1 /* 2 * Interfaces to retrieve and set PDC Stable options (firmware) 3 * 4 * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org> 5 * 6 * This program is free software; you can redistribute it and/or modify 7 * it under the terms of the GNU General Public License, version 2, as 8 * published by the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 * 15 * You should have received a copy of the GNU General Public License 16 * along with this program; if not, write to the Free Software 17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA 18 * 19 * 20 * DEV NOTE: the PDC Procedures reference states that: 21 * "A minimum of 96 bytes of Stable Storage is required. Providing more than 22 * 96 bytes of Stable Storage is optional [...]. Failure to provide the 23 * optional locations from 96 to 192 results in the loss of certain 24 * functionality during boot." 25 * 26 * Since locations between 96 and 192 are the various paths, most (if not 27 * all) PA-RISC machines should have them. Anyway, for safety reasons, the 28 * following code can deal with just 96 bytes of Stable Storage, and all 29 * sizes between 96 and 192 bytes (provided they are multiple of struct 30 * device_path size, eg: 128, 160 and 192) to provide full information. 31 * One last word: there's one path we can always count on: the primary path. 32 * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area. 33 * 34 * The first OS-dependent area should always be available. Obviously, this is 35 * not true for the other one. Also bear in mind that reading/writing from/to 36 * osdep2 is much more expensive than from/to osdep1. 37 * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first 38 * 2 bytes of storage available right after OSID. That's a total of 4 bytes 39 * sacrificed: -ETOOLAZY :P 40 * 41 * The current policy wrt file permissions is: 42 * - write: root only 43 * - read: (reading triggers PDC calls) ? root only : everyone 44 * The rationale is that PDC calls could hog (DoS) the machine. 45 * 46 * TODO: 47 * - timer/fastsize write calls 48 */ 49 50 #undef PDCS_DEBUG 51 #ifdef PDCS_DEBUG 52 #define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args) 53 #else 54 #define DPRINTK(fmt, args...) 55 #endif 56 57 #include <linux/module.h> 58 #include <linux/init.h> 59 #include <linux/kernel.h> 60 #include <linux/string.h> 61 #include <linux/capability.h> 62 #include <linux/ctype.h> 63 #include <linux/sysfs.h> 64 #include <linux/kobject.h> 65 #include <linux/device.h> 66 #include <linux/errno.h> 67 #include <linux/spinlock.h> 68 69 #include <asm/pdc.h> 70 #include <asm/page.h> 71 #include <asm/uaccess.h> 72 #include <asm/hardware.h> 73 74 #define PDCS_VERSION "0.30" 75 #define PDCS_PREFIX "PDC Stable Storage" 76 77 #define PDCS_ADDR_PPRI 0x00 78 #define PDCS_ADDR_OSID 0x40 79 #define PDCS_ADDR_OSD1 0x48 80 #define PDCS_ADDR_DIAG 0x58 81 #define PDCS_ADDR_FSIZ 0x5C 82 #define PDCS_ADDR_PCON 0x60 83 #define PDCS_ADDR_PALT 0x80 84 #define PDCS_ADDR_PKBD 0xA0 85 #define PDCS_ADDR_OSD2 0xE0 86 87 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>"); 88 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data"); 89 MODULE_LICENSE("GPL"); 90 MODULE_VERSION(PDCS_VERSION); 91 92 /* holds Stable Storage size. Initialized once and for all, no lock needed */ 93 static unsigned long pdcs_size __read_mostly; 94 95 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */ 96 static u16 pdcs_osid __read_mostly; 97 98 /* This struct defines what we need to deal with a parisc pdc path entry */ 99 struct pdcspath_entry { 100 rwlock_t rw_lock; /* to protect path entry access */ 101 short ready; /* entry record is valid if != 0 */ 102 unsigned long addr; /* entry address in stable storage */ 103 char *name; /* entry name */ 104 struct device_path devpath; /* device path in parisc representation */ 105 struct device *dev; /* corresponding device */ 106 struct kobject kobj; 107 }; 108 109 struct pdcspath_attribute { 110 struct attribute attr; 111 ssize_t (*show)(struct pdcspath_entry *entry, char *buf); 112 ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count); 113 }; 114 115 #define PDCSPATH_ENTRY(_addr, _name) \ 116 struct pdcspath_entry pdcspath_entry_##_name = { \ 117 .ready = 0, \ 118 .addr = _addr, \ 119 .name = __stringify(_name), \ 120 }; 121 122 #define PDCS_ATTR(_name, _mode, _show, _store) \ 123 struct subsys_attribute pdcs_attr_##_name = { \ 124 .attr = {.name = __stringify(_name), .mode = _mode}, \ 125 .show = _show, \ 126 .store = _store, \ 127 }; 128 129 #define PATHS_ATTR(_name, _mode, _show, _store) \ 130 struct pdcspath_attribute paths_attr_##_name = { \ 131 .attr = {.name = __stringify(_name), .mode = _mode}, \ 132 .show = _show, \ 133 .store = _store, \ 134 }; 135 136 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr) 137 #define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj) 138 139 /** 140 * pdcspath_fetch - This function populates the path entry structs. 141 * @entry: A pointer to an allocated pdcspath_entry. 142 * 143 * The general idea is that you don't read from the Stable Storage every time 144 * you access the files provided by the facilites. We store a copy of the 145 * content of the stable storage WRT various paths in these structs. We read 146 * these structs when reading the files, and we will write to these structs when 147 * writing to the files, and only then write them back to the Stable Storage. 148 * 149 * This function expects to be called with @entry->rw_lock write-hold. 150 */ 151 static int 152 pdcspath_fetch(struct pdcspath_entry *entry) 153 { 154 struct device_path *devpath; 155 156 if (!entry) 157 return -EINVAL; 158 159 devpath = &entry->devpath; 160 161 DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__, 162 entry, devpath, entry->addr); 163 164 /* addr, devpath and count must be word aligned */ 165 if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) 166 return -EIO; 167 168 /* Find the matching device. 169 NOTE: hardware_path overlays with device_path, so the nice cast can 170 be used */ 171 entry->dev = hwpath_to_device((struct hardware_path *)devpath); 172 173 entry->ready = 1; 174 175 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); 176 177 return 0; 178 } 179 180 /** 181 * pdcspath_store - This function writes a path to stable storage. 182 * @entry: A pointer to an allocated pdcspath_entry. 183 * 184 * It can be used in two ways: either by passing it a preset devpath struct 185 * containing an already computed hardware path, or by passing it a device 186 * pointer, from which it'll find out the corresponding hardware path. 187 * For now we do not handle the case where there's an error in writing to the 188 * Stable Storage area, so you'd better not mess up the data :P 189 * 190 * This function expects to be called with @entry->rw_lock write-hold. 191 */ 192 static void 193 pdcspath_store(struct pdcspath_entry *entry) 194 { 195 struct device_path *devpath; 196 197 BUG_ON(!entry); 198 199 devpath = &entry->devpath; 200 201 /* We expect the caller to set the ready flag to 0 if the hardware 202 path struct provided is invalid, so that we know we have to fill it. 203 First case, we don't have a preset hwpath... */ 204 if (!entry->ready) { 205 /* ...but we have a device, map it */ 206 BUG_ON(!entry->dev); 207 device_to_hwpath(entry->dev, (struct hardware_path *)devpath); 208 } 209 /* else, we expect the provided hwpath to be valid. */ 210 211 DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__, 212 entry, devpath, entry->addr); 213 214 /* addr, devpath and count must be word aligned */ 215 if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) { 216 printk(KERN_ERR "%s: an error occured when writing to PDC.\n" 217 "It is likely that the Stable Storage data has been corrupted.\n" 218 "Please check it carefully upon next reboot.\n", __func__); 219 WARN_ON(1); 220 } 221 222 /* kobject is already registered */ 223 entry->ready = 2; 224 225 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); 226 } 227 228 /** 229 * pdcspath_hwpath_read - This function handles hardware path pretty printing. 230 * @entry: An allocated and populated pdscpath_entry struct. 231 * @buf: The output buffer to write to. 232 * 233 * We will call this function to format the output of the hwpath attribute file. 234 */ 235 static ssize_t 236 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf) 237 { 238 char *out = buf; 239 struct device_path *devpath; 240 short i; 241 242 if (!entry || !buf) 243 return -EINVAL; 244 245 read_lock(&entry->rw_lock); 246 devpath = &entry->devpath; 247 i = entry->ready; 248 read_unlock(&entry->rw_lock); 249 250 if (!i) /* entry is not ready */ 251 return -ENODATA; 252 253 for (i = 0; i < 6; i++) { 254 if (devpath->bc[i] >= 128) 255 continue; 256 out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]); 257 } 258 out += sprintf(out, "%u\n", (unsigned char)devpath->mod); 259 260 return out - buf; 261 } 262 263 /** 264 * pdcspath_hwpath_write - This function handles hardware path modifying. 265 * @entry: An allocated and populated pdscpath_entry struct. 266 * @buf: The input buffer to read from. 267 * @count: The number of bytes to be read. 268 * 269 * We will call this function to change the current hardware path. 270 * Hardware paths are to be given '/'-delimited, without brackets. 271 * We make sure that the provided path actually maps to an existing 272 * device, BUT nothing would prevent some foolish user to set the path to some 273 * PCI bridge or even a CPU... 274 * A better work around would be to make sure we are at the end of a device tree 275 * for instance, but it would be IMHO beyond the simple scope of that driver. 276 * The aim is to provide a facility. Data correctness is left to userland. 277 */ 278 static ssize_t 279 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count) 280 { 281 struct hardware_path hwpath; 282 unsigned short i; 283 char in[count+1], *temp; 284 struct device *dev; 285 int ret; 286 287 if (!entry || !buf || !count) 288 return -EINVAL; 289 290 /* We'll use a local copy of buf */ 291 memset(in, 0, count+1); 292 strncpy(in, buf, count); 293 294 /* Let's clean up the target. 0xff is a blank pattern */ 295 memset(&hwpath, 0xff, sizeof(hwpath)); 296 297 /* First, pick the mod field (the last one of the input string) */ 298 if (!(temp = strrchr(in, '/'))) 299 return -EINVAL; 300 301 hwpath.mod = simple_strtoul(temp+1, NULL, 10); 302 in[temp-in] = '\0'; /* truncate the remaining string. just precaution */ 303 DPRINTK("%s: mod: %d\n", __func__, hwpath.mod); 304 305 /* Then, loop for each delimiter, making sure we don't have too many. 306 we write the bc fields in a down-top way. No matter what, we stop 307 before writing the last field. If there are too many fields anyway, 308 then the user is a moron and it'll be caught up later when we'll 309 check the consistency of the given hwpath. */ 310 for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) { 311 hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10); 312 in[temp-in] = '\0'; 313 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); 314 } 315 316 /* Store the final field */ 317 hwpath.bc[i] = simple_strtoul(in, NULL, 10); 318 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]); 319 320 /* Now we check that the user isn't trying to lure us */ 321 if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) { 322 printk(KERN_WARNING "%s: attempt to set invalid \"%s\" " 323 "hardware path: %s\n", __func__, entry->name, buf); 324 return -EINVAL; 325 } 326 327 /* So far so good, let's get in deep */ 328 write_lock(&entry->rw_lock); 329 entry->ready = 0; 330 entry->dev = dev; 331 332 /* Now, dive in. Write back to the hardware */ 333 pdcspath_store(entry); 334 335 /* Update the symlink to the real device */ 336 sysfs_remove_link(&entry->kobj, "device"); 337 ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); 338 WARN_ON(ret); 339 340 write_unlock(&entry->rw_lock); 341 342 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n", 343 entry->name, buf); 344 345 return count; 346 } 347 348 /** 349 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing. 350 * @entry: An allocated and populated pdscpath_entry struct. 351 * @buf: The output buffer to write to. 352 * 353 * We will call this function to format the output of the layer attribute file. 354 */ 355 static ssize_t 356 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf) 357 { 358 char *out = buf; 359 struct device_path *devpath; 360 short i; 361 362 if (!entry || !buf) 363 return -EINVAL; 364 365 read_lock(&entry->rw_lock); 366 devpath = &entry->devpath; 367 i = entry->ready; 368 read_unlock(&entry->rw_lock); 369 370 if (!i) /* entry is not ready */ 371 return -ENODATA; 372 373 for (i = 0; devpath->layers[i] && (likely(i < 6)); i++) 374 out += sprintf(out, "%u ", devpath->layers[i]); 375 376 out += sprintf(out, "\n"); 377 378 return out - buf; 379 } 380 381 /** 382 * pdcspath_layer_write - This function handles extended layer modifying. 383 * @entry: An allocated and populated pdscpath_entry struct. 384 * @buf: The input buffer to read from. 385 * @count: The number of bytes to be read. 386 * 387 * We will call this function to change the current layer value. 388 * Layers are to be given '.'-delimited, without brackets. 389 * XXX beware we are far less checky WRT input data provided than for hwpath. 390 * Potential harm can be done, since there's no way to check the validity of 391 * the layer fields. 392 */ 393 static ssize_t 394 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count) 395 { 396 unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */ 397 unsigned short i; 398 char in[count+1], *temp; 399 400 if (!entry || !buf || !count) 401 return -EINVAL; 402 403 /* We'll use a local copy of buf */ 404 memset(in, 0, count+1); 405 strncpy(in, buf, count); 406 407 /* Let's clean up the target. 0 is a blank pattern */ 408 memset(&layers, 0, sizeof(layers)); 409 410 /* First, pick the first layer */ 411 if (unlikely(!isdigit(*in))) 412 return -EINVAL; 413 layers[0] = simple_strtoul(in, NULL, 10); 414 DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]); 415 416 temp = in; 417 for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) { 418 if (unlikely(!isdigit(*(++temp)))) 419 return -EINVAL; 420 layers[i] = simple_strtoul(temp, NULL, 10); 421 DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]); 422 } 423 424 /* So far so good, let's get in deep */ 425 write_lock(&entry->rw_lock); 426 427 /* First, overwrite the current layers with the new ones, not touching 428 the hardware path. */ 429 memcpy(&entry->devpath.layers, &layers, sizeof(layers)); 430 431 /* Now, dive in. Write back to the hardware */ 432 pdcspath_store(entry); 433 write_unlock(&entry->rw_lock); 434 435 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n", 436 entry->name, buf); 437 438 return count; 439 } 440 441 /** 442 * pdcspath_attr_show - Generic read function call wrapper. 443 * @kobj: The kobject to get info from. 444 * @attr: The attribute looked upon. 445 * @buf: The output buffer. 446 */ 447 static ssize_t 448 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) 449 { 450 struct pdcspath_entry *entry = to_pdcspath_entry(kobj); 451 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); 452 ssize_t ret = 0; 453 454 if (pdcs_attr->show) 455 ret = pdcs_attr->show(entry, buf); 456 457 return ret; 458 } 459 460 /** 461 * pdcspath_attr_store - Generic write function call wrapper. 462 * @kobj: The kobject to write info to. 463 * @attr: The attribute to be modified. 464 * @buf: The input buffer. 465 * @count: The size of the buffer. 466 */ 467 static ssize_t 468 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr, 469 const char *buf, size_t count) 470 { 471 struct pdcspath_entry *entry = to_pdcspath_entry(kobj); 472 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); 473 ssize_t ret = 0; 474 475 if (!capable(CAP_SYS_ADMIN)) 476 return -EACCES; 477 478 if (pdcs_attr->store) 479 ret = pdcs_attr->store(entry, buf, count); 480 481 return ret; 482 } 483 484 static struct sysfs_ops pdcspath_attr_ops = { 485 .show = pdcspath_attr_show, 486 .store = pdcspath_attr_store, 487 }; 488 489 /* These are the two attributes of any PDC path. */ 490 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write); 491 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write); 492 493 static struct attribute *paths_subsys_attrs[] = { 494 &paths_attr_hwpath.attr, 495 &paths_attr_layer.attr, 496 NULL, 497 }; 498 499 /* Specific kobject type for our PDC paths */ 500 static struct kobj_type ktype_pdcspath = { 501 .sysfs_ops = &pdcspath_attr_ops, 502 .default_attrs = paths_subsys_attrs, 503 }; 504 505 /* We hard define the 4 types of path we expect to find */ 506 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary); 507 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console); 508 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative); 509 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard); 510 511 /* An array containing all PDC paths we will deal with */ 512 static struct pdcspath_entry *pdcspath_entries[] = { 513 &pdcspath_entry_primary, 514 &pdcspath_entry_alternative, 515 &pdcspath_entry_console, 516 &pdcspath_entry_keyboard, 517 NULL, 518 }; 519 520 521 /* For more insight of what's going on here, refer to PDC Procedures doc, 522 * Section PDC_STABLE */ 523 524 /** 525 * pdcs_size_read - Stable Storage size output. 526 * @kset: An allocated and populated struct kset. We don't use it tho. 527 * @buf: The output buffer to write to. 528 */ 529 static ssize_t 530 pdcs_size_read(struct kset *kset, char *buf) 531 { 532 char *out = buf; 533 534 if (!kset || !buf) 535 return -EINVAL; 536 537 /* show the size of the stable storage */ 538 out += sprintf(out, "%ld\n", pdcs_size); 539 540 return out - buf; 541 } 542 543 /** 544 * pdcs_auto_read - Stable Storage autoboot/search flag output. 545 * @kset: An allocated and populated struct kset. We don't use it tho. 546 * @buf: The output buffer to write to. 547 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag 548 */ 549 static ssize_t 550 pdcs_auto_read(struct kset *kset, char *buf, int knob) 551 { 552 char *out = buf; 553 struct pdcspath_entry *pathentry; 554 555 if (!kset || !buf) 556 return -EINVAL; 557 558 /* Current flags are stored in primary boot path entry */ 559 pathentry = &pdcspath_entry_primary; 560 561 read_lock(&pathentry->rw_lock); 562 out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ? 563 "On" : "Off"); 564 read_unlock(&pathentry->rw_lock); 565 566 return out - buf; 567 } 568 569 /** 570 * pdcs_autoboot_read - Stable Storage autoboot flag output. 571 * @kset: An allocated and populated struct kset. We don't use it tho. 572 * @buf: The output buffer to write to. 573 */ 574 static inline ssize_t 575 pdcs_autoboot_read(struct kset *kset, char *buf) 576 { 577 return pdcs_auto_read(kset, buf, PF_AUTOBOOT); 578 } 579 580 /** 581 * pdcs_autosearch_read - Stable Storage autoboot flag output. 582 * @kset: An allocated and populated struct kset. We don't use it tho. 583 * @buf: The output buffer to write to. 584 */ 585 static inline ssize_t 586 pdcs_autosearch_read(struct kset *kset, char *buf) 587 { 588 return pdcs_auto_read(kset, buf, PF_AUTOSEARCH); 589 } 590 591 /** 592 * pdcs_timer_read - Stable Storage timer count output (in seconds). 593 * @kset: An allocated and populated struct kset. We don't use it tho. 594 * @buf: The output buffer to write to. 595 * 596 * The value of the timer field correponds to a number of seconds in powers of 2. 597 */ 598 static ssize_t 599 pdcs_timer_read(struct kset *kset, char *buf) 600 { 601 char *out = buf; 602 struct pdcspath_entry *pathentry; 603 604 if (!kset || !buf) 605 return -EINVAL; 606 607 /* Current flags are stored in primary boot path entry */ 608 pathentry = &pdcspath_entry_primary; 609 610 /* print the timer value in seconds */ 611 read_lock(&pathentry->rw_lock); 612 out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ? 613 (1 << (pathentry->devpath.flags & PF_TIMER)) : 0); 614 read_unlock(&pathentry->rw_lock); 615 616 return out - buf; 617 } 618 619 /** 620 * pdcs_osid_read - Stable Storage OS ID register output. 621 * @kset: An allocated and populated struct kset. We don't use it tho. 622 * @buf: The output buffer to write to. 623 */ 624 static ssize_t 625 pdcs_osid_read(struct kset *kset, char *buf) 626 { 627 char *out = buf; 628 629 if (!kset || !buf) 630 return -EINVAL; 631 632 out += sprintf(out, "%s dependent data (0x%.4x)\n", 633 os_id_to_string(pdcs_osid), pdcs_osid); 634 635 return out - buf; 636 } 637 638 /** 639 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output. 640 * @kset: An allocated and populated struct kset. We don't use it tho. 641 * @buf: The output buffer to write to. 642 * 643 * This can hold 16 bytes of OS-Dependent data. 644 */ 645 static ssize_t 646 pdcs_osdep1_read(struct kset *kset, char *buf) 647 { 648 char *out = buf; 649 u32 result[4]; 650 651 if (!kset || !buf) 652 return -EINVAL; 653 654 if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK) 655 return -EIO; 656 657 out += sprintf(out, "0x%.8x\n", result[0]); 658 out += sprintf(out, "0x%.8x\n", result[1]); 659 out += sprintf(out, "0x%.8x\n", result[2]); 660 out += sprintf(out, "0x%.8x\n", result[3]); 661 662 return out - buf; 663 } 664 665 /** 666 * pdcs_diagnostic_read - Stable Storage Diagnostic register output. 667 * @kset: An allocated and populated struct kset. We don't use it tho. 668 * @buf: The output buffer to write to. 669 * 670 * I have NFC how to interpret the content of that register ;-). 671 */ 672 static ssize_t 673 pdcs_diagnostic_read(struct kset *kset, char *buf) 674 { 675 char *out = buf; 676 u32 result; 677 678 if (!kset || !buf) 679 return -EINVAL; 680 681 /* get diagnostic */ 682 if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK) 683 return -EIO; 684 685 out += sprintf(out, "0x%.4x\n", (result >> 16)); 686 687 return out - buf; 688 } 689 690 /** 691 * pdcs_fastsize_read - Stable Storage FastSize register output. 692 * @kset: An allocated and populated struct kset. We don't use it tho. 693 * @buf: The output buffer to write to. 694 * 695 * This register holds the amount of system RAM to be tested during boot sequence. 696 */ 697 static ssize_t 698 pdcs_fastsize_read(struct kset *kset, char *buf) 699 { 700 char *out = buf; 701 u32 result; 702 703 if (!kset || !buf) 704 return -EINVAL; 705 706 /* get fast-size */ 707 if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK) 708 return -EIO; 709 710 if ((result & 0x0F) < 0x0E) 711 out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256); 712 else 713 out += sprintf(out, "All"); 714 out += sprintf(out, "\n"); 715 716 return out - buf; 717 } 718 719 /** 720 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output. 721 * @kset: An allocated and populated struct kset. We don't use it tho. 722 * @buf: The output buffer to write to. 723 * 724 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available. 725 */ 726 static ssize_t 727 pdcs_osdep2_read(struct kset *kset, char *buf) 728 { 729 char *out = buf; 730 unsigned long size; 731 unsigned short i; 732 u32 result; 733 734 if (unlikely(pdcs_size <= 224)) 735 return -ENODATA; 736 737 size = pdcs_size - 224; 738 739 if (!kset || !buf) 740 return -EINVAL; 741 742 for (i=0; i<size; i+=4) { 743 if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result, 744 sizeof(result)) != PDC_OK)) 745 return -EIO; 746 out += sprintf(out, "0x%.8x\n", result); 747 } 748 749 return out - buf; 750 } 751 752 /** 753 * pdcs_auto_write - This function handles autoboot/search flag modifying. 754 * @kset: An allocated and populated struct kset. We don't use it tho. 755 * @buf: The input buffer to read from. 756 * @count: The number of bytes to be read. 757 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag 758 * 759 * We will call this function to change the current autoboot flag. 760 * We expect a precise syntax: 761 * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On 762 */ 763 static ssize_t 764 pdcs_auto_write(struct kset *kset, const char *buf, size_t count, int knob) 765 { 766 struct pdcspath_entry *pathentry; 767 unsigned char flags; 768 char in[count+1], *temp; 769 char c; 770 771 if (!capable(CAP_SYS_ADMIN)) 772 return -EACCES; 773 774 if (!kset || !buf || !count) 775 return -EINVAL; 776 777 /* We'll use a local copy of buf */ 778 memset(in, 0, count+1); 779 strncpy(in, buf, count); 780 781 /* Current flags are stored in primary boot path entry */ 782 pathentry = &pdcspath_entry_primary; 783 784 /* Be nice to the existing flag record */ 785 read_lock(&pathentry->rw_lock); 786 flags = pathentry->devpath.flags; 787 read_unlock(&pathentry->rw_lock); 788 789 DPRINTK("%s: flags before: 0x%X\n", __func__, flags); 790 791 temp = in; 792 793 while (*temp && isspace(*temp)) 794 temp++; 795 796 c = *temp++ - '0'; 797 if ((c != 0) && (c != 1)) 798 goto parse_error; 799 if (c == 0) 800 flags &= ~knob; 801 else 802 flags |= knob; 803 804 DPRINTK("%s: flags after: 0x%X\n", __func__, flags); 805 806 /* So far so good, let's get in deep */ 807 write_lock(&pathentry->rw_lock); 808 809 /* Change the path entry flags first */ 810 pathentry->devpath.flags = flags; 811 812 /* Now, dive in. Write back to the hardware */ 813 pdcspath_store(pathentry); 814 write_unlock(&pathentry->rw_lock); 815 816 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n", 817 (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch", 818 (flags & knob) ? "On" : "Off"); 819 820 return count; 821 822 parse_error: 823 printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__); 824 return -EINVAL; 825 } 826 827 /** 828 * pdcs_autoboot_write - This function handles autoboot flag modifying. 829 * @kset: An allocated and populated struct kset. We don't use it tho. 830 * @buf: The input buffer to read from. 831 * @count: The number of bytes to be read. 832 * 833 * We will call this function to change the current boot flags. 834 * We expect a precise syntax: 835 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On 836 */ 837 static inline ssize_t 838 pdcs_autoboot_write(struct kset *kset, const char *buf, size_t count) 839 { 840 return pdcs_auto_write(kset, buf, count, PF_AUTOBOOT); 841 } 842 843 /** 844 * pdcs_autosearch_write - This function handles autosearch flag modifying. 845 * @kset: An allocated and populated struct kset. We don't use it tho. 846 * @buf: The input buffer to read from. 847 * @count: The number of bytes to be read. 848 * 849 * We will call this function to change the current boot flags. 850 * We expect a precise syntax: 851 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On 852 */ 853 static inline ssize_t 854 pdcs_autosearch_write(struct kset *kset, const char *buf, size_t count) 855 { 856 return pdcs_auto_write(kset, buf, count, PF_AUTOSEARCH); 857 } 858 859 /** 860 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input. 861 * @kset: An allocated and populated struct kset. We don't use it tho. 862 * @buf: The input buffer to read from. 863 * @count: The number of bytes to be read. 864 * 865 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte 866 * write approach. It's up to userspace to deal with it when constructing 867 * its input buffer. 868 */ 869 static ssize_t 870 pdcs_osdep1_write(struct kset *kset, const char *buf, size_t count) 871 { 872 u8 in[16]; 873 874 if (!capable(CAP_SYS_ADMIN)) 875 return -EACCES; 876 877 if (!kset || !buf || !count) 878 return -EINVAL; 879 880 if (unlikely(pdcs_osid != OS_ID_LINUX)) 881 return -EPERM; 882 883 if (count > 16) 884 return -EMSGSIZE; 885 886 /* We'll use a local copy of buf */ 887 memset(in, 0, 16); 888 memcpy(in, buf, count); 889 890 if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK) 891 return -EIO; 892 893 return count; 894 } 895 896 /** 897 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input. 898 * @kset: An allocated and populated struct kset. We don't use it tho. 899 * @buf: The input buffer to read from. 900 * @count: The number of bytes to be read. 901 * 902 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a 903 * byte-by-byte write approach. It's up to userspace to deal with it when 904 * constructing its input buffer. 905 */ 906 static ssize_t 907 pdcs_osdep2_write(struct kset *kset, const char *buf, size_t count) 908 { 909 unsigned long size; 910 unsigned short i; 911 u8 in[4]; 912 913 if (!capable(CAP_SYS_ADMIN)) 914 return -EACCES; 915 916 if (!kset || !buf || !count) 917 return -EINVAL; 918 919 if (unlikely(pdcs_size <= 224)) 920 return -ENOSYS; 921 922 if (unlikely(pdcs_osid != OS_ID_LINUX)) 923 return -EPERM; 924 925 size = pdcs_size - 224; 926 927 if (count > size) 928 return -EMSGSIZE; 929 930 /* We'll use a local copy of buf */ 931 932 for (i=0; i<count; i+=4) { 933 memset(in, 0, 4); 934 memcpy(in, buf+i, (count-i < 4) ? count-i : 4); 935 if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in, 936 sizeof(in)) != PDC_OK)) 937 return -EIO; 938 } 939 940 return count; 941 } 942 943 /* The remaining attributes. */ 944 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL); 945 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write); 946 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write); 947 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL); 948 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL); 949 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write); 950 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL); 951 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL); 952 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write); 953 954 static struct subsys_attribute *pdcs_subsys_attrs[] = { 955 &pdcs_attr_size, 956 &pdcs_attr_autoboot, 957 &pdcs_attr_autosearch, 958 &pdcs_attr_timer, 959 &pdcs_attr_osid, 960 &pdcs_attr_osdep1, 961 &pdcs_attr_diagnostic, 962 &pdcs_attr_fastsize, 963 &pdcs_attr_osdep2, 964 NULL, 965 }; 966 967 static decl_subsys(paths, &ktype_pdcspath, NULL); 968 static decl_subsys(stable, NULL, NULL); 969 970 /** 971 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage. 972 * 973 * It creates kobjects corresponding to each path entry with nice sysfs 974 * links to the real device. This is where the magic takes place: when 975 * registering the subsystem attributes during module init, each kobject hereby 976 * created will show in the sysfs tree as a folder containing files as defined 977 * by path_subsys_attr[]. 978 */ 979 static inline int __init 980 pdcs_register_pathentries(void) 981 { 982 unsigned short i; 983 struct pdcspath_entry *entry; 984 int err; 985 986 /* Initialize the entries rw_lock before anything else */ 987 for (i = 0; (entry = pdcspath_entries[i]); i++) 988 rwlock_init(&entry->rw_lock); 989 990 for (i = 0; (entry = pdcspath_entries[i]); i++) { 991 write_lock(&entry->rw_lock); 992 err = pdcspath_fetch(entry); 993 write_unlock(&entry->rw_lock); 994 995 if (err < 0) 996 continue; 997 998 if ((err = kobject_set_name(&entry->kobj, "%s", entry->name))) 999 return err; 1000 kobj_set_kset_s(entry, paths_subsys); 1001 if ((err = kobject_register(&entry->kobj))) 1002 return err; 1003 1004 /* kobject is now registered */ 1005 write_lock(&entry->rw_lock); 1006 entry->ready = 2; 1007 1008 /* Add a nice symlink to the real device */ 1009 if (entry->dev) { 1010 err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); 1011 WARN_ON(err); 1012 } 1013 1014 write_unlock(&entry->rw_lock); 1015 } 1016 1017 return 0; 1018 } 1019 1020 /** 1021 * pdcs_unregister_pathentries - Routine called when unregistering the module. 1022 */ 1023 static inline void 1024 pdcs_unregister_pathentries(void) 1025 { 1026 unsigned short i; 1027 struct pdcspath_entry *entry; 1028 1029 for (i = 0; (entry = pdcspath_entries[i]); i++) { 1030 read_lock(&entry->rw_lock); 1031 if (entry->ready >= 2) 1032 kobject_unregister(&entry->kobj); 1033 read_unlock(&entry->rw_lock); 1034 } 1035 } 1036 1037 /* 1038 * For now we register the stable subsystem with the firmware subsystem 1039 * and the paths subsystem with the stable subsystem 1040 */ 1041 static int __init 1042 pdc_stable_init(void) 1043 { 1044 struct subsys_attribute *attr; 1045 int i, rc = 0, error = 0; 1046 u32 result; 1047 1048 /* find the size of the stable storage */ 1049 if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 1050 return -ENODEV; 1051 1052 /* make sure we have enough data */ 1053 if (pdcs_size < 96) 1054 return -ENODATA; 1055 1056 printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION); 1057 1058 /* get OSID */ 1059 if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK) 1060 return -EIO; 1061 1062 /* the actual result is 16 bits away */ 1063 pdcs_osid = (u16)(result >> 16); 1064 1065 /* For now we'll register the stable subsys within this driver */ 1066 if ((rc = firmware_register(&stable_subsys))) 1067 goto fail_firmreg; 1068 1069 /* Don't forget the root entries */ 1070 for (i = 0; (attr = pdcs_subsys_attrs[i]) && !error; i++) 1071 if (attr->show) 1072 error = subsys_create_file(&stable_subsys, attr); 1073 1074 /* register the paths subsys as a subsystem of stable subsys */ 1075 kobj_set_kset_s(&paths_subsys, stable_subsys); 1076 if ((rc = subsystem_register(&paths_subsys))) 1077 goto fail_subsysreg; 1078 1079 /* now we create all "files" for the paths subsys */ 1080 if ((rc = pdcs_register_pathentries())) 1081 goto fail_pdcsreg; 1082 1083 return rc; 1084 1085 fail_pdcsreg: 1086 pdcs_unregister_pathentries(); 1087 subsystem_unregister(&paths_subsys); 1088 1089 fail_subsysreg: 1090 firmware_unregister(&stable_subsys); 1091 1092 fail_firmreg: 1093 printk(KERN_INFO PDCS_PREFIX " bailing out\n"); 1094 return rc; 1095 } 1096 1097 static void __exit 1098 pdc_stable_exit(void) 1099 { 1100 pdcs_unregister_pathentries(); 1101 subsystem_unregister(&paths_subsys); 1102 1103 firmware_unregister(&stable_subsys); 1104 } 1105 1106 1107 module_init(pdc_stable_init); 1108 module_exit(pdc_stable_exit); 1109