xref: /linux/drivers/parisc/sba_iommu.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2 **  System Bus Adapter (SBA) I/O MMU manager
3 **
4 **	(c) Copyright 2000-2004 Grant Grundler <grundler @ parisc-linux x org>
5 **	(c) Copyright 2004 Naresh Kumar Inna <knaresh at india x hp x com>
6 **	(c) Copyright 2000-2004 Hewlett-Packard Company
7 **
8 **	Portions (c) 1999 Dave S. Miller (from sparc64 I/O MMU code)
9 **
10 **	This program is free software; you can redistribute it and/or modify
11 **	it under the terms of the GNU General Public License as published by
12 **      the Free Software Foundation; either version 2 of the License, or
13 **      (at your option) any later version.
14 **
15 **
16 ** This module initializes the IOC (I/O Controller) found on B1000/C3000/
17 ** J5000/J7000/N-class/L-class machines and their successors.
18 **
19 ** FIXME: add DMA hint support programming in both sba and lba modules.
20 */
21 
22 #include <linux/types.h>
23 #include <linux/kernel.h>
24 #include <linux/spinlock.h>
25 #include <linux/slab.h>
26 #include <linux/init.h>
27 
28 #include <linux/mm.h>
29 #include <linux/string.h>
30 #include <linux/pci.h>
31 #include <linux/scatterlist.h>
32 #include <linux/iommu-helper.h>
33 
34 #include <asm/byteorder.h>
35 #include <asm/io.h>
36 #include <asm/dma.h>		/* for DMA_CHUNK_SIZE */
37 
38 #include <asm/hardware.h>	/* for register_parisc_driver() stuff */
39 
40 #include <linux/proc_fs.h>
41 #include <linux/seq_file.h>
42 
43 #include <asm/ropes.h>
44 #include <asm/mckinley.h>	/* for proc_mckinley_root */
45 #include <asm/runway.h>		/* for proc_runway_root */
46 #include <asm/pdc.h>		/* for PDC_MODEL_* */
47 #include <asm/pdcpat.h>		/* for is_pdc_pat() */
48 #include <asm/parisc-device.h>
49 
50 #define MODULE_NAME "SBA"
51 
52 /*
53 ** The number of debug flags is a clue - this code is fragile.
54 ** Don't even think about messing with it unless you have
55 ** plenty of 710's to sacrifice to the computer gods. :^)
56 */
57 #undef DEBUG_SBA_INIT
58 #undef DEBUG_SBA_RUN
59 #undef DEBUG_SBA_RUN_SG
60 #undef DEBUG_SBA_RESOURCE
61 #undef ASSERT_PDIR_SANITY
62 #undef DEBUG_LARGE_SG_ENTRIES
63 #undef DEBUG_DMB_TRAP
64 
65 #ifdef DEBUG_SBA_INIT
66 #define DBG_INIT(x...)	printk(x)
67 #else
68 #define DBG_INIT(x...)
69 #endif
70 
71 #ifdef DEBUG_SBA_RUN
72 #define DBG_RUN(x...)	printk(x)
73 #else
74 #define DBG_RUN(x...)
75 #endif
76 
77 #ifdef DEBUG_SBA_RUN_SG
78 #define DBG_RUN_SG(x...)	printk(x)
79 #else
80 #define DBG_RUN_SG(x...)
81 #endif
82 
83 
84 #ifdef DEBUG_SBA_RESOURCE
85 #define DBG_RES(x...)	printk(x)
86 #else
87 #define DBG_RES(x...)
88 #endif
89 
90 #define SBA_INLINE	__inline__
91 
92 #define DEFAULT_DMA_HINT_REG	0
93 
94 struct sba_device *sba_list;
95 EXPORT_SYMBOL_GPL(sba_list);
96 
97 static unsigned long ioc_needs_fdc = 0;
98 
99 /* global count of IOMMUs in the system */
100 static unsigned int global_ioc_cnt = 0;
101 
102 /* PA8700 (Piranha 2.2) bug workaround */
103 static unsigned long piranha_bad_128k = 0;
104 
105 /* Looks nice and keeps the compiler happy */
106 #define SBA_DEV(d) ((struct sba_device *) (d))
107 
108 #ifdef CONFIG_AGP_PARISC
109 #define SBA_AGP_SUPPORT
110 #endif /*CONFIG_AGP_PARISC*/
111 
112 #ifdef SBA_AGP_SUPPORT
113 static int sba_reserve_agpgart = 1;
114 module_param(sba_reserve_agpgart, int, 0444);
115 MODULE_PARM_DESC(sba_reserve_agpgart, "Reserve half of IO pdir as AGPGART");
116 #endif
117 
118 
119 /************************************
120 ** SBA register read and write support
121 **
122 ** BE WARNED: register writes are posted.
123 **  (ie follow writes which must reach HW with a read)
124 **
125 ** Superdome (in particular, REO) allows only 64-bit CSR accesses.
126 */
127 #define READ_REG32(addr)	readl(addr)
128 #define READ_REG64(addr)	readq(addr)
129 #define WRITE_REG32(val, addr)	writel((val), (addr))
130 #define WRITE_REG64(val, addr)	writeq((val), (addr))
131 
132 #ifdef CONFIG_64BIT
133 #define READ_REG(addr)		READ_REG64(addr)
134 #define WRITE_REG(value, addr)	WRITE_REG64(value, addr)
135 #else
136 #define READ_REG(addr)		READ_REG32(addr)
137 #define WRITE_REG(value, addr)	WRITE_REG32(value, addr)
138 #endif
139 
140 #ifdef DEBUG_SBA_INIT
141 
142 /* NOTE: When CONFIG_64BIT isn't defined, READ_REG64() is two 32-bit reads */
143 
144 /**
145  * sba_dump_ranges - debugging only - print ranges assigned to this IOA
146  * @hpa: base address of the sba
147  *
148  * Print the MMIO and IO Port address ranges forwarded by an Astro/Ike/RIO
149  * IO Adapter (aka Bus Converter).
150  */
151 static void
152 sba_dump_ranges(void __iomem *hpa)
153 {
154 	DBG_INIT("SBA at 0x%p\n", hpa);
155 	DBG_INIT("IOS_DIST_BASE   : %Lx\n", READ_REG64(hpa+IOS_DIST_BASE));
156 	DBG_INIT("IOS_DIST_MASK   : %Lx\n", READ_REG64(hpa+IOS_DIST_MASK));
157 	DBG_INIT("IOS_DIST_ROUTE  : %Lx\n", READ_REG64(hpa+IOS_DIST_ROUTE));
158 	DBG_INIT("\n");
159 	DBG_INIT("IOS_DIRECT_BASE : %Lx\n", READ_REG64(hpa+IOS_DIRECT_BASE));
160 	DBG_INIT("IOS_DIRECT_MASK : %Lx\n", READ_REG64(hpa+IOS_DIRECT_MASK));
161 	DBG_INIT("IOS_DIRECT_ROUTE: %Lx\n", READ_REG64(hpa+IOS_DIRECT_ROUTE));
162 }
163 
164 /**
165  * sba_dump_tlb - debugging only - print IOMMU operating parameters
166  * @hpa: base address of the IOMMU
167  *
168  * Print the size/location of the IO MMU PDIR.
169  */
170 static void sba_dump_tlb(void __iomem *hpa)
171 {
172 	DBG_INIT("IO TLB at 0x%p\n", hpa);
173 	DBG_INIT("IOC_IBASE    : 0x%Lx\n", READ_REG64(hpa+IOC_IBASE));
174 	DBG_INIT("IOC_IMASK    : 0x%Lx\n", READ_REG64(hpa+IOC_IMASK));
175 	DBG_INIT("IOC_TCNFG    : 0x%Lx\n", READ_REG64(hpa+IOC_TCNFG));
176 	DBG_INIT("IOC_PDIR_BASE: 0x%Lx\n", READ_REG64(hpa+IOC_PDIR_BASE));
177 	DBG_INIT("\n");
178 }
179 #else
180 #define sba_dump_ranges(x)
181 #define sba_dump_tlb(x)
182 #endif	/* DEBUG_SBA_INIT */
183 
184 
185 #ifdef ASSERT_PDIR_SANITY
186 
187 /**
188  * sba_dump_pdir_entry - debugging only - print one IOMMU PDIR entry
189  * @ioc: IO MMU structure which owns the pdir we are interested in.
190  * @msg: text to print ont the output line.
191  * @pide: pdir index.
192  *
193  * Print one entry of the IO MMU PDIR in human readable form.
194  */
195 static void
196 sba_dump_pdir_entry(struct ioc *ioc, char *msg, uint pide)
197 {
198 	/* start printing from lowest pde in rval */
199 	u64 *ptr = &(ioc->pdir_base[pide & (~0U * BITS_PER_LONG)]);
200 	unsigned long *rptr = (unsigned long *) &(ioc->res_map[(pide >>3) & ~(sizeof(unsigned long) - 1)]);
201 	uint rcnt;
202 
203 	printk(KERN_DEBUG "SBA: %s rp %p bit %d rval 0x%lx\n",
204 		 msg,
205 		 rptr, pide & (BITS_PER_LONG - 1), *rptr);
206 
207 	rcnt = 0;
208 	while (rcnt < BITS_PER_LONG) {
209 		printk(KERN_DEBUG "%s %2d %p %016Lx\n",
210 			(rcnt == (pide & (BITS_PER_LONG - 1)))
211 				? "    -->" : "       ",
212 			rcnt, ptr, *ptr );
213 		rcnt++;
214 		ptr++;
215 	}
216 	printk(KERN_DEBUG "%s", msg);
217 }
218 
219 
220 /**
221  * sba_check_pdir - debugging only - consistency checker
222  * @ioc: IO MMU structure which owns the pdir we are interested in.
223  * @msg: text to print ont the output line.
224  *
225  * Verify the resource map and pdir state is consistent
226  */
227 static int
228 sba_check_pdir(struct ioc *ioc, char *msg)
229 {
230 	u32 *rptr_end = (u32 *) &(ioc->res_map[ioc->res_size]);
231 	u32 *rptr = (u32 *) ioc->res_map;	/* resource map ptr */
232 	u64 *pptr = ioc->pdir_base;	/* pdir ptr */
233 	uint pide = 0;
234 
235 	while (rptr < rptr_end) {
236 		u32 rval = *rptr;
237 		int rcnt = 32;	/* number of bits we might check */
238 
239 		while (rcnt) {
240 			/* Get last byte and highest bit from that */
241 			u32 pde = ((u32) (((char *)pptr)[7])) << 24;
242 			if ((rval ^ pde) & 0x80000000)
243 			{
244 				/*
245 				** BUMMER!  -- res_map != pdir --
246 				** Dump rval and matching pdir entries
247 				*/
248 				sba_dump_pdir_entry(ioc, msg, pide);
249 				return(1);
250 			}
251 			rcnt--;
252 			rval <<= 1;	/* try the next bit */
253 			pptr++;
254 			pide++;
255 		}
256 		rptr++;	/* look at next word of res_map */
257 	}
258 	/* It'd be nice if we always got here :^) */
259 	return 0;
260 }
261 
262 
263 /**
264  * sba_dump_sg - debugging only - print Scatter-Gather list
265  * @ioc: IO MMU structure which owns the pdir we are interested in.
266  * @startsg: head of the SG list
267  * @nents: number of entries in SG list
268  *
269  * print the SG list so we can verify it's correct by hand.
270  */
271 static void
272 sba_dump_sg( struct ioc *ioc, struct scatterlist *startsg, int nents)
273 {
274 	while (nents-- > 0) {
275 		printk(KERN_DEBUG " %d : %08lx/%05x %p/%05x\n",
276 				nents,
277 				(unsigned long) sg_dma_address(startsg),
278 				sg_dma_len(startsg),
279 				sg_virt_addr(startsg), startsg->length);
280 		startsg++;
281 	}
282 }
283 
284 #endif /* ASSERT_PDIR_SANITY */
285 
286 
287 
288 
289 /**************************************************************
290 *
291 *   I/O Pdir Resource Management
292 *
293 *   Bits set in the resource map are in use.
294 *   Each bit can represent a number of pages.
295 *   LSbs represent lower addresses (IOVA's).
296 *
297 ***************************************************************/
298 #define PAGES_PER_RANGE 1	/* could increase this to 4 or 8 if needed */
299 
300 /* Convert from IOVP to IOVA and vice versa. */
301 
302 #ifdef ZX1_SUPPORT
303 /* Pluto (aka ZX1) boxes need to set or clear the ibase bits appropriately */
304 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((ioc->ibase) | (iovp) | (offset))
305 #define SBA_IOVP(ioc,iova) ((iova) & (ioc)->iovp_mask)
306 #else
307 /* only support Astro and ancestors. Saves a few cycles in key places */
308 #define SBA_IOVA(ioc,iovp,offset,hint_reg) ((iovp) | (offset))
309 #define SBA_IOVP(ioc,iova) (iova)
310 #endif
311 
312 #define PDIR_INDEX(iovp)   ((iovp)>>IOVP_SHIFT)
313 
314 #define RESMAP_MASK(n)    (~0UL << (BITS_PER_LONG - (n)))
315 #define RESMAP_IDX_MASK   (sizeof(unsigned long) - 1)
316 
317 static unsigned long ptr_to_pide(struct ioc *ioc, unsigned long *res_ptr,
318 				 unsigned int bitshiftcnt)
319 {
320 	return (((unsigned long)res_ptr - (unsigned long)ioc->res_map) << 3)
321 		+ bitshiftcnt;
322 }
323 
324 /**
325  * sba_search_bitmap - find free space in IO PDIR resource bitmap
326  * @ioc: IO MMU structure which owns the pdir we are interested in.
327  * @bits_wanted: number of entries we need.
328  *
329  * Find consecutive free bits in resource bitmap.
330  * Each bit represents one entry in the IO Pdir.
331  * Cool perf optimization: search for log2(size) bits at a time.
332  */
333 static SBA_INLINE unsigned long
334 sba_search_bitmap(struct ioc *ioc, struct device *dev,
335 		  unsigned long bits_wanted)
336 {
337 	unsigned long *res_ptr = ioc->res_hint;
338 	unsigned long *res_end = (unsigned long *) &(ioc->res_map[ioc->res_size]);
339 	unsigned long pide = ~0UL, tpide;
340 	unsigned long boundary_size;
341 	unsigned long shift;
342 	int ret;
343 
344 	boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1,
345 			      1ULL << IOVP_SHIFT) >> IOVP_SHIFT;
346 
347 #if defined(ZX1_SUPPORT)
348 	BUG_ON(ioc->ibase & ~IOVP_MASK);
349 	shift = ioc->ibase >> IOVP_SHIFT;
350 #else
351 	shift = 0;
352 #endif
353 
354 	if (bits_wanted > (BITS_PER_LONG/2)) {
355 		/* Search word at a time - no mask needed */
356 		for(; res_ptr < res_end; ++res_ptr) {
357 			tpide = ptr_to_pide(ioc, res_ptr, 0);
358 			ret = iommu_is_span_boundary(tpide, bits_wanted,
359 						     shift,
360 						     boundary_size);
361 			if ((*res_ptr == 0) && !ret) {
362 				*res_ptr = RESMAP_MASK(bits_wanted);
363 				pide = tpide;
364 				break;
365 			}
366 		}
367 		/* point to the next word on next pass */
368 		res_ptr++;
369 		ioc->res_bitshift = 0;
370 	} else {
371 		/*
372 		** Search the resource bit map on well-aligned values.
373 		** "o" is the alignment.
374 		** We need the alignment to invalidate I/O TLB using
375 		** SBA HW features in the unmap path.
376 		*/
377 		unsigned long o = 1 << get_order(bits_wanted << PAGE_SHIFT);
378 		uint bitshiftcnt = ALIGN(ioc->res_bitshift, o);
379 		unsigned long mask;
380 
381 		if (bitshiftcnt >= BITS_PER_LONG) {
382 			bitshiftcnt = 0;
383 			res_ptr++;
384 		}
385 		mask = RESMAP_MASK(bits_wanted) >> bitshiftcnt;
386 
387 		DBG_RES("%s() o %ld %p", __func__, o, res_ptr);
388 		while(res_ptr < res_end)
389 		{
390 			DBG_RES("    %p %lx %lx\n", res_ptr, mask, *res_ptr);
391 			WARN_ON(mask == 0);
392 			tpide = ptr_to_pide(ioc, res_ptr, bitshiftcnt);
393 			ret = iommu_is_span_boundary(tpide, bits_wanted,
394 						     shift,
395 						     boundary_size);
396 			if ((((*res_ptr) & mask) == 0) && !ret) {
397 				*res_ptr |= mask;     /* mark resources busy! */
398 				pide = tpide;
399 				break;
400 			}
401 			mask >>= o;
402 			bitshiftcnt += o;
403 			if (mask == 0) {
404 				mask = RESMAP_MASK(bits_wanted);
405 				bitshiftcnt=0;
406 				res_ptr++;
407 			}
408 		}
409 		/* look in the same word on the next pass */
410 		ioc->res_bitshift = bitshiftcnt + bits_wanted;
411 	}
412 
413 	/* wrapped ? */
414 	if (res_end <= res_ptr) {
415 		ioc->res_hint = (unsigned long *) ioc->res_map;
416 		ioc->res_bitshift = 0;
417 	} else {
418 		ioc->res_hint = res_ptr;
419 	}
420 	return (pide);
421 }
422 
423 
424 /**
425  * sba_alloc_range - find free bits and mark them in IO PDIR resource bitmap
426  * @ioc: IO MMU structure which owns the pdir we are interested in.
427  * @size: number of bytes to create a mapping for
428  *
429  * Given a size, find consecutive unmarked and then mark those bits in the
430  * resource bit map.
431  */
432 static int
433 sba_alloc_range(struct ioc *ioc, struct device *dev, size_t size)
434 {
435 	unsigned int pages_needed = size >> IOVP_SHIFT;
436 #ifdef SBA_COLLECT_STATS
437 	unsigned long cr_start = mfctl(16);
438 #endif
439 	unsigned long pide;
440 
441 	pide = sba_search_bitmap(ioc, dev, pages_needed);
442 	if (pide >= (ioc->res_size << 3)) {
443 		pide = sba_search_bitmap(ioc, dev, pages_needed);
444 		if (pide >= (ioc->res_size << 3))
445 			panic("%s: I/O MMU @ %p is out of mapping resources\n",
446 			      __FILE__, ioc->ioc_hpa);
447 	}
448 
449 #ifdef ASSERT_PDIR_SANITY
450 	/* verify the first enable bit is clear */
451 	if(0x00 != ((u8 *) ioc->pdir_base)[pide*sizeof(u64) + 7]) {
452 		sba_dump_pdir_entry(ioc, "sba_search_bitmap() botched it?", pide);
453 	}
454 #endif
455 
456 	DBG_RES("%s(%x) %d -> %lx hint %x/%x\n",
457 		__func__, size, pages_needed, pide,
458 		(uint) ((unsigned long) ioc->res_hint - (unsigned long) ioc->res_map),
459 		ioc->res_bitshift );
460 
461 #ifdef SBA_COLLECT_STATS
462 	{
463 		unsigned long cr_end = mfctl(16);
464 		unsigned long tmp = cr_end - cr_start;
465 		/* check for roll over */
466 		cr_start = (cr_end < cr_start) ?  -(tmp) : (tmp);
467 	}
468 	ioc->avg_search[ioc->avg_idx++] = cr_start;
469 	ioc->avg_idx &= SBA_SEARCH_SAMPLE - 1;
470 
471 	ioc->used_pages += pages_needed;
472 #endif
473 
474 	return (pide);
475 }
476 
477 
478 /**
479  * sba_free_range - unmark bits in IO PDIR resource bitmap
480  * @ioc: IO MMU structure which owns the pdir we are interested in.
481  * @iova: IO virtual address which was previously allocated.
482  * @size: number of bytes to create a mapping for
483  *
484  * clear bits in the ioc's resource map
485  */
486 static SBA_INLINE void
487 sba_free_range(struct ioc *ioc, dma_addr_t iova, size_t size)
488 {
489 	unsigned long iovp = SBA_IOVP(ioc, iova);
490 	unsigned int pide = PDIR_INDEX(iovp);
491 	unsigned int ridx = pide >> 3;	/* convert bit to byte address */
492 	unsigned long *res_ptr = (unsigned long *) &((ioc)->res_map[ridx & ~RESMAP_IDX_MASK]);
493 
494 	int bits_not_wanted = size >> IOVP_SHIFT;
495 
496 	/* 3-bits "bit" address plus 2 (or 3) bits for "byte" == bit in word */
497 	unsigned long m = RESMAP_MASK(bits_not_wanted) >> (pide & (BITS_PER_LONG - 1));
498 
499 	DBG_RES("%s( ,%x,%x) %x/%lx %x %p %lx\n",
500 		__func__, (uint) iova, size,
501 		bits_not_wanted, m, pide, res_ptr, *res_ptr);
502 
503 #ifdef SBA_COLLECT_STATS
504 	ioc->used_pages -= bits_not_wanted;
505 #endif
506 
507 	*res_ptr &= ~m;
508 }
509 
510 
511 /**************************************************************
512 *
513 *   "Dynamic DMA Mapping" support (aka "Coherent I/O")
514 *
515 ***************************************************************/
516 
517 #ifdef SBA_HINT_SUPPORT
518 #define SBA_DMA_HINT(ioc, val) ((val) << (ioc)->hint_shift_pdir)
519 #endif
520 
521 typedef unsigned long space_t;
522 #define KERNEL_SPACE 0
523 
524 /**
525  * sba_io_pdir_entry - fill in one IO PDIR entry
526  * @pdir_ptr:  pointer to IO PDIR entry
527  * @sid: process Space ID - currently only support KERNEL_SPACE
528  * @vba: Virtual CPU address of buffer to map
529  * @hint: DMA hint set to use for this mapping
530  *
531  * SBA Mapping Routine
532  *
533  * Given a virtual address (vba, arg2) and space id, (sid, arg1)
534  * sba_io_pdir_entry() loads the I/O PDIR entry pointed to by
535  * pdir_ptr (arg0).
536  * Using the bass-ackwards HP bit numbering, Each IO Pdir entry
537  * for Astro/Ike looks like:
538  *
539  *
540  *  0                    19                                 51   55       63
541  * +-+---------------------+----------------------------------+----+--------+
542  * |V|        U            |            PPN[43:12]            | U  |   VI   |
543  * +-+---------------------+----------------------------------+----+--------+
544  *
545  * Pluto is basically identical, supports fewer physical address bits:
546  *
547  *  0                       23                              51   55       63
548  * +-+------------------------+-------------------------------+----+--------+
549  * |V|        U               |         PPN[39:12]            | U  |   VI   |
550  * +-+------------------------+-------------------------------+----+--------+
551  *
552  *  V  == Valid Bit  (Most Significant Bit is bit 0)
553  *  U  == Unused
554  * PPN == Physical Page Number
555  * VI  == Virtual Index (aka Coherent Index)
556  *
557  * LPA instruction output is put into PPN field.
558  * LCI (Load Coherence Index) instruction provides the "VI" bits.
559  *
560  * We pre-swap the bytes since PCX-W is Big Endian and the
561  * IOMMU uses little endian for the pdir.
562  */
563 
564 static void SBA_INLINE
565 sba_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba,
566 		  unsigned long hint)
567 {
568 	u64 pa; /* physical address */
569 	register unsigned ci; /* coherent index */
570 
571 	pa = virt_to_phys(vba);
572 	pa &= IOVP_MASK;
573 
574 	mtsp(sid,1);
575 	asm("lci 0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba));
576 	pa |= (ci >> 12) & 0xff;  /* move CI (8 bits) into lowest byte */
577 
578 	pa |= SBA_PDIR_VALID_BIT;	/* set "valid" bit */
579 	*pdir_ptr = cpu_to_le64(pa);	/* swap and store into I/O Pdir */
580 
581 	/*
582 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
583 	 * (bit #61, big endian), we have to flush and sync every time
584 	 * IO-PDIR is changed in Ike/Astro.
585 	 */
586 	if (ioc_needs_fdc)
587 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
588 }
589 
590 
591 /**
592  * sba_mark_invalid - invalidate one or more IO PDIR entries
593  * @ioc: IO MMU structure which owns the pdir we are interested in.
594  * @iova:  IO Virtual Address mapped earlier
595  * @byte_cnt:  number of bytes this mapping covers.
596  *
597  * Marking the IO PDIR entry(ies) as Invalid and invalidate
598  * corresponding IO TLB entry. The Ike PCOM (Purge Command Register)
599  * is to purge stale entries in the IO TLB when unmapping entries.
600  *
601  * The PCOM register supports purging of multiple pages, with a minium
602  * of 1 page and a maximum of 2GB. Hardware requires the address be
603  * aligned to the size of the range being purged. The size of the range
604  * must be a power of 2. The "Cool perf optimization" in the
605  * allocation routine helps keep that true.
606  */
607 static SBA_INLINE void
608 sba_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt)
609 {
610 	u32 iovp = (u32) SBA_IOVP(ioc,iova);
611 	u64 *pdir_ptr = &ioc->pdir_base[PDIR_INDEX(iovp)];
612 
613 #ifdef ASSERT_PDIR_SANITY
614 	/* Assert first pdir entry is set.
615 	**
616 	** Even though this is a big-endian machine, the entries
617 	** in the iopdir are little endian. That's why we look at
618 	** the byte at +7 instead of at +0.
619 	*/
620 	if (0x80 != (((u8 *) pdir_ptr)[7])) {
621 		sba_dump_pdir_entry(ioc,"sba_mark_invalid()", PDIR_INDEX(iovp));
622 	}
623 #endif
624 
625 	if (byte_cnt > IOVP_SIZE)
626 	{
627 #if 0
628 		unsigned long entries_per_cacheline = ioc_needs_fdc ?
629 				L1_CACHE_ALIGN(((unsigned long) pdir_ptr))
630 					- (unsigned long) pdir_ptr;
631 				: 262144;
632 #endif
633 
634 		/* set "size" field for PCOM */
635 		iovp |= get_order(byte_cnt) + PAGE_SHIFT;
636 
637 		do {
638 			/* clear I/O Pdir entry "valid" bit first */
639 			((u8 *) pdir_ptr)[7] = 0;
640 			if (ioc_needs_fdc) {
641 				asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
642 #if 0
643 				entries_per_cacheline = L1_CACHE_SHIFT - 3;
644 #endif
645 			}
646 			pdir_ptr++;
647 			byte_cnt -= IOVP_SIZE;
648 		} while (byte_cnt > IOVP_SIZE);
649 	} else
650 		iovp |= IOVP_SHIFT;     /* set "size" field for PCOM */
651 
652 	/*
653 	** clear I/O PDIR entry "valid" bit.
654 	** We have to R/M/W the cacheline regardless how much of the
655 	** pdir entry that we clobber.
656 	** The rest of the entry would be useful for debugging if we
657 	** could dump core on HPMC.
658 	*/
659 	((u8 *) pdir_ptr)[7] = 0;
660 	if (ioc_needs_fdc)
661 		asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr));
662 
663 	WRITE_REG( SBA_IOVA(ioc, iovp, 0, 0), ioc->ioc_hpa+IOC_PCOM);
664 }
665 
666 /**
667  * sba_dma_supported - PCI driver can query DMA support
668  * @dev: instance of PCI owned by the driver that's asking
669  * @mask:  number of address bits this PCI device can handle
670  *
671  * See Documentation/PCI/PCI-DMA-mapping.txt
672  */
673 static int sba_dma_supported( struct device *dev, u64 mask)
674 {
675 	struct ioc *ioc;
676 
677 	if (dev == NULL) {
678 		printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n");
679 		BUG();
680 		return(0);
681 	}
682 
683 	/* Documentation/PCI/PCI-DMA-mapping.txt tells drivers to try 64-bit
684 	 * first, then fall back to 32-bit if that fails.
685 	 * We are just "encouraging" 32-bit DMA masks here since we can
686 	 * never allow IOMMU bypass unless we add special support for ZX1.
687 	 */
688 	if (mask > ~0U)
689 		return 0;
690 
691 	ioc = GET_IOC(dev);
692 
693 	/*
694 	 * check if mask is >= than the current max IO Virt Address
695 	 * The max IO Virt address will *always* < 30 bits.
696 	 */
697 	return((int)(mask >= (ioc->ibase - 1 +
698 			(ioc->pdir_size / sizeof(u64) * IOVP_SIZE) )));
699 }
700 
701 
702 /**
703  * sba_map_single - map one buffer and return IOVA for DMA
704  * @dev: instance of PCI owned by the driver that's asking.
705  * @addr:  driver buffer to map.
706  * @size:  number of bytes to map in driver buffer.
707  * @direction:  R/W or both.
708  *
709  * See Documentation/PCI/PCI-DMA-mapping.txt
710  */
711 static dma_addr_t
712 sba_map_single(struct device *dev, void *addr, size_t size,
713 	       enum dma_data_direction direction)
714 {
715 	struct ioc *ioc;
716 	unsigned long flags;
717 	dma_addr_t iovp;
718 	dma_addr_t offset;
719 	u64 *pdir_start;
720 	int pide;
721 
722 	ioc = GET_IOC(dev);
723 
724 	/* save offset bits */
725 	offset = ((dma_addr_t) (long) addr) & ~IOVP_MASK;
726 
727 	/* round up to nearest IOVP_SIZE */
728 	size = (size + offset + ~IOVP_MASK) & IOVP_MASK;
729 
730 	spin_lock_irqsave(&ioc->res_lock, flags);
731 #ifdef ASSERT_PDIR_SANITY
732 	sba_check_pdir(ioc,"Check before sba_map_single()");
733 #endif
734 
735 #ifdef SBA_COLLECT_STATS
736 	ioc->msingle_calls++;
737 	ioc->msingle_pages += size >> IOVP_SHIFT;
738 #endif
739 	pide = sba_alloc_range(ioc, dev, size);
740 	iovp = (dma_addr_t) pide << IOVP_SHIFT;
741 
742 	DBG_RUN("%s() 0x%p -> 0x%lx\n",
743 		__func__, addr, (long) iovp | offset);
744 
745 	pdir_start = &(ioc->pdir_base[pide]);
746 
747 	while (size > 0) {
748 		sba_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long) addr, 0);
749 
750 		DBG_RUN("	pdir 0x%p %02x%02x%02x%02x%02x%02x%02x%02x\n",
751 			pdir_start,
752 			(u8) (((u8 *) pdir_start)[7]),
753 			(u8) (((u8 *) pdir_start)[6]),
754 			(u8) (((u8 *) pdir_start)[5]),
755 			(u8) (((u8 *) pdir_start)[4]),
756 			(u8) (((u8 *) pdir_start)[3]),
757 			(u8) (((u8 *) pdir_start)[2]),
758 			(u8) (((u8 *) pdir_start)[1]),
759 			(u8) (((u8 *) pdir_start)[0])
760 			);
761 
762 		addr += IOVP_SIZE;
763 		size -= IOVP_SIZE;
764 		pdir_start++;
765 	}
766 
767 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
768 	if (ioc_needs_fdc)
769 		asm volatile("sync" : : );
770 
771 #ifdef ASSERT_PDIR_SANITY
772 	sba_check_pdir(ioc,"Check after sba_map_single()");
773 #endif
774 	spin_unlock_irqrestore(&ioc->res_lock, flags);
775 
776 	/* form complete address */
777 	return SBA_IOVA(ioc, iovp, offset, DEFAULT_DMA_HINT_REG);
778 }
779 
780 
781 /**
782  * sba_unmap_single - unmap one IOVA and free resources
783  * @dev: instance of PCI owned by the driver that's asking.
784  * @iova:  IOVA of driver buffer previously mapped.
785  * @size:  number of bytes mapped in driver buffer.
786  * @direction:  R/W or both.
787  *
788  * See Documentation/PCI/PCI-DMA-mapping.txt
789  */
790 static void
791 sba_unmap_single(struct device *dev, dma_addr_t iova, size_t size,
792 		 enum dma_data_direction direction)
793 {
794 	struct ioc *ioc;
795 #if DELAYED_RESOURCE_CNT > 0
796 	struct sba_dma_pair *d;
797 #endif
798 	unsigned long flags;
799 	dma_addr_t offset;
800 
801 	DBG_RUN("%s() iovp 0x%lx/%x\n", __func__, (long) iova, size);
802 
803 	ioc = GET_IOC(dev);
804 	offset = iova & ~IOVP_MASK;
805 	iova ^= offset;        /* clear offset bits */
806 	size += offset;
807 	size = ALIGN(size, IOVP_SIZE);
808 
809 	spin_lock_irqsave(&ioc->res_lock, flags);
810 
811 #ifdef SBA_COLLECT_STATS
812 	ioc->usingle_calls++;
813 	ioc->usingle_pages += size >> IOVP_SHIFT;
814 #endif
815 
816 	sba_mark_invalid(ioc, iova, size);
817 
818 #if DELAYED_RESOURCE_CNT > 0
819 	/* Delaying when we re-use a IO Pdir entry reduces the number
820 	 * of MMIO reads needed to flush writes to the PCOM register.
821 	 */
822 	d = &(ioc->saved[ioc->saved_cnt]);
823 	d->iova = iova;
824 	d->size = size;
825 	if (++(ioc->saved_cnt) >= DELAYED_RESOURCE_CNT) {
826 		int cnt = ioc->saved_cnt;
827 		while (cnt--) {
828 			sba_free_range(ioc, d->iova, d->size);
829 			d--;
830 		}
831 		ioc->saved_cnt = 0;
832 
833 		READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
834 	}
835 #else /* DELAYED_RESOURCE_CNT == 0 */
836 	sba_free_range(ioc, iova, size);
837 
838 	/* If fdc's were issued, force fdc's to be visible now */
839 	if (ioc_needs_fdc)
840 		asm volatile("sync" : : );
841 
842 	READ_REG(ioc->ioc_hpa+IOC_PCOM);	/* flush purges */
843 #endif /* DELAYED_RESOURCE_CNT == 0 */
844 
845 	spin_unlock_irqrestore(&ioc->res_lock, flags);
846 
847 	/* XXX REVISIT for 2.5 Linux - need syncdma for zero-copy support.
848 	** For Astro based systems this isn't a big deal WRT performance.
849 	** As long as 2.4 kernels copyin/copyout data from/to userspace,
850 	** we don't need the syncdma. The issue here is I/O MMU cachelines
851 	** are *not* coherent in all cases.  May be hwrev dependent.
852 	** Need to investigate more.
853 	asm volatile("syncdma");
854 	*/
855 }
856 
857 
858 /**
859  * sba_alloc_consistent - allocate/map shared mem for DMA
860  * @hwdev: instance of PCI owned by the driver that's asking.
861  * @size:  number of bytes mapped in driver buffer.
862  * @dma_handle:  IOVA of new buffer.
863  *
864  * See Documentation/PCI/PCI-DMA-mapping.txt
865  */
866 static void *sba_alloc_consistent(struct device *hwdev, size_t size,
867 					dma_addr_t *dma_handle, gfp_t gfp)
868 {
869 	void *ret;
870 
871 	if (!hwdev) {
872 		/* only support PCI */
873 		*dma_handle = 0;
874 		return NULL;
875 	}
876 
877         ret = (void *) __get_free_pages(gfp, get_order(size));
878 
879 	if (ret) {
880 		memset(ret, 0, size);
881 		*dma_handle = sba_map_single(hwdev, ret, size, 0);
882 	}
883 
884 	return ret;
885 }
886 
887 
888 /**
889  * sba_free_consistent - free/unmap shared mem for DMA
890  * @hwdev: instance of PCI owned by the driver that's asking.
891  * @size:  number of bytes mapped in driver buffer.
892  * @vaddr:  virtual address IOVA of "consistent" buffer.
893  * @dma_handler:  IO virtual address of "consistent" buffer.
894  *
895  * See Documentation/PCI/PCI-DMA-mapping.txt
896  */
897 static void
898 sba_free_consistent(struct device *hwdev, size_t size, void *vaddr,
899 		    dma_addr_t dma_handle)
900 {
901 	sba_unmap_single(hwdev, dma_handle, size, 0);
902 	free_pages((unsigned long) vaddr, get_order(size));
903 }
904 
905 
906 /*
907 ** Since 0 is a valid pdir_base index value, can't use that
908 ** to determine if a value is valid or not. Use a flag to indicate
909 ** the SG list entry contains a valid pdir index.
910 */
911 #define PIDE_FLAG 0x80000000UL
912 
913 #ifdef SBA_COLLECT_STATS
914 #define IOMMU_MAP_STATS
915 #endif
916 #include "iommu-helpers.h"
917 
918 #ifdef DEBUG_LARGE_SG_ENTRIES
919 int dump_run_sg = 0;
920 #endif
921 
922 
923 /**
924  * sba_map_sg - map Scatter/Gather list
925  * @dev: instance of PCI owned by the driver that's asking.
926  * @sglist:  array of buffer/length pairs
927  * @nents:  number of entries in list
928  * @direction:  R/W or both.
929  *
930  * See Documentation/PCI/PCI-DMA-mapping.txt
931  */
932 static int
933 sba_map_sg(struct device *dev, struct scatterlist *sglist, int nents,
934 	   enum dma_data_direction direction)
935 {
936 	struct ioc *ioc;
937 	int coalesced, filled = 0;
938 	unsigned long flags;
939 
940 	DBG_RUN_SG("%s() START %d entries\n", __func__, nents);
941 
942 	ioc = GET_IOC(dev);
943 
944 	/* Fast path single entry scatterlists. */
945 	if (nents == 1) {
946 		sg_dma_address(sglist) = sba_map_single(dev,
947 						(void *)sg_virt_addr(sglist),
948 						sglist->length, direction);
949 		sg_dma_len(sglist)     = sglist->length;
950 		return 1;
951 	}
952 
953 	spin_lock_irqsave(&ioc->res_lock, flags);
954 
955 #ifdef ASSERT_PDIR_SANITY
956 	if (sba_check_pdir(ioc,"Check before sba_map_sg()"))
957 	{
958 		sba_dump_sg(ioc, sglist, nents);
959 		panic("Check before sba_map_sg()");
960 	}
961 #endif
962 
963 #ifdef SBA_COLLECT_STATS
964 	ioc->msg_calls++;
965 #endif
966 
967 	/*
968 	** First coalesce the chunks and allocate I/O pdir space
969 	**
970 	** If this is one DMA stream, we can properly map using the
971 	** correct virtual address associated with each DMA page.
972 	** w/o this association, we wouldn't have coherent DMA!
973 	** Access to the virtual address is what forces a two pass algorithm.
974 	*/
975 	coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, sba_alloc_range);
976 
977 	/*
978 	** Program the I/O Pdir
979 	**
980 	** map the virtual addresses to the I/O Pdir
981 	** o dma_address will contain the pdir index
982 	** o dma_len will contain the number of bytes to map
983 	** o address contains the virtual address.
984 	*/
985 	filled = iommu_fill_pdir(ioc, sglist, nents, 0, sba_io_pdir_entry);
986 
987 	/* force FDC ops in io_pdir_entry() to be visible to IOMMU */
988 	if (ioc_needs_fdc)
989 		asm volatile("sync" : : );
990 
991 #ifdef ASSERT_PDIR_SANITY
992 	if (sba_check_pdir(ioc,"Check after sba_map_sg()"))
993 	{
994 		sba_dump_sg(ioc, sglist, nents);
995 		panic("Check after sba_map_sg()\n");
996 	}
997 #endif
998 
999 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1000 
1001 	DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled);
1002 
1003 	return filled;
1004 }
1005 
1006 
1007 /**
1008  * sba_unmap_sg - unmap Scatter/Gather list
1009  * @dev: instance of PCI owned by the driver that's asking.
1010  * @sglist:  array of buffer/length pairs
1011  * @nents:  number of entries in list
1012  * @direction:  R/W or both.
1013  *
1014  * See Documentation/PCI/PCI-DMA-mapping.txt
1015  */
1016 static void
1017 sba_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents,
1018 	     enum dma_data_direction direction)
1019 {
1020 	struct ioc *ioc;
1021 #ifdef ASSERT_PDIR_SANITY
1022 	unsigned long flags;
1023 #endif
1024 
1025 	DBG_RUN_SG("%s() START %d entries,  %p,%x\n",
1026 		__func__, nents, sg_virt_addr(sglist), sglist->length);
1027 
1028 	ioc = GET_IOC(dev);
1029 
1030 #ifdef SBA_COLLECT_STATS
1031 	ioc->usg_calls++;
1032 #endif
1033 
1034 #ifdef ASSERT_PDIR_SANITY
1035 	spin_lock_irqsave(&ioc->res_lock, flags);
1036 	sba_check_pdir(ioc,"Check before sba_unmap_sg()");
1037 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1038 #endif
1039 
1040 	while (sg_dma_len(sglist) && nents--) {
1041 
1042 		sba_unmap_single(dev, sg_dma_address(sglist), sg_dma_len(sglist), direction);
1043 #ifdef SBA_COLLECT_STATS
1044 		ioc->usg_pages += ((sg_dma_address(sglist) & ~IOVP_MASK) + sg_dma_len(sglist) + IOVP_SIZE - 1) >> PAGE_SHIFT;
1045 		ioc->usingle_calls--;	/* kluge since call is unmap_sg() */
1046 #endif
1047 		++sglist;
1048 	}
1049 
1050 	DBG_RUN_SG("%s() DONE (nents %d)\n", __func__,  nents);
1051 
1052 #ifdef ASSERT_PDIR_SANITY
1053 	spin_lock_irqsave(&ioc->res_lock, flags);
1054 	sba_check_pdir(ioc,"Check after sba_unmap_sg()");
1055 	spin_unlock_irqrestore(&ioc->res_lock, flags);
1056 #endif
1057 
1058 }
1059 
1060 static struct hppa_dma_ops sba_ops = {
1061 	.dma_supported =	sba_dma_supported,
1062 	.alloc_consistent =	sba_alloc_consistent,
1063 	.alloc_noncoherent =	sba_alloc_consistent,
1064 	.free_consistent =	sba_free_consistent,
1065 	.map_single =		sba_map_single,
1066 	.unmap_single =		sba_unmap_single,
1067 	.map_sg =		sba_map_sg,
1068 	.unmap_sg =		sba_unmap_sg,
1069 	.dma_sync_single_for_cpu =	NULL,
1070 	.dma_sync_single_for_device =	NULL,
1071 	.dma_sync_sg_for_cpu =		NULL,
1072 	.dma_sync_sg_for_device =	NULL,
1073 };
1074 
1075 
1076 /**************************************************************************
1077 **
1078 **   SBA PAT PDC support
1079 **
1080 **   o call pdc_pat_cell_module()
1081 **   o store ranges in PCI "resource" structures
1082 **
1083 **************************************************************************/
1084 
1085 static void
1086 sba_get_pat_resources(struct sba_device *sba_dev)
1087 {
1088 #if 0
1089 /*
1090 ** TODO/REVISIT/FIXME: support for directed ranges requires calls to
1091 **      PAT PDC to program the SBA/LBA directed range registers...this
1092 **      burden may fall on the LBA code since it directly supports the
1093 **      PCI subsystem. It's not clear yet. - ggg
1094 */
1095 PAT_MOD(mod)->mod_info.mod_pages   = PAT_GET_MOD_PAGES(temp);
1096 	FIXME : ???
1097 PAT_MOD(mod)->mod_info.dvi         = PAT_GET_DVI(temp);
1098 	Tells where the dvi bits are located in the address.
1099 PAT_MOD(mod)->mod_info.ioc         = PAT_GET_IOC(temp);
1100 	FIXME : ???
1101 #endif
1102 }
1103 
1104 
1105 /**************************************************************
1106 *
1107 *   Initialization and claim
1108 *
1109 ***************************************************************/
1110 #define PIRANHA_ADDR_MASK	0x00160000UL /* bit 17,18,20 */
1111 #define PIRANHA_ADDR_VAL	0x00060000UL /* bit 17,18 on */
1112 static void *
1113 sba_alloc_pdir(unsigned int pdir_size)
1114 {
1115         unsigned long pdir_base;
1116 	unsigned long pdir_order = get_order(pdir_size);
1117 
1118 	pdir_base = __get_free_pages(GFP_KERNEL, pdir_order);
1119 	if (NULL == (void *) pdir_base)	{
1120 		panic("%s() could not allocate I/O Page Table\n",
1121 			__func__);
1122 	}
1123 
1124 	/* If this is not PA8700 (PCX-W2)
1125 	**	OR newer than ver 2.2
1126 	**	OR in a system that doesn't need VINDEX bits from SBA,
1127 	**
1128 	** then we aren't exposed to the HW bug.
1129 	*/
1130 	if ( ((boot_cpu_data.pdc.cpuid >> 5) & 0x7f) != 0x13
1131 			|| (boot_cpu_data.pdc.versions > 0x202)
1132 			|| (boot_cpu_data.pdc.capabilities & 0x08L) )
1133 		return (void *) pdir_base;
1134 
1135 	/*
1136 	 * PA8700 (PCX-W2, aka piranha) silent data corruption fix
1137 	 *
1138 	 * An interaction between PA8700 CPU (Ver 2.2 or older) and
1139 	 * Ike/Astro can cause silent data corruption. This is only
1140 	 * a problem if the I/O PDIR is located in memory such that
1141 	 * (little-endian)  bits 17 and 18 are on and bit 20 is off.
1142 	 *
1143 	 * Since the max IO Pdir size is 2MB, by cleverly allocating the
1144 	 * right physical address, we can either avoid (IOPDIR <= 1MB)
1145 	 * or minimize (2MB IO Pdir) the problem if we restrict the
1146 	 * IO Pdir to a maximum size of 2MB-128K (1902K).
1147 	 *
1148 	 * Because we always allocate 2^N sized IO pdirs, either of the
1149 	 * "bad" regions will be the last 128K if at all. That's easy
1150 	 * to test for.
1151 	 *
1152 	 */
1153 	if (pdir_order <= (19-12)) {
1154 		if (((virt_to_phys(pdir_base)+pdir_size-1) & PIRANHA_ADDR_MASK) == PIRANHA_ADDR_VAL) {
1155 			/* allocate a new one on 512k alignment */
1156 			unsigned long new_pdir = __get_free_pages(GFP_KERNEL, (19-12));
1157 			/* release original */
1158 			free_pages(pdir_base, pdir_order);
1159 
1160 			pdir_base = new_pdir;
1161 
1162 			/* release excess */
1163 			while (pdir_order < (19-12)) {
1164 				new_pdir += pdir_size;
1165 				free_pages(new_pdir, pdir_order);
1166 				pdir_order +=1;
1167 				pdir_size <<=1;
1168 			}
1169 		}
1170 	} else {
1171 		/*
1172 		** 1MB or 2MB Pdir
1173 		** Needs to be aligned on an "odd" 1MB boundary.
1174 		*/
1175 		unsigned long new_pdir = __get_free_pages(GFP_KERNEL, pdir_order+1); /* 2 or 4MB */
1176 
1177 		/* release original */
1178 		free_pages( pdir_base, pdir_order);
1179 
1180 		/* release first 1MB */
1181 		free_pages(new_pdir, 20-12);
1182 
1183 		pdir_base = new_pdir + 1024*1024;
1184 
1185 		if (pdir_order > (20-12)) {
1186 			/*
1187 			** 2MB Pdir.
1188 			**
1189 			** Flag tells init_bitmap() to mark bad 128k as used
1190 			** and to reduce the size by 128k.
1191 			*/
1192 			piranha_bad_128k = 1;
1193 
1194 			new_pdir += 3*1024*1024;
1195 			/* release last 1MB */
1196 			free_pages(new_pdir, 20-12);
1197 
1198 			/* release unusable 128KB */
1199 			free_pages(new_pdir - 128*1024 , 17-12);
1200 
1201 			pdir_size -= 128*1024;
1202 		}
1203 	}
1204 
1205 	memset((void *) pdir_base, 0, pdir_size);
1206 	return (void *) pdir_base;
1207 }
1208 
1209 struct ibase_data_struct {
1210 	struct ioc *ioc;
1211 	int ioc_num;
1212 };
1213 
1214 static int setup_ibase_imask_callback(struct device *dev, void *data)
1215 {
1216 	/* lba_set_iregs() is in drivers/parisc/lba_pci.c */
1217         extern void lba_set_iregs(struct parisc_device *, u32, u32);
1218 	struct parisc_device *lba = to_parisc_device(dev);
1219 	struct ibase_data_struct *ibd = data;
1220 	int rope_num = (lba->hpa.start >> 13) & 0xf;
1221 	if (rope_num >> 3 == ibd->ioc_num)
1222 		lba_set_iregs(lba, ibd->ioc->ibase, ibd->ioc->imask);
1223 	return 0;
1224 }
1225 
1226 /* setup Mercury or Elroy IBASE/IMASK registers. */
1227 static void
1228 setup_ibase_imask(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1229 {
1230 	struct ibase_data_struct ibase_data = {
1231 		.ioc		= ioc,
1232 		.ioc_num	= ioc_num,
1233 	};
1234 
1235 	device_for_each_child(&sba->dev, &ibase_data,
1236 			      setup_ibase_imask_callback);
1237 }
1238 
1239 #ifdef SBA_AGP_SUPPORT
1240 static int
1241 sba_ioc_find_quicksilver(struct device *dev, void *data)
1242 {
1243 	int *agp_found = data;
1244 	struct parisc_device *lba = to_parisc_device(dev);
1245 
1246 	if (IS_QUICKSILVER(lba))
1247 		*agp_found = 1;
1248 	return 0;
1249 }
1250 #endif
1251 
1252 static void
1253 sba_ioc_init_pluto(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1254 {
1255 	u32 iova_space_mask;
1256 	u32 iova_space_size;
1257 	int iov_order, tcnfg;
1258 #ifdef SBA_AGP_SUPPORT
1259 	int agp_found = 0;
1260 #endif
1261 	/*
1262 	** Firmware programs the base and size of a "safe IOVA space"
1263 	** (one that doesn't overlap memory or LMMIO space) in the
1264 	** IBASE and IMASK registers.
1265 	*/
1266 	ioc->ibase = READ_REG(ioc->ioc_hpa + IOC_IBASE);
1267 	iova_space_size = ~(READ_REG(ioc->ioc_hpa + IOC_IMASK) & 0xFFFFFFFFUL) + 1;
1268 
1269 	if ((ioc->ibase < 0xfed00000UL) && ((ioc->ibase + iova_space_size) > 0xfee00000UL)) {
1270 		printk("WARNING: IOV space overlaps local config and interrupt message, truncating\n");
1271 		iova_space_size /= 2;
1272 	}
1273 
1274 	/*
1275 	** iov_order is always based on a 1GB IOVA space since we want to
1276 	** turn on the other half for AGP GART.
1277 	*/
1278 	iov_order = get_order(iova_space_size >> (IOVP_SHIFT - PAGE_SHIFT));
1279 	ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64);
1280 
1281 	DBG_INIT("%s() hpa 0x%p IOV %dMB (%d bits)\n",
1282 		__func__, ioc->ioc_hpa, iova_space_size >> 20,
1283 		iov_order + PAGE_SHIFT);
1284 
1285 	ioc->pdir_base = (void *) __get_free_pages(GFP_KERNEL,
1286 						   get_order(ioc->pdir_size));
1287 	if (!ioc->pdir_base)
1288 		panic("Couldn't allocate I/O Page Table\n");
1289 
1290 	memset(ioc->pdir_base, 0, ioc->pdir_size);
1291 
1292 	DBG_INIT("%s() pdir %p size %x\n",
1293 			__func__, ioc->pdir_base, ioc->pdir_size);
1294 
1295 #ifdef SBA_HINT_SUPPORT
1296 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1297 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1298 
1299 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1300 		ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1301 #endif
1302 
1303 	WARN_ON((((unsigned long) ioc->pdir_base) & PAGE_MASK) != (unsigned long) ioc->pdir_base);
1304 	WRITE_REG(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1305 
1306 	/* build IMASK for IOC and Elroy */
1307 	iova_space_mask =  0xffffffff;
1308 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1309 	ioc->imask = iova_space_mask;
1310 #ifdef ZX1_SUPPORT
1311 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1312 #endif
1313 	sba_dump_tlb(ioc->ioc_hpa);
1314 
1315 	setup_ibase_imask(sba, ioc, ioc_num);
1316 
1317 	WRITE_REG(ioc->imask, ioc->ioc_hpa + IOC_IMASK);
1318 
1319 #ifdef CONFIG_64BIT
1320 	/*
1321 	** Setting the upper bits makes checking for bypass addresses
1322 	** a little faster later on.
1323 	*/
1324 	ioc->imask |= 0xFFFFFFFF00000000UL;
1325 #endif
1326 
1327 	/* Set I/O PDIR Page size to system page size */
1328 	switch (PAGE_SHIFT) {
1329 		case 12: tcnfg = 0; break;	/*  4K */
1330 		case 13: tcnfg = 1; break;	/*  8K */
1331 		case 14: tcnfg = 2; break;	/* 16K */
1332 		case 16: tcnfg = 3; break;	/* 64K */
1333 		default:
1334 			panic(__FILE__ "Unsupported system page size %d",
1335 				1 << PAGE_SHIFT);
1336 			break;
1337 	}
1338 	WRITE_REG(tcnfg, ioc->ioc_hpa + IOC_TCNFG);
1339 
1340 	/*
1341 	** Program the IOC's ibase and enable IOVA translation
1342 	** Bit zero == enable bit.
1343 	*/
1344 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa + IOC_IBASE);
1345 
1346 	/*
1347 	** Clear I/O TLB of any possible entries.
1348 	** (Yes. This is a bit paranoid...but so what)
1349 	*/
1350 	WRITE_REG(ioc->ibase | 31, ioc->ioc_hpa + IOC_PCOM);
1351 
1352 #ifdef SBA_AGP_SUPPORT
1353 
1354 	/*
1355 	** If an AGP device is present, only use half of the IOV space
1356 	** for PCI DMA.  Unfortunately we can't know ahead of time
1357 	** whether GART support will actually be used, for now we
1358 	** can just key on any AGP device found in the system.
1359 	** We program the next pdir index after we stop w/ a key for
1360 	** the GART code to handshake on.
1361 	*/
1362 	device_for_each_child(&sba->dev, &agp_found, sba_ioc_find_quicksilver);
1363 
1364 	if (agp_found && sba_reserve_agpgart) {
1365 		printk(KERN_INFO "%s: reserving %dMb of IOVA space for agpgart\n",
1366 		       __func__, (iova_space_size/2) >> 20);
1367 		ioc->pdir_size /= 2;
1368 		ioc->pdir_base[PDIR_INDEX(iova_space_size/2)] = SBA_AGPGART_COOKIE;
1369 	}
1370 #endif /*SBA_AGP_SUPPORT*/
1371 }
1372 
1373 static void
1374 sba_ioc_init(struct parisc_device *sba, struct ioc *ioc, int ioc_num)
1375 {
1376 	u32 iova_space_size, iova_space_mask;
1377 	unsigned int pdir_size, iov_order;
1378 
1379 	/*
1380 	** Determine IOVA Space size from memory size.
1381 	**
1382 	** Ideally, PCI drivers would register the maximum number
1383 	** of DMA they can have outstanding for each device they
1384 	** own.  Next best thing would be to guess how much DMA
1385 	** can be outstanding based on PCI Class/sub-class. Both
1386 	** methods still require some "extra" to support PCI
1387 	** Hot-Plug/Removal of PCI cards. (aka PCI OLARD).
1388 	**
1389 	** While we have 32-bits "IOVA" space, top two 2 bits are used
1390 	** for DMA hints - ergo only 30 bits max.
1391 	*/
1392 
1393 	iova_space_size = (u32) (totalram_pages/global_ioc_cnt);
1394 
1395 	/* limit IOVA space size to 1MB-1GB */
1396 	if (iova_space_size < (1 << (20 - PAGE_SHIFT))) {
1397 		iova_space_size = 1 << (20 - PAGE_SHIFT);
1398 	}
1399 	else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) {
1400 		iova_space_size = 1 << (30 - PAGE_SHIFT);
1401 	}
1402 
1403 	/*
1404 	** iova space must be log2() in size.
1405 	** thus, pdir/res_map will also be log2().
1406 	** PIRANHA BUG: Exception is when IO Pdir is 2MB (gets reduced)
1407 	*/
1408 	iov_order = get_order(iova_space_size << PAGE_SHIFT);
1409 
1410 	/* iova_space_size is now bytes, not pages */
1411 	iova_space_size = 1 << (iov_order + PAGE_SHIFT);
1412 
1413 	ioc->pdir_size = pdir_size = (iova_space_size/IOVP_SIZE) * sizeof(u64);
1414 
1415 	DBG_INIT("%s() hpa 0x%lx mem %ldMB IOV %dMB (%d bits)\n",
1416 			__func__,
1417 			ioc->ioc_hpa,
1418 			(unsigned long) totalram_pages >> (20 - PAGE_SHIFT),
1419 			iova_space_size>>20,
1420 			iov_order + PAGE_SHIFT);
1421 
1422 	ioc->pdir_base = sba_alloc_pdir(pdir_size);
1423 
1424 	DBG_INIT("%s() pdir %p size %x\n",
1425 			__func__, ioc->pdir_base, pdir_size);
1426 
1427 #ifdef SBA_HINT_SUPPORT
1428 	/* FIXME : DMA HINTs not used */
1429 	ioc->hint_shift_pdir = iov_order + PAGE_SHIFT;
1430 	ioc->hint_mask_pdir = ~(0x3 << (iov_order + PAGE_SHIFT));
1431 
1432 	DBG_INIT("	hint_shift_pdir %x hint_mask_pdir %lx\n",
1433 			ioc->hint_shift_pdir, ioc->hint_mask_pdir);
1434 #endif
1435 
1436 	WRITE_REG64(virt_to_phys(ioc->pdir_base), ioc->ioc_hpa + IOC_PDIR_BASE);
1437 
1438 	/* build IMASK for IOC and Elroy */
1439 	iova_space_mask =  0xffffffff;
1440 	iova_space_mask <<= (iov_order + PAGE_SHIFT);
1441 
1442 	/*
1443 	** On C3000 w/512MB mem, HP-UX 10.20 reports:
1444 	**     ibase=0, imask=0xFE000000, size=0x2000000.
1445 	*/
1446 	ioc->ibase = 0;
1447 	ioc->imask = iova_space_mask;	/* save it */
1448 #ifdef ZX1_SUPPORT
1449 	ioc->iovp_mask = ~(iova_space_mask + PAGE_SIZE - 1);
1450 #endif
1451 
1452 	DBG_INIT("%s() IOV base 0x%lx mask 0x%0lx\n",
1453 		__func__, ioc->ibase, ioc->imask);
1454 
1455 	/*
1456 	** FIXME: Hint registers are programmed with default hint
1457 	** values during boot, so hints should be sane even if we
1458 	** can't reprogram them the way drivers want.
1459 	*/
1460 
1461 	setup_ibase_imask(sba, ioc, ioc_num);
1462 
1463 	/*
1464 	** Program the IOC's ibase and enable IOVA translation
1465 	*/
1466 	WRITE_REG(ioc->ibase | 1, ioc->ioc_hpa+IOC_IBASE);
1467 	WRITE_REG(ioc->imask, ioc->ioc_hpa+IOC_IMASK);
1468 
1469 	/* Set I/O PDIR Page size to 4K */
1470 	WRITE_REG(0, ioc->ioc_hpa+IOC_TCNFG);
1471 
1472 	/*
1473 	** Clear I/O TLB of any possible entries.
1474 	** (Yes. This is a bit paranoid...but so what)
1475 	*/
1476 	WRITE_REG(0 | 31, ioc->ioc_hpa+IOC_PCOM);
1477 
1478 	ioc->ibase = 0; /* used by SBA_IOVA and related macros */
1479 
1480 	DBG_INIT("%s() DONE\n", __func__);
1481 }
1482 
1483 
1484 
1485 /**************************************************************************
1486 **
1487 **   SBA initialization code (HW and SW)
1488 **
1489 **   o identify SBA chip itself
1490 **   o initialize SBA chip modes (HardFail)
1491 **   o initialize SBA chip modes (HardFail)
1492 **   o FIXME: initialize DMA hints for reasonable defaults
1493 **
1494 **************************************************************************/
1495 
1496 static void __iomem *ioc_remap(struct sba_device *sba_dev, unsigned int offset)
1497 {
1498 	return ioremap_nocache(sba_dev->dev->hpa.start + offset, SBA_FUNC_SIZE);
1499 }
1500 
1501 static void sba_hw_init(struct sba_device *sba_dev)
1502 {
1503 	int i;
1504 	int num_ioc;
1505 	u64 ioc_ctl;
1506 
1507 	if (!is_pdc_pat()) {
1508 		/* Shutdown the USB controller on Astro-based workstations.
1509 		** Once we reprogram the IOMMU, the next DMA performed by
1510 		** USB will HPMC the box. USB is only enabled if a
1511 		** keyboard is present and found.
1512 		**
1513 		** With serial console, j6k v5.0 firmware says:
1514 		**   mem_kbd hpa 0xfee003f8 sba 0x0 pad 0x0 cl_class 0x7
1515 		**
1516 		** FIXME: Using GFX+USB console at power up but direct
1517 		**	linux to serial console is still broken.
1518 		**	USB could generate DMA so we must reset USB.
1519 		**	The proper sequence would be:
1520 		**	o block console output
1521 		**	o reset USB device
1522 		**	o reprogram serial port
1523 		**	o unblock console output
1524 		*/
1525 		if (PAGE0->mem_kbd.cl_class == CL_KEYBD) {
1526 			pdc_io_reset_devices();
1527 		}
1528 
1529 	}
1530 
1531 
1532 #if 0
1533 printk("sba_hw_init(): mem_boot 0x%x 0x%x 0x%x 0x%x\n", PAGE0->mem_boot.hpa,
1534 	PAGE0->mem_boot.spa, PAGE0->mem_boot.pad, PAGE0->mem_boot.cl_class);
1535 
1536 	/*
1537 	** Need to deal with DMA from LAN.
1538 	**	Maybe use page zero boot device as a handle to talk
1539 	**	to PDC about which device to shutdown.
1540 	**
1541 	** Netbooting, j6k v5.0 firmware says:
1542 	** 	mem_boot hpa 0xf4008000 sba 0x0 pad 0x0 cl_class 0x1002
1543 	** ARGH! invalid class.
1544 	*/
1545 	if ((PAGE0->mem_boot.cl_class != CL_RANDOM)
1546 		&& (PAGE0->mem_boot.cl_class != CL_SEQU)) {
1547 			pdc_io_reset();
1548 	}
1549 #endif
1550 
1551 	if (!IS_PLUTO(sba_dev->dev)) {
1552 		ioc_ctl = READ_REG(sba_dev->sba_hpa+IOC_CTRL);
1553 		DBG_INIT("%s() hpa 0x%lx ioc_ctl 0x%Lx ->",
1554 			__func__, sba_dev->sba_hpa, ioc_ctl);
1555 		ioc_ctl &= ~(IOC_CTRL_RM | IOC_CTRL_NC | IOC_CTRL_CE);
1556 		ioc_ctl |= IOC_CTRL_DD | IOC_CTRL_D4 | IOC_CTRL_TC;
1557 			/* j6700 v1.6 firmware sets 0x294f */
1558 			/* A500 firmware sets 0x4d */
1559 
1560 		WRITE_REG(ioc_ctl, sba_dev->sba_hpa+IOC_CTRL);
1561 
1562 #ifdef DEBUG_SBA_INIT
1563 		ioc_ctl = READ_REG64(sba_dev->sba_hpa+IOC_CTRL);
1564 		DBG_INIT(" 0x%Lx\n", ioc_ctl);
1565 #endif
1566 	} /* if !PLUTO */
1567 
1568 	if (IS_ASTRO(sba_dev->dev)) {
1569 		int err;
1570 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, ASTRO_IOC_OFFSET);
1571 		num_ioc = 1;
1572 
1573 		sba_dev->chip_resv.name = "Astro Intr Ack";
1574 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfef00000UL;
1575 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff000000UL - 1) ;
1576 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1577 		BUG_ON(err < 0);
1578 
1579 	} else if (IS_PLUTO(sba_dev->dev)) {
1580 		int err;
1581 
1582 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, PLUTO_IOC_OFFSET);
1583 		num_ioc = 1;
1584 
1585 		sba_dev->chip_resv.name = "Pluto Intr/PIOP/VGA";
1586 		sba_dev->chip_resv.start = PCI_F_EXTEND | 0xfee00000UL;
1587 		sba_dev->chip_resv.end   = PCI_F_EXTEND | (0xff200000UL - 1);
1588 		err = request_resource(&iomem_resource, &(sba_dev->chip_resv));
1589 		WARN_ON(err < 0);
1590 
1591 		sba_dev->iommu_resv.name = "IOVA Space";
1592 		sba_dev->iommu_resv.start = 0x40000000UL;
1593 		sba_dev->iommu_resv.end   = 0x50000000UL - 1;
1594 		err = request_resource(&iomem_resource, &(sba_dev->iommu_resv));
1595 		WARN_ON(err < 0);
1596 	} else {
1597 		/* IKE, REO */
1598 		sba_dev->ioc[0].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(0));
1599 		sba_dev->ioc[1].ioc_hpa = ioc_remap(sba_dev, IKE_IOC_OFFSET(1));
1600 		num_ioc = 2;
1601 
1602 		/* TODO - LOOKUP Ike/Stretch chipset mem map */
1603 	}
1604 	/* XXX: What about Reo Grande? */
1605 
1606 	sba_dev->num_ioc = num_ioc;
1607 	for (i = 0; i < num_ioc; i++) {
1608 		void __iomem *ioc_hpa = sba_dev->ioc[i].ioc_hpa;
1609 		unsigned int j;
1610 
1611 		for (j=0; j < sizeof(u64) * ROPES_PER_IOC; j+=sizeof(u64)) {
1612 
1613 			/*
1614 			 * Clear ROPE(N)_CONFIG AO bit.
1615 			 * Disables "NT Ordering" (~= !"Relaxed Ordering")
1616 			 * Overrides bit 1 in DMA Hint Sets.
1617 			 * Improves netperf UDP_STREAM by ~10% for bcm5701.
1618 			 */
1619 			if (IS_PLUTO(sba_dev->dev)) {
1620 				void __iomem *rope_cfg;
1621 				unsigned long cfg_val;
1622 
1623 				rope_cfg = ioc_hpa + IOC_ROPE0_CFG + j;
1624 				cfg_val = READ_REG(rope_cfg);
1625 				cfg_val &= ~IOC_ROPE_AO;
1626 				WRITE_REG(cfg_val, rope_cfg);
1627 			}
1628 
1629 			/*
1630 			** Make sure the box crashes on rope errors.
1631 			*/
1632 			WRITE_REG(HF_ENABLE, ioc_hpa + ROPE0_CTL + j);
1633 		}
1634 
1635 		/* flush out the last writes */
1636 		READ_REG(sba_dev->ioc[i].ioc_hpa + ROPE7_CTL);
1637 
1638 		DBG_INIT("	ioc[%d] ROPE_CFG 0x%Lx  ROPE_DBG 0x%Lx\n",
1639 				i,
1640 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x40),
1641 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x50)
1642 			);
1643 		DBG_INIT("	STATUS_CONTROL 0x%Lx  FLUSH_CTRL 0x%Lx\n",
1644 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x108),
1645 				READ_REG(sba_dev->ioc[i].ioc_hpa + 0x400)
1646 			);
1647 
1648 		if (IS_PLUTO(sba_dev->dev)) {
1649 			sba_ioc_init_pluto(sba_dev->dev, &(sba_dev->ioc[i]), i);
1650 		} else {
1651 			sba_ioc_init(sba_dev->dev, &(sba_dev->ioc[i]), i);
1652 		}
1653 	}
1654 }
1655 
1656 static void
1657 sba_common_init(struct sba_device *sba_dev)
1658 {
1659 	int i;
1660 
1661 	/* add this one to the head of the list (order doesn't matter)
1662 	** This will be useful for debugging - especially if we get coredumps
1663 	*/
1664 	sba_dev->next = sba_list;
1665 	sba_list = sba_dev;
1666 
1667 	for(i=0; i< sba_dev->num_ioc; i++) {
1668 		int res_size;
1669 #ifdef DEBUG_DMB_TRAP
1670 		extern void iterate_pages(unsigned long , unsigned long ,
1671 					  void (*)(pte_t * , unsigned long),
1672 					  unsigned long );
1673 		void set_data_memory_break(pte_t * , unsigned long);
1674 #endif
1675 		/* resource map size dictated by pdir_size */
1676 		res_size = sba_dev->ioc[i].pdir_size/sizeof(u64); /* entries */
1677 
1678 		/* Second part of PIRANHA BUG */
1679 		if (piranha_bad_128k) {
1680 			res_size -= (128*1024)/sizeof(u64);
1681 		}
1682 
1683 		res_size >>= 3;  /* convert bit count to byte count */
1684 		DBG_INIT("%s() res_size 0x%x\n",
1685 			__func__, res_size);
1686 
1687 		sba_dev->ioc[i].res_size = res_size;
1688 		sba_dev->ioc[i].res_map = (char *) __get_free_pages(GFP_KERNEL, get_order(res_size));
1689 
1690 #ifdef DEBUG_DMB_TRAP
1691 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1692 				set_data_memory_break, 0);
1693 #endif
1694 
1695 		if (NULL == sba_dev->ioc[i].res_map)
1696 		{
1697 			panic("%s:%s() could not allocate resource map\n",
1698 			      __FILE__, __func__ );
1699 		}
1700 
1701 		memset(sba_dev->ioc[i].res_map, 0, res_size);
1702 		/* next available IOVP - circular search */
1703 		sba_dev->ioc[i].res_hint = (unsigned long *)
1704 				&(sba_dev->ioc[i].res_map[L1_CACHE_BYTES]);
1705 
1706 #ifdef ASSERT_PDIR_SANITY
1707 		/* Mark first bit busy - ie no IOVA 0 */
1708 		sba_dev->ioc[i].res_map[0] = 0x80;
1709 		sba_dev->ioc[i].pdir_base[0] = 0xeeffc0addbba0080ULL;
1710 #endif
1711 
1712 		/* Third (and last) part of PIRANHA BUG */
1713 		if (piranha_bad_128k) {
1714 			/* region from +1408K to +1536 is un-usable. */
1715 
1716 			int idx_start = (1408*1024/sizeof(u64)) >> 3;
1717 			int idx_end   = (1536*1024/sizeof(u64)) >> 3;
1718 			long *p_start = (long *) &(sba_dev->ioc[i].res_map[idx_start]);
1719 			long *p_end   = (long *) &(sba_dev->ioc[i].res_map[idx_end]);
1720 
1721 			/* mark that part of the io pdir busy */
1722 			while (p_start < p_end)
1723 				*p_start++ = -1;
1724 
1725 		}
1726 
1727 #ifdef DEBUG_DMB_TRAP
1728 		iterate_pages( sba_dev->ioc[i].res_map, res_size,
1729 				set_data_memory_break, 0);
1730 		iterate_pages( sba_dev->ioc[i].pdir_base, sba_dev->ioc[i].pdir_size,
1731 				set_data_memory_break, 0);
1732 #endif
1733 
1734 		DBG_INIT("%s() %d res_map %x %p\n",
1735 			__func__, i, res_size, sba_dev->ioc[i].res_map);
1736 	}
1737 
1738 	spin_lock_init(&sba_dev->sba_lock);
1739 	ioc_needs_fdc = boot_cpu_data.pdc.capabilities & PDC_MODEL_IOPDIR_FDC;
1740 
1741 #ifdef DEBUG_SBA_INIT
1742 	/*
1743 	 * If the PDC_MODEL capabilities has Non-coherent IO-PDIR bit set
1744 	 * (bit #61, big endian), we have to flush and sync every time
1745 	 * IO-PDIR is changed in Ike/Astro.
1746 	 */
1747 	if (ioc_needs_fdc) {
1748 		printk(KERN_INFO MODULE_NAME " FDC/SYNC required.\n");
1749 	} else {
1750 		printk(KERN_INFO MODULE_NAME " IOC has cache coherent PDIR.\n");
1751 	}
1752 #endif
1753 }
1754 
1755 #ifdef CONFIG_PROC_FS
1756 static int sba_proc_info(struct seq_file *m, void *p)
1757 {
1758 	struct sba_device *sba_dev = sba_list;
1759 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1760 	int total_pages = (int) (ioc->res_size << 3); /* 8 bits per byte */
1761 #ifdef SBA_COLLECT_STATS
1762 	unsigned long avg = 0, min, max;
1763 #endif
1764 	int i, len = 0;
1765 
1766 	len += seq_printf(m, "%s rev %d.%d\n",
1767 		sba_dev->name,
1768 		(sba_dev->hw_rev & 0x7) + 1,
1769 		(sba_dev->hw_rev & 0x18) >> 3
1770 		);
1771 	len += seq_printf(m, "IO PDIR size    : %d bytes (%d entries)\n",
1772 		(int) ((ioc->res_size << 3) * sizeof(u64)), /* 8 bits/byte */
1773 		total_pages);
1774 
1775 	len += seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n",
1776 		ioc->res_size, ioc->res_size << 3);   /* 8 bits per byte */
1777 
1778 	len += seq_printf(m, "LMMIO_BASE/MASK/ROUTE %08x %08x %08x\n",
1779 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_BASE),
1780 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_MASK),
1781 		READ_REG32(sba_dev->sba_hpa + LMMIO_DIST_ROUTE)
1782 		);
1783 
1784 	for (i=0; i<4; i++)
1785 		len += seq_printf(m, "DIR%d_BASE/MASK/ROUTE %08x %08x %08x\n", i,
1786 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_BASE  + i*0x18),
1787 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_MASK  + i*0x18),
1788 			READ_REG32(sba_dev->sba_hpa + LMMIO_DIRECT0_ROUTE + i*0x18)
1789 		);
1790 
1791 #ifdef SBA_COLLECT_STATS
1792 	len += seq_printf(m, "IO PDIR entries : %ld free  %ld used (%d%%)\n",
1793 		total_pages - ioc->used_pages, ioc->used_pages,
1794 		(int) (ioc->used_pages * 100 / total_pages));
1795 
1796 	min = max = ioc->avg_search[0];
1797 	for (i = 0; i < SBA_SEARCH_SAMPLE; i++) {
1798 		avg += ioc->avg_search[i];
1799 		if (ioc->avg_search[i] > max) max = ioc->avg_search[i];
1800 		if (ioc->avg_search[i] < min) min = ioc->avg_search[i];
1801 	}
1802 	avg /= SBA_SEARCH_SAMPLE;
1803 	len += seq_printf(m, "  Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n",
1804 		min, avg, max);
1805 
1806 	len += seq_printf(m, "pci_map_single(): %12ld calls  %12ld pages (avg %d/1000)\n",
1807 		ioc->msingle_calls, ioc->msingle_pages,
1808 		(int) ((ioc->msingle_pages * 1000)/ioc->msingle_calls));
1809 
1810 	/* KLUGE - unmap_sg calls unmap_single for each mapped page */
1811 	min = ioc->usingle_calls;
1812 	max = ioc->usingle_pages - ioc->usg_pages;
1813 	len += seq_printf(m, "pci_unmap_single: %12ld calls  %12ld pages (avg %d/1000)\n",
1814 		min, max, (int) ((max * 1000)/min));
1815 
1816 	len += seq_printf(m, "pci_map_sg()    : %12ld calls  %12ld pages (avg %d/1000)\n",
1817 		ioc->msg_calls, ioc->msg_pages,
1818 		(int) ((ioc->msg_pages * 1000)/ioc->msg_calls));
1819 
1820 	len += seq_printf(m, "pci_unmap_sg()  : %12ld calls  %12ld pages (avg %d/1000)\n",
1821 		ioc->usg_calls, ioc->usg_pages,
1822 		(int) ((ioc->usg_pages * 1000)/ioc->usg_calls));
1823 #endif
1824 
1825 	return 0;
1826 }
1827 
1828 static int
1829 sba_proc_open(struct inode *i, struct file *f)
1830 {
1831 	return single_open(f, &sba_proc_info, NULL);
1832 }
1833 
1834 static const struct file_operations sba_proc_fops = {
1835 	.owner = THIS_MODULE,
1836 	.open = sba_proc_open,
1837 	.read = seq_read,
1838 	.llseek = seq_lseek,
1839 	.release = single_release,
1840 };
1841 
1842 static int
1843 sba_proc_bitmap_info(struct seq_file *m, void *p)
1844 {
1845 	struct sba_device *sba_dev = sba_list;
1846 	struct ioc *ioc = &sba_dev->ioc[0];	/* FIXME: Multi-IOC support! */
1847 	unsigned int *res_ptr = (unsigned int *)ioc->res_map;
1848 	int i, len = 0;
1849 
1850 	for (i = 0; i < (ioc->res_size/sizeof(unsigned int)); ++i, ++res_ptr) {
1851 		if ((i & 7) == 0)
1852 			len += seq_printf(m, "\n   ");
1853 		len += seq_printf(m, " %08x", *res_ptr);
1854 	}
1855 	len += seq_printf(m, "\n");
1856 
1857 	return 0;
1858 }
1859 
1860 static int
1861 sba_proc_bitmap_open(struct inode *i, struct file *f)
1862 {
1863 	return single_open(f, &sba_proc_bitmap_info, NULL);
1864 }
1865 
1866 static const struct file_operations sba_proc_bitmap_fops = {
1867 	.owner = THIS_MODULE,
1868 	.open = sba_proc_bitmap_open,
1869 	.read = seq_read,
1870 	.llseek = seq_lseek,
1871 	.release = single_release,
1872 };
1873 #endif /* CONFIG_PROC_FS */
1874 
1875 static struct parisc_device_id sba_tbl[] = {
1876 	{ HPHW_IOA, HVERSION_REV_ANY_ID, ASTRO_RUNWAY_PORT, 0xb },
1877 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, IKE_MERCED_PORT, 0xc },
1878 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REO_MERCED_PORT, 0xc },
1879 	{ HPHW_BCPORT, HVERSION_REV_ANY_ID, REOG_MERCED_PORT, 0xc },
1880 	{ HPHW_IOA, HVERSION_REV_ANY_ID, PLUTO_MCKINLEY_PORT, 0xc },
1881 	{ 0, }
1882 };
1883 
1884 static int sba_driver_callback(struct parisc_device *);
1885 
1886 static struct parisc_driver sba_driver = {
1887 	.name =		MODULE_NAME,
1888 	.id_table =	sba_tbl,
1889 	.probe =	sba_driver_callback,
1890 };
1891 
1892 /*
1893 ** Determine if sba should claim this chip (return 0) or not (return 1).
1894 ** If so, initialize the chip and tell other partners in crime they
1895 ** have work to do.
1896 */
1897 static int sba_driver_callback(struct parisc_device *dev)
1898 {
1899 	struct sba_device *sba_dev;
1900 	u32 func_class;
1901 	int i;
1902 	char *version;
1903 	void __iomem *sba_addr = ioremap_nocache(dev->hpa.start, SBA_FUNC_SIZE);
1904 #ifdef CONFIG_PROC_FS
1905 	struct proc_dir_entry *root;
1906 #endif
1907 
1908 	sba_dump_ranges(sba_addr);
1909 
1910 	/* Read HW Rev First */
1911 	func_class = READ_REG(sba_addr + SBA_FCLASS);
1912 
1913 	if (IS_ASTRO(dev)) {
1914 		unsigned long fclass;
1915 		static char astro_rev[]="Astro ?.?";
1916 
1917 		/* Astro is broken...Read HW Rev First */
1918 		fclass = READ_REG(sba_addr);
1919 
1920 		astro_rev[6] = '1' + (char) (fclass & 0x7);
1921 		astro_rev[8] = '0' + (char) ((fclass & 0x18) >> 3);
1922 		version = astro_rev;
1923 
1924 	} else if (IS_IKE(dev)) {
1925 		static char ike_rev[] = "Ike rev ?";
1926 		ike_rev[8] = '0' + (char) (func_class & 0xff);
1927 		version = ike_rev;
1928 	} else if (IS_PLUTO(dev)) {
1929 		static char pluto_rev[]="Pluto ?.?";
1930 		pluto_rev[6] = '0' + (char) ((func_class & 0xf0) >> 4);
1931 		pluto_rev[8] = '0' + (char) (func_class & 0x0f);
1932 		version = pluto_rev;
1933 	} else {
1934 		static char reo_rev[] = "REO rev ?";
1935 		reo_rev[8] = '0' + (char) (func_class & 0xff);
1936 		version = reo_rev;
1937 	}
1938 
1939 	if (!global_ioc_cnt) {
1940 		global_ioc_cnt = count_parisc_driver(&sba_driver);
1941 
1942 		/* Astro and Pluto have one IOC per SBA */
1943 		if ((!IS_ASTRO(dev)) || (!IS_PLUTO(dev)))
1944 			global_ioc_cnt *= 2;
1945 	}
1946 
1947 	printk(KERN_INFO "%s found %s at 0x%llx\n",
1948 		MODULE_NAME, version, (unsigned long long)dev->hpa.start);
1949 
1950 	sba_dev = kzalloc(sizeof(struct sba_device), GFP_KERNEL);
1951 	if (!sba_dev) {
1952 		printk(KERN_ERR MODULE_NAME " - couldn't alloc sba_device\n");
1953 		return -ENOMEM;
1954 	}
1955 
1956 	parisc_set_drvdata(dev, sba_dev);
1957 
1958 	for(i=0; i<MAX_IOC; i++)
1959 		spin_lock_init(&(sba_dev->ioc[i].res_lock));
1960 
1961 	sba_dev->dev = dev;
1962 	sba_dev->hw_rev = func_class;
1963 	sba_dev->name = dev->name;
1964 	sba_dev->sba_hpa = sba_addr;
1965 
1966 	sba_get_pat_resources(sba_dev);
1967 	sba_hw_init(sba_dev);
1968 	sba_common_init(sba_dev);
1969 
1970 	hppa_dma_ops = &sba_ops;
1971 
1972 #ifdef CONFIG_PROC_FS
1973 	switch (dev->id.hversion) {
1974 	case PLUTO_MCKINLEY_PORT:
1975 		root = proc_mckinley_root;
1976 		break;
1977 	case ASTRO_RUNWAY_PORT:
1978 	case IKE_MERCED_PORT:
1979 	default:
1980 		root = proc_runway_root;
1981 		break;
1982 	}
1983 
1984 	proc_create("sba_iommu", 0, root, &sba_proc_fops);
1985 	proc_create("sba_iommu-bitmap", 0, root, &sba_proc_bitmap_fops);
1986 #endif
1987 
1988 	parisc_has_iommu();
1989 	return 0;
1990 }
1991 
1992 /*
1993 ** One time initialization to let the world know the SBA was found.
1994 ** This is the only routine which is NOT static.
1995 ** Must be called exactly once before pci_init().
1996 */
1997 void __init sba_init(void)
1998 {
1999 	register_parisc_driver(&sba_driver);
2000 }
2001 
2002 
2003 /**
2004  * sba_get_iommu - Assign the iommu pointer for the pci bus controller.
2005  * @dev: The parisc device.
2006  *
2007  * Returns the appropriate IOMMU data for the given parisc PCI controller.
2008  * This is cached and used later for PCI DMA Mapping.
2009  */
2010 void * sba_get_iommu(struct parisc_device *pci_hba)
2011 {
2012 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2013 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2014 	char t = sba_dev->id.hw_type;
2015 	int iocnum = (pci_hba->hw_path >> 3);	/* rope # */
2016 
2017 	WARN_ON((t != HPHW_IOA) && (t != HPHW_BCPORT));
2018 
2019 	return &(sba->ioc[iocnum]);
2020 }
2021 
2022 
2023 /**
2024  * sba_directed_lmmio - return first directed LMMIO range routed to rope
2025  * @pa_dev: The parisc device.
2026  * @r: resource PCI host controller wants start/end fields assigned.
2027  *
2028  * For the given parisc PCI controller, determine if any direct ranges
2029  * are routed down the corresponding rope.
2030  */
2031 void sba_directed_lmmio(struct parisc_device *pci_hba, struct resource *r)
2032 {
2033 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2034 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2035 	char t = sba_dev->id.hw_type;
2036 	int i;
2037 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2038 
2039 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2040 
2041 	r->start = r->end = 0;
2042 
2043 	/* Astro has 4 directed ranges. Not sure about Ike/Pluto/et al */
2044 	for (i=0; i<4; i++) {
2045 		int base, size;
2046 		void __iomem *reg = sba->sba_hpa + i*0x18;
2047 
2048 		base = READ_REG32(reg + LMMIO_DIRECT0_BASE);
2049 		if ((base & 1) == 0)
2050 			continue;	/* not enabled */
2051 
2052 		size = READ_REG32(reg + LMMIO_DIRECT0_ROUTE);
2053 
2054 		if ((size & (ROPES_PER_IOC-1)) != rope)
2055 			continue;	/* directed down different rope */
2056 
2057 		r->start = (base & ~1UL) | PCI_F_EXTEND;
2058 		size = ~ READ_REG32(reg + LMMIO_DIRECT0_MASK);
2059 		r->end = r->start + size;
2060 		r->flags = IORESOURCE_MEM;
2061 	}
2062 }
2063 
2064 
2065 /**
2066  * sba_distributed_lmmio - return portion of distributed LMMIO range
2067  * @pa_dev: The parisc device.
2068  * @r: resource PCI host controller wants start/end fields assigned.
2069  *
2070  * For the given parisc PCI controller, return portion of distributed LMMIO
2071  * range. The distributed LMMIO is always present and it's just a question
2072  * of the base address and size of the range.
2073  */
2074 void sba_distributed_lmmio(struct parisc_device *pci_hba, struct resource *r )
2075 {
2076 	struct parisc_device *sba_dev = parisc_parent(pci_hba);
2077 	struct sba_device *sba = dev_get_drvdata(&sba_dev->dev);
2078 	char t = sba_dev->id.hw_type;
2079 	int base, size;
2080 	int rope = (pci_hba->hw_path & (ROPES_PER_IOC-1));  /* rope # */
2081 
2082 	BUG_ON((t!=HPHW_IOA) && (t!=HPHW_BCPORT));
2083 
2084 	r->start = r->end = 0;
2085 
2086 	base = READ_REG32(sba->sba_hpa + LMMIO_DIST_BASE);
2087 	if ((base & 1) == 0) {
2088 		BUG();	/* Gah! Distr Range wasn't enabled! */
2089 		return;
2090 	}
2091 
2092 	r->start = (base & ~1UL) | PCI_F_EXTEND;
2093 
2094 	size = (~READ_REG32(sba->sba_hpa + LMMIO_DIST_MASK)) / ROPES_PER_IOC;
2095 	r->start += rope * (size + 1);	/* adjust base for this rope */
2096 	r->end = r->start + size;
2097 	r->flags = IORESOURCE_MEM;
2098 }
2099