xref: /linux/drivers/parisc/pdc_stable.c (revision 98366c20a275e957416e9516db5dcb7195b4e101)
1 /*
2  *    Interfaces to retrieve and set PDC Stable options (firmware)
3  *
4  *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License, version 2, as
8  *    published by the Free Software Foundation.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *    GNU General Public License for more details.
14  *
15  *    You should have received a copy of the GNU General Public License
16  *    along with this program; if not, write to the Free Software
17  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  *
20  *    DEV NOTE: the PDC Procedures reference states that:
21  *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
22  *    96 bytes of Stable Storage is optional [...]. Failure to provide the
23  *    optional locations from 96 to 192 results in the loss of certain
24  *    functionality during boot."
25  *
26  *    Since locations between 96 and 192 are the various paths, most (if not
27  *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
28  *    following code can deal with just 96 bytes of Stable Storage, and all
29  *    sizes between 96 and 192 bytes (provided they are multiple of struct
30  *    device_path size, eg: 128, 160 and 192) to provide full information.
31  *    One last word: there's one path we can always count on: the primary path.
32  *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
33  *
34  *    The first OS-dependent area should always be available. Obviously, this is
35  *    not true for the other one. Also bear in mind that reading/writing from/to
36  *    osdep2 is much more expensive than from/to osdep1.
37  *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
38  *    2 bytes of storage available right after OSID. That's a total of 4 bytes
39  *    sacrificed: -ETOOLAZY :P
40  *
41  *    The current policy wrt file permissions is:
42  *	- write: root only
43  *	- read: (reading triggers PDC calls) ? root only : everyone
44  *    The rationale is that PDC calls could hog (DoS) the machine.
45  *
46  *	TODO:
47  *	- timer/fastsize write calls
48  */
49 
50 #undef PDCS_DEBUG
51 #ifdef PDCS_DEBUG
52 #define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
53 #else
54 #define DPRINTK(fmt, args...)
55 #endif
56 
57 #include <linux/module.h>
58 #include <linux/init.h>
59 #include <linux/kernel.h>
60 #include <linux/string.h>
61 #include <linux/capability.h>
62 #include <linux/ctype.h>
63 #include <linux/sysfs.h>
64 #include <linux/kobject.h>
65 #include <linux/device.h>
66 #include <linux/errno.h>
67 #include <linux/spinlock.h>
68 
69 #include <asm/pdc.h>
70 #include <asm/page.h>
71 #include <asm/uaccess.h>
72 #include <asm/hardware.h>
73 
74 #define PDCS_VERSION	"0.30"
75 #define PDCS_PREFIX	"PDC Stable Storage"
76 
77 #define PDCS_ADDR_PPRI	0x00
78 #define PDCS_ADDR_OSID	0x40
79 #define PDCS_ADDR_OSD1	0x48
80 #define PDCS_ADDR_DIAG	0x58
81 #define PDCS_ADDR_FSIZ	0x5C
82 #define PDCS_ADDR_PCON	0x60
83 #define PDCS_ADDR_PALT	0x80
84 #define PDCS_ADDR_PKBD	0xA0
85 #define PDCS_ADDR_OSD2	0xE0
86 
87 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
88 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(PDCS_VERSION);
91 
92 /* holds Stable Storage size. Initialized once and for all, no lock needed */
93 static unsigned long pdcs_size __read_mostly;
94 
95 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
96 static u16 pdcs_osid __read_mostly;
97 
98 /* This struct defines what we need to deal with a parisc pdc path entry */
99 struct pdcspath_entry {
100 	rwlock_t rw_lock;		/* to protect path entry access */
101 	short ready;			/* entry record is valid if != 0 */
102 	unsigned long addr;		/* entry address in stable storage */
103 	char *name;			/* entry name */
104 	struct device_path devpath;	/* device path in parisc representation */
105 	struct device *dev;		/* corresponding device */
106 	struct kobject kobj;
107 };
108 
109 struct pdcspath_attribute {
110 	struct attribute attr;
111 	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
112 	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
113 };
114 
115 #define PDCSPATH_ENTRY(_addr, _name) \
116 struct pdcspath_entry pdcspath_entry_##_name = { \
117 	.ready = 0, \
118 	.addr = _addr, \
119 	.name = __stringify(_name), \
120 };
121 
122 #define PDCS_ATTR(_name, _mode, _show, _store) \
123 struct subsys_attribute pdcs_attr_##_name = { \
124 	.attr = {.name = __stringify(_name), .mode = _mode}, \
125 	.show = _show, \
126 	.store = _store, \
127 };
128 
129 #define PATHS_ATTR(_name, _mode, _show, _store) \
130 struct pdcspath_attribute paths_attr_##_name = { \
131 	.attr = {.name = __stringify(_name), .mode = _mode}, \
132 	.show = _show, \
133 	.store = _store, \
134 };
135 
136 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
137 #define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
138 
139 /**
140  * pdcspath_fetch - This function populates the path entry structs.
141  * @entry: A pointer to an allocated pdcspath_entry.
142  *
143  * The general idea is that you don't read from the Stable Storage every time
144  * you access the files provided by the facilites. We store a copy of the
145  * content of the stable storage WRT various paths in these structs. We read
146  * these structs when reading the files, and we will write to these structs when
147  * writing to the files, and only then write them back to the Stable Storage.
148  *
149  * This function expects to be called with @entry->rw_lock write-hold.
150  */
151 static int
152 pdcspath_fetch(struct pdcspath_entry *entry)
153 {
154 	struct device_path *devpath;
155 
156 	if (!entry)
157 		return -EINVAL;
158 
159 	devpath = &entry->devpath;
160 
161 	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
162 			entry, devpath, entry->addr);
163 
164 	/* addr, devpath and count must be word aligned */
165 	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
166 		return -EIO;
167 
168 	/* Find the matching device.
169 	   NOTE: hardware_path overlays with device_path, so the nice cast can
170 	   be used */
171 	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
172 
173 	entry->ready = 1;
174 
175 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
176 
177 	return 0;
178 }
179 
180 /**
181  * pdcspath_store - This function writes a path to stable storage.
182  * @entry: A pointer to an allocated pdcspath_entry.
183  *
184  * It can be used in two ways: either by passing it a preset devpath struct
185  * containing an already computed hardware path, or by passing it a device
186  * pointer, from which it'll find out the corresponding hardware path.
187  * For now we do not handle the case where there's an error in writing to the
188  * Stable Storage area, so you'd better not mess up the data :P
189  *
190  * This function expects to be called with @entry->rw_lock write-hold.
191  */
192 static void
193 pdcspath_store(struct pdcspath_entry *entry)
194 {
195 	struct device_path *devpath;
196 
197 	BUG_ON(!entry);
198 
199 	devpath = &entry->devpath;
200 
201 	/* We expect the caller to set the ready flag to 0 if the hardware
202 	   path struct provided is invalid, so that we know we have to fill it.
203 	   First case, we don't have a preset hwpath... */
204 	if (!entry->ready) {
205 		/* ...but we have a device, map it */
206 		BUG_ON(!entry->dev);
207 		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
208 	}
209 	/* else, we expect the provided hwpath to be valid. */
210 
211 	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
212 			entry, devpath, entry->addr);
213 
214 	/* addr, devpath and count must be word aligned */
215 	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) {
216 		printk(KERN_ERR "%s: an error occured when writing to PDC.\n"
217 				"It is likely that the Stable Storage data has been corrupted.\n"
218 				"Please check it carefully upon next reboot.\n", __func__);
219 		WARN_ON(1);
220 	}
221 
222 	/* kobject is already registered */
223 	entry->ready = 2;
224 
225 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
226 }
227 
228 /**
229  * pdcspath_hwpath_read - This function handles hardware path pretty printing.
230  * @entry: An allocated and populated pdscpath_entry struct.
231  * @buf: The output buffer to write to.
232  *
233  * We will call this function to format the output of the hwpath attribute file.
234  */
235 static ssize_t
236 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
237 {
238 	char *out = buf;
239 	struct device_path *devpath;
240 	short i;
241 
242 	if (!entry || !buf)
243 		return -EINVAL;
244 
245 	read_lock(&entry->rw_lock);
246 	devpath = &entry->devpath;
247 	i = entry->ready;
248 	read_unlock(&entry->rw_lock);
249 
250 	if (!i)	/* entry is not ready */
251 		return -ENODATA;
252 
253 	for (i = 0; i < 6; i++) {
254 		if (devpath->bc[i] >= 128)
255 			continue;
256 		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
257 	}
258 	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
259 
260 	return out - buf;
261 }
262 
263 /**
264  * pdcspath_hwpath_write - This function handles hardware path modifying.
265  * @entry: An allocated and populated pdscpath_entry struct.
266  * @buf: The input buffer to read from.
267  * @count: The number of bytes to be read.
268  *
269  * We will call this function to change the current hardware path.
270  * Hardware paths are to be given '/'-delimited, without brackets.
271  * We make sure that the provided path actually maps to an existing
272  * device, BUT nothing would prevent some foolish user to set the path to some
273  * PCI bridge or even a CPU...
274  * A better work around would be to make sure we are at the end of a device tree
275  * for instance, but it would be IMHO beyond the simple scope of that driver.
276  * The aim is to provide a facility. Data correctness is left to userland.
277  */
278 static ssize_t
279 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
280 {
281 	struct hardware_path hwpath;
282 	unsigned short i;
283 	char in[count+1], *temp;
284 	struct device *dev;
285 	int ret;
286 
287 	if (!entry || !buf || !count)
288 		return -EINVAL;
289 
290 	/* We'll use a local copy of buf */
291 	memset(in, 0, count+1);
292 	strncpy(in, buf, count);
293 
294 	/* Let's clean up the target. 0xff is a blank pattern */
295 	memset(&hwpath, 0xff, sizeof(hwpath));
296 
297 	/* First, pick the mod field (the last one of the input string) */
298 	if (!(temp = strrchr(in, '/')))
299 		return -EINVAL;
300 
301 	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
302 	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
303 	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
304 
305 	/* Then, loop for each delimiter, making sure we don't have too many.
306 	   we write the bc fields in a down-top way. No matter what, we stop
307 	   before writing the last field. If there are too many fields anyway,
308 	   then the user is a moron and it'll be caught up later when we'll
309 	   check the consistency of the given hwpath. */
310 	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
311 		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
312 		in[temp-in] = '\0';
313 		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
314 	}
315 
316 	/* Store the final field */
317 	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
318 	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
319 
320 	/* Now we check that the user isn't trying to lure us */
321 	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
322 		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
323 			"hardware path: %s\n", __func__, entry->name, buf);
324 		return -EINVAL;
325 	}
326 
327 	/* So far so good, let's get in deep */
328 	write_lock(&entry->rw_lock);
329 	entry->ready = 0;
330 	entry->dev = dev;
331 
332 	/* Now, dive in. Write back to the hardware */
333 	pdcspath_store(entry);
334 
335 	/* Update the symlink to the real device */
336 	sysfs_remove_link(&entry->kobj, "device");
337 	ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
338 	WARN_ON(ret);
339 
340 	write_unlock(&entry->rw_lock);
341 
342 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
343 		entry->name, buf);
344 
345 	return count;
346 }
347 
348 /**
349  * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
350  * @entry: An allocated and populated pdscpath_entry struct.
351  * @buf: The output buffer to write to.
352  *
353  * We will call this function to format the output of the layer attribute file.
354  */
355 static ssize_t
356 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
357 {
358 	char *out = buf;
359 	struct device_path *devpath;
360 	short i;
361 
362 	if (!entry || !buf)
363 		return -EINVAL;
364 
365 	read_lock(&entry->rw_lock);
366 	devpath = &entry->devpath;
367 	i = entry->ready;
368 	read_unlock(&entry->rw_lock);
369 
370 	if (!i)	/* entry is not ready */
371 		return -ENODATA;
372 
373 	for (i = 0; devpath->layers[i] && (likely(i < 6)); i++)
374 		out += sprintf(out, "%u ", devpath->layers[i]);
375 
376 	out += sprintf(out, "\n");
377 
378 	return out - buf;
379 }
380 
381 /**
382  * pdcspath_layer_write - This function handles extended layer modifying.
383  * @entry: An allocated and populated pdscpath_entry struct.
384  * @buf: The input buffer to read from.
385  * @count: The number of bytes to be read.
386  *
387  * We will call this function to change the current layer value.
388  * Layers are to be given '.'-delimited, without brackets.
389  * XXX beware we are far less checky WRT input data provided than for hwpath.
390  * Potential harm can be done, since there's no way to check the validity of
391  * the layer fields.
392  */
393 static ssize_t
394 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
395 {
396 	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
397 	unsigned short i;
398 	char in[count+1], *temp;
399 
400 	if (!entry || !buf || !count)
401 		return -EINVAL;
402 
403 	/* We'll use a local copy of buf */
404 	memset(in, 0, count+1);
405 	strncpy(in, buf, count);
406 
407 	/* Let's clean up the target. 0 is a blank pattern */
408 	memset(&layers, 0, sizeof(layers));
409 
410 	/* First, pick the first layer */
411 	if (unlikely(!isdigit(*in)))
412 		return -EINVAL;
413 	layers[0] = simple_strtoul(in, NULL, 10);
414 	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
415 
416 	temp = in;
417 	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
418 		if (unlikely(!isdigit(*(++temp))))
419 			return -EINVAL;
420 		layers[i] = simple_strtoul(temp, NULL, 10);
421 		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
422 	}
423 
424 	/* So far so good, let's get in deep */
425 	write_lock(&entry->rw_lock);
426 
427 	/* First, overwrite the current layers with the new ones, not touching
428 	   the hardware path. */
429 	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
430 
431 	/* Now, dive in. Write back to the hardware */
432 	pdcspath_store(entry);
433 	write_unlock(&entry->rw_lock);
434 
435 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
436 		entry->name, buf);
437 
438 	return count;
439 }
440 
441 /**
442  * pdcspath_attr_show - Generic read function call wrapper.
443  * @kobj: The kobject to get info from.
444  * @attr: The attribute looked upon.
445  * @buf: The output buffer.
446  */
447 static ssize_t
448 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
449 {
450 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
451 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
452 	ssize_t ret = 0;
453 
454 	if (pdcs_attr->show)
455 		ret = pdcs_attr->show(entry, buf);
456 
457 	return ret;
458 }
459 
460 /**
461  * pdcspath_attr_store - Generic write function call wrapper.
462  * @kobj: The kobject to write info to.
463  * @attr: The attribute to be modified.
464  * @buf: The input buffer.
465  * @count: The size of the buffer.
466  */
467 static ssize_t
468 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
469 			const char *buf, size_t count)
470 {
471 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
472 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
473 	ssize_t ret = 0;
474 
475 	if (!capable(CAP_SYS_ADMIN))
476 		return -EACCES;
477 
478 	if (pdcs_attr->store)
479 		ret = pdcs_attr->store(entry, buf, count);
480 
481 	return ret;
482 }
483 
484 static struct sysfs_ops pdcspath_attr_ops = {
485 	.show = pdcspath_attr_show,
486 	.store = pdcspath_attr_store,
487 };
488 
489 /* These are the two attributes of any PDC path. */
490 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
491 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
492 
493 static struct attribute *paths_subsys_attrs[] = {
494 	&paths_attr_hwpath.attr,
495 	&paths_attr_layer.attr,
496 	NULL,
497 };
498 
499 /* Specific kobject type for our PDC paths */
500 static struct kobj_type ktype_pdcspath = {
501 	.sysfs_ops = &pdcspath_attr_ops,
502 	.default_attrs = paths_subsys_attrs,
503 };
504 
505 /* We hard define the 4 types of path we expect to find */
506 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
507 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
508 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
509 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
510 
511 /* An array containing all PDC paths we will deal with */
512 static struct pdcspath_entry *pdcspath_entries[] = {
513 	&pdcspath_entry_primary,
514 	&pdcspath_entry_alternative,
515 	&pdcspath_entry_console,
516 	&pdcspath_entry_keyboard,
517 	NULL,
518 };
519 
520 
521 /* For more insight of what's going on here, refer to PDC Procedures doc,
522  * Section PDC_STABLE */
523 
524 /**
525  * pdcs_size_read - Stable Storage size output.
526  * @kset: An allocated and populated struct kset. We don't use it tho.
527  * @buf: The output buffer to write to.
528  */
529 static ssize_t
530 pdcs_size_read(struct kset *kset, char *buf)
531 {
532 	char *out = buf;
533 
534 	if (!kset || !buf)
535 		return -EINVAL;
536 
537 	/* show the size of the stable storage */
538 	out += sprintf(out, "%ld\n", pdcs_size);
539 
540 	return out - buf;
541 }
542 
543 /**
544  * pdcs_auto_read - Stable Storage autoboot/search flag output.
545  * @kset: An allocated and populated struct kset. We don't use it tho.
546  * @buf: The output buffer to write to.
547  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
548  */
549 static ssize_t
550 pdcs_auto_read(struct kset *kset, char *buf, int knob)
551 {
552 	char *out = buf;
553 	struct pdcspath_entry *pathentry;
554 
555 	if (!kset || !buf)
556 		return -EINVAL;
557 
558 	/* Current flags are stored in primary boot path entry */
559 	pathentry = &pdcspath_entry_primary;
560 
561 	read_lock(&pathentry->rw_lock);
562 	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
563 					"On" : "Off");
564 	read_unlock(&pathentry->rw_lock);
565 
566 	return out - buf;
567 }
568 
569 /**
570  * pdcs_autoboot_read - Stable Storage autoboot flag output.
571  * @kset: An allocated and populated struct kset. We don't use it tho.
572  * @buf: The output buffer to write to.
573  */
574 static inline ssize_t
575 pdcs_autoboot_read(struct kset *kset, char *buf)
576 {
577 	return pdcs_auto_read(kset, buf, PF_AUTOBOOT);
578 }
579 
580 /**
581  * pdcs_autosearch_read - Stable Storage autoboot flag output.
582  * @kset: An allocated and populated struct kset. We don't use it tho.
583  * @buf: The output buffer to write to.
584  */
585 static inline ssize_t
586 pdcs_autosearch_read(struct kset *kset, char *buf)
587 {
588 	return pdcs_auto_read(kset, buf, PF_AUTOSEARCH);
589 }
590 
591 /**
592  * pdcs_timer_read - Stable Storage timer count output (in seconds).
593  * @kset: An allocated and populated struct kset. We don't use it tho.
594  * @buf: The output buffer to write to.
595  *
596  * The value of the timer field correponds to a number of seconds in powers of 2.
597  */
598 static ssize_t
599 pdcs_timer_read(struct kset *kset, char *buf)
600 {
601 	char *out = buf;
602 	struct pdcspath_entry *pathentry;
603 
604 	if (!kset || !buf)
605 		return -EINVAL;
606 
607 	/* Current flags are stored in primary boot path entry */
608 	pathentry = &pdcspath_entry_primary;
609 
610 	/* print the timer value in seconds */
611 	read_lock(&pathentry->rw_lock);
612 	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
613 				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
614 	read_unlock(&pathentry->rw_lock);
615 
616 	return out - buf;
617 }
618 
619 /**
620  * pdcs_osid_read - Stable Storage OS ID register output.
621  * @kset: An allocated and populated struct kset. We don't use it tho.
622  * @buf: The output buffer to write to.
623  */
624 static ssize_t
625 pdcs_osid_read(struct kset *kset, char *buf)
626 {
627 	char *out = buf;
628 
629 	if (!kset || !buf)
630 		return -EINVAL;
631 
632 	out += sprintf(out, "%s dependent data (0x%.4x)\n",
633 		os_id_to_string(pdcs_osid), pdcs_osid);
634 
635 	return out - buf;
636 }
637 
638 /**
639  * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
640  * @kset: An allocated and populated struct kset. We don't use it tho.
641  * @buf: The output buffer to write to.
642  *
643  * This can hold 16 bytes of OS-Dependent data.
644  */
645 static ssize_t
646 pdcs_osdep1_read(struct kset *kset, char *buf)
647 {
648 	char *out = buf;
649 	u32 result[4];
650 
651 	if (!kset || !buf)
652 		return -EINVAL;
653 
654 	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
655 		return -EIO;
656 
657 	out += sprintf(out, "0x%.8x\n", result[0]);
658 	out += sprintf(out, "0x%.8x\n", result[1]);
659 	out += sprintf(out, "0x%.8x\n", result[2]);
660 	out += sprintf(out, "0x%.8x\n", result[3]);
661 
662 	return out - buf;
663 }
664 
665 /**
666  * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
667  * @kset: An allocated and populated struct kset. We don't use it tho.
668  * @buf: The output buffer to write to.
669  *
670  * I have NFC how to interpret the content of that register ;-).
671  */
672 static ssize_t
673 pdcs_diagnostic_read(struct kset *kset, char *buf)
674 {
675 	char *out = buf;
676 	u32 result;
677 
678 	if (!kset || !buf)
679 		return -EINVAL;
680 
681 	/* get diagnostic */
682 	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
683 		return -EIO;
684 
685 	out += sprintf(out, "0x%.4x\n", (result >> 16));
686 
687 	return out - buf;
688 }
689 
690 /**
691  * pdcs_fastsize_read - Stable Storage FastSize register output.
692  * @kset: An allocated and populated struct kset. We don't use it tho.
693  * @buf: The output buffer to write to.
694  *
695  * This register holds the amount of system RAM to be tested during boot sequence.
696  */
697 static ssize_t
698 pdcs_fastsize_read(struct kset *kset, char *buf)
699 {
700 	char *out = buf;
701 	u32 result;
702 
703 	if (!kset || !buf)
704 		return -EINVAL;
705 
706 	/* get fast-size */
707 	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
708 		return -EIO;
709 
710 	if ((result & 0x0F) < 0x0E)
711 		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
712 	else
713 		out += sprintf(out, "All");
714 	out += sprintf(out, "\n");
715 
716 	return out - buf;
717 }
718 
719 /**
720  * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
721  * @kset: An allocated and populated struct kset. We don't use it tho.
722  * @buf: The output buffer to write to.
723  *
724  * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
725  */
726 static ssize_t
727 pdcs_osdep2_read(struct kset *kset, char *buf)
728 {
729 	char *out = buf;
730 	unsigned long size;
731 	unsigned short i;
732 	u32 result;
733 
734 	if (unlikely(pdcs_size <= 224))
735 		return -ENODATA;
736 
737 	size = pdcs_size - 224;
738 
739 	if (!kset || !buf)
740 		return -EINVAL;
741 
742 	for (i=0; i<size; i+=4) {
743 		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
744 					sizeof(result)) != PDC_OK))
745 			return -EIO;
746 		out += sprintf(out, "0x%.8x\n", result);
747 	}
748 
749 	return out - buf;
750 }
751 
752 /**
753  * pdcs_auto_write - This function handles autoboot/search flag modifying.
754  * @kset: An allocated and populated struct kset. We don't use it tho.
755  * @buf: The input buffer to read from.
756  * @count: The number of bytes to be read.
757  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
758  *
759  * We will call this function to change the current autoboot flag.
760  * We expect a precise syntax:
761  *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
762  */
763 static ssize_t
764 pdcs_auto_write(struct kset *kset, const char *buf, size_t count, int knob)
765 {
766 	struct pdcspath_entry *pathentry;
767 	unsigned char flags;
768 	char in[count+1], *temp;
769 	char c;
770 
771 	if (!capable(CAP_SYS_ADMIN))
772 		return -EACCES;
773 
774 	if (!kset || !buf || !count)
775 		return -EINVAL;
776 
777 	/* We'll use a local copy of buf */
778 	memset(in, 0, count+1);
779 	strncpy(in, buf, count);
780 
781 	/* Current flags are stored in primary boot path entry */
782 	pathentry = &pdcspath_entry_primary;
783 
784 	/* Be nice to the existing flag record */
785 	read_lock(&pathentry->rw_lock);
786 	flags = pathentry->devpath.flags;
787 	read_unlock(&pathentry->rw_lock);
788 
789 	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
790 
791 	temp = in;
792 
793 	while (*temp && isspace(*temp))
794 		temp++;
795 
796 	c = *temp++ - '0';
797 	if ((c != 0) && (c != 1))
798 		goto parse_error;
799 	if (c == 0)
800 		flags &= ~knob;
801 	else
802 		flags |= knob;
803 
804 	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
805 
806 	/* So far so good, let's get in deep */
807 	write_lock(&pathentry->rw_lock);
808 
809 	/* Change the path entry flags first */
810 	pathentry->devpath.flags = flags;
811 
812 	/* Now, dive in. Write back to the hardware */
813 	pdcspath_store(pathentry);
814 	write_unlock(&pathentry->rw_lock);
815 
816 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
817 		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
818 		(flags & knob) ? "On" : "Off");
819 
820 	return count;
821 
822 parse_error:
823 	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
824 	return -EINVAL;
825 }
826 
827 /**
828  * pdcs_autoboot_write - This function handles autoboot flag modifying.
829  * @kset: An allocated and populated struct kset. We don't use it tho.
830  * @buf: The input buffer to read from.
831  * @count: The number of bytes to be read.
832  *
833  * We will call this function to change the current boot flags.
834  * We expect a precise syntax:
835  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
836  */
837 static inline ssize_t
838 pdcs_autoboot_write(struct kset *kset, const char *buf, size_t count)
839 {
840 	return pdcs_auto_write(kset, buf, count, PF_AUTOBOOT);
841 }
842 
843 /**
844  * pdcs_autosearch_write - This function handles autosearch flag modifying.
845  * @kset: An allocated and populated struct kset. We don't use it tho.
846  * @buf: The input buffer to read from.
847  * @count: The number of bytes to be read.
848  *
849  * We will call this function to change the current boot flags.
850  * We expect a precise syntax:
851  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
852  */
853 static inline ssize_t
854 pdcs_autosearch_write(struct kset *kset, const char *buf, size_t count)
855 {
856 	return pdcs_auto_write(kset, buf, count, PF_AUTOSEARCH);
857 }
858 
859 /**
860  * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
861  * @kset: An allocated and populated struct kset. We don't use it tho.
862  * @buf: The input buffer to read from.
863  * @count: The number of bytes to be read.
864  *
865  * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
866  * write approach. It's up to userspace to deal with it when constructing
867  * its input buffer.
868  */
869 static ssize_t
870 pdcs_osdep1_write(struct kset *kset, const char *buf, size_t count)
871 {
872 	u8 in[16];
873 
874 	if (!capable(CAP_SYS_ADMIN))
875 		return -EACCES;
876 
877 	if (!kset || !buf || !count)
878 		return -EINVAL;
879 
880 	if (unlikely(pdcs_osid != OS_ID_LINUX))
881 		return -EPERM;
882 
883 	if (count > 16)
884 		return -EMSGSIZE;
885 
886 	/* We'll use a local copy of buf */
887 	memset(in, 0, 16);
888 	memcpy(in, buf, count);
889 
890 	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
891 		return -EIO;
892 
893 	return count;
894 }
895 
896 /**
897  * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
898  * @kset: An allocated and populated struct kset. We don't use it tho.
899  * @buf: The input buffer to read from.
900  * @count: The number of bytes to be read.
901  *
902  * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
903  * byte-by-byte write approach. It's up to userspace to deal with it when
904  * constructing its input buffer.
905  */
906 static ssize_t
907 pdcs_osdep2_write(struct kset *kset, const char *buf, size_t count)
908 {
909 	unsigned long size;
910 	unsigned short i;
911 	u8 in[4];
912 
913 	if (!capable(CAP_SYS_ADMIN))
914 		return -EACCES;
915 
916 	if (!kset || !buf || !count)
917 		return -EINVAL;
918 
919 	if (unlikely(pdcs_size <= 224))
920 		return -ENOSYS;
921 
922 	if (unlikely(pdcs_osid != OS_ID_LINUX))
923 		return -EPERM;
924 
925 	size = pdcs_size - 224;
926 
927 	if (count > size)
928 		return -EMSGSIZE;
929 
930 	/* We'll use a local copy of buf */
931 
932 	for (i=0; i<count; i+=4) {
933 		memset(in, 0, 4);
934 		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
935 		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
936 					sizeof(in)) != PDC_OK))
937 			return -EIO;
938 	}
939 
940 	return count;
941 }
942 
943 /* The remaining attributes. */
944 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
945 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
946 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
947 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
948 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
949 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
950 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
951 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
952 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
953 
954 static struct subsys_attribute *pdcs_subsys_attrs[] = {
955 	&pdcs_attr_size,
956 	&pdcs_attr_autoboot,
957 	&pdcs_attr_autosearch,
958 	&pdcs_attr_timer,
959 	&pdcs_attr_osid,
960 	&pdcs_attr_osdep1,
961 	&pdcs_attr_diagnostic,
962 	&pdcs_attr_fastsize,
963 	&pdcs_attr_osdep2,
964 	NULL,
965 };
966 
967 static decl_subsys(paths, &ktype_pdcspath, NULL);
968 static decl_subsys(stable, NULL, NULL);
969 
970 /**
971  * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
972  *
973  * It creates kobjects corresponding to each path entry with nice sysfs
974  * links to the real device. This is where the magic takes place: when
975  * registering the subsystem attributes during module init, each kobject hereby
976  * created will show in the sysfs tree as a folder containing files as defined
977  * by path_subsys_attr[].
978  */
979 static inline int __init
980 pdcs_register_pathentries(void)
981 {
982 	unsigned short i;
983 	struct pdcspath_entry *entry;
984 	int err;
985 
986 	/* Initialize the entries rw_lock before anything else */
987 	for (i = 0; (entry = pdcspath_entries[i]); i++)
988 		rwlock_init(&entry->rw_lock);
989 
990 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
991 		write_lock(&entry->rw_lock);
992 		err = pdcspath_fetch(entry);
993 		write_unlock(&entry->rw_lock);
994 
995 		if (err < 0)
996 			continue;
997 
998 		if ((err = kobject_set_name(&entry->kobj, "%s", entry->name)))
999 			return err;
1000 		kobj_set_kset_s(entry, paths_subsys);
1001 		if ((err = kobject_register(&entry->kobj)))
1002 			return err;
1003 
1004 		/* kobject is now registered */
1005 		write_lock(&entry->rw_lock);
1006 		entry->ready = 2;
1007 
1008 		/* Add a nice symlink to the real device */
1009 		if (entry->dev) {
1010 			err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1011 			WARN_ON(err);
1012 		}
1013 
1014 		write_unlock(&entry->rw_lock);
1015 	}
1016 
1017 	return 0;
1018 }
1019 
1020 /**
1021  * pdcs_unregister_pathentries - Routine called when unregistering the module.
1022  */
1023 static inline void
1024 pdcs_unregister_pathentries(void)
1025 {
1026 	unsigned short i;
1027 	struct pdcspath_entry *entry;
1028 
1029 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1030 		read_lock(&entry->rw_lock);
1031 		if (entry->ready >= 2)
1032 			kobject_unregister(&entry->kobj);
1033 		read_unlock(&entry->rw_lock);
1034 	}
1035 }
1036 
1037 /*
1038  * For now we register the stable subsystem with the firmware subsystem
1039  * and the paths subsystem with the stable subsystem
1040  */
1041 static int __init
1042 pdc_stable_init(void)
1043 {
1044 	struct subsys_attribute *attr;
1045 	int i, rc = 0, error = 0;
1046 	u32 result;
1047 
1048 	/* find the size of the stable storage */
1049 	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1050 		return -ENODEV;
1051 
1052 	/* make sure we have enough data */
1053 	if (pdcs_size < 96)
1054 		return -ENODATA;
1055 
1056 	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1057 
1058 	/* get OSID */
1059 	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1060 		return -EIO;
1061 
1062 	/* the actual result is 16 bits away */
1063 	pdcs_osid = (u16)(result >> 16);
1064 
1065 	/* For now we'll register the stable subsys within this driver */
1066 	if ((rc = firmware_register(&stable_subsys)))
1067 		goto fail_firmreg;
1068 
1069 	/* Don't forget the root entries */
1070 	for (i = 0; (attr = pdcs_subsys_attrs[i]) && !error; i++)
1071 		if (attr->show)
1072 			error = subsys_create_file(&stable_subsys, attr);
1073 
1074 	/* register the paths subsys as a subsystem of stable subsys */
1075 	kobj_set_kset_s(&paths_subsys, stable_subsys);
1076 	if ((rc = subsystem_register(&paths_subsys)))
1077 		goto fail_subsysreg;
1078 
1079 	/* now we create all "files" for the paths subsys */
1080 	if ((rc = pdcs_register_pathentries()))
1081 		goto fail_pdcsreg;
1082 
1083 	return rc;
1084 
1085 fail_pdcsreg:
1086 	pdcs_unregister_pathentries();
1087 	subsystem_unregister(&paths_subsys);
1088 
1089 fail_subsysreg:
1090 	firmware_unregister(&stable_subsys);
1091 
1092 fail_firmreg:
1093 	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1094 	return rc;
1095 }
1096 
1097 static void __exit
1098 pdc_stable_exit(void)
1099 {
1100 	pdcs_unregister_pathentries();
1101 	subsystem_unregister(&paths_subsys);
1102 
1103 	firmware_unregister(&stable_subsys);
1104 }
1105 
1106 
1107 module_init(pdc_stable_init);
1108 module_exit(pdc_stable_exit);
1109