1 /* 2 * Chassis LCD/LED driver for HP-PARISC workstations 3 * 4 * (c) Copyright 2000 Red Hat Software 5 * (c) Copyright 2000 Helge Deller <hdeller@redhat.com> 6 * (c) Copyright 2001-2009 Helge Deller <deller@gmx.de> 7 * (c) Copyright 2001 Randolph Chung <tausq@debian.org> 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 * 14 * TODO: 15 * - speed-up calculations with inlined assembler 16 * - interface to write to second row of LCD from /proc (if technically possible) 17 * 18 * Changes: 19 * - Audit copy_from_user in led_proc_write. 20 * Daniele Bellucci <bellucda@tiscali.it> 21 * - Switch from using a tasklet to a work queue, so the led_LCD_driver 22 * can sleep. 23 * David Pye <dmp@davidmpye.dyndns.org> 24 */ 25 26 #include <linux/module.h> 27 #include <linux/stddef.h> /* for offsetof() */ 28 #include <linux/init.h> 29 #include <linux/types.h> 30 #include <linux/ioport.h> 31 #include <linux/utsname.h> 32 #include <linux/capability.h> 33 #include <linux/delay.h> 34 #include <linux/netdevice.h> 35 #include <linux/inetdevice.h> 36 #include <linux/in.h> 37 #include <linux/interrupt.h> 38 #include <linux/kernel_stat.h> 39 #include <linux/reboot.h> 40 #include <linux/proc_fs.h> 41 #include <linux/seq_file.h> 42 #include <linux/ctype.h> 43 #include <linux/blkdev.h> 44 #include <linux/workqueue.h> 45 #include <linux/rcupdate.h> 46 #include <asm/io.h> 47 #include <asm/processor.h> 48 #include <asm/hardware.h> 49 #include <asm/param.h> /* HZ */ 50 #include <asm/led.h> 51 #include <asm/pdc.h> 52 #include <linux/uaccess.h> 53 54 /* The control of the LEDs and LCDs on PARISC-machines have to be done 55 completely in software. The necessary calculations are done in a work queue 56 task which is scheduled regularly, and since the calculations may consume a 57 relatively large amount of CPU time, some of the calculations can be 58 turned off with the following variables (controlled via procfs) */ 59 60 static int led_type __read_mostly = -1; 61 static unsigned char lastleds; /* LED state from most recent update */ 62 static unsigned int led_heartbeat __read_mostly = 1; 63 static unsigned int led_diskio __read_mostly = 1; 64 static unsigned int led_lanrxtx __read_mostly = 1; 65 static char lcd_text[32] __read_mostly; 66 static char lcd_text_default[32] __read_mostly; 67 static int lcd_no_led_support __read_mostly = 0; /* KittyHawk doesn't support LED on its LCD */ 68 69 70 static struct workqueue_struct *led_wq; 71 static void led_work_func(struct work_struct *); 72 static DECLARE_DELAYED_WORK(led_task, led_work_func); 73 74 #if 0 75 #define DPRINTK(x) printk x 76 #else 77 #define DPRINTK(x) 78 #endif 79 80 struct lcd_block { 81 unsigned char command; /* stores the command byte */ 82 unsigned char on; /* value for turning LED on */ 83 unsigned char off; /* value for turning LED off */ 84 }; 85 86 /* Structure returned by PDC_RETURN_CHASSIS_INFO */ 87 /* NOTE: we use unsigned long:16 two times, since the following member 88 lcd_cmd_reg_addr needs to be 64bit aligned on 64bit PA2.0-machines */ 89 struct pdc_chassis_lcd_info_ret_block { 90 unsigned long model:16; /* DISPLAY_MODEL_XXXX */ 91 unsigned long lcd_width:16; /* width of the LCD in chars (DISPLAY_MODEL_LCD only) */ 92 unsigned long lcd_cmd_reg_addr; /* ptr to LCD cmd-register & data ptr for LED */ 93 unsigned long lcd_data_reg_addr; /* ptr to LCD data-register (LCD only) */ 94 unsigned int min_cmd_delay; /* delay in uS after cmd-write (LCD only) */ 95 unsigned char reset_cmd1; /* command #1 for writing LCD string (LCD only) */ 96 unsigned char reset_cmd2; /* command #2 for writing LCD string (LCD only) */ 97 unsigned char act_enable; /* 0 = no activity (LCD only) */ 98 struct lcd_block heartbeat; 99 struct lcd_block disk_io; 100 struct lcd_block lan_rcv; 101 struct lcd_block lan_tx; 102 char _pad; 103 }; 104 105 106 /* LCD_CMD and LCD_DATA for KittyHawk machines */ 107 #define KITTYHAWK_LCD_CMD F_EXTEND(0xf0190000UL) /* 64bit-ready */ 108 #define KITTYHAWK_LCD_DATA (KITTYHAWK_LCD_CMD+1) 109 110 /* lcd_info is pre-initialized to the values needed to program KittyHawk LCD's 111 * HP seems to have used Sharp/Hitachi HD44780 LCDs most of the time. */ 112 static struct pdc_chassis_lcd_info_ret_block 113 lcd_info __attribute__((aligned(8))) __read_mostly = 114 { 115 .model = DISPLAY_MODEL_LCD, 116 .lcd_width = 16, 117 .lcd_cmd_reg_addr = KITTYHAWK_LCD_CMD, 118 .lcd_data_reg_addr = KITTYHAWK_LCD_DATA, 119 .min_cmd_delay = 80, 120 .reset_cmd1 = 0x80, 121 .reset_cmd2 = 0xc0, 122 }; 123 124 125 /* direct access to some of the lcd_info variables */ 126 #define LCD_CMD_REG lcd_info.lcd_cmd_reg_addr 127 #define LCD_DATA_REG lcd_info.lcd_data_reg_addr 128 #define LED_DATA_REG lcd_info.lcd_cmd_reg_addr /* LASI & ASP only */ 129 130 #define LED_HASLCD 1 131 #define LED_NOLCD 0 132 133 /* The workqueue must be created at init-time */ 134 static int start_task(void) 135 { 136 /* Display the default text now */ 137 if (led_type == LED_HASLCD) lcd_print( lcd_text_default ); 138 139 /* KittyHawk has no LED support on its LCD */ 140 if (lcd_no_led_support) return 0; 141 142 /* Create the work queue and queue the LED task */ 143 led_wq = create_singlethread_workqueue("led_wq"); 144 queue_delayed_work(led_wq, &led_task, 0); 145 146 return 0; 147 } 148 149 device_initcall(start_task); 150 151 /* ptr to LCD/LED-specific function */ 152 static void (*led_func_ptr) (unsigned char) __read_mostly; 153 154 #ifdef CONFIG_PROC_FS 155 static int led_proc_show(struct seq_file *m, void *v) 156 { 157 switch ((long)m->private) 158 { 159 case LED_NOLCD: 160 seq_printf(m, "Heartbeat: %d\n", led_heartbeat); 161 seq_printf(m, "Disk IO: %d\n", led_diskio); 162 seq_printf(m, "LAN Rx/Tx: %d\n", led_lanrxtx); 163 break; 164 case LED_HASLCD: 165 seq_printf(m, "%s\n", lcd_text); 166 break; 167 default: 168 return 0; 169 } 170 return 0; 171 } 172 173 static int led_proc_open(struct inode *inode, struct file *file) 174 { 175 return single_open(file, led_proc_show, PDE_DATA(inode)); 176 } 177 178 179 static ssize_t led_proc_write(struct file *file, const char *buf, 180 size_t count, loff_t *pos) 181 { 182 void *data = PDE_DATA(file_inode(file)); 183 char *cur, lbuf[32]; 184 int d; 185 186 if (!capable(CAP_SYS_ADMIN)) 187 return -EACCES; 188 189 if (count >= sizeof(lbuf)) 190 count = sizeof(lbuf)-1; 191 192 if (copy_from_user(lbuf, buf, count)) 193 return -EFAULT; 194 lbuf[count] = 0; 195 196 cur = lbuf; 197 198 switch ((long)data) 199 { 200 case LED_NOLCD: 201 d = *cur++ - '0'; 202 if (d != 0 && d != 1) goto parse_error; 203 led_heartbeat = d; 204 205 if (*cur++ != ' ') goto parse_error; 206 207 d = *cur++ - '0'; 208 if (d != 0 && d != 1) goto parse_error; 209 led_diskio = d; 210 211 if (*cur++ != ' ') goto parse_error; 212 213 d = *cur++ - '0'; 214 if (d != 0 && d != 1) goto parse_error; 215 led_lanrxtx = d; 216 217 break; 218 case LED_HASLCD: 219 if (*cur && cur[strlen(cur)-1] == '\n') 220 cur[strlen(cur)-1] = 0; 221 if (*cur == 0) 222 cur = lcd_text_default; 223 lcd_print(cur); 224 break; 225 default: 226 return 0; 227 } 228 229 return count; 230 231 parse_error: 232 if ((long)data == LED_NOLCD) 233 printk(KERN_CRIT "Parse error: expect \"n n n\" (n == 0 or 1) for heartbeat,\ndisk io and lan tx/rx indicators\n"); 234 return -EINVAL; 235 } 236 237 static const struct file_operations led_proc_fops = { 238 .owner = THIS_MODULE, 239 .open = led_proc_open, 240 .read = seq_read, 241 .llseek = seq_lseek, 242 .release = single_release, 243 .write = led_proc_write, 244 }; 245 246 static int __init led_create_procfs(void) 247 { 248 struct proc_dir_entry *proc_pdc_root = NULL; 249 struct proc_dir_entry *ent; 250 251 if (led_type == -1) return -1; 252 253 proc_pdc_root = proc_mkdir("pdc", 0); 254 if (!proc_pdc_root) return -1; 255 256 if (!lcd_no_led_support) 257 { 258 ent = proc_create_data("led", S_IRUGO|S_IWUSR, proc_pdc_root, 259 &led_proc_fops, (void *)LED_NOLCD); /* LED */ 260 if (!ent) return -1; 261 } 262 263 if (led_type == LED_HASLCD) 264 { 265 ent = proc_create_data("lcd", S_IRUGO|S_IWUSR, proc_pdc_root, 266 &led_proc_fops, (void *)LED_HASLCD); /* LCD */ 267 if (!ent) return -1; 268 } 269 270 return 0; 271 } 272 #endif 273 274 /* 275 ** 276 ** led_ASP_driver() 277 ** 278 */ 279 #define LED_DATA 0x01 /* data to shift (0:on 1:off) */ 280 #define LED_STROBE 0x02 /* strobe to clock data */ 281 static void led_ASP_driver(unsigned char leds) 282 { 283 int i; 284 285 leds = ~leds; 286 for (i = 0; i < 8; i++) { 287 unsigned char value; 288 value = (leds & 0x80) >> 7; 289 gsc_writeb( value, LED_DATA_REG ); 290 gsc_writeb( value | LED_STROBE, LED_DATA_REG ); 291 leds <<= 1; 292 } 293 } 294 295 296 /* 297 ** 298 ** led_LASI_driver() 299 ** 300 */ 301 static void led_LASI_driver(unsigned char leds) 302 { 303 leds = ~leds; 304 gsc_writeb( leds, LED_DATA_REG ); 305 } 306 307 308 /* 309 ** 310 ** led_LCD_driver() 311 ** 312 */ 313 static void led_LCD_driver(unsigned char leds) 314 { 315 static int i; 316 static unsigned char mask[4] = { LED_HEARTBEAT, LED_DISK_IO, 317 LED_LAN_RCV, LED_LAN_TX }; 318 319 static struct lcd_block * blockp[4] = { 320 &lcd_info.heartbeat, 321 &lcd_info.disk_io, 322 &lcd_info.lan_rcv, 323 &lcd_info.lan_tx 324 }; 325 326 /* Convert min_cmd_delay to milliseconds */ 327 unsigned int msec_cmd_delay = 1 + (lcd_info.min_cmd_delay / 1000); 328 329 for (i=0; i<4; ++i) 330 { 331 if ((leds & mask[i]) != (lastleds & mask[i])) 332 { 333 gsc_writeb( blockp[i]->command, LCD_CMD_REG ); 334 msleep(msec_cmd_delay); 335 336 gsc_writeb( leds & mask[i] ? blockp[i]->on : 337 blockp[i]->off, LCD_DATA_REG ); 338 msleep(msec_cmd_delay); 339 } 340 } 341 } 342 343 344 /* 345 ** 346 ** led_get_net_activity() 347 ** 348 ** calculate if there was TX- or RX-throughput on the network interfaces 349 ** (analog to dev_get_info() from net/core/dev.c) 350 ** 351 */ 352 static __inline__ int led_get_net_activity(void) 353 { 354 #ifndef CONFIG_NET 355 return 0; 356 #else 357 static u64 rx_total_last, tx_total_last; 358 u64 rx_total, tx_total; 359 struct net_device *dev; 360 int retval; 361 362 rx_total = tx_total = 0; 363 364 /* we are running as a workqueue task, so we can use an RCU lookup */ 365 rcu_read_lock(); 366 for_each_netdev_rcu(&init_net, dev) { 367 const struct rtnl_link_stats64 *stats; 368 struct rtnl_link_stats64 temp; 369 struct in_device *in_dev = __in_dev_get_rcu(dev); 370 if (!in_dev || !in_dev->ifa_list) 371 continue; 372 if (ipv4_is_loopback(in_dev->ifa_list->ifa_local)) 373 continue; 374 stats = dev_get_stats(dev, &temp); 375 rx_total += stats->rx_packets; 376 tx_total += stats->tx_packets; 377 } 378 rcu_read_unlock(); 379 380 retval = 0; 381 382 if (rx_total != rx_total_last) { 383 rx_total_last = rx_total; 384 retval |= LED_LAN_RCV; 385 } 386 387 if (tx_total != tx_total_last) { 388 tx_total_last = tx_total; 389 retval |= LED_LAN_TX; 390 } 391 392 return retval; 393 #endif 394 } 395 396 397 /* 398 ** 399 ** led_get_diskio_activity() 400 ** 401 ** calculate if there was disk-io in the system 402 ** 403 */ 404 static __inline__ int led_get_diskio_activity(void) 405 { 406 static unsigned long last_pgpgin, last_pgpgout; 407 unsigned long events[NR_VM_EVENT_ITEMS]; 408 int changed; 409 410 all_vm_events(events); 411 412 /* Just use a very simple calculation here. Do not care about overflow, 413 since we only want to know if there was activity or not. */ 414 changed = (events[PGPGIN] != last_pgpgin) || 415 (events[PGPGOUT] != last_pgpgout); 416 last_pgpgin = events[PGPGIN]; 417 last_pgpgout = events[PGPGOUT]; 418 419 return (changed ? LED_DISK_IO : 0); 420 } 421 422 423 424 /* 425 ** led_work_func() 426 ** 427 ** manages when and which chassis LCD/LED gets updated 428 429 TODO: 430 - display load average (older machines like 715/64 have 4 "free" LED's for that) 431 - optimizations 432 */ 433 434 #define HEARTBEAT_LEN (HZ*10/100) 435 #define HEARTBEAT_2ND_RANGE_START (HZ*28/100) 436 #define HEARTBEAT_2ND_RANGE_END (HEARTBEAT_2ND_RANGE_START + HEARTBEAT_LEN) 437 438 #define LED_UPDATE_INTERVAL (1 + (HZ*19/1000)) 439 440 static void led_work_func (struct work_struct *unused) 441 { 442 static unsigned long last_jiffies; 443 static unsigned long count_HZ; /* counter in range 0..HZ */ 444 unsigned char currentleds = 0; /* stores current value of the LEDs */ 445 446 /* exit if not initialized */ 447 if (!led_func_ptr) 448 return; 449 450 /* increment the heartbeat timekeeper */ 451 count_HZ += jiffies - last_jiffies; 452 last_jiffies = jiffies; 453 if (count_HZ >= HZ) 454 count_HZ = 0; 455 456 if (likely(led_heartbeat)) 457 { 458 /* flash heartbeat-LED like a real heart 459 * (2 x short then a long delay) 460 */ 461 if (count_HZ < HEARTBEAT_LEN || 462 (count_HZ >= HEARTBEAT_2ND_RANGE_START && 463 count_HZ < HEARTBEAT_2ND_RANGE_END)) 464 currentleds |= LED_HEARTBEAT; 465 } 466 467 if (likely(led_lanrxtx)) currentleds |= led_get_net_activity(); 468 if (likely(led_diskio)) currentleds |= led_get_diskio_activity(); 469 470 /* blink LEDs if we got an Oops (HPMC) */ 471 if (unlikely(oops_in_progress)) { 472 if (boot_cpu_data.cpu_type >= pcxl2) { 473 /* newer machines don't have loadavg. LEDs, so we 474 * let all LEDs blink twice per second instead */ 475 currentleds = (count_HZ <= (HZ/2)) ? 0 : 0xff; 476 } else { 477 /* old machines: blink loadavg. LEDs twice per second */ 478 if (count_HZ <= (HZ/2)) 479 currentleds &= ~(LED4|LED5|LED6|LED7); 480 else 481 currentleds |= (LED4|LED5|LED6|LED7); 482 } 483 } 484 485 if (currentleds != lastleds) 486 { 487 led_func_ptr(currentleds); /* Update the LCD/LEDs */ 488 lastleds = currentleds; 489 } 490 491 queue_delayed_work(led_wq, &led_task, LED_UPDATE_INTERVAL); 492 } 493 494 /* 495 ** led_halt() 496 ** 497 ** called by the reboot notifier chain at shutdown and stops all 498 ** LED/LCD activities. 499 ** 500 */ 501 502 static int led_halt(struct notifier_block *, unsigned long, void *); 503 504 static struct notifier_block led_notifier = { 505 .notifier_call = led_halt, 506 }; 507 static int notifier_disabled = 0; 508 509 static int led_halt(struct notifier_block *nb, unsigned long event, void *buf) 510 { 511 char *txt; 512 513 if (notifier_disabled) 514 return NOTIFY_OK; 515 516 notifier_disabled = 1; 517 switch (event) { 518 case SYS_RESTART: txt = "SYSTEM RESTART"; 519 break; 520 case SYS_HALT: txt = "SYSTEM HALT"; 521 break; 522 case SYS_POWER_OFF: txt = "SYSTEM POWER OFF"; 523 break; 524 default: return NOTIFY_DONE; 525 } 526 527 /* Cancel the work item and delete the queue */ 528 if (led_wq) { 529 cancel_delayed_work_sync(&led_task); 530 destroy_workqueue(led_wq); 531 led_wq = NULL; 532 } 533 534 if (lcd_info.model == DISPLAY_MODEL_LCD) 535 lcd_print(txt); 536 else 537 if (led_func_ptr) 538 led_func_ptr(0xff); /* turn all LEDs ON */ 539 540 return NOTIFY_OK; 541 } 542 543 /* 544 ** register_led_driver() 545 ** 546 ** registers an external LED or LCD for usage by this driver. 547 ** currently only LCD-, LASI- and ASP-style LCD/LED's are supported. 548 ** 549 */ 550 551 int __init register_led_driver(int model, unsigned long cmd_reg, unsigned long data_reg) 552 { 553 static int initialized; 554 555 if (initialized || !data_reg) 556 return 1; 557 558 lcd_info.model = model; /* store the values */ 559 LCD_CMD_REG = (cmd_reg == LED_CMD_REG_NONE) ? 0 : cmd_reg; 560 561 switch (lcd_info.model) { 562 case DISPLAY_MODEL_LCD: 563 LCD_DATA_REG = data_reg; 564 printk(KERN_INFO "LCD display at %lx,%lx registered\n", 565 LCD_CMD_REG , LCD_DATA_REG); 566 led_func_ptr = led_LCD_driver; 567 led_type = LED_HASLCD; 568 break; 569 570 case DISPLAY_MODEL_LASI: 571 LED_DATA_REG = data_reg; 572 led_func_ptr = led_LASI_driver; 573 printk(KERN_INFO "LED display at %lx registered\n", LED_DATA_REG); 574 led_type = LED_NOLCD; 575 break; 576 577 case DISPLAY_MODEL_OLD_ASP: 578 LED_DATA_REG = data_reg; 579 led_func_ptr = led_ASP_driver; 580 printk(KERN_INFO "LED (ASP-style) display at %lx registered\n", 581 LED_DATA_REG); 582 led_type = LED_NOLCD; 583 break; 584 585 default: 586 printk(KERN_ERR "%s: Wrong LCD/LED model %d !\n", 587 __func__, lcd_info.model); 588 return 1; 589 } 590 591 /* mark the LCD/LED driver now as initialized and 592 * register to the reboot notifier chain */ 593 initialized++; 594 register_reboot_notifier(&led_notifier); 595 596 /* Ensure the work is queued */ 597 if (led_wq) { 598 queue_delayed_work(led_wq, &led_task, 0); 599 } 600 601 return 0; 602 } 603 604 /* 605 ** register_led_regions() 606 ** 607 ** register_led_regions() registers the LCD/LED regions for /procfs. 608 ** At bootup - where the initialisation of the LCD/LED normally happens - 609 ** not all internal structures of request_region() are properly set up, 610 ** so that we delay the led-registration until after busdevices_init() 611 ** has been executed. 612 ** 613 */ 614 615 void __init register_led_regions(void) 616 { 617 switch (lcd_info.model) { 618 case DISPLAY_MODEL_LCD: 619 request_mem_region((unsigned long)LCD_CMD_REG, 1, "lcd_cmd"); 620 request_mem_region((unsigned long)LCD_DATA_REG, 1, "lcd_data"); 621 break; 622 case DISPLAY_MODEL_LASI: 623 case DISPLAY_MODEL_OLD_ASP: 624 request_mem_region((unsigned long)LED_DATA_REG, 1, "led_data"); 625 break; 626 } 627 } 628 629 630 /* 631 ** 632 ** lcd_print() 633 ** 634 ** Displays the given string on the LCD-Display of newer machines. 635 ** lcd_print() disables/enables the timer-based led work queue to 636 ** avoid a race condition while writing the CMD/DATA register pair. 637 ** 638 */ 639 int lcd_print( const char *str ) 640 { 641 int i; 642 643 if (!led_func_ptr || lcd_info.model != DISPLAY_MODEL_LCD) 644 return 0; 645 646 /* temporarily disable the led work task */ 647 if (led_wq) 648 cancel_delayed_work_sync(&led_task); 649 650 /* copy display string to buffer for procfs */ 651 strlcpy(lcd_text, str, sizeof(lcd_text)); 652 653 /* Set LCD Cursor to 1st character */ 654 gsc_writeb(lcd_info.reset_cmd1, LCD_CMD_REG); 655 udelay(lcd_info.min_cmd_delay); 656 657 /* Print the string */ 658 for (i=0; i < lcd_info.lcd_width; i++) { 659 if (str && *str) 660 gsc_writeb(*str++, LCD_DATA_REG); 661 else 662 gsc_writeb(' ', LCD_DATA_REG); 663 udelay(lcd_info.min_cmd_delay); 664 } 665 666 /* re-queue the work */ 667 if (led_wq) { 668 queue_delayed_work(led_wq, &led_task, 0); 669 } 670 671 return lcd_info.lcd_width; 672 } 673 674 /* 675 ** led_init() 676 ** 677 ** led_init() is called very early in the bootup-process from setup.c 678 ** and asks the PDC for an usable chassis LCD or LED. 679 ** If the PDC doesn't return any info, then the LED 680 ** is detected by lasi.c or asp.c and registered with the 681 ** above functions lasi_led_init() or asp_led_init(). 682 ** KittyHawk machines have often a buggy PDC, so that 683 ** we explicitly check for those machines here. 684 */ 685 686 int __init led_init(void) 687 { 688 struct pdc_chassis_info chassis_info; 689 int ret; 690 691 snprintf(lcd_text_default, sizeof(lcd_text_default), 692 "Linux %s", init_utsname()->release); 693 694 /* Work around the buggy PDC of KittyHawk-machines */ 695 switch (CPU_HVERSION) { 696 case 0x580: /* KittyHawk DC2-100 (K100) */ 697 case 0x581: /* KittyHawk DC3-120 (K210) */ 698 case 0x582: /* KittyHawk DC3 100 (K400) */ 699 case 0x583: /* KittyHawk DC3 120 (K410) */ 700 case 0x58B: /* KittyHawk DC2 100 (K200) */ 701 printk(KERN_INFO "%s: KittyHawk-Machine (hversion 0x%x) found, " 702 "LED detection skipped.\n", __FILE__, CPU_HVERSION); 703 lcd_no_led_support = 1; 704 goto found; /* use the preinitialized values of lcd_info */ 705 } 706 707 /* initialize the struct, so that we can check for valid return values */ 708 lcd_info.model = DISPLAY_MODEL_NONE; 709 chassis_info.actcnt = chassis_info.maxcnt = 0; 710 711 ret = pdc_chassis_info(&chassis_info, &lcd_info, sizeof(lcd_info)); 712 if (ret == PDC_OK) { 713 DPRINTK((KERN_INFO "%s: chassis info: model=%d (%s), " 714 "lcd_width=%d, cmd_delay=%u,\n" 715 "%s: sizecnt=%d, actcnt=%ld, maxcnt=%ld\n", 716 __FILE__, lcd_info.model, 717 (lcd_info.model==DISPLAY_MODEL_LCD) ? "LCD" : 718 (lcd_info.model==DISPLAY_MODEL_LASI) ? "LED" : "unknown", 719 lcd_info.lcd_width, lcd_info.min_cmd_delay, 720 __FILE__, sizeof(lcd_info), 721 chassis_info.actcnt, chassis_info.maxcnt)); 722 DPRINTK((KERN_INFO "%s: cmd=%p, data=%p, reset1=%x, reset2=%x, act_enable=%d\n", 723 __FILE__, lcd_info.lcd_cmd_reg_addr, 724 lcd_info.lcd_data_reg_addr, lcd_info.reset_cmd1, 725 lcd_info.reset_cmd2, lcd_info.act_enable )); 726 727 /* check the results. Some machines have a buggy PDC */ 728 if (chassis_info.actcnt <= 0 || chassis_info.actcnt != chassis_info.maxcnt) 729 goto not_found; 730 731 switch (lcd_info.model) { 732 case DISPLAY_MODEL_LCD: /* LCD display */ 733 if (chassis_info.actcnt < 734 offsetof(struct pdc_chassis_lcd_info_ret_block, _pad)-1) 735 goto not_found; 736 if (!lcd_info.act_enable) { 737 DPRINTK((KERN_INFO "PDC prohibited usage of the LCD.\n")); 738 goto not_found; 739 } 740 break; 741 742 case DISPLAY_MODEL_NONE: /* no LED or LCD available */ 743 printk(KERN_INFO "PDC reported no LCD or LED.\n"); 744 goto not_found; 745 746 case DISPLAY_MODEL_LASI: /* Lasi style 8 bit LED display */ 747 if (chassis_info.actcnt != 8 && chassis_info.actcnt != 32) 748 goto not_found; 749 break; 750 751 default: 752 printk(KERN_WARNING "PDC reported unknown LCD/LED model %d\n", 753 lcd_info.model); 754 goto not_found; 755 } /* switch() */ 756 757 found: 758 /* register the LCD/LED driver */ 759 register_led_driver(lcd_info.model, LCD_CMD_REG, LCD_DATA_REG); 760 return 0; 761 762 } else { /* if() */ 763 DPRINTK((KERN_INFO "pdc_chassis_info call failed with retval = %d\n", ret)); 764 } 765 766 not_found: 767 lcd_info.model = DISPLAY_MODEL_NONE; 768 return 1; 769 } 770 771 static void __exit led_exit(void) 772 { 773 unregister_reboot_notifier(&led_notifier); 774 return; 775 } 776 777 #ifdef CONFIG_PROC_FS 778 module_init(led_create_procfs) 779 #endif 780