc *ioc; 677 678 if (dev == NULL) { 679 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n"); 680 BUG(); 681 return(0); 682 } 683 684 /* Documentation/DMA-API-HOWTO.txt tells drivers to try 64-bit 685 * first, then fall back to 32-bit if that fails. 686 * We are just "encouraging" 32-bit DMA masks here since we can 687 * never allow IOMMU bypass unless we add special support for ZX1. 688 */ 689 if (mask > ~0U) 690 return 0; 691 692 ioc = GET_IOC(dev); 693 694 /* 695 * check if mask is >= than the current max IO Virt Address 696 * The max IO Virt address will *always* < 30 bits. 697 */ 698 return((int)(mask >= (ioc->ibase - 1 + 699 (ioc->pdir_size / sizeof(u64) * IOVP_SIZE) ))); 700 } 701 702 703 /** 704 * sba_map_single - map one buffer and return IOVA for DMA 705 * @dev: instance of PCI owned by the driver that's asking. 706 * @addr: driver buffer to map. 707 * @size: number of bytes to map in driver buffer. 708 * @direction: R/W or both. 709 * 710 * See Documentation/DMA-API-HOWTO.txt 711 */ 712 static dma_addr_t 713 sba_map_single(struct device *dev, void *addr, size_t size, 714 enum dma_data_direction direction) 715 { 716 struct ioc *ioc; 717 unsigned long flags; 718 dma_addr_t iovp; 719 dma_addr_t offset; 720 u64 *pdir_start; 721 int pide; 722 723 ioc = GET_IOC(dev); 724 725 /* save offset bits */ 726 offset = ((dma_addr_t) (long) addr) & ~IOVP_MASK; 727 728 /* round up to nearest IOVP_SIZE */ 729 size = (size + offset + ~IOVP_MASK) & IOVP_MASK; 730 731 spin_lock_irqsave(&ioc->res_lock, flags); 732 #ifdef ASSERT_PDIR_SANITY 733 sba_check_pdir(ioc,"Check before sba_map_single()"); 734 #endif 735 736 #ifdef SBA_COLLECT_STATS 737 ioc->msingle_calls++; 738 ioc->msingle_pages += size >> IOVP_SHIFT; 739 #endif 740 pide = sba_alloc_range(ioc, dev, size); 741 iovp = (dma_addr_t) pide << IOVP_SHIFT; 742 743 DBG_RUN("%s() 0x%p -> 0x%lx\n", 744 __func__, addr, (long) iovp | offset); 745 746 pdir_start = &(ioc->pdir_base[pide]); 747 748 while (size > 0) { 749 sba_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long) addr, 0); 750 751 DBG_RUN(" pdir 0x%p %02x%02x%02x%02x%02x%02x%02x%02x\n", 752 pdir_start, 753 (u8) (((u8 *) pdir_start)[7]), 754 (u8) (((u8 *) pdir_start)[6]), 755 (u8) (((u8 *) pdir_start)[5]), 756 (u8) (((u8 *) pdir_start)[4]), 757 (u8) (((u8 *) pdir_start)[3]), 758 (u8) (((u8 *) pdir_start)[2]), 759 (u8) (((u8 *) pdir_start)[1]), 760 (u8) (((u8 *) pdir_start)[0]) 761 ); 762 763 addr += IOVP_SIZE; 764 size -= IOVP_SIZE; 765 pdir_start++; 766 } 767 768 /* force FDC ops in io_pdir_entry() to be visible to IOMMU */ 769 if (ioc_needs_fdc) 770 asm volatile("sync" : : ); 771 772 #ifdef ASSERT_PDIR_SANITY 773 sba_check_pdir(ioc,"Check after sba_map_single()"); 774 #endif 775 spin_unlock_irqrestore(&ioc->res_lock, flags); 776 777 /* form complete address */ 778 return SBA_IOVA(ioc, iovp, offset, DEFAULT_DMA_HINT_REG); 779 } 780 781 782 /** 783 * sba_unmap_single - unmap one IOVA and free resources 784 * @dev: instance of PCI owned by the driver that's asking. 785 * @iova: IOVA of driver buffer previously mapped. 786 * @size: number of bytes mapped in driver buffer. 787 * @direction: R/W or both. 788 * 789 * See Documentation/DMA-API-HOWTO.txt 790 */ 791 static void 792 sba_unmap_single(struct device *dev, dma_addr_t iova, size_t size, 793 enum dma_data_direction direction) 794 { 795 struct ioc *ioc; 796 #if DELAYED_RESOURCE_CNT > 0 797 struct sba_dma_pair *d; 798 #endif 799 unsigned long flags; 800 dma_addr_t offset; 801 802 DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size); 803 804 ioc = GET_IOC(dev); 805 offset = iova & ~IOVP_MASK; 806 iova ^= offset; /* clear offset bits */ 807 size += offset; 808 size = ALIGN(size, IOVP_SIZE); 809 810 spin_lock_irqsave(&ioc->res_lock, flags); 811 812 #ifdef SBA_COLLECT_STATS 813 ioc->usingle_calls++; 814 ioc->usingle_pages += size >> IOVP_SHIFT; 815 #endif 816 817 sba_mark_invalid(ioc, iova, size); 818 819 #if DELAYED_RESOURCE_CNT > 0 820 /* Delaying when we re-use a IO Pdir entry reduces the number 821 * of MMIO reads needed to flush writes to the PCOM register. 822 */ 823 d = &(ioc->saved[ioc->saved_cnt]); 824 d->iova = iova; 825 d->size = size; 826 if (++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT) { 827 int cnt = ioc->saved_cnt; 828 while (cnt--) { 829 sba_free_range(ioc, d->iova, d->size); 830 d--; 831 } 832 ioc->saved_cnt = 0; 833 834 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 835 } 836 #else /* DELAYED_RESOURCE_CNT == 0 */ 837 sba_free_range(ioc, iova, size); 838 839 /* If fdc's were issued, force fdc's to be visible now */ 840 if (ioc_needs_fdc) 841 asm volatile("sync" : : ); 842 843 READ_REG(ioc->ioc_hpa+IOC_PCOM); /* flush purges */ 844 #endif /* DELAYED_RESOURCE_CNT == 0 */ 845 846 spin_unlock_irqrestore(&ioc->res_lock, flags); 847 848 /* XXX REVISIT for 2.5 Linux - need syncdma for zero-copy support. 849 ** For Astro based systems this isn't a big deal WRT performance. 850 ** As long as 2.4 kernels copyin/copyout data from/to userspace, 851 ** we don't need the syncdma. The issue here is I/O MMU cachelines 852 ** are *not* coherent in all cases. May be hwrev dependent. 853 ** Need to investigate more. 854 asm volatile("syncdma"); 855 */ 856 } 857 858 859 /** 860 * sba_alloc_consistent - allocate/map shared mem for DMA 861 * @hwdev: instance of PCI owned by the driver that's asking. 862 * @size: number of bytes mapped in driver buffer. 863 * @dma_handle: IOVA of new buffer. 864 * 865 * See Documentation/DMA-API-HOWTO.txt 866 */ 867 static void *sba_alloc_consistent(struct device *hwdev, size_t size, 868 dma_addr_t *dma_handle, gfp_t gfp) 869 { 870 void *ret; 871 872 if (!hwdev) { 873 /* only support PCI */ 874 *dma_handle = 0; 875 return NULL; 876 } 877 878 ret = (void *) __get_free_pages(gfp, get_order(size)); 879 880 if (ret) { 881 memset(ret, 0, size); 882 *dma_handle = sba_map_single(hwdev, ret, size, 0); 883 } 884 885 return ret; 886 } 887 888 889 /** 890 * sba_free_consistent - free/unmap shared mem for DMA 891 * @hwdev: instance of PCI owned by the driver that's asking. 892 * @size: number of bytes mapped in driver buffer. 893 * @vaddr: virtual address IOVA of "consistent" buffer. 894 * @dma_handler: IO virtual address of "consistent" buffer. 895 * 896 * See Documentation/DMA-API-HOWTO.txt 897 */ 898 static void 899 sba_free_consistent(struct device *hwdev, size_t size, void *vaddr, 900 dma_addr_t dma_handle) 901 { 902 sba_unmap_single(hwdev, dma_handle, size, 0); 903 free_pages((unsigned long) vaddr, get_order(size)); 904 } 905 906 907 /* 908 ** Since 0 is a valid pdir_base index value, can't use that 909 ** to determine if a value is valid or not. Use a flag to indicate 910 ** the SG list entry contains a valid pdir index. 911 */ 912 #define PIDE_FLAG 0x80000000UL 913 914 #ifdef SBA_COLLECT_STATS 915 #define IOMMU_MAP_STATS 916 #endif 917 #include "iommu-helpers.h" 918 919 #ifdef DEBUG_LARGE_SG_ENTRIES 920 int dump_run_sg = 0; 921 #endif 922 923 924 /** 925 * sba_map_sg - map Scatter/Gather list 926 * @dev: instance of PCI owned by the driver that's asking. 927 * @sglist: array of buffer/length pairs 928 * @nents: number of entries in list 929 * @direction: R/W or both. 930 * 931 * See Documentation/DMA-API-HOWTO.txt 932 */ 933 static int 934 sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 935 enum dma_data_direction direction) 936 { 937 struct ioc *ioc; 938 int coalesced, filled = 0; 939 unsigned long flags; 940 941 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 942 943 ioc = GET_IOC(dev); 944 945 /* Fast path single entry scatterlists. */ 946 if (nents == 1) { 947 sg_dma_address(sglist) = sba_map_single(dev, 948 (void *)sg_virt_addr(sglist), 949 sglist->length, direction); 950 sg_dma_len(sglist) = sglist->length; 951 return 1; 952 } 953 954 spin_lock_irqsave(&ioc->res_lock, flags); 955 956 #ifdef ASSERT_PDIR_SANITY 957 if (sba_check_pdir(ioc,"Check before sba_map_sg()")) 958 { 959 sba_dump_sg(ioc, sglist, nents); 960 panic("Check before sba_map_sg()"); 961 } 962 #endif 963 964 #ifdef SBA_COLLECT_STATS 965 ioc->msg_calls++; 966 #endif 967 968 /* 969 ** First coalesce the chunks and allocate I/O pdir space 970 ** 971 ** If this is one DMA stream, we can properly map using the 972 ** correct virtual address associated with each DMA page. 973 ** w/o this association, we wouldn't have coherent DMA! 974 ** Access to the virtual address is what forces a two pass algorithm. 975 */ 976 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, sba_alloc_range); 977 978 /* 979 ** Program the I/O Pdir 980 ** 981 ** map the virtual addresses to the I/O Pdir 982 ** o dma_address will contain the pdir index 983 ** o dma_len will contain the number of bytes to map 984 ** o address contains the virtual address. 985 */ 986 filled = iommu_fill_pdir(ioc, sglist, nents, 0, sba_io_pdir_entry); 987 988 /* force FDC ops in io_pdir_entry() to be visible to IOMMU */ 989 if (ioc_needs_fdc) 990 asm volatile("sync" : : ); 991 992 #ifdef ASSERT_PDIR_SANITY 993 if (sba_check_pdir(ioc,"Check after sba_map_sg()")) 994 { 995 sba_dump_sg(ioc, sglist, nents); 996 panic("Check after sba_map_sg()\n"); 997 } 998 #endif 999 1000 spin_unlock_irqrestore(&ioc->res_lock, flags); 1001 1002 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 1003 1004 return filled; 1005 } 1006 1007 1008 /** 1009 * sba_unmap_sg - unmap Scatter/Gather list 1010 * @dev: instance of PCI owned by the driver that's asking. 1011 * @sglist: array of buffer/length pairs 1012 * @nents: number of entries in list 1013 * @direction: R/W or both. 1014 * 1015 * See Documentation/DMA-API-HOWTO.txt 1016 */ 1017 static void 1018 sba_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 1019 enum dma_data_direction direction) 1020 { 1021 struct ioc *ioc; 1022 #ifdef ASSERT_PDIR_SANITY 1023 unsigned long flags; 1024 #endif 1025 1026 DBG_RUN_SG("%s() START %d entries, %p,%x\n", 1027 __func__, nents, sg_virt_addr(sglist), sglist->length); 1028 1029 ioc = GET_IOC(dev); 1030 1031 #ifdef SBA_COLLECT_STATS 1032 ioc->usg_calls++; 1033 #endif 1034 1035 #ifdef ASSERT_PDIR_SANITY 1036 spin_lock_irqsave(&ioc->res_lock, flags); 1037 sba_check_pdir(ioc,"Check before sba_unmap_sg()"); 1038 spin_unlock_irqrestore(&ioc->res_lock, flags); 1039 #endif 1040 1041 while (sg_dma_len(sglist) && nents--) { 1042 1043 sba_unmap_single(dev, sg_dma_address(sglist), sg_dma_len(sglist), direction); 1044 #ifdef SBA_COLLECT_STATS 1045 ioc->usg_pages += ((sg_dma_address(sglist) & ~IOVP_MASK) + sg_dma_len(sglist) + IOVP_SIZE - 1) >> PAGE_SHIFT; 1046 ioc->usingle_calls--; /* kluge since call is unmap_sg() */ 1047 #endif 1048 ++sglist; 1049 } 1050 1051 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1052 1053 #ifdef ASSERT_PDIR_SANITY 1054 spin_lock_irqsave(&ioc->res_lock, flags); 1055 sba_check_pdir(ioc,"Check after sba_unmap_sg()"); 1056 spin_unlock_irqrestore(&ioc->res_lock, flags); 1057 #endif 1058 1059 } 1060 1061 static struct hppa_dma_ops sba_ops = { 1062 .dma_supported = sba_dma_supported, 1063 .alloc_consistent = sba_alloc_consistent, 1064 .alloc_noncoherent = sba_alloc_consistent, 1065 .free_consistent = sba_free_consistent, 1066 .map_single = sba_map_single, 1067 .unmap_single = sba_unmap_single, 1068 .map_sg = sba_map_sg, 1069 .unmap_sg = sba_unmap_sg, 1070 .dma_sync_single_for_cpu = NULL, 1071 .dma_sync_single_for_device = NULL, 1072 .dma_sync_sg_for_cpu = NULL, 1073 .dma_sync_sg_for_device = NULL, 1074 }; 1075 1076 1077 /************************************************************************** 1078 ** 1079 ** SBA PAT PDC support 1080 ** 1081 ** o call pdc_pat_cell_module() 1082 ** o store ranges in PCI "resource" structures 1083 ** 1084 **************************************************************************/ 1085 1086 static void 1087 sba_get_pat_resources(struct sba_device *sba_dev) 1088 { 1089 #if 0 1090 /* 1091 ** TODO/REVISIT/FIXME: support for directed ranges requires calls to 1092 ** PAT PDC to program the SBA/LBA directed range registers...this 1093 ** burden may fall on the LBA code since it directly supports the 1094 ** PCI subsystem. It's not clear yet. - ggg 1095 */ 1096 PAT_MOD(mod)->mod_info.mod_pages = PAT_GET_MOD_PAGES(temp); 1097 FIXME : ??? 1098 PAT_MOD(mod)->mod_info.dvi = PAT_GET_DVI(temp); 1099 Tells where the dvi bits are located in the address. 1100 PAT_MOD(mod)->mod_info.ioc = PAT_GET_IOC(temp); 1101 FIXME : ??? 1102 #endif 1103 } 1104 1105 1106 /************************************************************** 1107 * 1108 * Initialization and claim 1109 * 1110 ***************************************************************/ 1111 #define PIRANHA_ADDR_MASK 0x00160000UL /* bit 17,18,20 */ 1112 #define PIRANHA_ADDR_VAL 0x00060000UL /* bit 17,18 on */ 1113 static void * 1114 sba_alloc_pdir(unsigned int pdir_size) 1115 { 1116 unsigned long pdir_base; 1117 unsigned long pdir_order = get_order(pdir_size); 1118 1119 pdir_base = __get_free_pages(GFP_KERNEL, pdir_order); 1120 if (NULL == (void *) pdir_base) { 1121 panic("%s() could not allocate I/O Page Table\n", 1122 __func__); 1123 } 1124 1125 /* If this is not PA8700 (PCX-W2) 1126 ** OR newer than ver 2.2 1127 ** OR in a system that doesn't need VINDEX bits from SBA, 1128 ** 1129 ** then we aren't exposed to the HW bug. 1130 */ 1131 if ( ((boot_cpu_data.pdc.cpuid >> 5) & 0x7f) != 0x13 1132 || (boot_cpu_data.pdc.versions > 0x202) 1133 || (boot_cpu_data.pdc.capabilities & 0x08L) ) 1134 return (void *) pdir_base; 1135 1136 /* 1137 * PA8700 (PCX-W2, aka piranha) silent data corruption fix 1138 * 1139 * An interaction between PA8700 CPU (Ver 2.2 or older) and 1140 * Ike/Astro can cause silent data corruption. This is only 1141 * a problem if the I/O PDIR is located in memory such that 1142 * (little-endian) bits 17 and 18 are on and bit 20 is off. 1143 * 1144 * Since the max IO Pdir size is 2MB, by cleverly allocating the 1145 * right physical address, we can either avoid (IOPDIR <= 1MB) 1146 * or minimize (2MB IO Pdir) the problem if we restrict the 1147 * IO Pdir to a maximum size of 2MB-128K (1902K). 1148 * 1149 * Because we always allocate 2^N sized IO pdirs, either of the 1150 * "bad" regions will be the last 128K if at all. That's easy 1151 * to test for. 1152 * 1153 */ 1154 if (pdir_order <= (19-12)) { 1155 if (((virt_to_phys(pdir_base)+pdir_size-1) & PIRANHA_ADDR_MASK) == PIRANHA_ADDR_VAL) { 1156 /* allocate a new one on 512k alignment */ 1157 unsigned long new_pdir = __get_free_pages(GFP_KERNEL, (19-12)); 1158 /* release original */ 1159 free_pages(pdir_base, pdir_order); 1160 1161 pdir_base = new_pdir; 1162 1163 /* release excess */ 1164 while (pdir_order < (19-12)) { 1165 new_pdir += pdir_size; 1166 free_pages(new_pdir, pdir_order); 1167 pdir_order +=1; 1168 pdir_size <<=1; 1169 } 1170 } 1171 } else { 1172 /* 1173 ** 1MB or 2MB Pdir 1174 ** Needs to be aligned on an "odd" 1MB boundary. 1175 */ 1176 unsigned long new_pdir = __get_free_pages(GFP_KERNEL, pdir_order+1); /* 2 or 4MB */ 1177 1178 /* release original */ 1179 free_pages( pdir_base, pdir_order); 1180 1181 /* release first 1MB */ 1182 free_pages(new_pdir, 20-12); 1183 1184 pdir_base = new_pdir + 1024*1024; 1185 1186 if (pdir_order > (20-12)) { 1187 /* 1188 ** 2MB Pdir. 1189 ** 1190 ** Flag tells init_bitmap() to mark bad 128k as used 1191 ** and to reduce the size by 128k. 1192 */ 1193 piranha_bad_128k = 1; 1194 1195 new_pdir += 3*1024*1024; 1196 /* release last 1MB */ 1197 free_pages(new_pdir, 20-12); 1198 1199 /* release unusable 128KB */ 1200 free_pages(new_pdir - 128*1024 , 17-12); 1201 1202 pdir_size -= 128*1024; 1203 } 1204 } 1205 1206 memset((void *) pdir_base, 0, pdir_size); 1207 return (void *) pdir_base; 1208 } 1209 1210 struct ibase_data_struct { 1211 struct ioc *ioc; 1212 int ioc_num; 1213 }; 1214 1215 static int setup_ibase_imask_callback(struct device *dev, void *data) 1216 { 1217 /* lba_set_iregs() is in drivers/parisc/lba_pci.c */ 1218 extern void lba_set_iregs(struct parisc_device *, u32, u32); 1219 struct parisc_device *lba = to_parisc_device(dev); 1220 struct ibase_data_struct *ibd = data; 1221 int rope_num = (lba->hpa.start >> 13) & 0xf; 1222 if (rope_num >> 3 == ibd->ioc_num) 1223 lba_set_iregs(lba, ibd->ioc->ibase, ibd->ioc->imask); 1224 return 0; 1225 } 1226 1227 /* setup Mercury or Elroy IBASE/IMASK registers. */ 1228 static void 1229 setup_ibase_imask(struct parisc_device *sba, struct ioc *ioc, int ioc_num) 1230 { 1231 struct ibase_data_struct ibase_data = { 1232 .ioc = ioc, 1233 .ioc_num = ioc_num, 1234 }; 1235 1236 device_for_each_child(&sba->dev, &ibase_data, 1237 setup_ibase_imask_callback); 1238 } 1239 1240 #ifdef SBA_AGP_SUPPORT 1241 static int 1242 sba_ioc_find_quicksilver(struct device *dev, void *data) 1243 { 1244 int *agp_found = data; 1245 struct parisc_device *lba = to_parisc_device(dev); 1246 1247 if (IS_QUICKSILVER(lba)) 1248 *agp_found = 1; 1249 return 0; 1250 } 1251 #endif 1252 1253 static void 1254 sba_ioc_init_pluto(struct parisc_device *sba, struct ioc *ioc, int ioc_num) 1255 { 1256 u32 iova_space_mask; 1257 u32 iova_space_size; 1258 int iov_order, tcnfg; 1259 #ifdef SBA_AGP_SUPPORT 1260 int agp_found = 0; 1261 #endif 1262 /* 1263 ** Firmware programs the base and size of a "safe IOVA space" 1264 ** (one that doesn't overlap memory or LMMIO space) in the 1265 ** IBASE and IMASK registers. 1266 */ 1267 ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE); 1268 iova_space_size = ~(READ_REG(ioc->ioc_hpa + IOC_IMASK) & 0xFFFFFFFFUL) + 1; 1269 1270 if ((ioc->ibase < 0xfed00000UL) && ((ioc->ibase + iova_space_size) > 0xfee00000UL)) { 1271 printk("WARNING: IOV space overlaps local config and interrupt message, truncating\n"); 1272 iova_space_size /= 2; 1273 } 1274 1275 /* 1276 ** iov_order is always based on a 1GB IOVA space since we want to 1277 ** turn on the other half for AGP GART. 1278 */ 1279 iov_order = get_order(iova_space_size >> (IOVP_SHIFT - PAGE_SHIFT)); 1280 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64); 1281 1282 DBG_INIT("%s() hpa 0x%p IOV %dMB (%d bits)\n", 1283 __func__, ioc->ioc_hpa, iova_space_size >> 20, 1284 iov_order + PAGE_SHIFT); 1285 1286 ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL, 1287 get_order(ioc->pdir_size)); 1288 if (!ioc->pdir_base) 1289 panic("Couldn't allocate I/O Page Table\n"); 1290 1291 memset(ioc->pdir_base, 0, ioc->pdir_size); 1292 1293 DBG_INIT("%s() pdir %p size %x\n", 1294 __func__, ioc->pdir_base, ioc->pdir_size); 1295 1296 #ifdef SBA_HINT_SUPPORT 1297 ioc->hint_shift_pdir = iov_order + PAGE_SHIFT; 1298 ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT)); 1299 1300 DBG_INIT(" hint_shift_pdir %x hint_mask_pdir %lx\n", 1301 ioc->hint_shift_pdir, ioc->hint_mask_pdir); 1302 #endif 1303 1304 WARN_ON((((unsigned long) ioc->pdir_base) & PAGE_MASK) != (unsigned long) ioc->pdir_base); 1305 WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE); 1306 1307 /* build IMASK for IOC and Elroy */ 1308 iova_space_mask = 0xffffffff; 1309 iova_space_mask <<= (iov_order + PAGE_SHIFT); 1310 ioc->imask = iova_space_mask; 1311 #ifdef ZX1_SUPPORT 1312 ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1); 1313 #endif 1314 sba_dump_tlb(ioc->ioc_hpa); 1315 1316 setup_ibase_imask(sba, ioc, ioc_num); 1317 1318 WRITE_REG(ioc->imask, ioc->ioc_hpa + IOC_IMASK); 1319 1320 #ifdef CONFIG_64BIT 1321 /* 1322 ** Setting the upper bits makes checking for bypass addresses 1323 ** a little faster later on. 1324 */ 1325 ioc->imask |= 0xFFFFFFFF00000000UL; 1326 #endif 1327 1328 /* Set I/O PDIR Page size to system page size */ 1329 switch (PAGE_SHIFT) { 1330 case 12: tcnfg = 0; break; /* 4K */ 1331 case 13: tcnfg = 1; break; /* 8K */ 1332 case 14: tcnfg = 2; break; /* 16K */ 1333 case 16: tcnfg = 3; break; /* 64K */ 1334 default: 1335 panic(__FILE__ "Unsupported system page size %d", 1336 1 << PAGE_SHIFT); 1337 break; 1338 } 1339 WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG); 1340 1341 /* 1342 ** Program the IOC's ibase and enable IOVA translation 1343 ** Bit zero == enable bit. 1344 */ 1345 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE); 1346 1347 /* 1348 ** Clear I/O TLB of any possible entries. 1349 ** (Yes. This is a bit paranoid...but so what) 1350 */ 1351 WRITE_REG(ioc->ibase | 31, ioc->ioc_hpa + IOC_PCOM); 1352 1353 #ifdef SBA_AGP_SUPPORT 1354 1355 /* 1356 ** If an AGP device is present, only use half of the IOV space 1357 ** for PCI DMA. Unfortunately we can't know ahead of time 1358 ** whether GART support will actually be used, for now we 1359 ** can just key on any AGP device found in the system. 1360 ** We program the next pdir index after we stop w/ a key for 1361 ** the GART code to handshake on. 1362 */ 1363 device_for_each_child(&sba->dev, &agp_found, sba_ioc_find_quicksilver); 1364 1365 if (agp_found && sba_reserve_agpgart) { 1366 printk(KERN_INFO "%s: reserving %dMb of IOVA space for agpgart\n", 1367 __func__, (iova_space_size/2) >> 20); 1368 ioc->pdir_size /= 2; 1369 ioc->pdir_base[PDIR_INDEX(iova_space_size/2)] = SBA_AGPGART_COOKIE; 1370 } 1371 #endif /*SBA_AGP_SUPPORT*/ 1372 } 1373 1374 static void 1375 sba_ioc_init(struct parisc_device *sba, struct ioc *ioc, int ioc_num) 1376 { 1377 u32 iova_space_size, iova_space_mask; 1378 unsigned int pdir_size, iov_order; 1379 1380 /* 1381 ** Determine IOVA Space size from memory size. 1382 ** 1383 ** Ideally, PCI drivers would register the maximum number 1384 ** of DMA they can have outstanding for each device they 1385 ** own. Next best thing would be to guess how much DMA 1386 ** can be outstanding based on PCI Class/sub-class. Both 1387 ** methods still require some "extra" to support PCI 1388 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). 1389 ** 1390 ** While we have 32-bits "IOVA" space, top two 2 bits are used 1391 ** for DMA hints - ergo only 30 bits max. 1392 */ 1393 1394 iova_space_size = (u32) (totalram_pages/global_ioc_cnt); 1395 1396 /* limit IOVA space size to 1MB-1GB */ 1397 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) { 1398 iova_space_size = 1 << (20 - PAGE_SHIFT); 1399 } 1400 else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) { 1401 iova_space_size = 1 << (30 - PAGE_SHIFT); 1402 } 1403 1404 /* 1405 ** iova space must be log2() in size. 1406 ** thus, pdir/res_map will also be log2(). 1407 ** PIRANHA BUG: Exception is when IO Pdir is 2MB (gets reduced) 1408 */ 1409 iov_order = get_order(iova_space_size << PAGE_SHIFT); 1410 1411 /* iova_space_size is now bytes, not pages */ 1412 iova_space_size = 1 << (iov_order + PAGE_SHIFT); 1413 1414 ioc->pdir_size = pdir_size = (iova_space_size/IOVP_SIZE) * sizeof(u64); 1415 1416 DBG_INIT("%s() hpa 0x%lx mem %ldMB IOV %dMB (%d bits)\n", 1417 __func__, 1418 ioc->ioc_hpa, 1419 (unsigned long) totalram_pages >> (20 - PAGE_SHIFT), 1420 iova_space_size>>20, 1421 iov_order + PAGE_SHIFT); 1422 1423 ioc->pdir_base = sba_alloc_pdir(pdir_size); 1424 1425 DBG_INIT("%s() pdir %p size %x\n", 1426 __func__, ioc->pdir_base, pdir_size); 1427 1428 #ifdef SBA_HINT_SUPPORT 1429 /* FIXME : DMA HINTs not used */ 1430 ioc->hint_shift_pdir = iov_order + PAGE_SHIFT; 1431 ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT)); 1432 1433 DBG_INIT(" hint_shift_pdir %x hint_mask_pdir %lx\n", 1434 ioc->hint_shift_pdir, ioc->hint_mask_pdir); 1435 #endif 1436 1437 WRITE_REG64(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE); 1438 1439 /* build IMASK for IOC and Elroy */ 1440 iova_space_mask = 0xffffffff; 1441 iova_space_mask <<= (iov_order + PAGE_SHIFT); 1442 1443 /* 1444 ** On C3000 w/512MB mem, HP-UX 10.20 reports: 1445 ** ibase=0, imask=0xFE000000, size=0x2000000. 1446 */ 1447 ioc->ibase = 0; 1448 ioc->imask = iova_space_mask; /* save it */ 1449 #ifdef ZX1_SUPPORT 1450 ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1); 1451 #endif 1452 1453 DBG_INIT("%s() IOV base 0x%lx mask 0x%0lx\n", 1454 __func__, ioc->ibase, ioc->imask); 1455 1456 /* 1457 ** FIXME: Hint registers are programmed with default hint 1458 ** values during boot, so hints should be sane even if we 1459 ** can't reprogram them the way drivers want. 1460 */ 1461 1462 setup_ibase_imask(sba, ioc, ioc_num); 1463 1464 /* 1465 ** Program the IOC's ibase and enable IOVA translation 1466 */ 1467 WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa+IOC_IBASE); 1468 WRITE_REG(ioc->imask, ioc->ioc_hpa+IOC_IMASK); 1469 1470 /* Set I/O PDIR Page size to 4K */ 1471 WRITE_REG(0, ioc->ioc_hpa+IOC_TCNFG); 1472 1473 /* 1474 ** Clear I/O TLB of any possible entries. 1475 ** (Yes. This is a bit paranoid...but so what) 1476 */ 1477 WRITE_REG(0 | 31, ioc->ioc_hpa+IOC_PCOM); 1478 1479 ioc->ibase = 0; /* used by SBA_IOVA and related macros */ 1480 1481 DBG_INIT("%s() DONE\n", __func__); 1482 } 1483 1484 1485 1486 /************************************************************************** 1487 ** 1488 ** SBA initialization code (HW and SW) 1489 ** 1490 ** o identify SBA chip itself 1491 ** o initialize SBA chip modes (HardFail) 1492 ** o initialize SBA chip modes (HardFail) 1493 ** o FIXME: initialize DMA hints for reasonable defaults 1494 ** 1495 **************************************************************************/ 1496 1497 static void __iomem *ioc_remap(struct sba_device *sba_dev, unsigned int offset) 1498 { 1499 return ioremap_nocache(sba_dev->dev->hpa.start + offset, SBA_FUNC_SIZE); 1500 } 1501 1502 static void sba_hw_init(struct sba_device *sba_dev) 1503 { 1504 int i; 1505 int num_ioc; 1506 u64 ioc_ctl; 1507 1508 if (!is_pdc_pat()) { 1509 /* Shutdown the USB controller on Astro-based workstations. 1510 ** Once we reprogram the IOMMU, the next DMA performed by 1511 ** USB will HPMC the box. USB is only enabled if a 1512 ** keyboard is present and found. 1513 ** 1514 ** With serial console, j6k v5.0 firmware says: 1515 ** mem_kbd hpa 0xfee003f8 sba 0x0 pad 0x0 cl_class 0x7 1516 ** 1517 ** FIXME: Using GFX+USB console at power up but direct 1518 ** linux to serial console is still broken. 1519 ** USB could generate DMA so we must reset USB. 1520 ** The proper sequence would be: 1521 ** o block console output 1522 ** o reset USB device 1523 ** o reprogram serial port 1524 ** o unblock console output 1525 */ 1526 if (PAGE0->mem_kbd.cl_class == CL_KEYBD) { 1527 pdc_io_reset_devices(); 1528 } 1529 1530 } 1531 1532 1533 #if 0 1534 printk("sba_hw_init(): mem_boot 0x%x 0x%x 0x%x 0x%x\n", PAGE0->mem_boot.hpa, 1535 PAGE0->mem_boot.spa, PAGE0->mem_boot.pad, PAGE0->mem_boot.cl_class); 1536 1537 /* 1538 ** Need to deal with DMA from LAN. 1539 ** Maybe use page zero boot device as a handle to talk 1540 ** to PDC about which device to shutdown. 1541 ** 1542 ** Netbooting, j6k v5.0 firmware says: 1543 ** mem_boot hpa 0xf4008000 sba 0x0 pad 0x0 cl_class 0x1002 1544 ** ARGH! invalid class. 1545 */ 1546 if ((PAGE0->mem_boot.cl_class != CL_RANDOM) 1547 && (PAGE0->mem_boot.cl_class != CL_SEQU)) { 1548 pdc_io_reset(); 1549 } 1550 #endif 1551 1552 if (!IS_PLUTO(sba_dev->dev)) { 1553 ioc_ctl = READ_REG(sba_dev->sba_hpa+IOC_CTRL); 1554 DBG_INIT("%s() hpa 0x%lx ioc_ctl 0x%Lx ->", 1555 __func__, sba_dev->sba_hpa, ioc_ctl); 1556 ioc_ctl &= ~(IOC_CTRL_RM | IOC_CTRL_NC | IOC_CTRL_CE); 1557 ioc_ctl |= IOC_CTRL_DD | IOC_CTRL_D4 | IOC_CTRL_TC; 1558 /* j6700 v1.6 firmware sets 0x294f */ 1559 /* A500 firmware sets 0x4d */ 1560 1561 WRITE_REG(ioc_ctl, sba_dev->sba_hpa+IOC_CTRL); 1562 1563 #ifdef DEBUG_SBA_INIT 1564 ioc_ctl = READ_REG64(sba_dev->sba_hpa+IOC_CTRL); 1565 DBG_INIT(" 0x%Lx\n", ioc_ctl); 1566 #endif 1567 } /* if !PLUTO */ 1568 1569 if (IS_ASTRO(sba_dev->dev)) { 1570 int err; 1571 sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, ASTRO_IOC_OFFSET); 1572 num_ioc = 1; 1573 1574 sba_dev->chip_resv.name = "Astro Intr Ack"; 1575 sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfef00000UL; 1576 sba_dev->chip_resv.end = PCI_F_EXTEND | (0xff000000UL - 1) ; 1577 err = request_resource(&iomem_resource, &(sba_dev->chip_resv)); 1578 BUG_ON(err < 0); 1579 1580 } else if (IS_PLUTO(sba_dev->dev)) { 1581 int err; 1582 1583 sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, PLUTO_IOC_OFFSET); 1584 num_ioc = 1; 1585 1586 sba_dev->chip_resv.name = "Pluto Intr/PIOP/VGA"; 1587 sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfee00000UL; 1588 sba_dev->chip_resv.end = PCI_F_EXTEND | (0xff200000UL - 1); 1589 err = request_resource(&iomem_resource, &(sba_dev->chip_resv)); 1590 WARN_ON(err < 0); 1591 1592 sba_dev->iommu_resv.name = "IOVA Space"; 1593 sba_dev->iommu_resv.start = 0x40000000UL; 1594 sba_dev->iommu_resv.end = 0x50000000UL - 1; 1595 err = request_resource(&iomem_resource, &(sba_dev->iommu_resv)); 1596 WARN_ON(err < 0); 1597 } else { 1598 /* IKE, REO */ 1599 sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(0)); 1600 sba_dev->ioc[1].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(1)); 1601 num_ioc = 2; 1602 1603 /* TODO - LOOKUP Ike/Stretch chipset mem map */ 1604 } 1605 /* XXX: What about Reo Grande? */ 1606 1607 sba_dev->num_ioc = num_ioc; 1608 for (i = 0; i < num_ioc; i++) { 1609 void __iomem *ioc_hpa = sba_dev->ioc[i].ioc_hpa; 1610 unsigned int j; 1611 1612 for (j=0; j < sizeof(u64) * ROPES_PER_IOC; j+=sizeof(u64)) { 1613 1614 /* 1615 * Clear ROPE(N)_CONFIG AO bit. 1616 * Disables "NT Ordering" (~= !"Relaxed Ordering") 1617 * Overrides bit 1 in DMA Hint Sets. 1618 * Improves netperf UDP_STREAM by ~10% for bcm5701. 1619 */ 1620 if (IS_PLUTO(sba_dev->dev)) { 1621 void __iomem *rope_cfg; 1622 unsigned long cfg_val; 1623 1624 rope_cfg = ioc_hpa + IOC_ROPE0_CFG + j; 1625 cfg_val = READ_REG(rope_cfg); 1626 cfg_val &= ~IOC_ROPE_AO; 1627 WRITE_REG(cfg_val, rope_cfg); 1628 } 1629 1630 /* 1631 ** Make sure the box crashes on rope errors. 1632 */ 1633 WRITE_REG(HF_ENABLE, ioc_hpa + ROPE0_CTL + j); 1634 } 1635 1636 /* flush out the last writes */ 1637 READ_REG(sba_dev->ioc[i].ioc_hpa + ROPE7_CTL); 1638 1639 DBG_INIT(" ioc[%d] ROPE_CFG 0x%Lx ROPE_DBG 0x%Lx\n", 1640 i, 1641 READ_REG(sba_dev->ioc[i].ioc_hpa + 0x40), 1642 READ_REG(sba_dev->ioc[i].ioc_hpa + 0x50) 1643 ); 1644 DBG_INIT(" STATUS_CONTROL 0x%Lx FLUSH_CTRL 0x%Lx\n", 1645 READ_REG(sba_dev->ioc[i].ioc_hpa + 0x108), 1646 READ_REG(sba_dev->ioc[i].ioc_hpa + 0x400) 1647 ); 1648 1649 if (IS_PLUTO(sba_dev->dev)) { 1650 sba_ioc_init_pluto(sba_dev->dev, &(sba_dev->ioc[i]), i); 1651 } else { 1652 sba_ioc_init(sba_dev->dev, &(sba_dev->ioc[i]), i); 1653 } 1654 } 1655 } 1656 1657 static void 1658 sba_common_init(struct sba_device *sba_dev) 1659 { 1660 int i; 1661 1662 /* add this one to the head of the list (order doesn't matter) 1663 ** This will be useful for debugging - especially if we get coredumps 1664 */ 1665 sba_dev->next = sba_list; 1666 sba_list = sba_dev; 1667 1668 for(i=0; i< sba_dev->num_ioc; i++) { 1669 int res_size; 1670 #ifdef DEBUG_DMB_TRAP 1671 extern void iterate_pages(unsigned long , unsigned long , 1672 void (*)(pte_t * , unsigned long), 1673 unsigned long ); 1674 void set_data_memory_break(pte_t * , unsigned long); 1675 #endif 1676 /* resource map size dictated by pdir_size */ 1677 res_size = sba_dev->ioc[i].pdir_size/sizeof(u64); /* entries */ 1678 1679 /* Second part of PIRANHA BUG */ 1680 if (piranha_bad_128k) { 1681 res_size -= (128*1024)/sizeof(u64); 1682 } 1683 1684 res_size >>= 3; /* convert bit count to byte count */ 1685 DBG_INIT("%s() res_size 0x%x\n", 1686 __func__, res_size); 1687 1688 sba_dev->ioc[i].res_size = res_size; 1689 sba_dev->ioc[i].res_map = (char *) __get_free_pages(GFP_KERNEL, get_order(res_size)); 1690 1691 #ifdef DEBUG_DMB_TRAP 1692 iterate_pages( sba_dev->ioc[i].res_map, res_size, 1693 set_data_memory_break, 0); 1694 #endif 1695 1696 if (NULL == sba_dev->ioc[i].res_map) 1697 { 1698 panic("%s:%s() could not allocate resource map\n", 1699 __FILE__, __func__ ); 1700 } 1701 1702 memset(sba_dev->ioc[i].res_map, 0, res_size); 1703 /* next available IOVP - circular search */ 1704 sba_dev->ioc[i].res_hint = (unsigned long *) 1705 &(sba_dev->ioc[i].res_map[L1_CACHE_BYTES]); 1706 1707 #ifdef ASSERT_PDIR_SANITY 1708 /* Mark first bit busy - ie no IOVA 0 */ 1709 sba_dev->ioc[i].res_map[0] = 0x80; 1710 sba_dev->ioc[i].pdir_base[0] = 0xeeffc0addbba0080ULL; 1711 #endif 1712 1713 /* Third (and last) part of PIRANHA BUG */ 1714 if (piranha_bad_128k) { 1715 /* region from +1408K to +1536 is un-usable. */ 1716 1717 int idx_start = (1408*1024/sizeof(u64)) >> 3; 1718 int idx_end = (1536*1024/sizeof(u64)) >> 3; 1719 long *p_start = (long *) &(sba_dev->ioc[i].res_map[idx_start]); 1720 long *p_end = (long *) &(sba_dev->ioc[i].res_map[idx_end]); 1721 1722 /* mark that part of the io pdir busy */ 1723 while (p_start < p_end) 1724 *p_start++ = -1; 1725 1726 } 1727 1728 #ifdef DEBUG_DMB_TRAP 1729 iterate_pages( sba_dev->ioc[i].res_map, res_size, 1730 set_data_memory_break, 0); 1731 iterate_pages( sba_dev->ioc[i].pdir_base, sba_dev->ioc[i].pdir_size, 1732 set_data_memory_break, 0); 1733 #endif 1734 1735 DBG_INIT("%s() %d res_map %x %p\n", 1736 __func__, i, res_size, sba_dev->ioc[i].res_map); 1737 } 1738 1739 spin_lock_init(&sba_dev->sba_lock); 1740 ioc_needs_fdc = boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC; 1741 1742 #ifdef DEBUG_SBA_INIT 1743 /* 1744 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set 1745 * (bit #61, big endian), we have to flush and sync every time 1746 * IO-PDIR is changed in Ike/Astro. 1747 */ 1748 if (ioc_needs_fdc) { 1749 printk(KERN_INFO MODULE_NAME " FDC/SYNC required.\n"); 1750 } else { 1751 printk(KERN_INFO MODULE_NAME " IOC has cache coherent PDIR.\n"); 1752 } 1753 #endif 1754 } 1755 1756 #ifdef CONFIG_PROC_FS 1757 static int sba_proc_info(struct seq_file *m, void *p) 1758 { 1759 struct sba_device *sba_dev = sba_list; 1760 struct ioc *ioc = &sba_dev->ioc[0]; /* FIXME: Multi-IOC support! */ 1761 int total_pages = (int) (ioc->res_size << 3); /* 8 bits per byte */ 1762 #ifdef SBA_COLLECT_STATS 1763 unsigned long avg = 0, min, max; 1764 #endif 1765 int i, len = 0; 1766 1767 len += seq_printf(m, "%s rev %d.%d\n", 1768 sba_dev->name, 1769 (sba_dev->hw_rev & 0x7) + 1, 1770 (sba_dev->hw_rev & 0x18) >> 3 1771 ); 1772 len += seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n", 1773 (int) ((ioc->res_size << 3) * sizeof(u64)), /* 8 bits/byte */ 1774 total_pages); 1775 1776 len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", 1777 ioc->res_size, ioc->res_size << 3); /* 8 bits per byte */ 1778 1779 len += seq_printf(m, "LMMIO_BASE/MASK/ROUTE %08x %08x %08x\n", 1780 READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_BASE), 1781 READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_MASK), 1782 READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_ROUTE) 1783 ); 1784 1785 for (i=0; i<4; i++) 1786 len += seq_printf(m, "DIR%d_BASE/MASK/ROUTE %08x %08x %08x\n", i, 1787 READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_BASE + i*0x18), 1788 READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_MASK + i*0x18), 1789 READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_ROUTE + i*0x18) 1790 ); 1791 1792 #ifdef SBA_COLLECT_STATS 1793 len += seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n", 1794 total_pages - ioc->used_pages, ioc->used_pages, 1795 (int) (ioc->used_pages * 100 / total_pages)); 1796 1797 min = max = ioc->avg_search[0]; 1798 for (i = 0; i < SBA_SEARCH_SAMPLE; i++) { 1799 avg += ioc->avg_search[i]; 1800 if (ioc->avg_search[i] > max) max = ioc->avg_search[i]; 1801 if (ioc->avg_search[i] < min) min = ioc->avg_search[i]; 1802 } 1803 avg /= SBA_SEARCH_SAMPLE; 1804 len += seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n", 1805 min, avg, max); 1806 1807 len += seq_printf(m, "pci_map_single(): %12ld calls %12ld pages (avg %d/1000)\n", 1808 ioc->msingle_calls, ioc->msingle_pages, 1809 (int) ((ioc->msingle_pages * 1000)/ioc->msingle_calls)); 1810 1811 /* KLUGE - unmap_sg calls unmap_single for each mapped page */ 1812 min = ioc->usingle_calls; 1813 max = ioc->usingle_pages - ioc->usg_pages; 1814 len += seq_printf(m, "pci_unmap_single: %12ld calls %12ld pages (avg %d/1000)\n", 1815 min, max, (int) ((max * 1000)/min)); 1816 1817 len += seq_printf(m, "pci_map_sg() : %12ld calls %12ld pages (avg %d/1000)\n", 1818 ioc->msg_calls, ioc->msg_pages, 1819 (int) ((ioc->msg_pages * 1000)/ioc->msg_calls)); 1820 1821 len += seq_printf(m, "pci_unmap_sg() : %12ld calls %12ld pages (avg %d/1000)\n", 1822 ioc->usg_calls, ioc->usg_pages, 1823 (int) ((ioc->usg_pages * 1000)/ioc->usg_calls)); 1824 #endif 1825 1826 return 0; 1827 } 1828 1829 static int 1830 sba_proc_open(struct inode *i, struct file *f) 1831 { 1832 return single_open(f, &sba_proc_info, NULL); 1833 } 1834 1835 static const struct file_operations sba_proc_fops = { 1836 .owner = THIS_MODULE, 1837 .open = sba_proc_open, 1838 .read = seq_read, 1839 .llseek = seq_lseek, 1840 .release = single_release, 1841 }; 1842 1843 static int 1844 sba_proc_bitmap_info(struct seq_file *m, void *p) 1845 { 1846 struct sba_device *sba_dev = sba_list; 1847 struct ioc *ioc = &sba_dev->ioc[0]; /* FIXME: Multi-IOC support! */ 1848 unsigned int *res_ptr = (unsigned int *)ioc->res_map; 1849 int i, len = 0; 1850 1851 for (i = 0; i < (ioc->res_size/sizeof(unsigned int)); ++i, ++res_ptr) { 1852 if ((i & 7) == 0) 1853 len += seq_printf(m, "\n "); 1854 len += seq_printf(m, " %08x", *res_ptr); 1855 } 1856 len += seq_printf(m, "\n"); 1857 1858 return 0; 1859 } 1860 1861 static int 1862 sba_proc_bitmap_open(struct inode *i, struct file *f) 1863 { 1864 return single_open(f, &sba_proc_bitmap_info, NULL); 1865 } 1866 1867 static const struct file_operations sba_proc_bitmap_fops = { 1868 .owner = THIS_MODULE, 1869 .open = sba_proc_bitmap_open, 1870 .read = seq_read, 1871 .llseek = seq_lseek, 1872 .release = single_release, 1873 }; 1874 #endif /* CONFIG_PROC_FS */ 1875 1876 static struct parisc_device_id sba_tbl[] = { 1877 { HPHW_IOA, HVERSION_REV_ANY_ID, ASTRO_RUNWAY_PORT, 0xb }, 1878 { HPHW_BCPORT, HVERSION_REV_ANY_ID, IKE_MERCED_PORT, 0xc }, 1879 { HPHW_BCPORT, HVERSION_REV_ANY_ID, REO_MERCED_PORT, 0xc }, 1880 { HPHW_BCPORT, HVERSION_REV_ANY_ID, REOG_MERCED_PORT, 0xc }, 1881 { HPHW_IOA, HVERSION_REV_ANY_ID, PLUTO_MCKINLEY_PORT, 0xc }, 1882 { 0, } 1883 }; 1884 1885 static int sba_driver_callback(struct parisc_device *); 1886 1887 static struct parisc_driver sba_driver = { 1888 .name = MODULE_NAME, 1889 .id_table = sba_tbl, 1890 .probe = sba_driver_callback, 1891 }; 1892 1893 /* 1894 ** Determine if sba should claim this chip (return 0) or not (return 1). 1895 ** If so, initialize the chip and tell other partners in crime they 1896 ** have work to do. 1897 */ 1898 static int sba_driver_callback(struct parisc_device *dev) 1899 { 1900 struct sba_device *sba_dev; 1901 u32 func_class; 1902 int i; 1903 char *version; 1904 void __iomem *sba_addr = ioremap_nocache(dev->hpa.start, SBA_FUNC_SIZE); 1905 #ifdef CONFIG_PROC_FS 1906 struct proc_dir_entry *root; 1907 #endif 1908 1909 sba_dump_ranges(sba_addr); 1910 1911 /* Read HW Rev First */ 1912 func_class = READ_REG(sba_addr + SBA_FCLASS); 1913 1914 if (IS_ASTRO(dev)) { 1915 unsigned long fclass; 1916 static char astro_rev[]="Astro ?.?"; 1917 1918 /* Astro is broken...Read HW Rev First */ 1919 fclass = READ_REG(sba_addr); 1920 1921 astro_rev[6] = '1' + (char) (fclass & 0x7); 1922 astro_rev[8] = '0' + (char) ((fclass & 0x18) >> 3); 1923 version = astro_rev; 1924 1925 } else if (IS_IKE(dev)) { 1926 static char ike_rev[] = "Ike rev ?"; 1927 ike_rev[8] = '0' + (char) (func_class & 0xff); 1928 version = ike_rev; 1929 } else if (IS_PLUTO(dev)) { 1930 static char pluto_rev[]="Pluto ?.?"; 1931 pluto_rev[6] = '0' + (char) ((func_class & 0xf0) >> 4); 1932 pluto_rev[8] = '0' + (char) (func_class & 0x0f); 1933 version = pluto_rev; 1934 } else { 1935 static char reo_rev[] = "REO rev ?"; 1936 reo_rev[8] = '0' + (char) (func_class & 0xff); 1937 version = reo_rev; 1938 } 1939 1940 if (!global_ioc_cnt) { 1941 global_ioc_cnt = count_parisc_driver(&sba_driver); 1942 1943 /* Astro and Pluto have one IOC per SBA */ 1944 if ((!IS_ASTRO(dev)) || (!IS_PLUTO(dev))) 1945 global_ioc_cnt *= 2; 1946 } 1947 1948 printk(KERN_INFO "%s found %s at 0x%llx\n", 1949 MODULE_NAME, version, (unsigned long long)dev->hpa.start); 1950 1951 sba_dev = kzalloc(sizeof(struct sba_device), GFP_KERNEL); 1952 if (!sba_dev) { 1953 printk(KERN_ERR MODULE_NAME " - couldn't alloc sba_device\n"); 1954 return -ENOMEM; 1955 } 1956 1957 parisc_set_drvdata(dev, sba_dev); 1958 1959 for(i=0; i<MAX_IOC; i++) 1960 spin_lock_init(&(sba_dev->ioc[i].res_lock)); 1961 1962 sba_dev->dev = dev; 1963 sba_dev->hw_rev = func_class; 1964 sba_dev->name = dev->name; 1965 sba_dev->sba_hpa = sba_addr; 1966 1967 sba_get_pat_resources(sba_dev); 1968 sba_hw_init(sba_dev); 1969 sba_common_init(sba_dev); 1970 1971 hppa_dma_ops = &sba_ops; 1972 1973 #ifdef CONFIG_PROC_FS 1974 switch (dev->id.hversion) { 1975 case PLUTO_MCKINLEY_PORT: 1976 root = proc_mckinley_root; 1977 break; 1978 case ASTRO_RUNWAY_PORT: 1979 case IKE_MERCED_PORT: 1980 default: 1981 root = proc_runway_root; 1982 break; 1983 } 1984 1985 proc_create("sba_iommu", 0, root, &sba_proc_fops); 1986 proc_create("sba_iommu-bitmap", 0, root, &sba_proc_bitmap_fops); 1987 #endif 1988 1989 parisc_has_iommu(); 1990 return 0; 1991 } 1992 1993 /* 1994 ** One time initialization to let the world know the SBA was found. 1995 ** This is the only routine which is NOT static. 1996 ** Must be called exactly once before pci_init(). 1997 */ 1998 void __init sba_init(void) 1999 { 2000 register_parisc_driver(&sba_driver); 2001 } 2002 2003 2004 /** 2005 * sba_get_iommu - Assign the iommu pointer for the pci bus controller. 2006 * @dev: The parisc device. 2007 * 2008 * Returns the appropriate IOMMU data for the given parisc PCI controller. 2009 * This is cached and used later for PCI DMA Mapping. 2010 */ 2011 void * sba_get_iommu(struct parisc_device *pci_hba) 2012 { 2013 struct parisc_device *sba_dev = parisc_parent(pci_hba); 2014 struct sba_device *sba = dev_get_drvdata(&sba_dev->dev); 2015 char t = sba_dev->id.hw_type; 2016 int iocnum = (pci_hba->hw_path >> 3); /* rope # */ 2017 2018 WARN_ON((t != HPHW_IOA) && (t != HPHW_BCPORT)); 2019 2020 return &(sba->ioc[iocnum]); 2021 } 2022 2023 2024 /** 2025 * sba_directed_lmmio - return first directed LMMIO range routed to rope 2026 * @pa_dev: The parisc device. 2027 * @r: resource PCI host controller wants start/end fields assigned. 2028 * 2029 * For the given parisc PCI controller, determine if any direct ranges 2030 * are routed down the corresponding rope. 2031 */ 2032 void sba_directed_lmmio(struct parisc_device *pci_hba, struct resource *r) 2033 { 2034 struct parisc_device *sba_dev = parisc_parent(pci_hba); 2035 struct sba_device *sba = dev_get_drvdata(&sba_dev->dev); 2036 char t = sba_dev->id.hw_type; 2037 int i; 2038 int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1)); /* rope # */ 2039 2040 BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT)); 2041 2042 r->start = r->end = 0; 2043 2044 /* Astro has 4 directed ranges. Not sure about Ike/Pluto/et al */ 2045 for (i=0; i<4; i++) { 2046 int base, size; 2047 void __iomem *reg = sba->sba_hpa + i*0x18; 2048 2049 base = READ_REG32(reg + LMMIO_DIRECT0_BASE); 2050 if ((base & 1) == 0) 2051 continue; /* not enabled */ 2052 2053 size = READ_REG32(reg + LMMIO_DIRECT0_ROUTE); 2054 2055 if ((size & (ROPES_PER_IOC-1)) != rope) 2056 continue; /* directed down different rope */ 2057 2058 r->start = (base & ~1UL) | PCI_F_EXTEND; 2059 size = ~ READ_REG32(reg + LMMIO_DIRECT0_MASK); 2060 r->end = r->start + size; 2061 r->flags = IORESOURCE_MEM; 2062 } 2063 } 2064 2065 2066 /** 2067 * sba_distributed_lmmio - return portion of distributed LMMIO range 2068 * @pa_dev: The parisc device. 2069 * @r: resource PCI host controller wants start/end fields assigned. 2070 * 2071 * For the given parisc PCI controller, return portion of distributed LMMIO 2072 * range. The distributed LMMIO is always present and it's just a question 2073 * of the base address and size of the range. 2074 */ 2075 void sba_distributed_lmmio(struct parisc_device *pci_hba, struct resource *r ) 2076 { 2077 struct parisc_device *sba_dev = parisc_parent(pci_hba); 2078 struct sba_device *sba = dev_get_drvdata(&sba_dev->dev); 2079 char t = sba_dev->id.hw_type; 2080 int base, size; 2081 int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1)); /* rope # */ 2082 2083 BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT)); 2084 2085 r->start = r->end = 0; 2086 2087 base = READ_REG32(sba->sba_hpa + LMMIO_DIST_BASE); 2088 if ((base & 1) == 0) { 2089 BUG(); /* Gah! Distr Range wasn't enabled! */ 2090 return; 2091 } 2092 2093 r->start = (base & ~1UL) | PCI_F_EXTEND; 2094 2095 size = (~READ_REG32(sba->sba_hpa + LMMIO_DIST_MASK)) / ROPES_PER_IOC; 2096 r->start += rope * (size + 1); /* adjust base for this rope */ 2097 r->end = r->start + size; 2098 r->flags = IORESOURCE_MEM; 2099 } 2100