xref: /linux/drivers/parisc/pdc_stable.c (revision 4d3ce21fa9d2eaeda113aa2f9c2da80d972bef64)
1 /*
2  *    Interfaces to retrieve and set PDC Stable options (firmware)
3  *
4  *    Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org>
5  *
6  *    This program is free software; you can redistribute it and/or modify
7  *    it under the terms of the GNU General Public License, version 2, as
8  *    published by the Free Software Foundation.
9  *
10  *    This program is distributed in the hope that it will be useful,
11  *    but WITHOUT ANY WARRANTY; without even the implied warranty of
12  *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  *    GNU General Public License for more details.
14  *
15  *    You should have received a copy of the GNU General Public License
16  *    along with this program; if not, write to the Free Software
17  *    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
18  *
19  *
20  *    DEV NOTE: the PDC Procedures reference states that:
21  *    "A minimum of 96 bytes of Stable Storage is required. Providing more than
22  *    96 bytes of Stable Storage is optional [...]. Failure to provide the
23  *    optional locations from 96 to 192 results in the loss of certain
24  *    functionality during boot."
25  *
26  *    Since locations between 96 and 192 are the various paths, most (if not
27  *    all) PA-RISC machines should have them. Anyway, for safety reasons, the
28  *    following code can deal with just 96 bytes of Stable Storage, and all
29  *    sizes between 96 and 192 bytes (provided they are multiple of struct
30  *    device_path size, eg: 128, 160 and 192) to provide full information.
31  *    One last word: there's one path we can always count on: the primary path.
32  *    Anything above 224 bytes is used for 'osdep2' OS-dependent storage area.
33  *
34  *    The first OS-dependent area should always be available. Obviously, this is
35  *    not true for the other one. Also bear in mind that reading/writing from/to
36  *    osdep2 is much more expensive than from/to osdep1.
37  *    NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first
38  *    2 bytes of storage available right after OSID. That's a total of 4 bytes
39  *    sacrificed: -ETOOLAZY :P
40  *
41  *    The current policy wrt file permissions is:
42  *	- write: root only
43  *	- read: (reading triggers PDC calls) ? root only : everyone
44  *    The rationale is that PDC calls could hog (DoS) the machine.
45  *
46  *	TODO:
47  *	- timer/fastsize write calls
48  */
49 
50 #undef PDCS_DEBUG
51 #ifdef PDCS_DEBUG
52 #define DPRINTK(fmt, args...)	printk(KERN_DEBUG fmt, ## args)
53 #else
54 #define DPRINTK(fmt, args...)
55 #endif
56 
57 #include <linux/module.h>
58 #include <linux/init.h>
59 #include <linux/kernel.h>
60 #include <linux/string.h>
61 #include <linux/capability.h>
62 #include <linux/ctype.h>
63 #include <linux/sysfs.h>
64 #include <linux/kobject.h>
65 #include <linux/device.h>
66 #include <linux/errno.h>
67 #include <linux/spinlock.h>
68 
69 #include <asm/pdc.h>
70 #include <asm/page.h>
71 #include <asm/uaccess.h>
72 #include <asm/hardware.h>
73 
74 #define PDCS_VERSION	"0.30"
75 #define PDCS_PREFIX	"PDC Stable Storage"
76 
77 #define PDCS_ADDR_PPRI	0x00
78 #define PDCS_ADDR_OSID	0x40
79 #define PDCS_ADDR_OSD1	0x48
80 #define PDCS_ADDR_DIAG	0x58
81 #define PDCS_ADDR_FSIZ	0x5C
82 #define PDCS_ADDR_PCON	0x60
83 #define PDCS_ADDR_PALT	0x80
84 #define PDCS_ADDR_PKBD	0xA0
85 #define PDCS_ADDR_OSD2	0xE0
86 
87 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>");
88 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data");
89 MODULE_LICENSE("GPL");
90 MODULE_VERSION(PDCS_VERSION);
91 
92 /* holds Stable Storage size. Initialized once and for all, no lock needed */
93 static unsigned long pdcs_size __read_mostly;
94 
95 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */
96 static u16 pdcs_osid __read_mostly;
97 
98 /* This struct defines what we need to deal with a parisc pdc path entry */
99 struct pdcspath_entry {
100 	rwlock_t rw_lock;		/* to protect path entry access */
101 	short ready;			/* entry record is valid if != 0 */
102 	unsigned long addr;		/* entry address in stable storage */
103 	char *name;			/* entry name */
104 	struct device_path devpath;	/* device path in parisc representation */
105 	struct device *dev;		/* corresponding device */
106 	struct kobject kobj;
107 };
108 
109 struct pdcspath_attribute {
110 	struct attribute attr;
111 	ssize_t (*show)(struct pdcspath_entry *entry, char *buf);
112 	ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count);
113 };
114 
115 #define PDCSPATH_ENTRY(_addr, _name) \
116 struct pdcspath_entry pdcspath_entry_##_name = { \
117 	.ready = 0, \
118 	.addr = _addr, \
119 	.name = __stringify(_name), \
120 };
121 
122 #define PDCS_ATTR(_name, _mode, _show, _store) \
123 struct subsys_attribute pdcs_attr_##_name = { \
124 	.attr = {.name = __stringify(_name), .mode = _mode, .owner = THIS_MODULE}, \
125 	.show = _show, \
126 	.store = _store, \
127 };
128 
129 #define PATHS_ATTR(_name, _mode, _show, _store) \
130 struct pdcspath_attribute paths_attr_##_name = { \
131 	.attr = {.name = __stringify(_name), .mode = _mode, .owner = THIS_MODULE}, \
132 	.show = _show, \
133 	.store = _store, \
134 };
135 
136 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr)
137 #define to_pdcspath_entry(obj)  container_of(obj, struct pdcspath_entry, kobj)
138 
139 /**
140  * pdcspath_fetch - This function populates the path entry structs.
141  * @entry: A pointer to an allocated pdcspath_entry.
142  *
143  * The general idea is that you don't read from the Stable Storage every time
144  * you access the files provided by the facilites. We store a copy of the
145  * content of the stable storage WRT various paths in these structs. We read
146  * these structs when reading the files, and we will write to these structs when
147  * writing to the files, and only then write them back to the Stable Storage.
148  *
149  * This function expects to be called with @entry->rw_lock write-hold.
150  */
151 static int
152 pdcspath_fetch(struct pdcspath_entry *entry)
153 {
154 	struct device_path *devpath;
155 
156 	if (!entry)
157 		return -EINVAL;
158 
159 	devpath = &entry->devpath;
160 
161 	DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
162 			entry, devpath, entry->addr);
163 
164 	/* addr, devpath and count must be word aligned */
165 	if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK)
166 		return -EIO;
167 
168 	/* Find the matching device.
169 	   NOTE: hardware_path overlays with device_path, so the nice cast can
170 	   be used */
171 	entry->dev = hwpath_to_device((struct hardware_path *)devpath);
172 
173 	entry->ready = 1;
174 
175 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
176 
177 	return 0;
178 }
179 
180 /**
181  * pdcspath_store - This function writes a path to stable storage.
182  * @entry: A pointer to an allocated pdcspath_entry.
183  *
184  * It can be used in two ways: either by passing it a preset devpath struct
185  * containing an already computed hardware path, or by passing it a device
186  * pointer, from which it'll find out the corresponding hardware path.
187  * For now we do not handle the case where there's an error in writing to the
188  * Stable Storage area, so you'd better not mess up the data :P
189  *
190  * This function expects to be called with @entry->rw_lock write-hold.
191  */
192 static void
193 pdcspath_store(struct pdcspath_entry *entry)
194 {
195 	struct device_path *devpath;
196 
197 	BUG_ON(!entry);
198 
199 	devpath = &entry->devpath;
200 
201 	/* We expect the caller to set the ready flag to 0 if the hardware
202 	   path struct provided is invalid, so that we know we have to fill it.
203 	   First case, we don't have a preset hwpath... */
204 	if (!entry->ready) {
205 		/* ...but we have a device, map it */
206 		BUG_ON(!entry->dev);
207 		device_to_hwpath(entry->dev, (struct hardware_path *)devpath);
208 	}
209 	/* else, we expect the provided hwpath to be valid. */
210 
211 	DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__,
212 			entry, devpath, entry->addr);
213 
214 	/* addr, devpath and count must be word aligned */
215 	if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) {
216 		printk(KERN_ERR "%s: an error occured when writing to PDC.\n"
217 				"It is likely that the Stable Storage data has been corrupted.\n"
218 				"Please check it carefully upon next reboot.\n", __func__);
219 		WARN_ON(1);
220 	}
221 
222 	/* kobject is already registered */
223 	entry->ready = 2;
224 
225 	DPRINTK("%s: device: 0x%p\n", __func__, entry->dev);
226 }
227 
228 /**
229  * pdcspath_hwpath_read - This function handles hardware path pretty printing.
230  * @entry: An allocated and populated pdscpath_entry struct.
231  * @buf: The output buffer to write to.
232  *
233  * We will call this function to format the output of the hwpath attribute file.
234  */
235 static ssize_t
236 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf)
237 {
238 	char *out = buf;
239 	struct device_path *devpath;
240 	short i;
241 
242 	if (!entry || !buf)
243 		return -EINVAL;
244 
245 	read_lock(&entry->rw_lock);
246 	devpath = &entry->devpath;
247 	i = entry->ready;
248 	read_unlock(&entry->rw_lock);
249 
250 	if (!i)	/* entry is not ready */
251 		return -ENODATA;
252 
253 	for (i = 0; i < 6; i++) {
254 		if (devpath->bc[i] >= 128)
255 			continue;
256 		out += sprintf(out, "%u/", (unsigned char)devpath->bc[i]);
257 	}
258 	out += sprintf(out, "%u\n", (unsigned char)devpath->mod);
259 
260 	return out - buf;
261 }
262 
263 /**
264  * pdcspath_hwpath_write - This function handles hardware path modifying.
265  * @entry: An allocated and populated pdscpath_entry struct.
266  * @buf: The input buffer to read from.
267  * @count: The number of bytes to be read.
268  *
269  * We will call this function to change the current hardware path.
270  * Hardware paths are to be given '/'-delimited, without brackets.
271  * We make sure that the provided path actually maps to an existing
272  * device, BUT nothing would prevent some foolish user to set the path to some
273  * PCI bridge or even a CPU...
274  * A better work around would be to make sure we are at the end of a device tree
275  * for instance, but it would be IMHO beyond the simple scope of that driver.
276  * The aim is to provide a facility. Data correctness is left to userland.
277  */
278 static ssize_t
279 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count)
280 {
281 	struct hardware_path hwpath;
282 	unsigned short i;
283 	char in[count+1], *temp;
284 	struct device *dev;
285 
286 	if (!entry || !buf || !count)
287 		return -EINVAL;
288 
289 	/* We'll use a local copy of buf */
290 	memset(in, 0, count+1);
291 	strncpy(in, buf, count);
292 
293 	/* Let's clean up the target. 0xff is a blank pattern */
294 	memset(&hwpath, 0xff, sizeof(hwpath));
295 
296 	/* First, pick the mod field (the last one of the input string) */
297 	if (!(temp = strrchr(in, '/')))
298 		return -EINVAL;
299 
300 	hwpath.mod = simple_strtoul(temp+1, NULL, 10);
301 	in[temp-in] = '\0';	/* truncate the remaining string. just precaution */
302 	DPRINTK("%s: mod: %d\n", __func__, hwpath.mod);
303 
304 	/* Then, loop for each delimiter, making sure we don't have too many.
305 	   we write the bc fields in a down-top way. No matter what, we stop
306 	   before writing the last field. If there are too many fields anyway,
307 	   then the user is a moron and it'll be caught up later when we'll
308 	   check the consistency of the given hwpath. */
309 	for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) {
310 		hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10);
311 		in[temp-in] = '\0';
312 		DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
313 	}
314 
315 	/* Store the final field */
316 	hwpath.bc[i] = simple_strtoul(in, NULL, 10);
317 	DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.bc[i]);
318 
319 	/* Now we check that the user isn't trying to lure us */
320 	if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) {
321 		printk(KERN_WARNING "%s: attempt to set invalid \"%s\" "
322 			"hardware path: %s\n", __func__, entry->name, buf);
323 		return -EINVAL;
324 	}
325 
326 	/* So far so good, let's get in deep */
327 	write_lock(&entry->rw_lock);
328 	entry->ready = 0;
329 	entry->dev = dev;
330 
331 	/* Now, dive in. Write back to the hardware */
332 	pdcspath_store(entry);
333 
334 	/* Update the symlink to the real device */
335 	sysfs_remove_link(&entry->kobj, "device");
336 	sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
337 	write_unlock(&entry->rw_lock);
338 
339 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n",
340 		entry->name, buf);
341 
342 	return count;
343 }
344 
345 /**
346  * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing.
347  * @entry: An allocated and populated pdscpath_entry struct.
348  * @buf: The output buffer to write to.
349  *
350  * We will call this function to format the output of the layer attribute file.
351  */
352 static ssize_t
353 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf)
354 {
355 	char *out = buf;
356 	struct device_path *devpath;
357 	short i;
358 
359 	if (!entry || !buf)
360 		return -EINVAL;
361 
362 	read_lock(&entry->rw_lock);
363 	devpath = &entry->devpath;
364 	i = entry->ready;
365 	read_unlock(&entry->rw_lock);
366 
367 	if (!i)	/* entry is not ready */
368 		return -ENODATA;
369 
370 	for (i = 0; devpath->layers[i] && (likely(i < 6)); i++)
371 		out += sprintf(out, "%u ", devpath->layers[i]);
372 
373 	out += sprintf(out, "\n");
374 
375 	return out - buf;
376 }
377 
378 /**
379  * pdcspath_layer_write - This function handles extended layer modifying.
380  * @entry: An allocated and populated pdscpath_entry struct.
381  * @buf: The input buffer to read from.
382  * @count: The number of bytes to be read.
383  *
384  * We will call this function to change the current layer value.
385  * Layers are to be given '.'-delimited, without brackets.
386  * XXX beware we are far less checky WRT input data provided than for hwpath.
387  * Potential harm can be done, since there's no way to check the validity of
388  * the layer fields.
389  */
390 static ssize_t
391 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count)
392 {
393 	unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */
394 	unsigned short i;
395 	char in[count+1], *temp;
396 
397 	if (!entry || !buf || !count)
398 		return -EINVAL;
399 
400 	/* We'll use a local copy of buf */
401 	memset(in, 0, count+1);
402 	strncpy(in, buf, count);
403 
404 	/* Let's clean up the target. 0 is a blank pattern */
405 	memset(&layers, 0, sizeof(layers));
406 
407 	/* First, pick the first layer */
408 	if (unlikely(!isdigit(*in)))
409 		return -EINVAL;
410 	layers[0] = simple_strtoul(in, NULL, 10);
411 	DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]);
412 
413 	temp = in;
414 	for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) {
415 		if (unlikely(!isdigit(*(++temp))))
416 			return -EINVAL;
417 		layers[i] = simple_strtoul(temp, NULL, 10);
418 		DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]);
419 	}
420 
421 	/* So far so good, let's get in deep */
422 	write_lock(&entry->rw_lock);
423 
424 	/* First, overwrite the current layers with the new ones, not touching
425 	   the hardware path. */
426 	memcpy(&entry->devpath.layers, &layers, sizeof(layers));
427 
428 	/* Now, dive in. Write back to the hardware */
429 	pdcspath_store(entry);
430 	write_unlock(&entry->rw_lock);
431 
432 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n",
433 		entry->name, buf);
434 
435 	return count;
436 }
437 
438 /**
439  * pdcspath_attr_show - Generic read function call wrapper.
440  * @kobj: The kobject to get info from.
441  * @attr: The attribute looked upon.
442  * @buf: The output buffer.
443  */
444 static ssize_t
445 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf)
446 {
447 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
448 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
449 	ssize_t ret = 0;
450 
451 	if (pdcs_attr->show)
452 		ret = pdcs_attr->show(entry, buf);
453 
454 	return ret;
455 }
456 
457 /**
458  * pdcspath_attr_store - Generic write function call wrapper.
459  * @kobj: The kobject to write info to.
460  * @attr: The attribute to be modified.
461  * @buf: The input buffer.
462  * @count: The size of the buffer.
463  */
464 static ssize_t
465 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr,
466 			const char *buf, size_t count)
467 {
468 	struct pdcspath_entry *entry = to_pdcspath_entry(kobj);
469 	struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr);
470 	ssize_t ret = 0;
471 
472 	if (!capable(CAP_SYS_ADMIN))
473 		return -EACCES;
474 
475 	if (pdcs_attr->store)
476 		ret = pdcs_attr->store(entry, buf, count);
477 
478 	return ret;
479 }
480 
481 static struct sysfs_ops pdcspath_attr_ops = {
482 	.show = pdcspath_attr_show,
483 	.store = pdcspath_attr_store,
484 };
485 
486 /* These are the two attributes of any PDC path. */
487 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write);
488 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write);
489 
490 static struct attribute *paths_subsys_attrs[] = {
491 	&paths_attr_hwpath.attr,
492 	&paths_attr_layer.attr,
493 	NULL,
494 };
495 
496 /* Specific kobject type for our PDC paths */
497 static struct kobj_type ktype_pdcspath = {
498 	.sysfs_ops = &pdcspath_attr_ops,
499 	.default_attrs = paths_subsys_attrs,
500 };
501 
502 /* We hard define the 4 types of path we expect to find */
503 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary);
504 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console);
505 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative);
506 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard);
507 
508 /* An array containing all PDC paths we will deal with */
509 static struct pdcspath_entry *pdcspath_entries[] = {
510 	&pdcspath_entry_primary,
511 	&pdcspath_entry_alternative,
512 	&pdcspath_entry_console,
513 	&pdcspath_entry_keyboard,
514 	NULL,
515 };
516 
517 
518 /* For more insight of what's going on here, refer to PDC Procedures doc,
519  * Section PDC_STABLE */
520 
521 /**
522  * pdcs_size_read - Stable Storage size output.
523  * @entry: An allocated and populated subsytem struct. We don't use it tho.
524  * @buf: The output buffer to write to.
525  */
526 static ssize_t
527 pdcs_size_read(struct subsystem *entry, char *buf)
528 {
529 	char *out = buf;
530 
531 	if (!entry || !buf)
532 		return -EINVAL;
533 
534 	/* show the size of the stable storage */
535 	out += sprintf(out, "%ld\n", pdcs_size);
536 
537 	return out - buf;
538 }
539 
540 /**
541  * pdcs_auto_read - Stable Storage autoboot/search flag output.
542  * @entry: An allocated and populated subsytem struct. We don't use it tho.
543  * @buf: The output buffer to write to.
544  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
545  */
546 static ssize_t
547 pdcs_auto_read(struct subsystem *entry, char *buf, int knob)
548 {
549 	char *out = buf;
550 	struct pdcspath_entry *pathentry;
551 
552 	if (!entry || !buf)
553 		return -EINVAL;
554 
555 	/* Current flags are stored in primary boot path entry */
556 	pathentry = &pdcspath_entry_primary;
557 
558 	read_lock(&pathentry->rw_lock);
559 	out += sprintf(out, "%s\n", (pathentry->devpath.flags & knob) ?
560 					"On" : "Off");
561 	read_unlock(&pathentry->rw_lock);
562 
563 	return out - buf;
564 }
565 
566 /**
567  * pdcs_autoboot_read - Stable Storage autoboot flag output.
568  * @entry: An allocated and populated subsytem struct. We don't use it tho.
569  * @buf: The output buffer to write to.
570  */
571 static inline ssize_t
572 pdcs_autoboot_read(struct subsystem *entry, char *buf)
573 {
574 	return pdcs_auto_read(entry, buf, PF_AUTOBOOT);
575 }
576 
577 /**
578  * pdcs_autosearch_read - Stable Storage autoboot flag output.
579  * @entry: An allocated and populated subsytem struct. We don't use it tho.
580  * @buf: The output buffer to write to.
581  */
582 static inline ssize_t
583 pdcs_autosearch_read(struct subsystem *entry, char *buf)
584 {
585 	return pdcs_auto_read(entry, buf, PF_AUTOSEARCH);
586 }
587 
588 /**
589  * pdcs_timer_read - Stable Storage timer count output (in seconds).
590  * @entry: An allocated and populated subsytem struct. We don't use it tho.
591  * @buf: The output buffer to write to.
592  *
593  * The value of the timer field correponds to a number of seconds in powers of 2.
594  */
595 static ssize_t
596 pdcs_timer_read(struct subsystem *entry, char *buf)
597 {
598 	char *out = buf;
599 	struct pdcspath_entry *pathentry;
600 
601 	if (!entry || !buf)
602 		return -EINVAL;
603 
604 	/* Current flags are stored in primary boot path entry */
605 	pathentry = &pdcspath_entry_primary;
606 
607 	/* print the timer value in seconds */
608 	read_lock(&pathentry->rw_lock);
609 	out += sprintf(out, "%u\n", (pathentry->devpath.flags & PF_TIMER) ?
610 				(1 << (pathentry->devpath.flags & PF_TIMER)) : 0);
611 	read_unlock(&pathentry->rw_lock);
612 
613 	return out - buf;
614 }
615 
616 /**
617  * pdcs_osid_read - Stable Storage OS ID register output.
618  * @entry: An allocated and populated subsytem struct. We don't use it tho.
619  * @buf: The output buffer to write to.
620  */
621 static ssize_t
622 pdcs_osid_read(struct subsystem *entry, char *buf)
623 {
624 	char *out = buf;
625 
626 	if (!entry || !buf)
627 		return -EINVAL;
628 
629 	out += sprintf(out, "%s dependent data (0x%.4x)\n",
630 		os_id_to_string(pdcs_osid), pdcs_osid);
631 
632 	return out - buf;
633 }
634 
635 /**
636  * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output.
637  * @entry: An allocated and populated subsytem struct. We don't use it tho.
638  * @buf: The output buffer to write to.
639  *
640  * This can hold 16 bytes of OS-Dependent data.
641  */
642 static ssize_t
643 pdcs_osdep1_read(struct subsystem *entry, char *buf)
644 {
645 	char *out = buf;
646 	u32 result[4];
647 
648 	if (!entry || !buf)
649 		return -EINVAL;
650 
651 	if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK)
652 		return -EIO;
653 
654 	out += sprintf(out, "0x%.8x\n", result[0]);
655 	out += sprintf(out, "0x%.8x\n", result[1]);
656 	out += sprintf(out, "0x%.8x\n", result[2]);
657 	out += sprintf(out, "0x%.8x\n", result[3]);
658 
659 	return out - buf;
660 }
661 
662 /**
663  * pdcs_diagnostic_read - Stable Storage Diagnostic register output.
664  * @entry: An allocated and populated subsytem struct. We don't use it tho.
665  * @buf: The output buffer to write to.
666  *
667  * I have NFC how to interpret the content of that register ;-).
668  */
669 static ssize_t
670 pdcs_diagnostic_read(struct subsystem *entry, char *buf)
671 {
672 	char *out = buf;
673 	u32 result;
674 
675 	if (!entry || !buf)
676 		return -EINVAL;
677 
678 	/* get diagnostic */
679 	if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK)
680 		return -EIO;
681 
682 	out += sprintf(out, "0x%.4x\n", (result >> 16));
683 
684 	return out - buf;
685 }
686 
687 /**
688  * pdcs_fastsize_read - Stable Storage FastSize register output.
689  * @entry: An allocated and populated subsytem struct. We don't use it tho.
690  * @buf: The output buffer to write to.
691  *
692  * This register holds the amount of system RAM to be tested during boot sequence.
693  */
694 static ssize_t
695 pdcs_fastsize_read(struct subsystem *entry, char *buf)
696 {
697 	char *out = buf;
698 	u32 result;
699 
700 	if (!entry || !buf)
701 		return -EINVAL;
702 
703 	/* get fast-size */
704 	if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK)
705 		return -EIO;
706 
707 	if ((result & 0x0F) < 0x0E)
708 		out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256);
709 	else
710 		out += sprintf(out, "All");
711 	out += sprintf(out, "\n");
712 
713 	return out - buf;
714 }
715 
716 /**
717  * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output.
718  * @entry: An allocated and populated subsytem struct. We don't use it tho.
719  * @buf: The output buffer to write to.
720  *
721  * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available.
722  */
723 static ssize_t
724 pdcs_osdep2_read(struct subsystem *entry, char *buf)
725 {
726 	char *out = buf;
727 	unsigned long size;
728 	unsigned short i;
729 	u32 result;
730 
731 	if (unlikely(pdcs_size <= 224))
732 		return -ENODATA;
733 
734 	size = pdcs_size - 224;
735 
736 	if (!entry || !buf)
737 		return -EINVAL;
738 
739 	for (i=0; i<size; i+=4) {
740 		if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result,
741 					sizeof(result)) != PDC_OK))
742 			return -EIO;
743 		out += sprintf(out, "0x%.8x\n", result);
744 	}
745 
746 	return out - buf;
747 }
748 
749 /**
750  * pdcs_auto_write - This function handles autoboot/search flag modifying.
751  * @entry: An allocated and populated subsytem struct. We don't use it tho.
752  * @buf: The input buffer to read from.
753  * @count: The number of bytes to be read.
754  * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag
755  *
756  * We will call this function to change the current autoboot flag.
757  * We expect a precise syntax:
758  *	\"n\" (n == 0 or 1) to toggle AutoBoot Off or On
759  */
760 static ssize_t
761 pdcs_auto_write(struct subsystem *entry, const char *buf, size_t count, int knob)
762 {
763 	struct pdcspath_entry *pathentry;
764 	unsigned char flags;
765 	char in[count+1], *temp;
766 	char c;
767 
768 	if (!capable(CAP_SYS_ADMIN))
769 		return -EACCES;
770 
771 	if (!entry || !buf || !count)
772 		return -EINVAL;
773 
774 	/* We'll use a local copy of buf */
775 	memset(in, 0, count+1);
776 	strncpy(in, buf, count);
777 
778 	/* Current flags are stored in primary boot path entry */
779 	pathentry = &pdcspath_entry_primary;
780 
781 	/* Be nice to the existing flag record */
782 	read_lock(&pathentry->rw_lock);
783 	flags = pathentry->devpath.flags;
784 	read_unlock(&pathentry->rw_lock);
785 
786 	DPRINTK("%s: flags before: 0x%X\n", __func__, flags);
787 
788 	temp = in;
789 
790 	while (*temp && isspace(*temp))
791 		temp++;
792 
793 	c = *temp++ - '0';
794 	if ((c != 0) && (c != 1))
795 		goto parse_error;
796 	if (c == 0)
797 		flags &= ~knob;
798 	else
799 		flags |= knob;
800 
801 	DPRINTK("%s: flags after: 0x%X\n", __func__, flags);
802 
803 	/* So far so good, let's get in deep */
804 	write_lock(&pathentry->rw_lock);
805 
806 	/* Change the path entry flags first */
807 	pathentry->devpath.flags = flags;
808 
809 	/* Now, dive in. Write back to the hardware */
810 	pdcspath_store(pathentry);
811 	write_unlock(&pathentry->rw_lock);
812 
813 	printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n",
814 		(knob & PF_AUTOBOOT) ? "autoboot" : "autosearch",
815 		(flags & knob) ? "On" : "Off");
816 
817 	return count;
818 
819 parse_error:
820 	printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__);
821 	return -EINVAL;
822 }
823 
824 /**
825  * pdcs_autoboot_write - This function handles autoboot flag modifying.
826  * @entry: An allocated and populated subsytem struct. We don't use it tho.
827  * @buf: The input buffer to read from.
828  * @count: The number of bytes to be read.
829  *
830  * We will call this function to change the current boot flags.
831  * We expect a precise syntax:
832  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
833  */
834 static inline ssize_t
835 pdcs_autoboot_write(struct subsystem *entry, const char *buf, size_t count)
836 {
837 	return pdcs_auto_write(entry, buf, count, PF_AUTOBOOT);
838 }
839 
840 /**
841  * pdcs_autosearch_write - This function handles autosearch flag modifying.
842  * @entry: An allocated and populated subsytem struct. We don't use it tho.
843  * @buf: The input buffer to read from.
844  * @count: The number of bytes to be read.
845  *
846  * We will call this function to change the current boot flags.
847  * We expect a precise syntax:
848  *	\"n\" (n == 0 or 1) to toggle AutoSearch Off or On
849  */
850 static inline ssize_t
851 pdcs_autosearch_write(struct subsystem *entry, const char *buf, size_t count)
852 {
853 	return pdcs_auto_write(entry, buf, count, PF_AUTOSEARCH);
854 }
855 
856 /**
857  * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input.
858  * @entry: An allocated and populated subsytem struct. We don't use it tho.
859  * @buf: The input buffer to read from.
860  * @count: The number of bytes to be read.
861  *
862  * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte
863  * write approach. It's up to userspace to deal with it when constructing
864  * its input buffer.
865  */
866 static ssize_t
867 pdcs_osdep1_write(struct subsystem *entry, const char *buf, size_t count)
868 {
869 	u8 in[16];
870 
871 	if (!capable(CAP_SYS_ADMIN))
872 		return -EACCES;
873 
874 	if (!entry || !buf || !count)
875 		return -EINVAL;
876 
877 	if (unlikely(pdcs_osid != OS_ID_LINUX))
878 		return -EPERM;
879 
880 	if (count > 16)
881 		return -EMSGSIZE;
882 
883 	/* We'll use a local copy of buf */
884 	memset(in, 0, 16);
885 	memcpy(in, buf, count);
886 
887 	if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK)
888 		return -EIO;
889 
890 	return count;
891 }
892 
893 /**
894  * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input.
895  * @entry: An allocated and populated subsytem struct. We don't use it tho.
896  * @buf: The input buffer to read from.
897  * @count: The number of bytes to be read.
898  *
899  * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a
900  * byte-by-byte write approach. It's up to userspace to deal with it when
901  * constructing its input buffer.
902  */
903 static ssize_t
904 pdcs_osdep2_write(struct subsystem *entry, const char *buf, size_t count)
905 {
906 	unsigned long size;
907 	unsigned short i;
908 	u8 in[4];
909 
910 	if (!capable(CAP_SYS_ADMIN))
911 		return -EACCES;
912 
913 	if (!entry || !buf || !count)
914 		return -EINVAL;
915 
916 	if (unlikely(pdcs_size <= 224))
917 		return -ENOSYS;
918 
919 	if (unlikely(pdcs_osid != OS_ID_LINUX))
920 		return -EPERM;
921 
922 	size = pdcs_size - 224;
923 
924 	if (count > size)
925 		return -EMSGSIZE;
926 
927 	/* We'll use a local copy of buf */
928 
929 	for (i=0; i<count; i+=4) {
930 		memset(in, 0, 4);
931 		memcpy(in, buf+i, (count-i < 4) ? count-i : 4);
932 		if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in,
933 					sizeof(in)) != PDC_OK))
934 			return -EIO;
935 	}
936 
937 	return count;
938 }
939 
940 /* The remaining attributes. */
941 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL);
942 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write);
943 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write);
944 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL);
945 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL);
946 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write);
947 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL);
948 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL);
949 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write);
950 
951 static struct subsys_attribute *pdcs_subsys_attrs[] = {
952 	&pdcs_attr_size,
953 	&pdcs_attr_autoboot,
954 	&pdcs_attr_autosearch,
955 	&pdcs_attr_timer,
956 	&pdcs_attr_osid,
957 	&pdcs_attr_osdep1,
958 	&pdcs_attr_diagnostic,
959 	&pdcs_attr_fastsize,
960 	&pdcs_attr_osdep2,
961 	NULL,
962 };
963 
964 static decl_subsys(paths, &ktype_pdcspath, NULL);
965 static decl_subsys(stable, NULL, NULL);
966 
967 /**
968  * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage.
969  *
970  * It creates kobjects corresponding to each path entry with nice sysfs
971  * links to the real device. This is where the magic takes place: when
972  * registering the subsystem attributes during module init, each kobject hereby
973  * created will show in the sysfs tree as a folder containing files as defined
974  * by path_subsys_attr[].
975  */
976 static inline int __init
977 pdcs_register_pathentries(void)
978 {
979 	unsigned short i;
980 	struct pdcspath_entry *entry;
981 	int err;
982 
983 	/* Initialize the entries rw_lock before anything else */
984 	for (i = 0; (entry = pdcspath_entries[i]); i++)
985 		rwlock_init(&entry->rw_lock);
986 
987 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
988 		write_lock(&entry->rw_lock);
989 		err = pdcspath_fetch(entry);
990 		write_unlock(&entry->rw_lock);
991 
992 		if (err < 0)
993 			continue;
994 
995 		if ((err = kobject_set_name(&entry->kobj, "%s", entry->name)))
996 			return err;
997 		kobj_set_kset_s(entry, paths_subsys);
998 		if ((err = kobject_register(&entry->kobj)))
999 			return err;
1000 
1001 		/* kobject is now registered */
1002 		write_lock(&entry->rw_lock);
1003 		entry->ready = 2;
1004 
1005 		/* Add a nice symlink to the real device */
1006 		if (entry->dev)
1007 			sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device");
1008 
1009 		write_unlock(&entry->rw_lock);
1010 	}
1011 
1012 	return 0;
1013 }
1014 
1015 /**
1016  * pdcs_unregister_pathentries - Routine called when unregistering the module.
1017  */
1018 static inline void
1019 pdcs_unregister_pathentries(void)
1020 {
1021 	unsigned short i;
1022 	struct pdcspath_entry *entry;
1023 
1024 	for (i = 0; (entry = pdcspath_entries[i]); i++) {
1025 		read_lock(&entry->rw_lock);
1026 		if (entry->ready >= 2)
1027 			kobject_unregister(&entry->kobj);
1028 		read_unlock(&entry->rw_lock);
1029 	}
1030 }
1031 
1032 /*
1033  * For now we register the stable subsystem with the firmware subsystem
1034  * and the paths subsystem with the stable subsystem
1035  */
1036 static int __init
1037 pdc_stable_init(void)
1038 {
1039 	struct subsys_attribute *attr;
1040 	int i, rc = 0, error = 0;
1041 	u32 result;
1042 
1043 	/* find the size of the stable storage */
1044 	if (pdc_stable_get_size(&pdcs_size) != PDC_OK)
1045 		return -ENODEV;
1046 
1047 	/* make sure we have enough data */
1048 	if (pdcs_size < 96)
1049 		return -ENODATA;
1050 
1051 	printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION);
1052 
1053 	/* get OSID */
1054 	if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK)
1055 		return -EIO;
1056 
1057 	/* the actual result is 16 bits away */
1058 	pdcs_osid = (u16)(result >> 16);
1059 
1060 	/* For now we'll register the stable subsys within this driver */
1061 	if ((rc = firmware_register(&stable_subsys)))
1062 		goto fail_firmreg;
1063 
1064 	/* Don't forget the root entries */
1065 	for (i = 0; (attr = pdcs_subsys_attrs[i]) && !error; i++)
1066 		if (attr->show)
1067 			error = subsys_create_file(&stable_subsys, attr);
1068 
1069 	/* register the paths subsys as a subsystem of stable subsys */
1070 	kset_set_kset_s(&paths_subsys, stable_subsys);
1071 	if ((rc = subsystem_register(&paths_subsys)))
1072 		goto fail_subsysreg;
1073 
1074 	/* now we create all "files" for the paths subsys */
1075 	if ((rc = pdcs_register_pathentries()))
1076 		goto fail_pdcsreg;
1077 
1078 	return rc;
1079 
1080 fail_pdcsreg:
1081 	pdcs_unregister_pathentries();
1082 	subsystem_unregister(&paths_subsys);
1083 
1084 fail_subsysreg:
1085 	firmware_unregister(&stable_subsys);
1086 
1087 fail_firmreg:
1088 	printk(KERN_INFO PDCS_PREFIX " bailing out\n");
1089 	return rc;
1090 }
1091 
1092 static void __exit
1093 pdc_stable_exit(void)
1094 {
1095 	pdcs_unregister_pathentries();
1096 	subsystem_unregister(&paths_subsys);
1097 
1098 	firmware_unregister(&stable_subsys);
1099 }
1100 
1101 
1102 module_init(pdc_stable_init);
1103 module_exit(pdc_stable_exit);
1104