1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Interfaces to retrieve and set PDC Stable options (firmware) 4 * 5 * Copyright (C) 2005-2006 Thibaut VARENE <varenet@parisc-linux.org> 6 * 7 * DEV NOTE: the PDC Procedures reference states that: 8 * "A minimum of 96 bytes of Stable Storage is required. Providing more than 9 * 96 bytes of Stable Storage is optional [...]. Failure to provide the 10 * optional locations from 96 to 192 results in the loss of certain 11 * functionality during boot." 12 * 13 * Since locations between 96 and 192 are the various paths, most (if not 14 * all) PA-RISC machines should have them. Anyway, for safety reasons, the 15 * following code can deal with just 96 bytes of Stable Storage, and all 16 * sizes between 96 and 192 bytes (provided they are multiple of struct 17 * pdc_module_path size, eg: 128, 160 and 192) to provide full information. 18 * One last word: there's one path we can always count on: the primary path. 19 * Anything above 224 bytes is used for 'osdep2' OS-dependent storage area. 20 * 21 * The first OS-dependent area should always be available. Obviously, this is 22 * not true for the other one. Also bear in mind that reading/writing from/to 23 * osdep2 is much more expensive than from/to osdep1. 24 * NOTE: We do not handle the 2 bytes OS-dep area at 0x5D, nor the first 25 * 2 bytes of storage available right after OSID. That's a total of 4 bytes 26 * sacrificed: -ETOOLAZY :P 27 * 28 * The current policy wrt file permissions is: 29 * - write: root only 30 * - read: (reading triggers PDC calls) ? root only : everyone 31 * The rationale is that PDC calls could hog (DoS) the machine. 32 * 33 * TODO: 34 * - timer/fastsize write calls 35 */ 36 37 #undef PDCS_DEBUG 38 #ifdef PDCS_DEBUG 39 #define DPRINTK(fmt, args...) printk(KERN_DEBUG fmt, ## args) 40 #else 41 #define DPRINTK(fmt, args...) 42 #endif 43 44 #include <linux/module.h> 45 #include <linux/init.h> 46 #include <linux/kernel.h> 47 #include <linux/string.h> 48 #include <linux/capability.h> 49 #include <linux/ctype.h> 50 #include <linux/sysfs.h> 51 #include <linux/kobject.h> 52 #include <linux/device.h> 53 #include <linux/errno.h> 54 #include <linux/spinlock.h> 55 56 #include <asm/pdc.h> 57 #include <asm/page.h> 58 #include <linux/uaccess.h> 59 #include <asm/hardware.h> 60 61 #define PDCS_VERSION "0.30" 62 #define PDCS_PREFIX "PDC Stable Storage" 63 64 #define PDCS_ADDR_PPRI 0x00 65 #define PDCS_ADDR_OSID 0x40 66 #define PDCS_ADDR_OSD1 0x48 67 #define PDCS_ADDR_DIAG 0x58 68 #define PDCS_ADDR_FSIZ 0x5C 69 #define PDCS_ADDR_PCON 0x60 70 #define PDCS_ADDR_PALT 0x80 71 #define PDCS_ADDR_PKBD 0xA0 72 #define PDCS_ADDR_OSD2 0xE0 73 74 MODULE_AUTHOR("Thibaut VARENE <varenet@parisc-linux.org>"); 75 MODULE_DESCRIPTION("sysfs interface to HP PDC Stable Storage data"); 76 MODULE_LICENSE("GPL"); 77 MODULE_VERSION(PDCS_VERSION); 78 79 /* holds Stable Storage size. Initialized once and for all, no lock needed */ 80 static unsigned long pdcs_size __read_mostly; 81 82 /* holds OS ID. Initialized once and for all, hopefully to 0x0006 */ 83 static u16 pdcs_osid __read_mostly; 84 85 /* This struct defines what we need to deal with a parisc pdc path entry */ 86 struct pdcspath_entry { 87 rwlock_t rw_lock; /* to protect path entry access */ 88 short ready; /* entry record is valid if != 0 */ 89 unsigned long addr; /* entry address in stable storage */ 90 char *name; /* entry name */ 91 struct pdc_module_path devpath; /* device path in parisc representation */ 92 struct device *dev; /* corresponding device */ 93 struct kobject kobj; 94 }; 95 96 struct pdcspath_attribute { 97 struct attribute attr; 98 ssize_t (*show)(struct pdcspath_entry *entry, char *buf); 99 ssize_t (*store)(struct pdcspath_entry *entry, const char *buf, size_t count); 100 }; 101 102 #define PDCSPATH_ENTRY(_addr, _name) \ 103 struct pdcspath_entry pdcspath_entry_##_name = { \ 104 .ready = 0, \ 105 .addr = _addr, \ 106 .name = __stringify(_name), \ 107 }; 108 109 #define PDCS_ATTR(_name, _mode, _show, _store) \ 110 struct kobj_attribute pdcs_attr_##_name = { \ 111 .attr = {.name = __stringify(_name), .mode = _mode}, \ 112 .show = _show, \ 113 .store = _store, \ 114 }; 115 116 #define PATHS_ATTR(_name, _mode, _show, _store) \ 117 struct pdcspath_attribute paths_attr_##_name = { \ 118 .attr = {.name = __stringify(_name), .mode = _mode}, \ 119 .show = _show, \ 120 .store = _store, \ 121 }; 122 123 #define to_pdcspath_attribute(_attr) container_of(_attr, struct pdcspath_attribute, attr) 124 #define to_pdcspath_entry(obj) container_of(obj, struct pdcspath_entry, kobj) 125 126 /** 127 * pdcspath_fetch - This function populates the path entry structs. 128 * @entry: A pointer to an allocated pdcspath_entry. 129 * 130 * The general idea is that you don't read from the Stable Storage every time 131 * you access the files provided by the facilities. We store a copy of the 132 * content of the stable storage WRT various paths in these structs. We read 133 * these structs when reading the files, and we will write to these structs when 134 * writing to the files, and only then write them back to the Stable Storage. 135 * 136 * This function expects to be called with @entry->rw_lock write-hold. 137 */ 138 static int 139 pdcspath_fetch(struct pdcspath_entry *entry) 140 { 141 struct pdc_module_path *devpath; 142 143 if (!entry) 144 return -EINVAL; 145 146 devpath = &entry->devpath; 147 148 DPRINTK("%s: fetch: 0x%p, 0x%p, addr: 0x%lx\n", __func__, 149 entry, devpath, entry->addr); 150 151 /* addr, devpath and count must be word aligned */ 152 if (pdc_stable_read(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) 153 return -EIO; 154 155 /* Find the matching device. 156 NOTE: hardware_path overlays with pdc_module_path, so the nice cast can 157 be used */ 158 entry->dev = hwpath_to_device((struct hardware_path *)devpath); 159 160 entry->ready = 1; 161 162 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); 163 164 return 0; 165 } 166 167 /** 168 * pdcspath_store - This function writes a path to stable storage. 169 * @entry: A pointer to an allocated pdcspath_entry. 170 * 171 * It can be used in two ways: either by passing it a preset devpath struct 172 * containing an already computed hardware path, or by passing it a device 173 * pointer, from which it'll find out the corresponding hardware path. 174 * For now we do not handle the case where there's an error in writing to the 175 * Stable Storage area, so you'd better not mess up the data :P 176 * 177 * This function expects to be called with @entry->rw_lock write-hold. 178 */ 179 static void 180 pdcspath_store(struct pdcspath_entry *entry) 181 { 182 struct pdc_module_path *devpath; 183 184 BUG_ON(!entry); 185 186 devpath = &entry->devpath; 187 188 /* We expect the caller to set the ready flag to 0 if the hardware 189 path struct provided is invalid, so that we know we have to fill it. 190 First case, we don't have a preset hwpath... */ 191 if (!entry->ready) { 192 /* ...but we have a device, map it */ 193 BUG_ON(!entry->dev); 194 device_to_hwpath(entry->dev, (struct hardware_path *)devpath); 195 } 196 /* else, we expect the provided hwpath to be valid. */ 197 198 DPRINTK("%s: store: 0x%p, 0x%p, addr: 0x%lx\n", __func__, 199 entry, devpath, entry->addr); 200 201 /* addr, devpath and count must be word aligned */ 202 if (pdc_stable_write(entry->addr, devpath, sizeof(*devpath)) != PDC_OK) 203 WARN(1, KERN_ERR "%s: an error occurred when writing to PDC.\n" 204 "It is likely that the Stable Storage data has been corrupted.\n" 205 "Please check it carefully upon next reboot.\n", __func__); 206 207 /* kobject is already registered */ 208 entry->ready = 2; 209 210 DPRINTK("%s: device: 0x%p\n", __func__, entry->dev); 211 } 212 213 /** 214 * pdcspath_hwpath_read - This function handles hardware path pretty printing. 215 * @entry: An allocated and populated pdscpath_entry struct. 216 * @buf: The output buffer to write to. 217 * 218 * We will call this function to format the output of the hwpath attribute file. 219 */ 220 static ssize_t 221 pdcspath_hwpath_read(struct pdcspath_entry *entry, char *buf) 222 { 223 char *out = buf; 224 struct pdc_module_path *devpath; 225 short i; 226 227 if (!entry || !buf) 228 return -EINVAL; 229 230 read_lock(&entry->rw_lock); 231 devpath = &entry->devpath; 232 i = entry->ready; 233 read_unlock(&entry->rw_lock); 234 235 if (!i) /* entry is not ready */ 236 return -ENODATA; 237 238 for (i = 0; i < 6; i++) { 239 if (devpath->path.bc[i] < 0) 240 continue; 241 out += sprintf(out, "%d/", devpath->path.bc[i]); 242 } 243 out += sprintf(out, "%u\n", (unsigned char)devpath->path.mod); 244 245 return out - buf; 246 } 247 248 /** 249 * pdcspath_hwpath_write - This function handles hardware path modifying. 250 * @entry: An allocated and populated pdscpath_entry struct. 251 * @buf: The input buffer to read from. 252 * @count: The number of bytes to be read. 253 * 254 * We will call this function to change the current hardware path. 255 * Hardware paths are to be given '/'-delimited, without brackets. 256 * We make sure that the provided path actually maps to an existing 257 * device, BUT nothing would prevent some foolish user to set the path to some 258 * PCI bridge or even a CPU... 259 * A better work around would be to make sure we are at the end of a device tree 260 * for instance, but it would be IMHO beyond the simple scope of that driver. 261 * The aim is to provide a facility. Data correctness is left to userland. 262 */ 263 static ssize_t 264 pdcspath_hwpath_write(struct pdcspath_entry *entry, const char *buf, size_t count) 265 { 266 struct hardware_path hwpath; 267 unsigned short i; 268 char in[64], *temp; 269 struct device *dev; 270 int ret; 271 272 if (!entry || !buf || !count) 273 return -EINVAL; 274 275 /* We'll use a local copy of buf */ 276 count = min_t(size_t, count, sizeof(in)-1); 277 strncpy(in, buf, count); 278 in[count] = '\0'; 279 280 /* Let's clean up the target. 0xff is a blank pattern */ 281 memset(&hwpath, 0xff, sizeof(hwpath)); 282 283 /* First, pick the mod field (the last one of the input string) */ 284 if (!(temp = strrchr(in, '/'))) 285 return -EINVAL; 286 287 hwpath.mod = simple_strtoul(temp+1, NULL, 10); 288 in[temp-in] = '\0'; /* truncate the remaining string. just precaution */ 289 DPRINTK("%s: mod: %d\n", __func__, hwpath.mod); 290 291 /* Then, loop for each delimiter, making sure we don't have too many. 292 we write the bc fields in a down-top way. No matter what, we stop 293 before writing the last field. If there are too many fields anyway, 294 then the user is a moron and it'll be caught up later when we'll 295 check the consistency of the given hwpath. */ 296 for (i=5; ((temp = strrchr(in, '/'))) && (temp-in > 0) && (likely(i)); i--) { 297 hwpath.bc[i] = simple_strtoul(temp+1, NULL, 10); 298 in[temp-in] = '\0'; 299 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]); 300 } 301 302 /* Store the final field */ 303 hwpath.bc[i] = simple_strtoul(in, NULL, 10); 304 DPRINTK("%s: bc[%d]: %d\n", __func__, i, hwpath.path.bc[i]); 305 306 /* Now we check that the user isn't trying to lure us */ 307 if (!(dev = hwpath_to_device((struct hardware_path *)&hwpath))) { 308 printk(KERN_WARNING "%s: attempt to set invalid \"%s\" " 309 "hardware path: %s\n", __func__, entry->name, buf); 310 return -EINVAL; 311 } 312 313 /* So far so good, let's get in deep */ 314 write_lock(&entry->rw_lock); 315 entry->ready = 0; 316 entry->dev = dev; 317 318 /* Now, dive in. Write back to the hardware */ 319 pdcspath_store(entry); 320 321 /* Update the symlink to the real device */ 322 sysfs_remove_link(&entry->kobj, "device"); 323 write_unlock(&entry->rw_lock); 324 325 ret = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); 326 WARN_ON(ret); 327 328 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" path to \"%s\"\n", 329 entry->name, buf); 330 331 return count; 332 } 333 334 /** 335 * pdcspath_layer_read - Extended layer (eg. SCSI ids) pretty printing. 336 * @entry: An allocated and populated pdscpath_entry struct. 337 * @buf: The output buffer to write to. 338 * 339 * We will call this function to format the output of the layer attribute file. 340 */ 341 static ssize_t 342 pdcspath_layer_read(struct pdcspath_entry *entry, char *buf) 343 { 344 char *out = buf; 345 struct pdc_module_path *devpath; 346 short i; 347 348 if (!entry || !buf) 349 return -EINVAL; 350 351 read_lock(&entry->rw_lock); 352 devpath = &entry->devpath; 353 i = entry->ready; 354 read_unlock(&entry->rw_lock); 355 356 if (!i) /* entry is not ready */ 357 return -ENODATA; 358 359 for (i = 0; i < 6 && devpath->layers[i]; i++) 360 out += sprintf(out, "%u ", devpath->layers[i]); 361 362 out += sprintf(out, "\n"); 363 364 return out - buf; 365 } 366 367 /** 368 * pdcspath_layer_write - This function handles extended layer modifying. 369 * @entry: An allocated and populated pdscpath_entry struct. 370 * @buf: The input buffer to read from. 371 * @count: The number of bytes to be read. 372 * 373 * We will call this function to change the current layer value. 374 * Layers are to be given '.'-delimited, without brackets. 375 * XXX beware we are far less checky WRT input data provided than for hwpath. 376 * Potential harm can be done, since there's no way to check the validity of 377 * the layer fields. 378 */ 379 static ssize_t 380 pdcspath_layer_write(struct pdcspath_entry *entry, const char *buf, size_t count) 381 { 382 unsigned int layers[6]; /* device-specific info (ctlr#, unit#, ...) */ 383 unsigned short i; 384 char in[64], *temp; 385 386 if (!entry || !buf || !count) 387 return -EINVAL; 388 389 /* We'll use a local copy of buf */ 390 count = min_t(size_t, count, sizeof(in)-1); 391 strncpy(in, buf, count); 392 in[count] = '\0'; 393 394 /* Let's clean up the target. 0 is a blank pattern */ 395 memset(&layers, 0, sizeof(layers)); 396 397 /* First, pick the first layer */ 398 if (unlikely(!isdigit(*in))) 399 return -EINVAL; 400 layers[0] = simple_strtoul(in, NULL, 10); 401 DPRINTK("%s: layer[0]: %d\n", __func__, layers[0]); 402 403 temp = in; 404 for (i=1; ((temp = strchr(temp, '.'))) && (likely(i<6)); i++) { 405 if (unlikely(!isdigit(*(++temp)))) 406 return -EINVAL; 407 layers[i] = simple_strtoul(temp, NULL, 10); 408 DPRINTK("%s: layer[%d]: %d\n", __func__, i, layers[i]); 409 } 410 411 /* So far so good, let's get in deep */ 412 write_lock(&entry->rw_lock); 413 414 /* First, overwrite the current layers with the new ones, not touching 415 the hardware path. */ 416 memcpy(&entry->devpath.layers, &layers, sizeof(layers)); 417 418 /* Now, dive in. Write back to the hardware */ 419 pdcspath_store(entry); 420 write_unlock(&entry->rw_lock); 421 422 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" layers to \"%s\"\n", 423 entry->name, buf); 424 425 return count; 426 } 427 428 /** 429 * pdcspath_attr_show - Generic read function call wrapper. 430 * @kobj: The kobject to get info from. 431 * @attr: The attribute looked upon. 432 * @buf: The output buffer. 433 */ 434 static ssize_t 435 pdcspath_attr_show(struct kobject *kobj, struct attribute *attr, char *buf) 436 { 437 struct pdcspath_entry *entry = to_pdcspath_entry(kobj); 438 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); 439 ssize_t ret = 0; 440 441 if (pdcs_attr->show) 442 ret = pdcs_attr->show(entry, buf); 443 444 return ret; 445 } 446 447 /** 448 * pdcspath_attr_store - Generic write function call wrapper. 449 * @kobj: The kobject to write info to. 450 * @attr: The attribute to be modified. 451 * @buf: The input buffer. 452 * @count: The size of the buffer. 453 */ 454 static ssize_t 455 pdcspath_attr_store(struct kobject *kobj, struct attribute *attr, 456 const char *buf, size_t count) 457 { 458 struct pdcspath_entry *entry = to_pdcspath_entry(kobj); 459 struct pdcspath_attribute *pdcs_attr = to_pdcspath_attribute(attr); 460 ssize_t ret = 0; 461 462 if (!capable(CAP_SYS_ADMIN)) 463 return -EACCES; 464 465 if (pdcs_attr->store) 466 ret = pdcs_attr->store(entry, buf, count); 467 468 return ret; 469 } 470 471 static const struct sysfs_ops pdcspath_attr_ops = { 472 .show = pdcspath_attr_show, 473 .store = pdcspath_attr_store, 474 }; 475 476 /* These are the two attributes of any PDC path. */ 477 static PATHS_ATTR(hwpath, 0644, pdcspath_hwpath_read, pdcspath_hwpath_write); 478 static PATHS_ATTR(layer, 0644, pdcspath_layer_read, pdcspath_layer_write); 479 480 static struct attribute *paths_subsys_attrs[] = { 481 &paths_attr_hwpath.attr, 482 &paths_attr_layer.attr, 483 NULL, 484 }; 485 ATTRIBUTE_GROUPS(paths_subsys); 486 487 /* Specific kobject type for our PDC paths */ 488 static struct kobj_type ktype_pdcspath = { 489 .sysfs_ops = &pdcspath_attr_ops, 490 .default_groups = paths_subsys_groups, 491 }; 492 493 /* We hard define the 4 types of path we expect to find */ 494 static PDCSPATH_ENTRY(PDCS_ADDR_PPRI, primary); 495 static PDCSPATH_ENTRY(PDCS_ADDR_PCON, console); 496 static PDCSPATH_ENTRY(PDCS_ADDR_PALT, alternative); 497 static PDCSPATH_ENTRY(PDCS_ADDR_PKBD, keyboard); 498 499 /* An array containing all PDC paths we will deal with */ 500 static struct pdcspath_entry *pdcspath_entries[] = { 501 &pdcspath_entry_primary, 502 &pdcspath_entry_alternative, 503 &pdcspath_entry_console, 504 &pdcspath_entry_keyboard, 505 NULL, 506 }; 507 508 509 /* For more insight of what's going on here, refer to PDC Procedures doc, 510 * Section PDC_STABLE */ 511 512 /** 513 * pdcs_size_read - Stable Storage size output. 514 * @buf: The output buffer to write to. 515 */ 516 static ssize_t pdcs_size_read(struct kobject *kobj, 517 struct kobj_attribute *attr, 518 char *buf) 519 { 520 char *out = buf; 521 522 if (!buf) 523 return -EINVAL; 524 525 /* show the size of the stable storage */ 526 out += sprintf(out, "%ld\n", pdcs_size); 527 528 return out - buf; 529 } 530 531 /** 532 * pdcs_auto_read - Stable Storage autoboot/search flag output. 533 * @buf: The output buffer to write to. 534 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag 535 */ 536 static ssize_t pdcs_auto_read(struct kobject *kobj, 537 struct kobj_attribute *attr, 538 char *buf, int knob) 539 { 540 char *out = buf; 541 struct pdcspath_entry *pathentry; 542 543 if (!buf) 544 return -EINVAL; 545 546 /* Current flags are stored in primary boot path entry */ 547 pathentry = &pdcspath_entry_primary; 548 549 read_lock(&pathentry->rw_lock); 550 out += sprintf(out, "%s\n", (pathentry->devpath.path.flags & knob) ? 551 "On" : "Off"); 552 read_unlock(&pathentry->rw_lock); 553 554 return out - buf; 555 } 556 557 /** 558 * pdcs_autoboot_read - Stable Storage autoboot flag output. 559 * @buf: The output buffer to write to. 560 */ 561 static ssize_t pdcs_autoboot_read(struct kobject *kobj, 562 struct kobj_attribute *attr, char *buf) 563 { 564 return pdcs_auto_read(kobj, attr, buf, PF_AUTOBOOT); 565 } 566 567 /** 568 * pdcs_autosearch_read - Stable Storage autoboot flag output. 569 * @buf: The output buffer to write to. 570 */ 571 static ssize_t pdcs_autosearch_read(struct kobject *kobj, 572 struct kobj_attribute *attr, char *buf) 573 { 574 return pdcs_auto_read(kobj, attr, buf, PF_AUTOSEARCH); 575 } 576 577 /** 578 * pdcs_timer_read - Stable Storage timer count output (in seconds). 579 * @buf: The output buffer to write to. 580 * 581 * The value of the timer field correponds to a number of seconds in powers of 2. 582 */ 583 static ssize_t pdcs_timer_read(struct kobject *kobj, 584 struct kobj_attribute *attr, char *buf) 585 { 586 char *out = buf; 587 struct pdcspath_entry *pathentry; 588 589 if (!buf) 590 return -EINVAL; 591 592 /* Current flags are stored in primary boot path entry */ 593 pathentry = &pdcspath_entry_primary; 594 595 /* print the timer value in seconds */ 596 read_lock(&pathentry->rw_lock); 597 out += sprintf(out, "%u\n", (pathentry->devpath.path.flags & PF_TIMER) ? 598 (1 << (pathentry->devpath.path.flags & PF_TIMER)) : 0); 599 read_unlock(&pathentry->rw_lock); 600 601 return out - buf; 602 } 603 604 /** 605 * pdcs_osid_read - Stable Storage OS ID register output. 606 * @buf: The output buffer to write to. 607 */ 608 static ssize_t pdcs_osid_read(struct kobject *kobj, 609 struct kobj_attribute *attr, char *buf) 610 { 611 char *out = buf; 612 613 if (!buf) 614 return -EINVAL; 615 616 out += sprintf(out, "%s dependent data (0x%.4x)\n", 617 os_id_to_string(pdcs_osid), pdcs_osid); 618 619 return out - buf; 620 } 621 622 /** 623 * pdcs_osdep1_read - Stable Storage OS-Dependent data area 1 output. 624 * @buf: The output buffer to write to. 625 * 626 * This can hold 16 bytes of OS-Dependent data. 627 */ 628 static ssize_t pdcs_osdep1_read(struct kobject *kobj, 629 struct kobj_attribute *attr, char *buf) 630 { 631 char *out = buf; 632 u32 result[4]; 633 634 if (!buf) 635 return -EINVAL; 636 637 if (pdc_stable_read(PDCS_ADDR_OSD1, &result, sizeof(result)) != PDC_OK) 638 return -EIO; 639 640 out += sprintf(out, "0x%.8x\n", result[0]); 641 out += sprintf(out, "0x%.8x\n", result[1]); 642 out += sprintf(out, "0x%.8x\n", result[2]); 643 out += sprintf(out, "0x%.8x\n", result[3]); 644 645 return out - buf; 646 } 647 648 /** 649 * pdcs_diagnostic_read - Stable Storage Diagnostic register output. 650 * @buf: The output buffer to write to. 651 * 652 * I have NFC how to interpret the content of that register ;-). 653 */ 654 static ssize_t pdcs_diagnostic_read(struct kobject *kobj, 655 struct kobj_attribute *attr, char *buf) 656 { 657 char *out = buf; 658 u32 result; 659 660 if (!buf) 661 return -EINVAL; 662 663 /* get diagnostic */ 664 if (pdc_stable_read(PDCS_ADDR_DIAG, &result, sizeof(result)) != PDC_OK) 665 return -EIO; 666 667 out += sprintf(out, "0x%.4x\n", (result >> 16)); 668 669 return out - buf; 670 } 671 672 /** 673 * pdcs_fastsize_read - Stable Storage FastSize register output. 674 * @buf: The output buffer to write to. 675 * 676 * This register holds the amount of system RAM to be tested during boot sequence. 677 */ 678 static ssize_t pdcs_fastsize_read(struct kobject *kobj, 679 struct kobj_attribute *attr, char *buf) 680 { 681 char *out = buf; 682 u32 result; 683 684 if (!buf) 685 return -EINVAL; 686 687 /* get fast-size */ 688 if (pdc_stable_read(PDCS_ADDR_FSIZ, &result, sizeof(result)) != PDC_OK) 689 return -EIO; 690 691 if ((result & 0x0F) < 0x0E) 692 out += sprintf(out, "%d kB", (1<<(result & 0x0F))*256); 693 else 694 out += sprintf(out, "All"); 695 out += sprintf(out, "\n"); 696 697 return out - buf; 698 } 699 700 /** 701 * pdcs_osdep2_read - Stable Storage OS-Dependent data area 2 output. 702 * @buf: The output buffer to write to. 703 * 704 * This can hold pdcs_size - 224 bytes of OS-Dependent data, when available. 705 */ 706 static ssize_t pdcs_osdep2_read(struct kobject *kobj, 707 struct kobj_attribute *attr, char *buf) 708 { 709 char *out = buf; 710 unsigned long size; 711 unsigned short i; 712 u32 result; 713 714 if (unlikely(pdcs_size <= 224)) 715 return -ENODATA; 716 717 size = pdcs_size - 224; 718 719 if (!buf) 720 return -EINVAL; 721 722 for (i=0; i<size; i+=4) { 723 if (unlikely(pdc_stable_read(PDCS_ADDR_OSD2 + i, &result, 724 sizeof(result)) != PDC_OK)) 725 return -EIO; 726 out += sprintf(out, "0x%.8x\n", result); 727 } 728 729 return out - buf; 730 } 731 732 /** 733 * pdcs_auto_write - This function handles autoboot/search flag modifying. 734 * @buf: The input buffer to read from. 735 * @count: The number of bytes to be read. 736 * @knob: The PF_AUTOBOOT or PF_AUTOSEARCH flag 737 * 738 * We will call this function to change the current autoboot flag. 739 * We expect a precise syntax: 740 * \"n\" (n == 0 or 1) to toggle AutoBoot Off or On 741 */ 742 static ssize_t pdcs_auto_write(struct kobject *kobj, 743 struct kobj_attribute *attr, const char *buf, 744 size_t count, int knob) 745 { 746 struct pdcspath_entry *pathentry; 747 unsigned char flags; 748 char in[8], *temp; 749 char c; 750 751 if (!capable(CAP_SYS_ADMIN)) 752 return -EACCES; 753 754 if (!buf || !count) 755 return -EINVAL; 756 757 /* We'll use a local copy of buf */ 758 count = min_t(size_t, count, sizeof(in)-1); 759 strncpy(in, buf, count); 760 in[count] = '\0'; 761 762 /* Current flags are stored in primary boot path entry */ 763 pathentry = &pdcspath_entry_primary; 764 765 /* Be nice to the existing flag record */ 766 read_lock(&pathentry->rw_lock); 767 flags = pathentry->devpath.path.flags; 768 read_unlock(&pathentry->rw_lock); 769 770 DPRINTK("%s: flags before: 0x%X\n", __func__, flags); 771 772 temp = skip_spaces(in); 773 774 c = *temp++ - '0'; 775 if ((c != 0) && (c != 1)) 776 goto parse_error; 777 if (c == 0) 778 flags &= ~knob; 779 else 780 flags |= knob; 781 782 DPRINTK("%s: flags after: 0x%X\n", __func__, flags); 783 784 /* So far so good, let's get in deep */ 785 write_lock(&pathentry->rw_lock); 786 787 /* Change the path entry flags first */ 788 pathentry->devpath.path.flags = flags; 789 790 /* Now, dive in. Write back to the hardware */ 791 pdcspath_store(pathentry); 792 write_unlock(&pathentry->rw_lock); 793 794 printk(KERN_INFO PDCS_PREFIX ": changed \"%s\" to \"%s\"\n", 795 (knob & PF_AUTOBOOT) ? "autoboot" : "autosearch", 796 (flags & knob) ? "On" : "Off"); 797 798 return count; 799 800 parse_error: 801 printk(KERN_WARNING "%s: Parse error: expect \"n\" (n == 0 or 1)\n", __func__); 802 return -EINVAL; 803 } 804 805 /** 806 * pdcs_autoboot_write - This function handles autoboot flag modifying. 807 * @buf: The input buffer to read from. 808 * @count: The number of bytes to be read. 809 * 810 * We will call this function to change the current boot flags. 811 * We expect a precise syntax: 812 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On 813 */ 814 static ssize_t pdcs_autoboot_write(struct kobject *kobj, 815 struct kobj_attribute *attr, 816 const char *buf, size_t count) 817 { 818 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOBOOT); 819 } 820 821 /** 822 * pdcs_autosearch_write - This function handles autosearch flag modifying. 823 * @buf: The input buffer to read from. 824 * @count: The number of bytes to be read. 825 * 826 * We will call this function to change the current boot flags. 827 * We expect a precise syntax: 828 * \"n\" (n == 0 or 1) to toggle AutoSearch Off or On 829 */ 830 static ssize_t pdcs_autosearch_write(struct kobject *kobj, 831 struct kobj_attribute *attr, 832 const char *buf, size_t count) 833 { 834 return pdcs_auto_write(kobj, attr, buf, count, PF_AUTOSEARCH); 835 } 836 837 /** 838 * pdcs_osdep1_write - Stable Storage OS-Dependent data area 1 input. 839 * @buf: The input buffer to read from. 840 * @count: The number of bytes to be read. 841 * 842 * This can store 16 bytes of OS-Dependent data. We use a byte-by-byte 843 * write approach. It's up to userspace to deal with it when constructing 844 * its input buffer. 845 */ 846 static ssize_t pdcs_osdep1_write(struct kobject *kobj, 847 struct kobj_attribute *attr, 848 const char *buf, size_t count) 849 { 850 u8 in[16]; 851 852 if (!capable(CAP_SYS_ADMIN)) 853 return -EACCES; 854 855 if (!buf || !count) 856 return -EINVAL; 857 858 if (unlikely(pdcs_osid != OS_ID_LINUX)) 859 return -EPERM; 860 861 if (count > 16) 862 return -EMSGSIZE; 863 864 /* We'll use a local copy of buf */ 865 memset(in, 0, 16); 866 memcpy(in, buf, count); 867 868 if (pdc_stable_write(PDCS_ADDR_OSD1, &in, sizeof(in)) != PDC_OK) 869 return -EIO; 870 871 return count; 872 } 873 874 /** 875 * pdcs_osdep2_write - Stable Storage OS-Dependent data area 2 input. 876 * @buf: The input buffer to read from. 877 * @count: The number of bytes to be read. 878 * 879 * This can store pdcs_size - 224 bytes of OS-Dependent data. We use a 880 * byte-by-byte write approach. It's up to userspace to deal with it when 881 * constructing its input buffer. 882 */ 883 static ssize_t pdcs_osdep2_write(struct kobject *kobj, 884 struct kobj_attribute *attr, 885 const char *buf, size_t count) 886 { 887 unsigned long size; 888 unsigned short i; 889 u8 in[4]; 890 891 if (!capable(CAP_SYS_ADMIN)) 892 return -EACCES; 893 894 if (!buf || !count) 895 return -EINVAL; 896 897 if (unlikely(pdcs_size <= 224)) 898 return -ENOSYS; 899 900 if (unlikely(pdcs_osid != OS_ID_LINUX)) 901 return -EPERM; 902 903 size = pdcs_size - 224; 904 905 if (count > size) 906 return -EMSGSIZE; 907 908 /* We'll use a local copy of buf */ 909 910 for (i=0; i<count; i+=4) { 911 memset(in, 0, 4); 912 memcpy(in, buf+i, (count-i < 4) ? count-i : 4); 913 if (unlikely(pdc_stable_write(PDCS_ADDR_OSD2 + i, &in, 914 sizeof(in)) != PDC_OK)) 915 return -EIO; 916 } 917 918 return count; 919 } 920 921 /* The remaining attributes. */ 922 static PDCS_ATTR(size, 0444, pdcs_size_read, NULL); 923 static PDCS_ATTR(autoboot, 0644, pdcs_autoboot_read, pdcs_autoboot_write); 924 static PDCS_ATTR(autosearch, 0644, pdcs_autosearch_read, pdcs_autosearch_write); 925 static PDCS_ATTR(timer, 0444, pdcs_timer_read, NULL); 926 static PDCS_ATTR(osid, 0444, pdcs_osid_read, NULL); 927 static PDCS_ATTR(osdep1, 0600, pdcs_osdep1_read, pdcs_osdep1_write); 928 static PDCS_ATTR(diagnostic, 0400, pdcs_diagnostic_read, NULL); 929 static PDCS_ATTR(fastsize, 0400, pdcs_fastsize_read, NULL); 930 static PDCS_ATTR(osdep2, 0600, pdcs_osdep2_read, pdcs_osdep2_write); 931 932 static struct attribute *pdcs_subsys_attrs[] = { 933 &pdcs_attr_size.attr, 934 &pdcs_attr_autoboot.attr, 935 &pdcs_attr_autosearch.attr, 936 &pdcs_attr_timer.attr, 937 &pdcs_attr_osid.attr, 938 &pdcs_attr_osdep1.attr, 939 &pdcs_attr_diagnostic.attr, 940 &pdcs_attr_fastsize.attr, 941 &pdcs_attr_osdep2.attr, 942 NULL, 943 }; 944 945 static const struct attribute_group pdcs_attr_group = { 946 .attrs = pdcs_subsys_attrs, 947 }; 948 949 static struct kobject *stable_kobj; 950 static struct kset *paths_kset; 951 952 /** 953 * pdcs_register_pathentries - Prepares path entries kobjects for sysfs usage. 954 * 955 * It creates kobjects corresponding to each path entry with nice sysfs 956 * links to the real device. This is where the magic takes place: when 957 * registering the subsystem attributes during module init, each kobject hereby 958 * created will show in the sysfs tree as a folder containing files as defined 959 * by path_subsys_attr[]. 960 */ 961 static inline int __init 962 pdcs_register_pathentries(void) 963 { 964 unsigned short i; 965 struct pdcspath_entry *entry; 966 int err; 967 968 /* Initialize the entries rw_lock before anything else */ 969 for (i = 0; (entry = pdcspath_entries[i]); i++) 970 rwlock_init(&entry->rw_lock); 971 972 for (i = 0; (entry = pdcspath_entries[i]); i++) { 973 write_lock(&entry->rw_lock); 974 err = pdcspath_fetch(entry); 975 write_unlock(&entry->rw_lock); 976 977 if (err < 0) 978 continue; 979 980 entry->kobj.kset = paths_kset; 981 err = kobject_init_and_add(&entry->kobj, &ktype_pdcspath, NULL, 982 "%s", entry->name); 983 if (err) { 984 kobject_put(&entry->kobj); 985 return err; 986 } 987 988 /* kobject is now registered */ 989 write_lock(&entry->rw_lock); 990 entry->ready = 2; 991 write_unlock(&entry->rw_lock); 992 993 /* Add a nice symlink to the real device */ 994 if (entry->dev) { 995 err = sysfs_create_link(&entry->kobj, &entry->dev->kobj, "device"); 996 WARN_ON(err); 997 } 998 999 kobject_uevent(&entry->kobj, KOBJ_ADD); 1000 } 1001 1002 return 0; 1003 } 1004 1005 /** 1006 * pdcs_unregister_pathentries - Routine called when unregistering the module. 1007 */ 1008 static inline void 1009 pdcs_unregister_pathentries(void) 1010 { 1011 unsigned short i; 1012 struct pdcspath_entry *entry; 1013 1014 for (i = 0; (entry = pdcspath_entries[i]); i++) { 1015 read_lock(&entry->rw_lock); 1016 if (entry->ready >= 2) 1017 kobject_put(&entry->kobj); 1018 read_unlock(&entry->rw_lock); 1019 } 1020 } 1021 1022 /* 1023 * For now we register the stable subsystem with the firmware subsystem 1024 * and the paths subsystem with the stable subsystem 1025 */ 1026 static int __init 1027 pdc_stable_init(void) 1028 { 1029 int rc = 0, error = 0; 1030 u32 result; 1031 1032 /* find the size of the stable storage */ 1033 if (pdc_stable_get_size(&pdcs_size) != PDC_OK) 1034 return -ENODEV; 1035 1036 /* make sure we have enough data */ 1037 if (pdcs_size < 96) 1038 return -ENODATA; 1039 1040 printk(KERN_INFO PDCS_PREFIX " facility v%s\n", PDCS_VERSION); 1041 1042 /* get OSID */ 1043 if (pdc_stable_read(PDCS_ADDR_OSID, &result, sizeof(result)) != PDC_OK) 1044 return -EIO; 1045 1046 /* the actual result is 16 bits away */ 1047 pdcs_osid = (u16)(result >> 16); 1048 1049 /* For now we'll register the directory at /sys/firmware/stable */ 1050 stable_kobj = kobject_create_and_add("stable", firmware_kobj); 1051 if (!stable_kobj) { 1052 rc = -ENOMEM; 1053 goto fail_firmreg; 1054 } 1055 1056 /* Don't forget the root entries */ 1057 error = sysfs_create_group(stable_kobj, &pdcs_attr_group); 1058 1059 /* register the paths kset as a child of the stable kset */ 1060 paths_kset = kset_create_and_add("paths", NULL, stable_kobj); 1061 if (!paths_kset) { 1062 rc = -ENOMEM; 1063 goto fail_ksetreg; 1064 } 1065 1066 /* now we create all "files" for the paths kset */ 1067 if ((rc = pdcs_register_pathentries())) 1068 goto fail_pdcsreg; 1069 1070 return rc; 1071 1072 fail_pdcsreg: 1073 pdcs_unregister_pathentries(); 1074 kset_unregister(paths_kset); 1075 1076 fail_ksetreg: 1077 kobject_put(stable_kobj); 1078 1079 fail_firmreg: 1080 printk(KERN_INFO PDCS_PREFIX " bailing out\n"); 1081 return rc; 1082 } 1083 1084 static void __exit 1085 pdc_stable_exit(void) 1086 { 1087 pdcs_unregister_pathentries(); 1088 kset_unregister(paths_kset); 1089 kobject_put(stable_kobj); 1090 } 1091 1092 1093 module_init(pdc_stable_init); 1094 module_exit(pdc_stable_exit); 1095