1 /* 2 ** ccio-dma.c: 3 ** DMA management routines for first generation cache-coherent machines. 4 ** Program U2/Uturn in "Virtual Mode" and use the I/O MMU. 5 ** 6 ** (c) Copyright 2000 Grant Grundler 7 ** (c) Copyright 2000 Ryan Bradetich 8 ** (c) Copyright 2000 Hewlett-Packard Company 9 ** 10 ** This program is free software; you can redistribute it and/or modify 11 ** it under the terms of the GNU General Public License as published by 12 ** the Free Software Foundation; either version 2 of the License, or 13 ** (at your option) any later version. 14 ** 15 ** 16 ** "Real Mode" operation refers to U2/Uturn chip operation. 17 ** U2/Uturn were designed to perform coherency checks w/o using 18 ** the I/O MMU - basically what x86 does. 19 ** 20 ** Philipp Rumpf has a "Real Mode" driver for PCX-W machines at: 21 ** CVSROOT=:pserver:anonymous@198.186.203.37:/cvsroot/linux-parisc 22 ** cvs -z3 co linux/arch/parisc/kernel/dma-rm.c 23 ** 24 ** I've rewritten his code to work under TPG's tree. See ccio-rm-dma.c. 25 ** 26 ** Drawbacks of using Real Mode are: 27 ** o outbound DMA is slower - U2 won't prefetch data (GSC+ XQL signal). 28 ** o Inbound DMA less efficient - U2 can't use DMA_FAST attribute. 29 ** o Ability to do scatter/gather in HW is lost. 30 ** o Doesn't work under PCX-U/U+ machines since they didn't follow 31 ** the coherency design originally worked out. Only PCX-W does. 32 */ 33 34 #include <linux/types.h> 35 #include <linux/kernel.h> 36 #include <linux/init.h> 37 #include <linux/mm.h> 38 #include <linux/spinlock.h> 39 #include <linux/slab.h> 40 #include <linux/string.h> 41 #include <linux/pci.h> 42 #include <linux/reboot.h> 43 #include <linux/proc_fs.h> 44 #include <linux/seq_file.h> 45 #include <linux/scatterlist.h> 46 #include <linux/iommu-helper.h> 47 #include <linux/export.h> 48 49 #include <asm/byteorder.h> 50 #include <asm/cache.h> /* for L1_CACHE_BYTES */ 51 #include <asm/uaccess.h> 52 #include <asm/page.h> 53 #include <asm/dma.h> 54 #include <asm/io.h> 55 #include <asm/hardware.h> /* for register_module() */ 56 #include <asm/parisc-device.h> 57 58 /* 59 ** Choose "ccio" since that's what HP-UX calls it. 60 ** Make it easier for folks to migrate from one to the other :^) 61 */ 62 #define MODULE_NAME "ccio" 63 64 #undef DEBUG_CCIO_RES 65 #undef DEBUG_CCIO_RUN 66 #undef DEBUG_CCIO_INIT 67 #undef DEBUG_CCIO_RUN_SG 68 69 #ifdef CONFIG_PROC_FS 70 /* depends on proc fs support. But costs CPU performance. */ 71 #undef CCIO_COLLECT_STATS 72 #endif 73 74 #include <asm/runway.h> /* for proc_runway_root */ 75 76 #ifdef DEBUG_CCIO_INIT 77 #define DBG_INIT(x...) printk(x) 78 #else 79 #define DBG_INIT(x...) 80 #endif 81 82 #ifdef DEBUG_CCIO_RUN 83 #define DBG_RUN(x...) printk(x) 84 #else 85 #define DBG_RUN(x...) 86 #endif 87 88 #ifdef DEBUG_CCIO_RES 89 #define DBG_RES(x...) printk(x) 90 #else 91 #define DBG_RES(x...) 92 #endif 93 94 #ifdef DEBUG_CCIO_RUN_SG 95 #define DBG_RUN_SG(x...) printk(x) 96 #else 97 #define DBG_RUN_SG(x...) 98 #endif 99 100 #define CCIO_INLINE inline 101 #define WRITE_U32(value, addr) __raw_writel(value, addr) 102 #define READ_U32(addr) __raw_readl(addr) 103 104 #define U2_IOA_RUNWAY 0x580 105 #define U2_BC_GSC 0x501 106 #define UTURN_IOA_RUNWAY 0x581 107 #define UTURN_BC_GSC 0x502 108 109 #define IOA_NORMAL_MODE 0x00020080 /* IO_CONTROL to turn on CCIO */ 110 #define CMD_TLB_DIRECT_WRITE 35 /* IO_COMMAND for I/O TLB Writes */ 111 #define CMD_TLB_PURGE 33 /* IO_COMMAND to Purge I/O TLB entry */ 112 113 struct ioa_registers { 114 /* Runway Supervisory Set */ 115 int32_t unused1[12]; 116 uint32_t io_command; /* Offset 12 */ 117 uint32_t io_status; /* Offset 13 */ 118 uint32_t io_control; /* Offset 14 */ 119 int32_t unused2[1]; 120 121 /* Runway Auxiliary Register Set */ 122 uint32_t io_err_resp; /* Offset 0 */ 123 uint32_t io_err_info; /* Offset 1 */ 124 uint32_t io_err_req; /* Offset 2 */ 125 uint32_t io_err_resp_hi; /* Offset 3 */ 126 uint32_t io_tlb_entry_m; /* Offset 4 */ 127 uint32_t io_tlb_entry_l; /* Offset 5 */ 128 uint32_t unused3[1]; 129 uint32_t io_pdir_base; /* Offset 7 */ 130 uint32_t io_io_low_hv; /* Offset 8 */ 131 uint32_t io_io_high_hv; /* Offset 9 */ 132 uint32_t unused4[1]; 133 uint32_t io_chain_id_mask; /* Offset 11 */ 134 uint32_t unused5[2]; 135 uint32_t io_io_low; /* Offset 14 */ 136 uint32_t io_io_high; /* Offset 15 */ 137 }; 138 139 /* 140 ** IOA Registers 141 ** ------------- 142 ** 143 ** Runway IO_CONTROL Register (+0x38) 144 ** 145 ** The Runway IO_CONTROL register controls the forwarding of transactions. 146 ** 147 ** | 0 ... 13 | 14 15 | 16 ... 21 | 22 | 23 24 | 25 ... 31 | 148 ** | HV | TLB | reserved | HV | mode | reserved | 149 ** 150 ** o mode field indicates the address translation of transactions 151 ** forwarded from Runway to GSC+: 152 ** Mode Name Value Definition 153 ** Off (default) 0 Opaque to matching addresses. 154 ** Include 1 Transparent for matching addresses. 155 ** Peek 3 Map matching addresses. 156 ** 157 ** + "Off" mode: Runway transactions which match the I/O range 158 ** specified by the IO_IO_LOW/IO_IO_HIGH registers will be ignored. 159 ** + "Include" mode: all addresses within the I/O range specified 160 ** by the IO_IO_LOW and IO_IO_HIGH registers are transparently 161 ** forwarded. This is the I/O Adapter's normal operating mode. 162 ** + "Peek" mode: used during system configuration to initialize the 163 ** GSC+ bus. Runway Write_Shorts in the address range specified by 164 ** IO_IO_LOW and IO_IO_HIGH are forwarded through the I/O Adapter 165 ** *AND* the GSC+ address is remapped to the Broadcast Physical 166 ** Address space by setting the 14 high order address bits of the 167 ** 32 bit GSC+ address to ones. 168 ** 169 ** o TLB field affects transactions which are forwarded from GSC+ to Runway. 170 ** "Real" mode is the poweron default. 171 ** 172 ** TLB Mode Value Description 173 ** Real 0 No TLB translation. Address is directly mapped and the 174 ** virtual address is composed of selected physical bits. 175 ** Error 1 Software fills the TLB manually. 176 ** Normal 2 IOA fetches IO TLB misses from IO PDIR (in host memory). 177 ** 178 ** 179 ** IO_IO_LOW_HV +0x60 (HV dependent) 180 ** IO_IO_HIGH_HV +0x64 (HV dependent) 181 ** IO_IO_LOW +0x78 (Architected register) 182 ** IO_IO_HIGH +0x7c (Architected register) 183 ** 184 ** IO_IO_LOW and IO_IO_HIGH set the lower and upper bounds of the 185 ** I/O Adapter address space, respectively. 186 ** 187 ** 0 ... 7 | 8 ... 15 | 16 ... 31 | 188 ** 11111111 | 11111111 | address | 189 ** 190 ** Each LOW/HIGH pair describes a disjoint address space region. 191 ** (2 per GSC+ port). Each incoming Runway transaction address is compared 192 ** with both sets of LOW/HIGH registers. If the address is in the range 193 ** greater than or equal to IO_IO_LOW and less than IO_IO_HIGH the transaction 194 ** for forwarded to the respective GSC+ bus. 195 ** Specify IO_IO_LOW equal to or greater than IO_IO_HIGH to avoid specifying 196 ** an address space region. 197 ** 198 ** In order for a Runway address to reside within GSC+ extended address space: 199 ** Runway Address [0:7] must identically compare to 8'b11111111 200 ** Runway Address [8:11] must be equal to IO_IO_LOW(_HV)[16:19] 201 ** Runway Address [12:23] must be greater than or equal to 202 ** IO_IO_LOW(_HV)[20:31] and less than IO_IO_HIGH(_HV)[20:31]. 203 ** Runway Address [24:39] is not used in the comparison. 204 ** 205 ** When the Runway transaction is forwarded to GSC+, the GSC+ address is 206 ** as follows: 207 ** GSC+ Address[0:3] 4'b1111 208 ** GSC+ Address[4:29] Runway Address[12:37] 209 ** GSC+ Address[30:31] 2'b00 210 ** 211 ** All 4 Low/High registers must be initialized (by PDC) once the lower bus 212 ** is interrogated and address space is defined. The operating system will 213 ** modify the architectural IO_IO_LOW and IO_IO_HIGH registers following 214 ** the PDC initialization. However, the hardware version dependent IO_IO_LOW 215 ** and IO_IO_HIGH registers should not be subsequently altered by the OS. 216 ** 217 ** Writes to both sets of registers will take effect immediately, bypassing 218 ** the queues, which ensures that subsequent Runway transactions are checked 219 ** against the updated bounds values. However reads are queued, introducing 220 ** the possibility of a read being bypassed by a subsequent write to the same 221 ** register. This sequence can be avoided by having software wait for read 222 ** returns before issuing subsequent writes. 223 */ 224 225 struct ioc { 226 struct ioa_registers __iomem *ioc_regs; /* I/O MMU base address */ 227 u8 *res_map; /* resource map, bit == pdir entry */ 228 u64 *pdir_base; /* physical base address */ 229 u32 pdir_size; /* bytes, function of IOV Space size */ 230 u32 res_hint; /* next available IOVP - 231 circular search */ 232 u32 res_size; /* size of resource map in bytes */ 233 spinlock_t res_lock; 234 235 #ifdef CCIO_COLLECT_STATS 236 #define CCIO_SEARCH_SAMPLE 0x100 237 unsigned long avg_search[CCIO_SEARCH_SAMPLE]; 238 unsigned long avg_idx; /* current index into avg_search */ 239 unsigned long used_pages; 240 unsigned long msingle_calls; 241 unsigned long msingle_pages; 242 unsigned long msg_calls; 243 unsigned long msg_pages; 244 unsigned long usingle_calls; 245 unsigned long usingle_pages; 246 unsigned long usg_calls; 247 unsigned long usg_pages; 248 #endif 249 unsigned short cujo20_bug; 250 251 /* STUFF We don't need in performance path */ 252 u32 chainid_shift; /* specify bit location of chain_id */ 253 struct ioc *next; /* Linked list of discovered iocs */ 254 const char *name; /* device name from firmware */ 255 unsigned int hw_path; /* the hardware path this ioc is associatd with */ 256 struct pci_dev *fake_pci_dev; /* the fake pci_dev for non-pci devs */ 257 struct resource mmio_region[2]; /* The "routed" MMIO regions */ 258 }; 259 260 static struct ioc *ioc_list; 261 static int ioc_count; 262 263 /************************************************************** 264 * 265 * I/O Pdir Resource Management 266 * 267 * Bits set in the resource map are in use. 268 * Each bit can represent a number of pages. 269 * LSbs represent lower addresses (IOVA's). 270 * 271 * This was was copied from sba_iommu.c. Don't try to unify 272 * the two resource managers unless a way to have different 273 * allocation policies is also adjusted. We'd like to avoid 274 * I/O TLB thrashing by having resource allocation policy 275 * match the I/O TLB replacement policy. 276 * 277 ***************************************************************/ 278 #define IOVP_SIZE PAGE_SIZE 279 #define IOVP_SHIFT PAGE_SHIFT 280 #define IOVP_MASK PAGE_MASK 281 282 /* Convert from IOVP to IOVA and vice versa. */ 283 #define CCIO_IOVA(iovp,offset) ((iovp) | (offset)) 284 #define CCIO_IOVP(iova) ((iova) & IOVP_MASK) 285 286 #define PDIR_INDEX(iovp) ((iovp)>>IOVP_SHIFT) 287 #define MKIOVP(pdir_idx) ((long)(pdir_idx) << IOVP_SHIFT) 288 #define MKIOVA(iovp,offset) (dma_addr_t)((long)iovp | (long)offset) 289 290 /* 291 ** Don't worry about the 150% average search length on a miss. 292 ** If the search wraps around, and passes the res_hint, it will 293 ** cause the kernel to panic anyhow. 294 */ 295 #define CCIO_SEARCH_LOOP(ioc, res_idx, mask, size) \ 296 for(; res_ptr < res_end; ++res_ptr) { \ 297 int ret;\ 298 unsigned int idx;\ 299 idx = (unsigned int)((unsigned long)res_ptr - (unsigned long)ioc->res_map); \ 300 ret = iommu_is_span_boundary(idx << 3, pages_needed, 0, boundary_size);\ 301 if ((0 == (*res_ptr & mask)) && !ret) { \ 302 *res_ptr |= mask; \ 303 res_idx = idx;\ 304 ioc->res_hint = res_idx + (size >> 3); \ 305 goto resource_found; \ 306 } \ 307 } 308 309 #define CCIO_FIND_FREE_MAPPING(ioa, res_idx, mask, size) \ 310 u##size *res_ptr = (u##size *)&((ioc)->res_map[ioa->res_hint & ~((size >> 3) - 1)]); \ 311 u##size *res_end = (u##size *)&(ioc)->res_map[ioa->res_size]; \ 312 CCIO_SEARCH_LOOP(ioc, res_idx, mask, size); \ 313 res_ptr = (u##size *)&(ioc)->res_map[0]; \ 314 CCIO_SEARCH_LOOP(ioa, res_idx, mask, size); 315 316 /* 317 ** Find available bit in this ioa's resource map. 318 ** Use a "circular" search: 319 ** o Most IOVA's are "temporary" - avg search time should be small. 320 ** o keep a history of what happened for debugging 321 ** o KISS. 322 ** 323 ** Perf optimizations: 324 ** o search for log2(size) bits at a time. 325 ** o search for available resource bits using byte/word/whatever. 326 ** o use different search for "large" (eg > 4 pages) or "very large" 327 ** (eg > 16 pages) mappings. 328 */ 329 330 /** 331 * ccio_alloc_range - Allocate pages in the ioc's resource map. 332 * @ioc: The I/O Controller. 333 * @pages_needed: The requested number of pages to be mapped into the 334 * I/O Pdir... 335 * 336 * This function searches the resource map of the ioc to locate a range 337 * of available pages for the requested size. 338 */ 339 static int 340 ccio_alloc_range(struct ioc *ioc, struct device *dev, size_t size) 341 { 342 unsigned int pages_needed = size >> IOVP_SHIFT; 343 unsigned int res_idx; 344 unsigned long boundary_size; 345 #ifdef CCIO_COLLECT_STATS 346 unsigned long cr_start = mfctl(16); 347 #endif 348 349 BUG_ON(pages_needed == 0); 350 BUG_ON((pages_needed * IOVP_SIZE) > DMA_CHUNK_SIZE); 351 352 DBG_RES("%s() size: %d pages_needed %d\n", 353 __func__, size, pages_needed); 354 355 /* 356 ** "seek and ye shall find"...praying never hurts either... 357 ** ggg sacrifices another 710 to the computer gods. 358 */ 359 360 boundary_size = ALIGN((unsigned long long)dma_get_seg_boundary(dev) + 1, 361 1ULL << IOVP_SHIFT) >> IOVP_SHIFT; 362 363 if (pages_needed <= 8) { 364 /* 365 * LAN traffic will not thrash the TLB IFF the same NIC 366 * uses 8 adjacent pages to map separate payload data. 367 * ie the same byte in the resource bit map. 368 */ 369 #if 0 370 /* FIXME: bit search should shift it's way through 371 * an unsigned long - not byte at a time. As it is now, 372 * we effectively allocate this byte to this mapping. 373 */ 374 unsigned long mask = ~(~0UL >> pages_needed); 375 CCIO_FIND_FREE_MAPPING(ioc, res_idx, mask, 8); 376 #else 377 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xff, 8); 378 #endif 379 } else if (pages_needed <= 16) { 380 CCIO_FIND_FREE_MAPPING(ioc, res_idx, 0xffff, 16); 381 } else if (pages_needed <= 32) { 382 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~(unsigned int)0, 32); 383 #ifdef __LP64__ 384 } else if (pages_needed <= 64) { 385 CCIO_FIND_FREE_MAPPING(ioc, res_idx, ~0UL, 64); 386 #endif 387 } else { 388 panic("%s: %s() Too many pages to map. pages_needed: %u\n", 389 __FILE__, __func__, pages_needed); 390 } 391 392 panic("%s: %s() I/O MMU is out of mapping resources.\n", __FILE__, 393 __func__); 394 395 resource_found: 396 397 DBG_RES("%s() res_idx %d res_hint: %d\n", 398 __func__, res_idx, ioc->res_hint); 399 400 #ifdef CCIO_COLLECT_STATS 401 { 402 unsigned long cr_end = mfctl(16); 403 unsigned long tmp = cr_end - cr_start; 404 /* check for roll over */ 405 cr_start = (cr_end < cr_start) ? -(tmp) : (tmp); 406 } 407 ioc->avg_search[ioc->avg_idx++] = cr_start; 408 ioc->avg_idx &= CCIO_SEARCH_SAMPLE - 1; 409 ioc->used_pages += pages_needed; 410 #endif 411 /* 412 ** return the bit address. 413 */ 414 return res_idx << 3; 415 } 416 417 #define CCIO_FREE_MAPPINGS(ioc, res_idx, mask, size) \ 418 u##size *res_ptr = (u##size *)&((ioc)->res_map[res_idx]); \ 419 BUG_ON((*res_ptr & mask) != mask); \ 420 *res_ptr &= ~(mask); 421 422 /** 423 * ccio_free_range - Free pages from the ioc's resource map. 424 * @ioc: The I/O Controller. 425 * @iova: The I/O Virtual Address. 426 * @pages_mapped: The requested number of pages to be freed from the 427 * I/O Pdir. 428 * 429 * This function frees the resouces allocated for the iova. 430 */ 431 static void 432 ccio_free_range(struct ioc *ioc, dma_addr_t iova, unsigned long pages_mapped) 433 { 434 unsigned long iovp = CCIO_IOVP(iova); 435 unsigned int res_idx = PDIR_INDEX(iovp) >> 3; 436 437 BUG_ON(pages_mapped == 0); 438 BUG_ON((pages_mapped * IOVP_SIZE) > DMA_CHUNK_SIZE); 439 BUG_ON(pages_mapped > BITS_PER_LONG); 440 441 DBG_RES("%s(): res_idx: %d pages_mapped %d\n", 442 __func__, res_idx, pages_mapped); 443 444 #ifdef CCIO_COLLECT_STATS 445 ioc->used_pages -= pages_mapped; 446 #endif 447 448 if(pages_mapped <= 8) { 449 #if 0 450 /* see matching comments in alloc_range */ 451 unsigned long mask = ~(~0UL >> pages_mapped); 452 CCIO_FREE_MAPPINGS(ioc, res_idx, mask, 8); 453 #else 454 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffUL, 8); 455 #endif 456 } else if(pages_mapped <= 16) { 457 CCIO_FREE_MAPPINGS(ioc, res_idx, 0xffffUL, 16); 458 } else if(pages_mapped <= 32) { 459 CCIO_FREE_MAPPINGS(ioc, res_idx, ~(unsigned int)0, 32); 460 #ifdef __LP64__ 461 } else if(pages_mapped <= 64) { 462 CCIO_FREE_MAPPINGS(ioc, res_idx, ~0UL, 64); 463 #endif 464 } else { 465 panic("%s:%s() Too many pages to unmap.\n", __FILE__, 466 __func__); 467 } 468 } 469 470 /**************************************************************** 471 ** 472 ** CCIO dma_ops support routines 473 ** 474 *****************************************************************/ 475 476 typedef unsigned long space_t; 477 #define KERNEL_SPACE 0 478 479 /* 480 ** DMA "Page Type" and Hints 481 ** o if SAFE_DMA isn't set, mapping is for FAST_DMA. SAFE_DMA should be 482 ** set for subcacheline DMA transfers since we don't want to damage the 483 ** other part of a cacheline. 484 ** o SAFE_DMA must be set for "memory" allocated via pci_alloc_consistent(). 485 ** This bit tells U2 to do R/M/W for partial cachelines. "Streaming" 486 ** data can avoid this if the mapping covers full cache lines. 487 ** o STOP_MOST is needed for atomicity across cachelines. 488 ** Apparently only "some EISA devices" need this. 489 ** Using CONFIG_ISA is hack. Only the IOA with EISA under it needs 490 ** to use this hint iff the EISA devices needs this feature. 491 ** According to the U2 ERS, STOP_MOST enabled pages hurt performance. 492 ** o PREFETCH should *not* be set for cases like Multiple PCI devices 493 ** behind GSCtoPCI (dino) bus converter. Only one cacheline per GSC 494 ** device can be fetched and multiply DMA streams will thrash the 495 ** prefetch buffer and burn memory bandwidth. See 6.7.3 "Prefetch Rules 496 ** and Invalidation of Prefetch Entries". 497 ** 498 ** FIXME: the default hints need to be per GSC device - not global. 499 ** 500 ** HP-UX dorks: linux device driver programming model is totally different 501 ** than HP-UX's. HP-UX always sets HINT_PREFETCH since it's drivers 502 ** do special things to work on non-coherent platforms...linux has to 503 ** be much more careful with this. 504 */ 505 #define IOPDIR_VALID 0x01UL 506 #define HINT_SAFE_DMA 0x02UL /* used for pci_alloc_consistent() pages */ 507 #ifdef CONFIG_EISA 508 #define HINT_STOP_MOST 0x04UL /* LSL support */ 509 #else 510 #define HINT_STOP_MOST 0x00UL /* only needed for "some EISA devices" */ 511 #endif 512 #define HINT_UDPATE_ENB 0x08UL /* not used/supported by U2 */ 513 #define HINT_PREFETCH 0x10UL /* for outbound pages which are not SAFE */ 514 515 516 /* 517 ** Use direction (ie PCI_DMA_TODEVICE) to pick hint. 518 ** ccio_alloc_consistent() depends on this to get SAFE_DMA 519 ** when it passes in BIDIRECTIONAL flag. 520 */ 521 static u32 hint_lookup[] = { 522 [PCI_DMA_BIDIRECTIONAL] = HINT_STOP_MOST | HINT_SAFE_DMA | IOPDIR_VALID, 523 [PCI_DMA_TODEVICE] = HINT_STOP_MOST | HINT_PREFETCH | IOPDIR_VALID, 524 [PCI_DMA_FROMDEVICE] = HINT_STOP_MOST | IOPDIR_VALID, 525 }; 526 527 /** 528 * ccio_io_pdir_entry - Initialize an I/O Pdir. 529 * @pdir_ptr: A pointer into I/O Pdir. 530 * @sid: The Space Identifier. 531 * @vba: The virtual address. 532 * @hints: The DMA Hint. 533 * 534 * Given a virtual address (vba, arg2) and space id, (sid, arg1), 535 * load the I/O PDIR entry pointed to by pdir_ptr (arg0). Each IO Pdir 536 * entry consists of 8 bytes as shown below (MSB == bit 0): 537 * 538 * 539 * WORD 0: 540 * +------+----------------+-----------------------------------------------+ 541 * | Phys | Virtual Index | Phys | 542 * | 0:3 | 0:11 | 4:19 | 543 * |4 bits| 12 bits | 16 bits | 544 * +------+----------------+-----------------------------------------------+ 545 * WORD 1: 546 * +-----------------------+-----------------------------------------------+ 547 * | Phys | Rsvd | Prefetch |Update |Rsvd |Lock |Safe |Valid | 548 * | 20:39 | | Enable |Enable | |Enable|DMA | | 549 * | 20 bits | 5 bits | 1 bit |1 bit |2 bits|1 bit |1 bit |1 bit | 550 * +-----------------------+-----------------------------------------------+ 551 * 552 * The virtual index field is filled with the results of the LCI 553 * (Load Coherence Index) instruction. The 8 bits used for the virtual 554 * index are bits 12:19 of the value returned by LCI. 555 */ 556 static void CCIO_INLINE 557 ccio_io_pdir_entry(u64 *pdir_ptr, space_t sid, unsigned long vba, 558 unsigned long hints) 559 { 560 register unsigned long pa; 561 register unsigned long ci; /* coherent index */ 562 563 /* We currently only support kernel addresses */ 564 BUG_ON(sid != KERNEL_SPACE); 565 566 mtsp(sid,1); 567 568 /* 569 ** WORD 1 - low order word 570 ** "hints" parm includes the VALID bit! 571 ** "dep" clobbers the physical address offset bits as well. 572 */ 573 pa = virt_to_phys(vba); 574 asm volatile("depw %1,31,12,%0" : "+r" (pa) : "r" (hints)); 575 ((u32 *)pdir_ptr)[1] = (u32) pa; 576 577 /* 578 ** WORD 0 - high order word 579 */ 580 581 #ifdef __LP64__ 582 /* 583 ** get bits 12:15 of physical address 584 ** shift bits 16:31 of physical address 585 ** and deposit them 586 */ 587 asm volatile ("extrd,u %1,15,4,%0" : "=r" (ci) : "r" (pa)); 588 asm volatile ("extrd,u %1,31,16,%0" : "+r" (pa) : "r" (pa)); 589 asm volatile ("depd %1,35,4,%0" : "+r" (pa) : "r" (ci)); 590 #else 591 pa = 0; 592 #endif 593 /* 594 ** get CPU coherency index bits 595 ** Grab virtual index [0:11] 596 ** Deposit virt_idx bits into I/O PDIR word 597 */ 598 asm volatile ("lci %%r0(%%sr1, %1), %0" : "=r" (ci) : "r" (vba)); 599 asm volatile ("extru %1,19,12,%0" : "+r" (ci) : "r" (ci)); 600 asm volatile ("depw %1,15,12,%0" : "+r" (pa) : "r" (ci)); 601 602 ((u32 *)pdir_ptr)[0] = (u32) pa; 603 604 605 /* FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 606 ** PCX-U/U+ do. (eg C200/C240) 607 ** PCX-T'? Don't know. (eg C110 or similar K-class) 608 ** 609 ** See PDC_MODEL/option 0/SW_CAP word for "Non-coherent IO-PDIR bit". 610 ** Hopefully we can patch (NOP) these out at boot time somehow. 611 ** 612 ** "Since PCX-U employs an offset hash that is incompatible with 613 ** the real mode coherence index generation of U2, the PDIR entry 614 ** must be flushed to memory to retain coherence." 615 */ 616 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr)); 617 asm volatile("sync"); 618 } 619 620 /** 621 * ccio_clear_io_tlb - Remove stale entries from the I/O TLB. 622 * @ioc: The I/O Controller. 623 * @iovp: The I/O Virtual Page. 624 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 625 * 626 * Purge invalid I/O PDIR entries from the I/O TLB. 627 * 628 * FIXME: Can we change the byte_cnt to pages_mapped? 629 */ 630 static CCIO_INLINE void 631 ccio_clear_io_tlb(struct ioc *ioc, dma_addr_t iovp, size_t byte_cnt) 632 { 633 u32 chain_size = 1 << ioc->chainid_shift; 634 635 iovp &= IOVP_MASK; /* clear offset bits, just want pagenum */ 636 byte_cnt += chain_size; 637 638 while(byte_cnt > chain_size) { 639 WRITE_U32(CMD_TLB_PURGE | iovp, &ioc->ioc_regs->io_command); 640 iovp += chain_size; 641 byte_cnt -= chain_size; 642 } 643 } 644 645 /** 646 * ccio_mark_invalid - Mark the I/O Pdir entries invalid. 647 * @ioc: The I/O Controller. 648 * @iova: The I/O Virtual Address. 649 * @byte_cnt: The requested number of bytes to be freed from the I/O Pdir. 650 * 651 * Mark the I/O Pdir entries invalid and blow away the corresponding I/O 652 * TLB entries. 653 * 654 * FIXME: at some threshold it might be "cheaper" to just blow 655 * away the entire I/O TLB instead of individual entries. 656 * 657 * FIXME: Uturn has 256 TLB entries. We don't need to purge every 658 * PDIR entry - just once for each possible TLB entry. 659 * (We do need to maker I/O PDIR entries invalid regardless). 660 * 661 * FIXME: Can we change byte_cnt to pages_mapped? 662 */ 663 static CCIO_INLINE void 664 ccio_mark_invalid(struct ioc *ioc, dma_addr_t iova, size_t byte_cnt) 665 { 666 u32 iovp = (u32)CCIO_IOVP(iova); 667 size_t saved_byte_cnt; 668 669 /* round up to nearest page size */ 670 saved_byte_cnt = byte_cnt = ALIGN(byte_cnt, IOVP_SIZE); 671 672 while(byte_cnt > 0) { 673 /* invalidate one page at a time */ 674 unsigned int idx = PDIR_INDEX(iovp); 675 char *pdir_ptr = (char *) &(ioc->pdir_base[idx]); 676 677 BUG_ON(idx >= (ioc->pdir_size / sizeof(u64))); 678 pdir_ptr[7] = 0; /* clear only VALID bit */ 679 /* 680 ** FIXME: PCX_W platforms don't need FDC/SYNC. (eg C360) 681 ** PCX-U/U+ do. (eg C200/C240) 682 ** See PDC_MODEL/option 0/SW_CAP for "Non-coherent IO-PDIR bit". 683 ** 684 ** Hopefully someone figures out how to patch (NOP) the 685 ** FDC/SYNC out at boot time. 686 */ 687 asm volatile("fdc %%r0(%0)" : : "r" (pdir_ptr[7])); 688 689 iovp += IOVP_SIZE; 690 byte_cnt -= IOVP_SIZE; 691 } 692 693 asm volatile("sync"); 694 ccio_clear_io_tlb(ioc, CCIO_IOVP(iova), saved_byte_cnt); 695 } 696 697 /**************************************************************** 698 ** 699 ** CCIO dma_ops 700 ** 701 *****************************************************************/ 702 703 /** 704 * ccio_dma_supported - Verify the IOMMU supports the DMA address range. 705 * @dev: The PCI device. 706 * @mask: A bit mask describing the DMA address range of the device. 707 */ 708 static int 709 ccio_dma_supported(struct device *dev, u64 mask) 710 { 711 if(dev == NULL) { 712 printk(KERN_ERR MODULE_NAME ": EISA/ISA/et al not supported\n"); 713 BUG(); 714 return 0; 715 } 716 717 /* only support 32-bit devices (ie PCI/GSC) */ 718 return (int)(mask == 0xffffffffUL); 719 } 720 721 /** 722 * ccio_map_single - Map an address range into the IOMMU. 723 * @dev: The PCI device. 724 * @addr: The start address of the DMA region. 725 * @size: The length of the DMA region. 726 * @direction: The direction of the DMA transaction (to/from device). 727 * 728 * This function implements the pci_map_single function. 729 */ 730 static dma_addr_t 731 ccio_map_single(struct device *dev, void *addr, size_t size, 732 enum dma_data_direction direction) 733 { 734 int idx; 735 struct ioc *ioc; 736 unsigned long flags; 737 dma_addr_t iovp; 738 dma_addr_t offset; 739 u64 *pdir_start; 740 unsigned long hint = hint_lookup[(int)direction]; 741 742 BUG_ON(!dev); 743 ioc = GET_IOC(dev); 744 745 BUG_ON(size <= 0); 746 747 /* save offset bits */ 748 offset = ((unsigned long) addr) & ~IOVP_MASK; 749 750 /* round up to nearest IOVP_SIZE */ 751 size = ALIGN(size + offset, IOVP_SIZE); 752 spin_lock_irqsave(&ioc->res_lock, flags); 753 754 #ifdef CCIO_COLLECT_STATS 755 ioc->msingle_calls++; 756 ioc->msingle_pages += size >> IOVP_SHIFT; 757 #endif 758 759 idx = ccio_alloc_range(ioc, dev, size); 760 iovp = (dma_addr_t)MKIOVP(idx); 761 762 pdir_start = &(ioc->pdir_base[idx]); 763 764 DBG_RUN("%s() 0x%p -> 0x%lx size: %0x%x\n", 765 __func__, addr, (long)iovp | offset, size); 766 767 /* If not cacheline aligned, force SAFE_DMA on the whole mess */ 768 if((size % L1_CACHE_BYTES) || ((unsigned long)addr % L1_CACHE_BYTES)) 769 hint |= HINT_SAFE_DMA; 770 771 while(size > 0) { 772 ccio_io_pdir_entry(pdir_start, KERNEL_SPACE, (unsigned long)addr, hint); 773 774 DBG_RUN(" pdir %p %08x%08x\n", 775 pdir_start, 776 (u32) (((u32 *) pdir_start)[0]), 777 (u32) (((u32 *) pdir_start)[1])); 778 ++pdir_start; 779 addr += IOVP_SIZE; 780 size -= IOVP_SIZE; 781 } 782 783 spin_unlock_irqrestore(&ioc->res_lock, flags); 784 785 /* form complete address */ 786 return CCIO_IOVA(iovp, offset); 787 } 788 789 790 static dma_addr_t 791 ccio_map_page(struct device *dev, struct page *page, unsigned long offset, 792 size_t size, enum dma_data_direction direction, 793 struct dma_attrs *attrs) 794 { 795 return ccio_map_single(dev, page_address(page) + offset, size, 796 direction); 797 } 798 799 800 /** 801 * ccio_unmap_page - Unmap an address range from the IOMMU. 802 * @dev: The PCI device. 803 * @addr: The start address of the DMA region. 804 * @size: The length of the DMA region. 805 * @direction: The direction of the DMA transaction (to/from device). 806 */ 807 static void 808 ccio_unmap_page(struct device *dev, dma_addr_t iova, size_t size, 809 enum dma_data_direction direction, struct dma_attrs *attrs) 810 { 811 struct ioc *ioc; 812 unsigned long flags; 813 dma_addr_t offset = iova & ~IOVP_MASK; 814 815 BUG_ON(!dev); 816 ioc = GET_IOC(dev); 817 818 DBG_RUN("%s() iovp 0x%lx/%x\n", 819 __func__, (long)iova, size); 820 821 iova ^= offset; /* clear offset bits */ 822 size += offset; 823 size = ALIGN(size, IOVP_SIZE); 824 825 spin_lock_irqsave(&ioc->res_lock, flags); 826 827 #ifdef CCIO_COLLECT_STATS 828 ioc->usingle_calls++; 829 ioc->usingle_pages += size >> IOVP_SHIFT; 830 #endif 831 832 ccio_mark_invalid(ioc, iova, size); 833 ccio_free_range(ioc, iova, (size >> IOVP_SHIFT)); 834 spin_unlock_irqrestore(&ioc->res_lock, flags); 835 } 836 837 /** 838 * ccio_alloc - Allocate a consistent DMA mapping. 839 * @dev: The PCI device. 840 * @size: The length of the DMA region. 841 * @dma_handle: The DMA address handed back to the device (not the cpu). 842 * 843 * This function implements the pci_alloc_consistent function. 844 */ 845 static void * 846 ccio_alloc(struct device *dev, size_t size, dma_addr_t *dma_handle, gfp_t flag, 847 struct dma_attrs *attrs) 848 { 849 void *ret; 850 #if 0 851 /* GRANT Need to establish hierarchy for non-PCI devs as well 852 ** and then provide matching gsc_map_xxx() functions for them as well. 853 */ 854 if(!hwdev) { 855 /* only support PCI */ 856 *dma_handle = 0; 857 return 0; 858 } 859 #endif 860 ret = (void *) __get_free_pages(flag, get_order(size)); 861 862 if (ret) { 863 memset(ret, 0, size); 864 *dma_handle = ccio_map_single(dev, ret, size, PCI_DMA_BIDIRECTIONAL); 865 } 866 867 return ret; 868 } 869 870 /** 871 * ccio_free - Free a consistent DMA mapping. 872 * @dev: The PCI device. 873 * @size: The length of the DMA region. 874 * @cpu_addr: The cpu address returned from the ccio_alloc_consistent. 875 * @dma_handle: The device address returned from the ccio_alloc_consistent. 876 * 877 * This function implements the pci_free_consistent function. 878 */ 879 static void 880 ccio_free(struct device *dev, size_t size, void *cpu_addr, 881 dma_addr_t dma_handle, struct dma_attrs *attrs) 882 { 883 ccio_unmap_page(dev, dma_handle, size, 0, NULL); 884 free_pages((unsigned long)cpu_addr, get_order(size)); 885 } 886 887 /* 888 ** Since 0 is a valid pdir_base index value, can't use that 889 ** to determine if a value is valid or not. Use a flag to indicate 890 ** the SG list entry contains a valid pdir index. 891 */ 892 #define PIDE_FLAG 0x80000000UL 893 894 #ifdef CCIO_COLLECT_STATS 895 #define IOMMU_MAP_STATS 896 #endif 897 #include "iommu-helpers.h" 898 899 /** 900 * ccio_map_sg - Map the scatter/gather list into the IOMMU. 901 * @dev: The PCI device. 902 * @sglist: The scatter/gather list to be mapped in the IOMMU. 903 * @nents: The number of entries in the scatter/gather list. 904 * @direction: The direction of the DMA transaction (to/from device). 905 * 906 * This function implements the pci_map_sg function. 907 */ 908 static int 909 ccio_map_sg(struct device *dev, struct scatterlist *sglist, int nents, 910 enum dma_data_direction direction, struct dma_attrs *attrs) 911 { 912 struct ioc *ioc; 913 int coalesced, filled = 0; 914 unsigned long flags; 915 unsigned long hint = hint_lookup[(int)direction]; 916 unsigned long prev_len = 0, current_len = 0; 917 int i; 918 919 BUG_ON(!dev); 920 ioc = GET_IOC(dev); 921 922 DBG_RUN_SG("%s() START %d entries\n", __func__, nents); 923 924 /* Fast path single entry scatterlists. */ 925 if (nents == 1) { 926 sg_dma_address(sglist) = ccio_map_single(dev, 927 sg_virt(sglist), sglist->length, 928 direction); 929 sg_dma_len(sglist) = sglist->length; 930 return 1; 931 } 932 933 for(i = 0; i < nents; i++) 934 prev_len += sglist[i].length; 935 936 spin_lock_irqsave(&ioc->res_lock, flags); 937 938 #ifdef CCIO_COLLECT_STATS 939 ioc->msg_calls++; 940 #endif 941 942 /* 943 ** First coalesce the chunks and allocate I/O pdir space 944 ** 945 ** If this is one DMA stream, we can properly map using the 946 ** correct virtual address associated with each DMA page. 947 ** w/o this association, we wouldn't have coherent DMA! 948 ** Access to the virtual address is what forces a two pass algorithm. 949 */ 950 coalesced = iommu_coalesce_chunks(ioc, dev, sglist, nents, ccio_alloc_range); 951 952 /* 953 ** Program the I/O Pdir 954 ** 955 ** map the virtual addresses to the I/O Pdir 956 ** o dma_address will contain the pdir index 957 ** o dma_len will contain the number of bytes to map 958 ** o page/offset contain the virtual address. 959 */ 960 filled = iommu_fill_pdir(ioc, sglist, nents, hint, ccio_io_pdir_entry); 961 962 spin_unlock_irqrestore(&ioc->res_lock, flags); 963 964 BUG_ON(coalesced != filled); 965 966 DBG_RUN_SG("%s() DONE %d mappings\n", __func__, filled); 967 968 for (i = 0; i < filled; i++) 969 current_len += sg_dma_len(sglist + i); 970 971 BUG_ON(current_len != prev_len); 972 973 return filled; 974 } 975 976 /** 977 * ccio_unmap_sg - Unmap the scatter/gather list from the IOMMU. 978 * @dev: The PCI device. 979 * @sglist: The scatter/gather list to be unmapped from the IOMMU. 980 * @nents: The number of entries in the scatter/gather list. 981 * @direction: The direction of the DMA transaction (to/from device). 982 * 983 * This function implements the pci_unmap_sg function. 984 */ 985 static void 986 ccio_unmap_sg(struct device *dev, struct scatterlist *sglist, int nents, 987 enum dma_data_direction direction, struct dma_attrs *attrs) 988 { 989 struct ioc *ioc; 990 991 BUG_ON(!dev); 992 ioc = GET_IOC(dev); 993 994 DBG_RUN_SG("%s() START %d entries, %p,%x\n", 995 __func__, nents, sg_virt(sglist), sglist->length); 996 997 #ifdef CCIO_COLLECT_STATS 998 ioc->usg_calls++; 999 #endif 1000 1001 while(sg_dma_len(sglist) && nents--) { 1002 1003 #ifdef CCIO_COLLECT_STATS 1004 ioc->usg_pages += sg_dma_len(sglist) >> PAGE_SHIFT; 1005 #endif 1006 ccio_unmap_page(dev, sg_dma_address(sglist), 1007 sg_dma_len(sglist), direction, NULL); 1008 ++sglist; 1009 } 1010 1011 DBG_RUN_SG("%s() DONE (nents %d)\n", __func__, nents); 1012 } 1013 1014 static struct dma_map_ops ccio_ops = { 1015 .dma_supported = ccio_dma_supported, 1016 .alloc = ccio_alloc, 1017 .free = ccio_free, 1018 .map_page = ccio_map_page, 1019 .unmap_page = ccio_unmap_page, 1020 .map_sg = ccio_map_sg, 1021 .unmap_sg = ccio_unmap_sg, 1022 }; 1023 1024 #ifdef CONFIG_PROC_FS 1025 static int ccio_proc_info(struct seq_file *m, void *p) 1026 { 1027 struct ioc *ioc = ioc_list; 1028 1029 while (ioc != NULL) { 1030 unsigned int total_pages = ioc->res_size << 3; 1031 #ifdef CCIO_COLLECT_STATS 1032 unsigned long avg = 0, min, max; 1033 int j; 1034 #endif 1035 1036 seq_printf(m, "%s\n", ioc->name); 1037 1038 seq_printf(m, "Cujo 2.0 bug : %s\n", 1039 (ioc->cujo20_bug ? "yes" : "no")); 1040 1041 seq_printf(m, "IO PDIR size : %d bytes (%d entries)\n", 1042 total_pages * 8, total_pages); 1043 1044 #ifdef CCIO_COLLECT_STATS 1045 seq_printf(m, "IO PDIR entries : %ld free %ld used (%d%%)\n", 1046 total_pages - ioc->used_pages, ioc->used_pages, 1047 (int)(ioc->used_pages * 100 / total_pages)); 1048 #endif 1049 1050 seq_printf(m, "Resource bitmap : %d bytes (%d pages)\n", 1051 ioc->res_size, total_pages); 1052 1053 #ifdef CCIO_COLLECT_STATS 1054 min = max = ioc->avg_search[0]; 1055 for(j = 0; j < CCIO_SEARCH_SAMPLE; ++j) { 1056 avg += ioc->avg_search[j]; 1057 if(ioc->avg_search[j] > max) 1058 max = ioc->avg_search[j]; 1059 if(ioc->avg_search[j] < min) 1060 min = ioc->avg_search[j]; 1061 } 1062 avg /= CCIO_SEARCH_SAMPLE; 1063 seq_printf(m, " Bitmap search : %ld/%ld/%ld (min/avg/max CPU Cycles)\n", 1064 min, avg, max); 1065 1066 seq_printf(m, "pci_map_single(): %8ld calls %8ld pages (avg %d/1000)\n", 1067 ioc->msingle_calls, ioc->msingle_pages, 1068 (int)((ioc->msingle_pages * 1000)/ioc->msingle_calls)); 1069 1070 /* KLUGE - unmap_sg calls unmap_page for each mapped page */ 1071 min = ioc->usingle_calls - ioc->usg_calls; 1072 max = ioc->usingle_pages - ioc->usg_pages; 1073 seq_printf(m, "pci_unmap_single: %8ld calls %8ld pages (avg %d/1000)\n", 1074 min, max, (int)((max * 1000)/min)); 1075 1076 seq_printf(m, "pci_map_sg() : %8ld calls %8ld pages (avg %d/1000)\n", 1077 ioc->msg_calls, ioc->msg_pages, 1078 (int)((ioc->msg_pages * 1000)/ioc->msg_calls)); 1079 1080 seq_printf(m, "pci_unmap_sg() : %8ld calls %8ld pages (avg %d/1000)\n\n\n", 1081 ioc->usg_calls, ioc->usg_pages, 1082 (int)((ioc->usg_pages * 1000)/ioc->usg_calls)); 1083 #endif /* CCIO_COLLECT_STATS */ 1084 1085 ioc = ioc->next; 1086 } 1087 1088 return 0; 1089 } 1090 1091 static int ccio_proc_info_open(struct inode *inode, struct file *file) 1092 { 1093 return single_open(file, &ccio_proc_info, NULL); 1094 } 1095 1096 static const struct file_operations ccio_proc_info_fops = { 1097 .owner = THIS_MODULE, 1098 .open = ccio_proc_info_open, 1099 .read = seq_read, 1100 .llseek = seq_lseek, 1101 .release = single_release, 1102 }; 1103 1104 static int ccio_proc_bitmap_info(struct seq_file *m, void *p) 1105 { 1106 struct ioc *ioc = ioc_list; 1107 1108 while (ioc != NULL) { 1109 seq_hex_dump(m, " ", DUMP_PREFIX_NONE, 32, 4, ioc->res_map, 1110 ioc->res_size, false); 1111 seq_putc(m, '\n'); 1112 ioc = ioc->next; 1113 break; /* XXX - remove me */ 1114 } 1115 1116 return 0; 1117 } 1118 1119 static int ccio_proc_bitmap_open(struct inode *inode, struct file *file) 1120 { 1121 return single_open(file, &ccio_proc_bitmap_info, NULL); 1122 } 1123 1124 static const struct file_operations ccio_proc_bitmap_fops = { 1125 .owner = THIS_MODULE, 1126 .open = ccio_proc_bitmap_open, 1127 .read = seq_read, 1128 .llseek = seq_lseek, 1129 .release = single_release, 1130 }; 1131 #endif /* CONFIG_PROC_FS */ 1132 1133 /** 1134 * ccio_find_ioc - Find the ioc in the ioc_list 1135 * @hw_path: The hardware path of the ioc. 1136 * 1137 * This function searches the ioc_list for an ioc that matches 1138 * the provide hardware path. 1139 */ 1140 static struct ioc * ccio_find_ioc(int hw_path) 1141 { 1142 int i; 1143 struct ioc *ioc; 1144 1145 ioc = ioc_list; 1146 for (i = 0; i < ioc_count; i++) { 1147 if (ioc->hw_path == hw_path) 1148 return ioc; 1149 1150 ioc = ioc->next; 1151 } 1152 1153 return NULL; 1154 } 1155 1156 /** 1157 * ccio_get_iommu - Find the iommu which controls this device 1158 * @dev: The parisc device. 1159 * 1160 * This function searches through the registered IOMMU's and returns 1161 * the appropriate IOMMU for the device based on its hardware path. 1162 */ 1163 void * ccio_get_iommu(const struct parisc_device *dev) 1164 { 1165 dev = find_pa_parent_type(dev, HPHW_IOA); 1166 if (!dev) 1167 return NULL; 1168 1169 return ccio_find_ioc(dev->hw_path); 1170 } 1171 1172 #define CUJO_20_STEP 0x10000000 /* inc upper nibble */ 1173 1174 /* Cujo 2.0 has a bug which will silently corrupt data being transferred 1175 * to/from certain pages. To avoid this happening, we mark these pages 1176 * as `used', and ensure that nothing will try to allocate from them. 1177 */ 1178 void ccio_cujo20_fixup(struct parisc_device *cujo, u32 iovp) 1179 { 1180 unsigned int idx; 1181 struct parisc_device *dev = parisc_parent(cujo); 1182 struct ioc *ioc = ccio_get_iommu(dev); 1183 u8 *res_ptr; 1184 1185 ioc->cujo20_bug = 1; 1186 res_ptr = ioc->res_map; 1187 idx = PDIR_INDEX(iovp) >> 3; 1188 1189 while (idx < ioc->res_size) { 1190 res_ptr[idx] |= 0xff; 1191 idx += PDIR_INDEX(CUJO_20_STEP) >> 3; 1192 } 1193 } 1194 1195 #if 0 1196 /* GRANT - is this needed for U2 or not? */ 1197 1198 /* 1199 ** Get the size of the I/O TLB for this I/O MMU. 1200 ** 1201 ** If spa_shift is non-zero (ie probably U2), 1202 ** then calculate the I/O TLB size using spa_shift. 1203 ** 1204 ** Otherwise we are supposed to get the IODC entry point ENTRY TLB 1205 ** and execute it. However, both U2 and Uturn firmware supplies spa_shift. 1206 ** I think only Java (K/D/R-class too?) systems don't do this. 1207 */ 1208 static int 1209 ccio_get_iotlb_size(struct parisc_device *dev) 1210 { 1211 if (dev->spa_shift == 0) { 1212 panic("%s() : Can't determine I/O TLB size.\n", __func__); 1213 } 1214 return (1 << dev->spa_shift); 1215 } 1216 #else 1217 1218 /* Uturn supports 256 TLB entries */ 1219 #define CCIO_CHAINID_SHIFT 8 1220 #define CCIO_CHAINID_MASK 0xff 1221 #endif /* 0 */ 1222 1223 /* We *can't* support JAVA (T600). Venture there at your own risk. */ 1224 static const struct parisc_device_id ccio_tbl[] = { 1225 { HPHW_IOA, HVERSION_REV_ANY_ID, U2_IOA_RUNWAY, 0xb }, /* U2 */ 1226 { HPHW_IOA, HVERSION_REV_ANY_ID, UTURN_IOA_RUNWAY, 0xb }, /* UTurn */ 1227 { 0, } 1228 }; 1229 1230 static int ccio_probe(struct parisc_device *dev); 1231 1232 static struct parisc_driver ccio_driver = { 1233 .name = "ccio", 1234 .id_table = ccio_tbl, 1235 .probe = ccio_probe, 1236 }; 1237 1238 /** 1239 * ccio_ioc_init - Initialize the I/O Controller 1240 * @ioc: The I/O Controller. 1241 * 1242 * Initialize the I/O Controller which includes setting up the 1243 * I/O Page Directory, the resource map, and initalizing the 1244 * U2/Uturn chip into virtual mode. 1245 */ 1246 static void 1247 ccio_ioc_init(struct ioc *ioc) 1248 { 1249 int i; 1250 unsigned int iov_order; 1251 u32 iova_space_size; 1252 1253 /* 1254 ** Determine IOVA Space size from memory size. 1255 ** 1256 ** Ideally, PCI drivers would register the maximum number 1257 ** of DMA they can have outstanding for each device they 1258 ** own. Next best thing would be to guess how much DMA 1259 ** can be outstanding based on PCI Class/sub-class. Both 1260 ** methods still require some "extra" to support PCI 1261 ** Hot-Plug/Removal of PCI cards. (aka PCI OLARD). 1262 */ 1263 1264 iova_space_size = (u32) (totalram_pages / count_parisc_driver(&ccio_driver)); 1265 1266 /* limit IOVA space size to 1MB-1GB */ 1267 1268 if (iova_space_size < (1 << (20 - PAGE_SHIFT))) { 1269 iova_space_size = 1 << (20 - PAGE_SHIFT); 1270 #ifdef __LP64__ 1271 } else if (iova_space_size > (1 << (30 - PAGE_SHIFT))) { 1272 iova_space_size = 1 << (30 - PAGE_SHIFT); 1273 #endif 1274 } 1275 1276 /* 1277 ** iova space must be log2() in size. 1278 ** thus, pdir/res_map will also be log2(). 1279 */ 1280 1281 /* We could use larger page sizes in order to *decrease* the number 1282 ** of mappings needed. (ie 8k pages means 1/2 the mappings). 1283 ** 1284 ** Note: Grant Grunder says "Using 8k I/O pages isn't trivial either 1285 ** since the pages must also be physically contiguous - typically 1286 ** this is the case under linux." 1287 */ 1288 1289 iov_order = get_order(iova_space_size << PAGE_SHIFT); 1290 1291 /* iova_space_size is now bytes, not pages */ 1292 iova_space_size = 1 << (iov_order + PAGE_SHIFT); 1293 1294 ioc->pdir_size = (iova_space_size / IOVP_SIZE) * sizeof(u64); 1295 1296 BUG_ON(ioc->pdir_size > 8 * 1024 * 1024); /* max pdir size <= 8MB */ 1297 1298 /* Verify it's a power of two */ 1299 BUG_ON((1 << get_order(ioc->pdir_size)) != (ioc->pdir_size >> PAGE_SHIFT)); 1300 1301 DBG_INIT("%s() hpa 0x%p mem %luMB IOV %dMB (%d bits)\n", 1302 __func__, ioc->ioc_regs, 1303 (unsigned long) totalram_pages >> (20 - PAGE_SHIFT), 1304 iova_space_size>>20, 1305 iov_order + PAGE_SHIFT); 1306 1307 ioc->pdir_base = (u64 *)__get_free_pages(GFP_KERNEL, 1308 get_order(ioc->pdir_size)); 1309 if(NULL == ioc->pdir_base) { 1310 panic("%s() could not allocate I/O Page Table\n", __func__); 1311 } 1312 memset(ioc->pdir_base, 0, ioc->pdir_size); 1313 1314 BUG_ON((((unsigned long)ioc->pdir_base) & PAGE_MASK) != (unsigned long)ioc->pdir_base); 1315 DBG_INIT(" base %p\n", ioc->pdir_base); 1316 1317 /* resource map size dictated by pdir_size */ 1318 ioc->res_size = (ioc->pdir_size / sizeof(u64)) >> 3; 1319 DBG_INIT("%s() res_size 0x%x\n", __func__, ioc->res_size); 1320 1321 ioc->res_map = (u8 *)__get_free_pages(GFP_KERNEL, 1322 get_order(ioc->res_size)); 1323 if(NULL == ioc->res_map) { 1324 panic("%s() could not allocate resource map\n", __func__); 1325 } 1326 memset(ioc->res_map, 0, ioc->res_size); 1327 1328 /* Initialize the res_hint to 16 */ 1329 ioc->res_hint = 16; 1330 1331 /* Initialize the spinlock */ 1332 spin_lock_init(&ioc->res_lock); 1333 1334 /* 1335 ** Chainid is the upper most bits of an IOVP used to determine 1336 ** which TLB entry an IOVP will use. 1337 */ 1338 ioc->chainid_shift = get_order(iova_space_size) + PAGE_SHIFT - CCIO_CHAINID_SHIFT; 1339 DBG_INIT(" chainid_shift 0x%x\n", ioc->chainid_shift); 1340 1341 /* 1342 ** Initialize IOA hardware 1343 */ 1344 WRITE_U32(CCIO_CHAINID_MASK << ioc->chainid_shift, 1345 &ioc->ioc_regs->io_chain_id_mask); 1346 1347 WRITE_U32(virt_to_phys(ioc->pdir_base), 1348 &ioc->ioc_regs->io_pdir_base); 1349 1350 /* 1351 ** Go to "Virtual Mode" 1352 */ 1353 WRITE_U32(IOA_NORMAL_MODE, &ioc->ioc_regs->io_control); 1354 1355 /* 1356 ** Initialize all I/O TLB entries to 0 (Valid bit off). 1357 */ 1358 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_m); 1359 WRITE_U32(0, &ioc->ioc_regs->io_tlb_entry_l); 1360 1361 for(i = 1 << CCIO_CHAINID_SHIFT; i ; i--) { 1362 WRITE_U32((CMD_TLB_DIRECT_WRITE | (i << ioc->chainid_shift)), 1363 &ioc->ioc_regs->io_command); 1364 } 1365 } 1366 1367 static void __init 1368 ccio_init_resource(struct resource *res, char *name, void __iomem *ioaddr) 1369 { 1370 int result; 1371 1372 res->parent = NULL; 1373 res->flags = IORESOURCE_MEM; 1374 /* 1375 * bracing ((signed) ...) are required for 64bit kernel because 1376 * we only want to sign extend the lower 16 bits of the register. 1377 * The upper 16-bits of range registers are hardcoded to 0xffff. 1378 */ 1379 res->start = (unsigned long)((signed) READ_U32(ioaddr) << 16); 1380 res->end = (unsigned long)((signed) (READ_U32(ioaddr + 4) << 16) - 1); 1381 res->name = name; 1382 /* 1383 * Check if this MMIO range is disable 1384 */ 1385 if (res->end + 1 == res->start) 1386 return; 1387 1388 /* On some platforms (e.g. K-Class), we have already registered 1389 * resources for devices reported by firmware. Some are children 1390 * of ccio. 1391 * "insert" ccio ranges in the mmio hierarchy (/proc/iomem). 1392 */ 1393 result = insert_resource(&iomem_resource, res); 1394 if (result < 0) { 1395 printk(KERN_ERR "%s() failed to claim CCIO bus address space (%08lx,%08lx)\n", 1396 __func__, (unsigned long)res->start, (unsigned long)res->end); 1397 } 1398 } 1399 1400 static void __init ccio_init_resources(struct ioc *ioc) 1401 { 1402 struct resource *res = ioc->mmio_region; 1403 char *name = kmalloc(14, GFP_KERNEL); 1404 1405 snprintf(name, 14, "GSC Bus [%d/]", ioc->hw_path); 1406 1407 ccio_init_resource(res, name, &ioc->ioc_regs->io_io_low); 1408 ccio_init_resource(res + 1, name, &ioc->ioc_regs->io_io_low_hv); 1409 } 1410 1411 static int new_ioc_area(struct resource *res, unsigned long size, 1412 unsigned long min, unsigned long max, unsigned long align) 1413 { 1414 if (max <= min) 1415 return -EBUSY; 1416 1417 res->start = (max - size + 1) &~ (align - 1); 1418 res->end = res->start + size; 1419 1420 /* We might be trying to expand the MMIO range to include 1421 * a child device that has already registered it's MMIO space. 1422 * Use "insert" instead of request_resource(). 1423 */ 1424 if (!insert_resource(&iomem_resource, res)) 1425 return 0; 1426 1427 return new_ioc_area(res, size, min, max - size, align); 1428 } 1429 1430 static int expand_ioc_area(struct resource *res, unsigned long size, 1431 unsigned long min, unsigned long max, unsigned long align) 1432 { 1433 unsigned long start, len; 1434 1435 if (!res->parent) 1436 return new_ioc_area(res, size, min, max, align); 1437 1438 start = (res->start - size) &~ (align - 1); 1439 len = res->end - start + 1; 1440 if (start >= min) { 1441 if (!adjust_resource(res, start, len)) 1442 return 0; 1443 } 1444 1445 start = res->start; 1446 len = ((size + res->end + align) &~ (align - 1)) - start; 1447 if (start + len <= max) { 1448 if (!adjust_resource(res, start, len)) 1449 return 0; 1450 } 1451 1452 return -EBUSY; 1453 } 1454 1455 /* 1456 * Dino calls this function. Beware that we may get called on systems 1457 * which have no IOC (725, B180, C160L, etc) but do have a Dino. 1458 * So it's legal to find no parent IOC. 1459 * 1460 * Some other issues: one of the resources in the ioc may be unassigned. 1461 */ 1462 int ccio_allocate_resource(const struct parisc_device *dev, 1463 struct resource *res, unsigned long size, 1464 unsigned long min, unsigned long max, unsigned long align) 1465 { 1466 struct resource *parent = &iomem_resource; 1467 struct ioc *ioc = ccio_get_iommu(dev); 1468 if (!ioc) 1469 goto out; 1470 1471 parent = ioc->mmio_region; 1472 if (parent->parent && 1473 !allocate_resource(parent, res, size, min, max, align, NULL, NULL)) 1474 return 0; 1475 1476 if ((parent + 1)->parent && 1477 !allocate_resource(parent + 1, res, size, min, max, align, 1478 NULL, NULL)) 1479 return 0; 1480 1481 if (!expand_ioc_area(parent, size, min, max, align)) { 1482 __raw_writel(((parent->start)>>16) | 0xffff0000, 1483 &ioc->ioc_regs->io_io_low); 1484 __raw_writel(((parent->end)>>16) | 0xffff0000, 1485 &ioc->ioc_regs->io_io_high); 1486 } else if (!expand_ioc_area(parent + 1, size, min, max, align)) { 1487 parent++; 1488 __raw_writel(((parent->start)>>16) | 0xffff0000, 1489 &ioc->ioc_regs->io_io_low_hv); 1490 __raw_writel(((parent->end)>>16) | 0xffff0000, 1491 &ioc->ioc_regs->io_io_high_hv); 1492 } else { 1493 return -EBUSY; 1494 } 1495 1496 out: 1497 return allocate_resource(parent, res, size, min, max, align, NULL,NULL); 1498 } 1499 1500 int ccio_request_resource(const struct parisc_device *dev, 1501 struct resource *res) 1502 { 1503 struct resource *parent; 1504 struct ioc *ioc = ccio_get_iommu(dev); 1505 1506 if (!ioc) { 1507 parent = &iomem_resource; 1508 } else if ((ioc->mmio_region->start <= res->start) && 1509 (res->end <= ioc->mmio_region->end)) { 1510 parent = ioc->mmio_region; 1511 } else if (((ioc->mmio_region + 1)->start <= res->start) && 1512 (res->end <= (ioc->mmio_region + 1)->end)) { 1513 parent = ioc->mmio_region + 1; 1514 } else { 1515 return -EBUSY; 1516 } 1517 1518 /* "transparent" bus bridges need to register MMIO resources 1519 * firmware assigned them. e.g. children of hppb.c (e.g. K-class) 1520 * registered their resources in the PDC "bus walk" (See 1521 * arch/parisc/kernel/inventory.c). 1522 */ 1523 return insert_resource(parent, res); 1524 } 1525 1526 /** 1527 * ccio_probe - Determine if ccio should claim this device. 1528 * @dev: The device which has been found 1529 * 1530 * Determine if ccio should claim this chip (return 0) or not (return 1). 1531 * If so, initialize the chip and tell other partners in crime they 1532 * have work to do. 1533 */ 1534 static int __init ccio_probe(struct parisc_device *dev) 1535 { 1536 int i; 1537 struct ioc *ioc, **ioc_p = &ioc_list; 1538 1539 ioc = kzalloc(sizeof(struct ioc), GFP_KERNEL); 1540 if (ioc == NULL) { 1541 printk(KERN_ERR MODULE_NAME ": memory allocation failure\n"); 1542 return 1; 1543 } 1544 1545 ioc->name = dev->id.hversion == U2_IOA_RUNWAY ? "U2" : "UTurn"; 1546 1547 printk(KERN_INFO "Found %s at 0x%lx\n", ioc->name, 1548 (unsigned long)dev->hpa.start); 1549 1550 for (i = 0; i < ioc_count; i++) { 1551 ioc_p = &(*ioc_p)->next; 1552 } 1553 *ioc_p = ioc; 1554 1555 ioc->hw_path = dev->hw_path; 1556 ioc->ioc_regs = ioremap_nocache(dev->hpa.start, 4096); 1557 ccio_ioc_init(ioc); 1558 ccio_init_resources(ioc); 1559 hppa_dma_ops = &ccio_ops; 1560 dev->dev.platform_data = kzalloc(sizeof(struct pci_hba_data), GFP_KERNEL); 1561 1562 /* if this fails, no I/O cards will work, so may as well bug */ 1563 BUG_ON(dev->dev.platform_data == NULL); 1564 HBA_DATA(dev->dev.platform_data)->iommu = ioc; 1565 1566 #ifdef CONFIG_PROC_FS 1567 if (ioc_count == 0) { 1568 proc_create(MODULE_NAME, 0, proc_runway_root, 1569 &ccio_proc_info_fops); 1570 proc_create(MODULE_NAME"-bitmap", 0, proc_runway_root, 1571 &ccio_proc_bitmap_fops); 1572 } 1573 #endif 1574 ioc_count++; 1575 1576 parisc_has_iommu(); 1577 return 0; 1578 } 1579 1580 /** 1581 * ccio_init - ccio initialization procedure. 1582 * 1583 * Register this driver. 1584 */ 1585 void __init ccio_init(void) 1586 { 1587 register_parisc_driver(&ccio_driver); 1588 } 1589 1590