1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 31 /* OPP tables with uninitialized required OPPs */ 32 LIST_HEAD(lazy_opp_tables); 33 34 /* Lock to allow exclusive modification to the device and opp lists */ 35 DEFINE_MUTEX(opp_table_lock); 36 /* Flag indicating that opp_tables list is being updated at the moment */ 37 static bool opp_tables_busy; 38 39 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 40 { 41 struct opp_device *opp_dev; 42 bool found = false; 43 44 mutex_lock(&opp_table->lock); 45 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 46 if (opp_dev->dev == dev) { 47 found = true; 48 break; 49 } 50 51 mutex_unlock(&opp_table->lock); 52 return found; 53 } 54 55 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 56 { 57 struct opp_table *opp_table; 58 59 list_for_each_entry(opp_table, &opp_tables, node) { 60 if (_find_opp_dev(dev, opp_table)) { 61 _get_opp_table_kref(opp_table); 62 return opp_table; 63 } 64 } 65 66 return ERR_PTR(-ENODEV); 67 } 68 69 /** 70 * _find_opp_table() - find opp_table struct using device pointer 71 * @dev: device pointer used to lookup OPP table 72 * 73 * Search OPP table for one containing matching device. 74 * 75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 76 * -EINVAL based on type of error. 77 * 78 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 79 */ 80 struct opp_table *_find_opp_table(struct device *dev) 81 { 82 struct opp_table *opp_table; 83 84 if (IS_ERR_OR_NULL(dev)) { 85 pr_err("%s: Invalid parameters\n", __func__); 86 return ERR_PTR(-EINVAL); 87 } 88 89 mutex_lock(&opp_table_lock); 90 opp_table = _find_opp_table_unlocked(dev); 91 mutex_unlock(&opp_table_lock); 92 93 return opp_table; 94 } 95 96 /** 97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 98 * @opp: opp for which voltage has to be returned for 99 * 100 * Return: voltage in micro volt corresponding to the opp, else 101 * return 0 102 * 103 * This is useful only for devices with single power supply. 104 */ 105 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 106 { 107 if (IS_ERR_OR_NULL(opp)) { 108 pr_err("%s: Invalid parameters\n", __func__); 109 return 0; 110 } 111 112 return opp->supplies[0].u_volt; 113 } 114 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 115 116 /** 117 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 118 * @opp: opp for which power has to be returned for 119 * 120 * Return: power in micro watt corresponding to the opp, else 121 * return 0 122 * 123 * This is useful only for devices with single power supply. 124 */ 125 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 126 { 127 unsigned long opp_power = 0; 128 int i; 129 130 if (IS_ERR_OR_NULL(opp)) { 131 pr_err("%s: Invalid parameters\n", __func__); 132 return 0; 133 } 134 for (i = 0; i < opp->opp_table->regulator_count; i++) 135 opp_power += opp->supplies[i].u_watt; 136 137 return opp_power; 138 } 139 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 140 141 /** 142 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 143 * @opp: opp for which frequency has to be returned for 144 * 145 * Return: frequency in hertz corresponding to the opp, else 146 * return 0 147 */ 148 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 149 { 150 if (IS_ERR_OR_NULL(opp)) { 151 pr_err("%s: Invalid parameters\n", __func__); 152 return 0; 153 } 154 155 return opp->rate; 156 } 157 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 158 159 /** 160 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 161 * @opp: opp for which level value has to be returned for 162 * 163 * Return: level read from device tree corresponding to the opp, else 164 * return 0. 165 */ 166 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 167 { 168 if (IS_ERR_OR_NULL(opp) || !opp->available) { 169 pr_err("%s: Invalid parameters\n", __func__); 170 return 0; 171 } 172 173 return opp->level; 174 } 175 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 176 177 /** 178 * dev_pm_opp_get_required_pstate() - Gets the required performance state 179 * corresponding to an available opp 180 * @opp: opp for which performance state has to be returned for 181 * @index: index of the required opp 182 * 183 * Return: performance state read from device tree corresponding to the 184 * required opp, else return 0. 185 */ 186 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 187 unsigned int index) 188 { 189 if (IS_ERR_OR_NULL(opp) || !opp->available || 190 index >= opp->opp_table->required_opp_count) { 191 pr_err("%s: Invalid parameters\n", __func__); 192 return 0; 193 } 194 195 /* required-opps not fully initialized yet */ 196 if (lazy_linking_pending(opp->opp_table)) 197 return 0; 198 199 return opp->required_opps[index]->pstate; 200 } 201 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 202 203 /** 204 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 205 * @opp: opp for which turbo mode is being verified 206 * 207 * Turbo OPPs are not for normal use, and can be enabled (under certain 208 * conditions) for short duration of times to finish high throughput work 209 * quickly. Running on them for longer times may overheat the chip. 210 * 211 * Return: true if opp is turbo opp, else false. 212 */ 213 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 214 { 215 if (IS_ERR_OR_NULL(opp) || !opp->available) { 216 pr_err("%s: Invalid parameters\n", __func__); 217 return false; 218 } 219 220 return opp->turbo; 221 } 222 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 223 224 /** 225 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 226 * @dev: device for which we do this operation 227 * 228 * Return: This function returns the max clock latency in nanoseconds. 229 */ 230 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 231 { 232 struct opp_table *opp_table; 233 unsigned long clock_latency_ns; 234 235 opp_table = _find_opp_table(dev); 236 if (IS_ERR(opp_table)) 237 return 0; 238 239 clock_latency_ns = opp_table->clock_latency_ns_max; 240 241 dev_pm_opp_put_opp_table(opp_table); 242 243 return clock_latency_ns; 244 } 245 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 246 247 /** 248 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 249 * @dev: device for which we do this operation 250 * 251 * Return: This function returns the max voltage latency in nanoseconds. 252 */ 253 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 254 { 255 struct opp_table *opp_table; 256 struct dev_pm_opp *opp; 257 struct regulator *reg; 258 unsigned long latency_ns = 0; 259 int ret, i, count; 260 struct { 261 unsigned long min; 262 unsigned long max; 263 } *uV; 264 265 opp_table = _find_opp_table(dev); 266 if (IS_ERR(opp_table)) 267 return 0; 268 269 /* Regulator may not be required for the device */ 270 if (!opp_table->regulators) 271 goto put_opp_table; 272 273 count = opp_table->regulator_count; 274 275 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 276 if (!uV) 277 goto put_opp_table; 278 279 mutex_lock(&opp_table->lock); 280 281 for (i = 0; i < count; i++) { 282 uV[i].min = ~0; 283 uV[i].max = 0; 284 285 list_for_each_entry(opp, &opp_table->opp_list, node) { 286 if (!opp->available) 287 continue; 288 289 if (opp->supplies[i].u_volt_min < uV[i].min) 290 uV[i].min = opp->supplies[i].u_volt_min; 291 if (opp->supplies[i].u_volt_max > uV[i].max) 292 uV[i].max = opp->supplies[i].u_volt_max; 293 } 294 } 295 296 mutex_unlock(&opp_table->lock); 297 298 /* 299 * The caller needs to ensure that opp_table (and hence the regulator) 300 * isn't freed, while we are executing this routine. 301 */ 302 for (i = 0; i < count; i++) { 303 reg = opp_table->regulators[i]; 304 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 305 if (ret > 0) 306 latency_ns += ret * 1000; 307 } 308 309 kfree(uV); 310 put_opp_table: 311 dev_pm_opp_put_opp_table(opp_table); 312 313 return latency_ns; 314 } 315 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 316 317 /** 318 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 319 * nanoseconds 320 * @dev: device for which we do this operation 321 * 322 * Return: This function returns the max transition latency, in nanoseconds, to 323 * switch from one OPP to other. 324 */ 325 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 326 { 327 return dev_pm_opp_get_max_volt_latency(dev) + 328 dev_pm_opp_get_max_clock_latency(dev); 329 } 330 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 331 332 /** 333 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 334 * @dev: device for which we do this operation 335 * 336 * Return: This function returns the frequency of the OPP marked as suspend_opp 337 * if one is available, else returns 0; 338 */ 339 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 340 { 341 struct opp_table *opp_table; 342 unsigned long freq = 0; 343 344 opp_table = _find_opp_table(dev); 345 if (IS_ERR(opp_table)) 346 return 0; 347 348 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 349 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 350 351 dev_pm_opp_put_opp_table(opp_table); 352 353 return freq; 354 } 355 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 356 357 int _get_opp_count(struct opp_table *opp_table) 358 { 359 struct dev_pm_opp *opp; 360 int count = 0; 361 362 mutex_lock(&opp_table->lock); 363 364 list_for_each_entry(opp, &opp_table->opp_list, node) { 365 if (opp->available) 366 count++; 367 } 368 369 mutex_unlock(&opp_table->lock); 370 371 return count; 372 } 373 374 /** 375 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 376 * @dev: device for which we do this operation 377 * 378 * Return: This function returns the number of available opps if there are any, 379 * else returns 0 if none or the corresponding error value. 380 */ 381 int dev_pm_opp_get_opp_count(struct device *dev) 382 { 383 struct opp_table *opp_table; 384 int count; 385 386 opp_table = _find_opp_table(dev); 387 if (IS_ERR(opp_table)) { 388 count = PTR_ERR(opp_table); 389 dev_dbg(dev, "%s: OPP table not found (%d)\n", 390 __func__, count); 391 return count; 392 } 393 394 count = _get_opp_count(opp_table); 395 dev_pm_opp_put_opp_table(opp_table); 396 397 return count; 398 } 399 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 400 401 /** 402 * dev_pm_opp_find_freq_exact() - search for an exact frequency 403 * @dev: device for which we do this operation 404 * @freq: frequency to search for 405 * @available: true/false - match for available opp 406 * 407 * Return: Searches for exact match in the opp table and returns pointer to the 408 * matching opp if found, else returns ERR_PTR in case of error and should 409 * be handled using IS_ERR. Error return values can be: 410 * EINVAL: for bad pointer 411 * ERANGE: no match found for search 412 * ENODEV: if device not found in list of registered devices 413 * 414 * Note: available is a modifier for the search. if available=true, then the 415 * match is for exact matching frequency and is available in the stored OPP 416 * table. if false, the match is for exact frequency which is not available. 417 * 418 * This provides a mechanism to enable an opp which is not available currently 419 * or the opposite as well. 420 * 421 * The callers are required to call dev_pm_opp_put() for the returned OPP after 422 * use. 423 */ 424 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 425 unsigned long freq, 426 bool available) 427 { 428 struct opp_table *opp_table; 429 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 430 431 opp_table = _find_opp_table(dev); 432 if (IS_ERR(opp_table)) { 433 int r = PTR_ERR(opp_table); 434 435 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 436 return ERR_PTR(r); 437 } 438 439 mutex_lock(&opp_table->lock); 440 441 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 442 if (temp_opp->available == available && 443 temp_opp->rate == freq) { 444 opp = temp_opp; 445 446 /* Increment the reference count of OPP */ 447 dev_pm_opp_get(opp); 448 break; 449 } 450 } 451 452 mutex_unlock(&opp_table->lock); 453 dev_pm_opp_put_opp_table(opp_table); 454 455 return opp; 456 } 457 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 458 459 /** 460 * dev_pm_opp_find_level_exact() - search for an exact level 461 * @dev: device for which we do this operation 462 * @level: level to search for 463 * 464 * Return: Searches for exact match in the opp table and returns pointer to the 465 * matching opp if found, else returns ERR_PTR in case of error and should 466 * be handled using IS_ERR. Error return values can be: 467 * EINVAL: for bad pointer 468 * ERANGE: no match found for search 469 * ENODEV: if device not found in list of registered devices 470 * 471 * The callers are required to call dev_pm_opp_put() for the returned OPP after 472 * use. 473 */ 474 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 475 unsigned int level) 476 { 477 struct opp_table *opp_table; 478 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 479 480 opp_table = _find_opp_table(dev); 481 if (IS_ERR(opp_table)) { 482 int r = PTR_ERR(opp_table); 483 484 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 485 return ERR_PTR(r); 486 } 487 488 mutex_lock(&opp_table->lock); 489 490 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 491 if (temp_opp->level == level) { 492 opp = temp_opp; 493 494 /* Increment the reference count of OPP */ 495 dev_pm_opp_get(opp); 496 break; 497 } 498 } 499 500 mutex_unlock(&opp_table->lock); 501 dev_pm_opp_put_opp_table(opp_table); 502 503 return opp; 504 } 505 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 506 507 /** 508 * dev_pm_opp_find_level_ceil() - search for an rounded up level 509 * @dev: device for which we do this operation 510 * @level: level to search for 511 * 512 * Return: Searches for rounded up match in the opp table and returns pointer 513 * to the matching opp if found, else returns ERR_PTR in case of error and 514 * should be handled using IS_ERR. Error return values can be: 515 * EINVAL: for bad pointer 516 * ERANGE: no match found for search 517 * ENODEV: if device not found in list of registered devices 518 * 519 * The callers are required to call dev_pm_opp_put() for the returned OPP after 520 * use. 521 */ 522 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 523 unsigned int *level) 524 { 525 struct opp_table *opp_table; 526 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 527 528 opp_table = _find_opp_table(dev); 529 if (IS_ERR(opp_table)) { 530 int r = PTR_ERR(opp_table); 531 532 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 533 return ERR_PTR(r); 534 } 535 536 mutex_lock(&opp_table->lock); 537 538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 539 if (temp_opp->available && temp_opp->level >= *level) { 540 opp = temp_opp; 541 *level = opp->level; 542 543 /* Increment the reference count of OPP */ 544 dev_pm_opp_get(opp); 545 break; 546 } 547 } 548 549 mutex_unlock(&opp_table->lock); 550 dev_pm_opp_put_opp_table(opp_table); 551 552 return opp; 553 } 554 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 555 556 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 557 unsigned long *freq) 558 { 559 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 560 561 mutex_lock(&opp_table->lock); 562 563 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 564 if (temp_opp->available && temp_opp->rate >= *freq) { 565 opp = temp_opp; 566 *freq = opp->rate; 567 568 /* Increment the reference count of OPP */ 569 dev_pm_opp_get(opp); 570 break; 571 } 572 } 573 574 mutex_unlock(&opp_table->lock); 575 576 return opp; 577 } 578 579 /** 580 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 581 * @dev: device for which we do this operation 582 * @freq: Start frequency 583 * 584 * Search for the matching ceil *available* OPP from a starting freq 585 * for a device. 586 * 587 * Return: matching *opp and refreshes *freq accordingly, else returns 588 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 589 * values can be: 590 * EINVAL: for bad pointer 591 * ERANGE: no match found for search 592 * ENODEV: if device not found in list of registered devices 593 * 594 * The callers are required to call dev_pm_opp_put() for the returned OPP after 595 * use. 596 */ 597 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 598 unsigned long *freq) 599 { 600 struct opp_table *opp_table; 601 struct dev_pm_opp *opp; 602 603 if (!dev || !freq) { 604 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 605 return ERR_PTR(-EINVAL); 606 } 607 608 opp_table = _find_opp_table(dev); 609 if (IS_ERR(opp_table)) 610 return ERR_CAST(opp_table); 611 612 opp = _find_freq_ceil(opp_table, freq); 613 614 dev_pm_opp_put_opp_table(opp_table); 615 616 return opp; 617 } 618 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 619 620 /** 621 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 622 * @dev: device for which we do this operation 623 * @freq: Start frequency 624 * 625 * Search for the matching floor *available* OPP from a starting freq 626 * for a device. 627 * 628 * Return: matching *opp and refreshes *freq accordingly, else returns 629 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 630 * values can be: 631 * EINVAL: for bad pointer 632 * ERANGE: no match found for search 633 * ENODEV: if device not found in list of registered devices 634 * 635 * The callers are required to call dev_pm_opp_put() for the returned OPP after 636 * use. 637 */ 638 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 639 unsigned long *freq) 640 { 641 struct opp_table *opp_table; 642 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 643 644 if (!dev || !freq) { 645 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 646 return ERR_PTR(-EINVAL); 647 } 648 649 opp_table = _find_opp_table(dev); 650 if (IS_ERR(opp_table)) 651 return ERR_CAST(opp_table); 652 653 mutex_lock(&opp_table->lock); 654 655 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 656 if (temp_opp->available) { 657 /* go to the next node, before choosing prev */ 658 if (temp_opp->rate > *freq) 659 break; 660 else 661 opp = temp_opp; 662 } 663 } 664 665 /* Increment the reference count of OPP */ 666 if (!IS_ERR(opp)) 667 dev_pm_opp_get(opp); 668 mutex_unlock(&opp_table->lock); 669 dev_pm_opp_put_opp_table(opp_table); 670 671 if (!IS_ERR(opp)) 672 *freq = opp->rate; 673 674 return opp; 675 } 676 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 677 678 /** 679 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 680 * target voltage. 681 * @dev: Device for which we do this operation. 682 * @u_volt: Target voltage. 683 * 684 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 685 * 686 * Return: matching *opp, else returns ERR_PTR in case of error which should be 687 * handled using IS_ERR. 688 * 689 * Error return values can be: 690 * EINVAL: bad parameters 691 * 692 * The callers are required to call dev_pm_opp_put() for the returned OPP after 693 * use. 694 */ 695 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 696 unsigned long u_volt) 697 { 698 struct opp_table *opp_table; 699 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 700 701 if (!dev || !u_volt) { 702 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 703 u_volt); 704 return ERR_PTR(-EINVAL); 705 } 706 707 opp_table = _find_opp_table(dev); 708 if (IS_ERR(opp_table)) 709 return ERR_CAST(opp_table); 710 711 mutex_lock(&opp_table->lock); 712 713 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 714 if (temp_opp->available) { 715 if (temp_opp->supplies[0].u_volt > u_volt) 716 break; 717 opp = temp_opp; 718 } 719 } 720 721 /* Increment the reference count of OPP */ 722 if (!IS_ERR(opp)) 723 dev_pm_opp_get(opp); 724 725 mutex_unlock(&opp_table->lock); 726 dev_pm_opp_put_opp_table(opp_table); 727 728 return opp; 729 } 730 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 731 732 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 733 struct dev_pm_opp_supply *supply) 734 { 735 int ret; 736 737 /* Regulator not available for device */ 738 if (IS_ERR(reg)) { 739 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 740 PTR_ERR(reg)); 741 return 0; 742 } 743 744 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 745 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 746 747 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 748 supply->u_volt, supply->u_volt_max); 749 if (ret) 750 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 751 __func__, supply->u_volt_min, supply->u_volt, 752 supply->u_volt_max, ret); 753 754 return ret; 755 } 756 757 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 758 unsigned long freq) 759 { 760 int ret; 761 762 /* We may reach here for devices which don't change frequency */ 763 if (IS_ERR(clk)) 764 return 0; 765 766 ret = clk_set_rate(clk, freq); 767 if (ret) { 768 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 769 ret); 770 } 771 772 return ret; 773 } 774 775 static int _generic_set_opp_regulator(struct opp_table *opp_table, 776 struct device *dev, 777 struct dev_pm_opp *opp, 778 unsigned long freq, 779 int scaling_down) 780 { 781 struct regulator *reg = opp_table->regulators[0]; 782 struct dev_pm_opp *old_opp = opp_table->current_opp; 783 int ret; 784 785 /* This function only supports single regulator per device */ 786 if (WARN_ON(opp_table->regulator_count > 1)) { 787 dev_err(dev, "multiple regulators are not supported\n"); 788 return -EINVAL; 789 } 790 791 /* Scaling up? Scale voltage before frequency */ 792 if (!scaling_down) { 793 ret = _set_opp_voltage(dev, reg, opp->supplies); 794 if (ret) 795 goto restore_voltage; 796 } 797 798 /* Change frequency */ 799 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 800 if (ret) 801 goto restore_voltage; 802 803 /* Scaling down? Scale voltage after frequency */ 804 if (scaling_down) { 805 ret = _set_opp_voltage(dev, reg, opp->supplies); 806 if (ret) 807 goto restore_freq; 808 } 809 810 /* 811 * Enable the regulator after setting its voltages, otherwise it breaks 812 * some boot-enabled regulators. 813 */ 814 if (unlikely(!opp_table->enabled)) { 815 ret = regulator_enable(reg); 816 if (ret < 0) 817 dev_warn(dev, "Failed to enable regulator: %d", ret); 818 } 819 820 return 0; 821 822 restore_freq: 823 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate)) 824 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 825 __func__, old_opp->rate); 826 restore_voltage: 827 /* This shouldn't harm even if the voltages weren't updated earlier */ 828 _set_opp_voltage(dev, reg, old_opp->supplies); 829 830 return ret; 831 } 832 833 static int _set_opp_bw(const struct opp_table *opp_table, 834 struct dev_pm_opp *opp, struct device *dev) 835 { 836 u32 avg, peak; 837 int i, ret; 838 839 if (!opp_table->paths) 840 return 0; 841 842 for (i = 0; i < opp_table->path_count; i++) { 843 if (!opp) { 844 avg = 0; 845 peak = 0; 846 } else { 847 avg = opp->bandwidth[i].avg; 848 peak = opp->bandwidth[i].peak; 849 } 850 ret = icc_set_bw(opp_table->paths[i], avg, peak); 851 if (ret) { 852 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 853 opp ? "set" : "remove", i, ret); 854 return ret; 855 } 856 } 857 858 return 0; 859 } 860 861 static int _set_opp_custom(const struct opp_table *opp_table, 862 struct device *dev, struct dev_pm_opp *opp, 863 unsigned long freq) 864 { 865 struct dev_pm_set_opp_data *data = opp_table->set_opp_data; 866 struct dev_pm_opp *old_opp = opp_table->current_opp; 867 int size; 868 869 /* 870 * We support this only if dev_pm_opp_set_regulators() was called 871 * earlier. 872 */ 873 if (opp_table->sod_supplies) { 874 size = sizeof(*old_opp->supplies) * opp_table->regulator_count; 875 memcpy(data->old_opp.supplies, old_opp->supplies, size); 876 memcpy(data->new_opp.supplies, opp->supplies, size); 877 data->regulator_count = opp_table->regulator_count; 878 } else { 879 data->regulator_count = 0; 880 } 881 882 data->regulators = opp_table->regulators; 883 data->clk = opp_table->clk; 884 data->dev = dev; 885 data->old_opp.rate = old_opp->rate; 886 data->new_opp.rate = freq; 887 888 return opp_table->set_opp(data); 889 } 890 891 static int _set_required_opp(struct device *dev, struct device *pd_dev, 892 struct dev_pm_opp *opp, int i) 893 { 894 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 895 int ret; 896 897 if (!pd_dev) 898 return 0; 899 900 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate); 901 if (ret) { 902 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 903 dev_name(pd_dev), pstate, ret); 904 } 905 906 return ret; 907 } 908 909 /* This is only called for PM domain for now */ 910 static int _set_required_opps(struct device *dev, 911 struct opp_table *opp_table, 912 struct dev_pm_opp *opp, bool up) 913 { 914 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 915 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 916 int i, ret = 0; 917 918 if (!required_opp_tables) 919 return 0; 920 921 /* required-opps not fully initialized yet */ 922 if (lazy_linking_pending(opp_table)) 923 return -EBUSY; 924 925 /* 926 * We only support genpd's OPPs in the "required-opps" for now, as we 927 * don't know much about other use cases. Error out if the required OPP 928 * doesn't belong to a genpd. 929 */ 930 if (unlikely(!required_opp_tables[0]->is_genpd)) { 931 dev_err(dev, "required-opps don't belong to a genpd\n"); 932 return -ENOENT; 933 } 934 935 /* Single genpd case */ 936 if (!genpd_virt_devs) 937 return _set_required_opp(dev, dev, opp, 0); 938 939 /* Multiple genpd case */ 940 941 /* 942 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 943 * after it is freed from another thread. 944 */ 945 mutex_lock(&opp_table->genpd_virt_dev_lock); 946 947 /* Scaling up? Set required OPPs in normal order, else reverse */ 948 if (up) { 949 for (i = 0; i < opp_table->required_opp_count; i++) { 950 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 951 if (ret) 952 break; 953 } 954 } else { 955 for (i = opp_table->required_opp_count - 1; i >= 0; i--) { 956 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i); 957 if (ret) 958 break; 959 } 960 } 961 962 mutex_unlock(&opp_table->genpd_virt_dev_lock); 963 964 return ret; 965 } 966 967 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 968 { 969 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 970 unsigned long freq; 971 972 if (!IS_ERR(opp_table->clk)) { 973 freq = clk_get_rate(opp_table->clk); 974 opp = _find_freq_ceil(opp_table, &freq); 975 } 976 977 /* 978 * Unable to find the current OPP ? Pick the first from the list since 979 * it is in ascending order, otherwise rest of the code will need to 980 * make special checks to validate current_opp. 981 */ 982 if (IS_ERR(opp)) { 983 mutex_lock(&opp_table->lock); 984 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 985 dev_pm_opp_get(opp); 986 mutex_unlock(&opp_table->lock); 987 } 988 989 opp_table->current_opp = opp; 990 } 991 992 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 993 { 994 int ret; 995 996 if (!opp_table->enabled) 997 return 0; 998 999 /* 1000 * Some drivers need to support cases where some platforms may 1001 * have OPP table for the device, while others don't and 1002 * opp_set_rate() just needs to behave like clk_set_rate(). 1003 */ 1004 if (!_get_opp_count(opp_table)) 1005 return 0; 1006 1007 ret = _set_opp_bw(opp_table, NULL, dev); 1008 if (ret) 1009 return ret; 1010 1011 if (opp_table->regulators) 1012 regulator_disable(opp_table->regulators[0]); 1013 1014 ret = _set_required_opps(dev, opp_table, NULL, false); 1015 1016 opp_table->enabled = false; 1017 return ret; 1018 } 1019 1020 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1021 struct dev_pm_opp *opp, unsigned long freq) 1022 { 1023 struct dev_pm_opp *old_opp; 1024 int scaling_down, ret; 1025 1026 if (unlikely(!opp)) 1027 return _disable_opp_table(dev, opp_table); 1028 1029 /* Find the currently set OPP if we don't know already */ 1030 if (unlikely(!opp_table->current_opp)) 1031 _find_current_opp(dev, opp_table); 1032 1033 old_opp = opp_table->current_opp; 1034 1035 /* Return early if nothing to do */ 1036 if (old_opp == opp && opp_table->current_rate == freq && 1037 opp_table->enabled) { 1038 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__); 1039 return 0; 1040 } 1041 1042 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1043 __func__, opp_table->current_rate, freq, old_opp->level, 1044 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1045 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1046 1047 scaling_down = _opp_compare_key(old_opp, opp); 1048 if (scaling_down == -1) 1049 scaling_down = 0; 1050 1051 /* Scaling up? Configure required OPPs before frequency */ 1052 if (!scaling_down) { 1053 ret = _set_required_opps(dev, opp_table, opp, true); 1054 if (ret) { 1055 dev_err(dev, "Failed to set required opps: %d\n", ret); 1056 return ret; 1057 } 1058 1059 ret = _set_opp_bw(opp_table, opp, dev); 1060 if (ret) { 1061 dev_err(dev, "Failed to set bw: %d\n", ret); 1062 return ret; 1063 } 1064 } 1065 1066 if (opp_table->set_opp) { 1067 ret = _set_opp_custom(opp_table, dev, opp, freq); 1068 } else if (opp_table->regulators) { 1069 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq, 1070 scaling_down); 1071 } else { 1072 /* Only frequency scaling */ 1073 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 1074 } 1075 1076 if (ret) 1077 return ret; 1078 1079 /* Scaling down? Configure required OPPs after frequency */ 1080 if (scaling_down) { 1081 ret = _set_opp_bw(opp_table, opp, dev); 1082 if (ret) { 1083 dev_err(dev, "Failed to set bw: %d\n", ret); 1084 return ret; 1085 } 1086 1087 ret = _set_required_opps(dev, opp_table, opp, false); 1088 if (ret) { 1089 dev_err(dev, "Failed to set required opps: %d\n", ret); 1090 return ret; 1091 } 1092 } 1093 1094 opp_table->enabled = true; 1095 dev_pm_opp_put(old_opp); 1096 1097 /* Make sure current_opp doesn't get freed */ 1098 dev_pm_opp_get(opp); 1099 opp_table->current_opp = opp; 1100 opp_table->current_rate = freq; 1101 1102 return ret; 1103 } 1104 1105 /** 1106 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1107 * @dev: device for which we do this operation 1108 * @target_freq: frequency to achieve 1109 * 1110 * This configures the power-supplies to the levels specified by the OPP 1111 * corresponding to the target_freq, and programs the clock to a value <= 1112 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1113 * provided by the opp, should have already rounded to the target OPP's 1114 * frequency. 1115 */ 1116 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1117 { 1118 struct opp_table *opp_table; 1119 unsigned long freq = 0, temp_freq; 1120 struct dev_pm_opp *opp = NULL; 1121 int ret; 1122 1123 opp_table = _find_opp_table(dev); 1124 if (IS_ERR(opp_table)) { 1125 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1126 return PTR_ERR(opp_table); 1127 } 1128 1129 if (target_freq) { 1130 /* 1131 * For IO devices which require an OPP on some platforms/SoCs 1132 * while just needing to scale the clock on some others 1133 * we look for empty OPP tables with just a clock handle and 1134 * scale only the clk. This makes dev_pm_opp_set_rate() 1135 * equivalent to a clk_set_rate() 1136 */ 1137 if (!_get_opp_count(opp_table)) { 1138 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq); 1139 goto put_opp_table; 1140 } 1141 1142 freq = clk_round_rate(opp_table->clk, target_freq); 1143 if ((long)freq <= 0) 1144 freq = target_freq; 1145 1146 /* 1147 * The clock driver may support finer resolution of the 1148 * frequencies than the OPP table, don't update the frequency we 1149 * pass to clk_set_rate() here. 1150 */ 1151 temp_freq = freq; 1152 opp = _find_freq_ceil(opp_table, &temp_freq); 1153 if (IS_ERR(opp)) { 1154 ret = PTR_ERR(opp); 1155 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1156 __func__, freq, ret); 1157 goto put_opp_table; 1158 } 1159 } 1160 1161 ret = _set_opp(dev, opp_table, opp, freq); 1162 1163 if (target_freq) 1164 dev_pm_opp_put(opp); 1165 put_opp_table: 1166 dev_pm_opp_put_opp_table(opp_table); 1167 return ret; 1168 } 1169 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1170 1171 /** 1172 * dev_pm_opp_set_opp() - Configure device for OPP 1173 * @dev: device for which we do this operation 1174 * @opp: OPP to set to 1175 * 1176 * This configures the device based on the properties of the OPP passed to this 1177 * routine. 1178 * 1179 * Return: 0 on success, a negative error number otherwise. 1180 */ 1181 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1182 { 1183 struct opp_table *opp_table; 1184 int ret; 1185 1186 opp_table = _find_opp_table(dev); 1187 if (IS_ERR(opp_table)) { 1188 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1189 return PTR_ERR(opp_table); 1190 } 1191 1192 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0); 1193 dev_pm_opp_put_opp_table(opp_table); 1194 1195 return ret; 1196 } 1197 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1198 1199 /* OPP-dev Helpers */ 1200 static void _remove_opp_dev(struct opp_device *opp_dev, 1201 struct opp_table *opp_table) 1202 { 1203 opp_debug_unregister(opp_dev, opp_table); 1204 list_del(&opp_dev->node); 1205 kfree(opp_dev); 1206 } 1207 1208 struct opp_device *_add_opp_dev(const struct device *dev, 1209 struct opp_table *opp_table) 1210 { 1211 struct opp_device *opp_dev; 1212 1213 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1214 if (!opp_dev) 1215 return NULL; 1216 1217 /* Initialize opp-dev */ 1218 opp_dev->dev = dev; 1219 1220 mutex_lock(&opp_table->lock); 1221 list_add(&opp_dev->node, &opp_table->dev_list); 1222 mutex_unlock(&opp_table->lock); 1223 1224 /* Create debugfs entries for the opp_table */ 1225 opp_debug_register(opp_dev, opp_table); 1226 1227 return opp_dev; 1228 } 1229 1230 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1231 { 1232 struct opp_table *opp_table; 1233 struct opp_device *opp_dev; 1234 int ret; 1235 1236 /* 1237 * Allocate a new OPP table. In the infrequent case where a new 1238 * device is needed to be added, we pay this penalty. 1239 */ 1240 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1241 if (!opp_table) 1242 return ERR_PTR(-ENOMEM); 1243 1244 mutex_init(&opp_table->lock); 1245 mutex_init(&opp_table->genpd_virt_dev_lock); 1246 INIT_LIST_HEAD(&opp_table->dev_list); 1247 INIT_LIST_HEAD(&opp_table->lazy); 1248 1249 /* Mark regulator count uninitialized */ 1250 opp_table->regulator_count = -1; 1251 1252 opp_dev = _add_opp_dev(dev, opp_table); 1253 if (!opp_dev) { 1254 ret = -ENOMEM; 1255 goto err; 1256 } 1257 1258 _of_init_opp_table(opp_table, dev, index); 1259 1260 /* Find interconnect path(s) for the device */ 1261 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1262 if (ret) { 1263 if (ret == -EPROBE_DEFER) 1264 goto remove_opp_dev; 1265 1266 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1267 __func__, ret); 1268 } 1269 1270 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1271 INIT_LIST_HEAD(&opp_table->opp_list); 1272 kref_init(&opp_table->kref); 1273 1274 return opp_table; 1275 1276 remove_opp_dev: 1277 _remove_opp_dev(opp_dev, opp_table); 1278 err: 1279 kfree(opp_table); 1280 return ERR_PTR(ret); 1281 } 1282 1283 void _get_opp_table_kref(struct opp_table *opp_table) 1284 { 1285 kref_get(&opp_table->kref); 1286 } 1287 1288 static struct opp_table *_update_opp_table_clk(struct device *dev, 1289 struct opp_table *opp_table, 1290 bool getclk) 1291 { 1292 int ret; 1293 1294 /* 1295 * Return early if we don't need to get clk or we have already tried it 1296 * earlier. 1297 */ 1298 if (!getclk || IS_ERR(opp_table) || opp_table->clk) 1299 return opp_table; 1300 1301 /* Find clk for the device */ 1302 opp_table->clk = clk_get(dev, NULL); 1303 1304 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1305 if (!ret) 1306 return opp_table; 1307 1308 if (ret == -ENOENT) { 1309 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1310 return opp_table; 1311 } 1312 1313 dev_pm_opp_put_opp_table(opp_table); 1314 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1315 1316 return ERR_PTR(ret); 1317 } 1318 1319 /* 1320 * We need to make sure that the OPP table for a device doesn't get added twice, 1321 * if this routine gets called in parallel with the same device pointer. 1322 * 1323 * The simplest way to enforce that is to perform everything (find existing 1324 * table and if not found, create a new one) under the opp_table_lock, so only 1325 * one creator gets access to the same. But that expands the critical section 1326 * under the lock and may end up causing circular dependencies with frameworks 1327 * like debugfs, interconnect or clock framework as they may be direct or 1328 * indirect users of OPP core. 1329 * 1330 * And for that reason we have to go for a bit tricky implementation here, which 1331 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1332 * of adding an OPP table and others should wait for it to finish. 1333 */ 1334 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1335 bool getclk) 1336 { 1337 struct opp_table *opp_table; 1338 1339 again: 1340 mutex_lock(&opp_table_lock); 1341 1342 opp_table = _find_opp_table_unlocked(dev); 1343 if (!IS_ERR(opp_table)) 1344 goto unlock; 1345 1346 /* 1347 * The opp_tables list or an OPP table's dev_list is getting updated by 1348 * another user, wait for it to finish. 1349 */ 1350 if (unlikely(opp_tables_busy)) { 1351 mutex_unlock(&opp_table_lock); 1352 cpu_relax(); 1353 goto again; 1354 } 1355 1356 opp_tables_busy = true; 1357 opp_table = _managed_opp(dev, index); 1358 1359 /* Drop the lock to reduce the size of critical section */ 1360 mutex_unlock(&opp_table_lock); 1361 1362 if (opp_table) { 1363 if (!_add_opp_dev(dev, opp_table)) { 1364 dev_pm_opp_put_opp_table(opp_table); 1365 opp_table = ERR_PTR(-ENOMEM); 1366 } 1367 1368 mutex_lock(&opp_table_lock); 1369 } else { 1370 opp_table = _allocate_opp_table(dev, index); 1371 1372 mutex_lock(&opp_table_lock); 1373 if (!IS_ERR(opp_table)) 1374 list_add(&opp_table->node, &opp_tables); 1375 } 1376 1377 opp_tables_busy = false; 1378 1379 unlock: 1380 mutex_unlock(&opp_table_lock); 1381 1382 return _update_opp_table_clk(dev, opp_table, getclk); 1383 } 1384 1385 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1386 { 1387 return _add_opp_table_indexed(dev, 0, getclk); 1388 } 1389 1390 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1391 { 1392 return _find_opp_table(dev); 1393 } 1394 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1395 1396 static void _opp_table_kref_release(struct kref *kref) 1397 { 1398 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1399 struct opp_device *opp_dev, *temp; 1400 int i; 1401 1402 /* Drop the lock as soon as we can */ 1403 list_del(&opp_table->node); 1404 mutex_unlock(&opp_table_lock); 1405 1406 if (opp_table->current_opp) 1407 dev_pm_opp_put(opp_table->current_opp); 1408 1409 _of_clear_opp_table(opp_table); 1410 1411 /* Release clk */ 1412 if (!IS_ERR(opp_table->clk)) 1413 clk_put(opp_table->clk); 1414 1415 if (opp_table->paths) { 1416 for (i = 0; i < opp_table->path_count; i++) 1417 icc_put(opp_table->paths[i]); 1418 kfree(opp_table->paths); 1419 } 1420 1421 WARN_ON(!list_empty(&opp_table->opp_list)); 1422 1423 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1424 /* 1425 * The OPP table is getting removed, drop the performance state 1426 * constraints. 1427 */ 1428 if (opp_table->genpd_performance_state) 1429 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1430 1431 _remove_opp_dev(opp_dev, opp_table); 1432 } 1433 1434 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1435 mutex_destroy(&opp_table->lock); 1436 kfree(opp_table); 1437 } 1438 1439 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1440 { 1441 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1442 &opp_table_lock); 1443 } 1444 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1445 1446 void _opp_free(struct dev_pm_opp *opp) 1447 { 1448 kfree(opp); 1449 } 1450 1451 static void _opp_kref_release(struct kref *kref) 1452 { 1453 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1454 struct opp_table *opp_table = opp->opp_table; 1455 1456 list_del(&opp->node); 1457 mutex_unlock(&opp_table->lock); 1458 1459 /* 1460 * Notify the changes in the availability of the operable 1461 * frequency/voltage list. 1462 */ 1463 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1464 _of_opp_free_required_opps(opp_table, opp); 1465 opp_debug_remove_one(opp); 1466 kfree(opp); 1467 } 1468 1469 void dev_pm_opp_get(struct dev_pm_opp *opp) 1470 { 1471 kref_get(&opp->kref); 1472 } 1473 1474 void dev_pm_opp_put(struct dev_pm_opp *opp) 1475 { 1476 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1477 } 1478 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1479 1480 /** 1481 * dev_pm_opp_remove() - Remove an OPP from OPP table 1482 * @dev: device for which we do this operation 1483 * @freq: OPP to remove with matching 'freq' 1484 * 1485 * This function removes an opp from the opp table. 1486 */ 1487 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1488 { 1489 struct dev_pm_opp *opp; 1490 struct opp_table *opp_table; 1491 bool found = false; 1492 1493 opp_table = _find_opp_table(dev); 1494 if (IS_ERR(opp_table)) 1495 return; 1496 1497 mutex_lock(&opp_table->lock); 1498 1499 list_for_each_entry(opp, &opp_table->opp_list, node) { 1500 if (opp->rate == freq) { 1501 found = true; 1502 break; 1503 } 1504 } 1505 1506 mutex_unlock(&opp_table->lock); 1507 1508 if (found) { 1509 dev_pm_opp_put(opp); 1510 1511 /* Drop the reference taken by dev_pm_opp_add() */ 1512 dev_pm_opp_put_opp_table(opp_table); 1513 } else { 1514 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1515 __func__, freq); 1516 } 1517 1518 /* Drop the reference taken by _find_opp_table() */ 1519 dev_pm_opp_put_opp_table(opp_table); 1520 } 1521 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1522 1523 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1524 bool dynamic) 1525 { 1526 struct dev_pm_opp *opp = NULL, *temp; 1527 1528 mutex_lock(&opp_table->lock); 1529 list_for_each_entry(temp, &opp_table->opp_list, node) { 1530 /* 1531 * Refcount must be dropped only once for each OPP by OPP core, 1532 * do that with help of "removed" flag. 1533 */ 1534 if (!temp->removed && dynamic == temp->dynamic) { 1535 opp = temp; 1536 break; 1537 } 1538 } 1539 1540 mutex_unlock(&opp_table->lock); 1541 return opp; 1542 } 1543 1544 /* 1545 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1546 * happen lock less to avoid circular dependency issues. This routine must be 1547 * called without the opp_table->lock held. 1548 */ 1549 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1550 { 1551 struct dev_pm_opp *opp; 1552 1553 while ((opp = _opp_get_next(opp_table, dynamic))) { 1554 opp->removed = true; 1555 dev_pm_opp_put(opp); 1556 1557 /* Drop the references taken by dev_pm_opp_add() */ 1558 if (dynamic) 1559 dev_pm_opp_put_opp_table(opp_table); 1560 } 1561 } 1562 1563 bool _opp_remove_all_static(struct opp_table *opp_table) 1564 { 1565 mutex_lock(&opp_table->lock); 1566 1567 if (!opp_table->parsed_static_opps) { 1568 mutex_unlock(&opp_table->lock); 1569 return false; 1570 } 1571 1572 if (--opp_table->parsed_static_opps) { 1573 mutex_unlock(&opp_table->lock); 1574 return true; 1575 } 1576 1577 mutex_unlock(&opp_table->lock); 1578 1579 _opp_remove_all(opp_table, false); 1580 return true; 1581 } 1582 1583 /** 1584 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1585 * @dev: device for which we do this operation 1586 * 1587 * This function removes all dynamically created OPPs from the opp table. 1588 */ 1589 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1590 { 1591 struct opp_table *opp_table; 1592 1593 opp_table = _find_opp_table(dev); 1594 if (IS_ERR(opp_table)) 1595 return; 1596 1597 _opp_remove_all(opp_table, true); 1598 1599 /* Drop the reference taken by _find_opp_table() */ 1600 dev_pm_opp_put_opp_table(opp_table); 1601 } 1602 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1603 1604 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1605 { 1606 struct dev_pm_opp *opp; 1607 int supply_count, supply_size, icc_size; 1608 1609 /* Allocate space for at least one supply */ 1610 supply_count = table->regulator_count > 0 ? table->regulator_count : 1; 1611 supply_size = sizeof(*opp->supplies) * supply_count; 1612 icc_size = sizeof(*opp->bandwidth) * table->path_count; 1613 1614 /* allocate new OPP node and supplies structures */ 1615 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL); 1616 1617 if (!opp) 1618 return NULL; 1619 1620 /* Put the supplies at the end of the OPP structure as an empty array */ 1621 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1622 if (icc_size) 1623 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count); 1624 INIT_LIST_HEAD(&opp->node); 1625 1626 return opp; 1627 } 1628 1629 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1630 struct opp_table *opp_table) 1631 { 1632 struct regulator *reg; 1633 int i; 1634 1635 if (!opp_table->regulators) 1636 return true; 1637 1638 for (i = 0; i < opp_table->regulator_count; i++) { 1639 reg = opp_table->regulators[i]; 1640 1641 if (!regulator_is_supported_voltage(reg, 1642 opp->supplies[i].u_volt_min, 1643 opp->supplies[i].u_volt_max)) { 1644 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1645 __func__, opp->supplies[i].u_volt_min, 1646 opp->supplies[i].u_volt_max); 1647 return false; 1648 } 1649 } 1650 1651 return true; 1652 } 1653 1654 int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1655 { 1656 if (opp1->rate != opp2->rate) 1657 return opp1->rate < opp2->rate ? -1 : 1; 1658 if (opp1->bandwidth && opp2->bandwidth && 1659 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak) 1660 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1; 1661 if (opp1->level != opp2->level) 1662 return opp1->level < opp2->level ? -1 : 1; 1663 return 0; 1664 } 1665 1666 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1667 struct opp_table *opp_table, 1668 struct list_head **head) 1669 { 1670 struct dev_pm_opp *opp; 1671 int opp_cmp; 1672 1673 /* 1674 * Insert new OPP in order of increasing frequency and discard if 1675 * already present. 1676 * 1677 * Need to use &opp_table->opp_list in the condition part of the 'for' 1678 * loop, don't replace it with head otherwise it will become an infinite 1679 * loop. 1680 */ 1681 list_for_each_entry(opp, &opp_table->opp_list, node) { 1682 opp_cmp = _opp_compare_key(new_opp, opp); 1683 if (opp_cmp > 0) { 1684 *head = &opp->node; 1685 continue; 1686 } 1687 1688 if (opp_cmp < 0) 1689 return 0; 1690 1691 /* Duplicate OPPs */ 1692 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1693 __func__, opp->rate, opp->supplies[0].u_volt, 1694 opp->available, new_opp->rate, 1695 new_opp->supplies[0].u_volt, new_opp->available); 1696 1697 /* Should we compare voltages for all regulators here ? */ 1698 return opp->available && 1699 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1700 } 1701 1702 return 0; 1703 } 1704 1705 void _required_opps_available(struct dev_pm_opp *opp, int count) 1706 { 1707 int i; 1708 1709 for (i = 0; i < count; i++) { 1710 if (opp->required_opps[i]->available) 1711 continue; 1712 1713 opp->available = false; 1714 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1715 __func__, opp->required_opps[i]->np, opp->rate); 1716 return; 1717 } 1718 } 1719 1720 /* 1721 * Returns: 1722 * 0: On success. And appropriate error message for duplicate OPPs. 1723 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1724 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1725 * sure we don't print error messages unnecessarily if different parts of 1726 * kernel try to initialize the OPP table. 1727 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1728 * should be considered an error by the callers of _opp_add(). 1729 */ 1730 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1731 struct opp_table *opp_table, bool rate_not_available) 1732 { 1733 struct list_head *head; 1734 int ret; 1735 1736 mutex_lock(&opp_table->lock); 1737 head = &opp_table->opp_list; 1738 1739 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1740 if (ret) { 1741 mutex_unlock(&opp_table->lock); 1742 return ret; 1743 } 1744 1745 list_add(&new_opp->node, head); 1746 mutex_unlock(&opp_table->lock); 1747 1748 new_opp->opp_table = opp_table; 1749 kref_init(&new_opp->kref); 1750 1751 opp_debug_create_one(new_opp, opp_table); 1752 1753 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1754 new_opp->available = false; 1755 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1756 __func__, new_opp->rate); 1757 } 1758 1759 /* required-opps not fully initialized yet */ 1760 if (lazy_linking_pending(opp_table)) 1761 return 0; 1762 1763 _required_opps_available(new_opp, opp_table->required_opp_count); 1764 1765 return 0; 1766 } 1767 1768 /** 1769 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1770 * @opp_table: OPP table 1771 * @dev: device for which we do this operation 1772 * @freq: Frequency in Hz for this OPP 1773 * @u_volt: Voltage in uVolts for this OPP 1774 * @dynamic: Dynamically added OPPs. 1775 * 1776 * This function adds an opp definition to the opp table and returns status. 1777 * The opp is made available by default and it can be controlled using 1778 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1779 * 1780 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1781 * and freed by dev_pm_opp_of_remove_table. 1782 * 1783 * Return: 1784 * 0 On success OR 1785 * Duplicate OPPs (both freq and volt are same) and opp->available 1786 * -EEXIST Freq are same and volt are different OR 1787 * Duplicate OPPs (both freq and volt are same) and !opp->available 1788 * -ENOMEM Memory allocation failure 1789 */ 1790 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1791 unsigned long freq, long u_volt, bool dynamic) 1792 { 1793 struct dev_pm_opp *new_opp; 1794 unsigned long tol; 1795 int ret; 1796 1797 new_opp = _opp_allocate(opp_table); 1798 if (!new_opp) 1799 return -ENOMEM; 1800 1801 /* populate the opp table */ 1802 new_opp->rate = freq; 1803 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1804 new_opp->supplies[0].u_volt = u_volt; 1805 new_opp->supplies[0].u_volt_min = u_volt - tol; 1806 new_opp->supplies[0].u_volt_max = u_volt + tol; 1807 new_opp->available = true; 1808 new_opp->dynamic = dynamic; 1809 1810 ret = _opp_add(dev, new_opp, opp_table, false); 1811 if (ret) { 1812 /* Don't return error for duplicate OPPs */ 1813 if (ret == -EBUSY) 1814 ret = 0; 1815 goto free_opp; 1816 } 1817 1818 /* 1819 * Notify the changes in the availability of the operable 1820 * frequency/voltage list. 1821 */ 1822 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1823 return 0; 1824 1825 free_opp: 1826 _opp_free(new_opp); 1827 1828 return ret; 1829 } 1830 1831 /** 1832 * dev_pm_opp_set_supported_hw() - Set supported platforms 1833 * @dev: Device for which supported-hw has to be set. 1834 * @versions: Array of hierarchy of versions to match. 1835 * @count: Number of elements in the array. 1836 * 1837 * This is required only for the V2 bindings, and it enables a platform to 1838 * specify the hierarchy of versions it supports. OPP layer will then enable 1839 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1840 * property. 1841 */ 1842 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1843 const u32 *versions, unsigned int count) 1844 { 1845 struct opp_table *opp_table; 1846 1847 opp_table = _add_opp_table(dev, false); 1848 if (IS_ERR(opp_table)) 1849 return opp_table; 1850 1851 /* Make sure there are no concurrent readers while updating opp_table */ 1852 WARN_ON(!list_empty(&opp_table->opp_list)); 1853 1854 /* Another CPU that shares the OPP table has set the property ? */ 1855 if (opp_table->supported_hw) 1856 return opp_table; 1857 1858 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1859 GFP_KERNEL); 1860 if (!opp_table->supported_hw) { 1861 dev_pm_opp_put_opp_table(opp_table); 1862 return ERR_PTR(-ENOMEM); 1863 } 1864 1865 opp_table->supported_hw_count = count; 1866 1867 return opp_table; 1868 } 1869 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1870 1871 /** 1872 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1873 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1874 * 1875 * This is required only for the V2 bindings, and is called for a matching 1876 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1877 * will not be freed. 1878 */ 1879 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1880 { 1881 if (unlikely(!opp_table)) 1882 return; 1883 1884 kfree(opp_table->supported_hw); 1885 opp_table->supported_hw = NULL; 1886 opp_table->supported_hw_count = 0; 1887 1888 dev_pm_opp_put_opp_table(opp_table); 1889 } 1890 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1891 1892 static void devm_pm_opp_supported_hw_release(void *data) 1893 { 1894 dev_pm_opp_put_supported_hw(data); 1895 } 1896 1897 /** 1898 * devm_pm_opp_set_supported_hw() - Set supported platforms 1899 * @dev: Device for which supported-hw has to be set. 1900 * @versions: Array of hierarchy of versions to match. 1901 * @count: Number of elements in the array. 1902 * 1903 * This is a resource-managed variant of dev_pm_opp_set_supported_hw(). 1904 * 1905 * Return: 0 on success and errorno otherwise. 1906 */ 1907 int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions, 1908 unsigned int count) 1909 { 1910 struct opp_table *opp_table; 1911 1912 opp_table = dev_pm_opp_set_supported_hw(dev, versions, count); 1913 if (IS_ERR(opp_table)) 1914 return PTR_ERR(opp_table); 1915 1916 return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release, 1917 opp_table); 1918 } 1919 EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw); 1920 1921 /** 1922 * dev_pm_opp_set_prop_name() - Set prop-extn name 1923 * @dev: Device for which the prop-name has to be set. 1924 * @name: name to postfix to properties. 1925 * 1926 * This is required only for the V2 bindings, and it enables a platform to 1927 * specify the extn to be used for certain property names. The properties to 1928 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1929 * should postfix the property name with -<name> while looking for them. 1930 */ 1931 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1932 { 1933 struct opp_table *opp_table; 1934 1935 opp_table = _add_opp_table(dev, false); 1936 if (IS_ERR(opp_table)) 1937 return opp_table; 1938 1939 /* Make sure there are no concurrent readers while updating opp_table */ 1940 WARN_ON(!list_empty(&opp_table->opp_list)); 1941 1942 /* Another CPU that shares the OPP table has set the property ? */ 1943 if (opp_table->prop_name) 1944 return opp_table; 1945 1946 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1947 if (!opp_table->prop_name) { 1948 dev_pm_opp_put_opp_table(opp_table); 1949 return ERR_PTR(-ENOMEM); 1950 } 1951 1952 return opp_table; 1953 } 1954 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1955 1956 /** 1957 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1958 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1959 * 1960 * This is required only for the V2 bindings, and is called for a matching 1961 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1962 * will not be freed. 1963 */ 1964 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1965 { 1966 if (unlikely(!opp_table)) 1967 return; 1968 1969 kfree(opp_table->prop_name); 1970 opp_table->prop_name = NULL; 1971 1972 dev_pm_opp_put_opp_table(opp_table); 1973 } 1974 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1975 1976 /** 1977 * dev_pm_opp_set_regulators() - Set regulator names for the device 1978 * @dev: Device for which regulator name is being set. 1979 * @names: Array of pointers to the names of the regulator. 1980 * @count: Number of regulators. 1981 * 1982 * In order to support OPP switching, OPP layer needs to know the name of the 1983 * device's regulators, as the core would be required to switch voltages as 1984 * well. 1985 * 1986 * This must be called before any OPPs are initialized for the device. 1987 */ 1988 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1989 const char * const names[], 1990 unsigned int count) 1991 { 1992 struct dev_pm_opp_supply *supplies; 1993 struct opp_table *opp_table; 1994 struct regulator *reg; 1995 int ret, i; 1996 1997 opp_table = _add_opp_table(dev, false); 1998 if (IS_ERR(opp_table)) 1999 return opp_table; 2000 2001 /* This should be called before OPPs are initialized */ 2002 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2003 ret = -EBUSY; 2004 goto err; 2005 } 2006 2007 /* Another CPU that shares the OPP table has set the regulators ? */ 2008 if (opp_table->regulators) 2009 return opp_table; 2010 2011 opp_table->regulators = kmalloc_array(count, 2012 sizeof(*opp_table->regulators), 2013 GFP_KERNEL); 2014 if (!opp_table->regulators) { 2015 ret = -ENOMEM; 2016 goto err; 2017 } 2018 2019 for (i = 0; i < count; i++) { 2020 reg = regulator_get_optional(dev, names[i]); 2021 if (IS_ERR(reg)) { 2022 ret = PTR_ERR(reg); 2023 if (ret != -EPROBE_DEFER) 2024 dev_err(dev, "%s: no regulator (%s) found: %d\n", 2025 __func__, names[i], ret); 2026 goto free_regulators; 2027 } 2028 2029 opp_table->regulators[i] = reg; 2030 } 2031 2032 opp_table->regulator_count = count; 2033 2034 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL); 2035 if (!supplies) { 2036 ret = -ENOMEM; 2037 goto free_regulators; 2038 } 2039 2040 mutex_lock(&opp_table->lock); 2041 opp_table->sod_supplies = supplies; 2042 if (opp_table->set_opp_data) { 2043 opp_table->set_opp_data->old_opp.supplies = supplies; 2044 opp_table->set_opp_data->new_opp.supplies = supplies + count; 2045 } 2046 mutex_unlock(&opp_table->lock); 2047 2048 return opp_table; 2049 2050 free_regulators: 2051 while (i != 0) 2052 regulator_put(opp_table->regulators[--i]); 2053 2054 kfree(opp_table->regulators); 2055 opp_table->regulators = NULL; 2056 opp_table->regulator_count = -1; 2057 err: 2058 dev_pm_opp_put_opp_table(opp_table); 2059 2060 return ERR_PTR(ret); 2061 } 2062 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 2063 2064 /** 2065 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 2066 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 2067 */ 2068 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 2069 { 2070 int i; 2071 2072 if (unlikely(!opp_table)) 2073 return; 2074 2075 if (!opp_table->regulators) 2076 goto put_opp_table; 2077 2078 if (opp_table->enabled) { 2079 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2080 regulator_disable(opp_table->regulators[i]); 2081 } 2082 2083 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2084 regulator_put(opp_table->regulators[i]); 2085 2086 mutex_lock(&opp_table->lock); 2087 if (opp_table->set_opp_data) { 2088 opp_table->set_opp_data->old_opp.supplies = NULL; 2089 opp_table->set_opp_data->new_opp.supplies = NULL; 2090 } 2091 2092 kfree(opp_table->sod_supplies); 2093 opp_table->sod_supplies = NULL; 2094 mutex_unlock(&opp_table->lock); 2095 2096 kfree(opp_table->regulators); 2097 opp_table->regulators = NULL; 2098 opp_table->regulator_count = -1; 2099 2100 put_opp_table: 2101 dev_pm_opp_put_opp_table(opp_table); 2102 } 2103 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 2104 2105 static void devm_pm_opp_regulators_release(void *data) 2106 { 2107 dev_pm_opp_put_regulators(data); 2108 } 2109 2110 /** 2111 * devm_pm_opp_set_regulators() - Set regulator names for the device 2112 * @dev: Device for which regulator name is being set. 2113 * @names: Array of pointers to the names of the regulator. 2114 * @count: Number of regulators. 2115 * 2116 * This is a resource-managed variant of dev_pm_opp_set_regulators(). 2117 * 2118 * Return: 0 on success and errorno otherwise. 2119 */ 2120 int devm_pm_opp_set_regulators(struct device *dev, 2121 const char * const names[], 2122 unsigned int count) 2123 { 2124 struct opp_table *opp_table; 2125 2126 opp_table = dev_pm_opp_set_regulators(dev, names, count); 2127 if (IS_ERR(opp_table)) 2128 return PTR_ERR(opp_table); 2129 2130 return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release, 2131 opp_table); 2132 } 2133 EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators); 2134 2135 /** 2136 * dev_pm_opp_set_clkname() - Set clk name for the device 2137 * @dev: Device for which clk name is being set. 2138 * @name: Clk name. 2139 * 2140 * In order to support OPP switching, OPP layer needs to get pointer to the 2141 * clock for the device. Simple cases work fine without using this routine (i.e. 2142 * by passing connection-id as NULL), but for a device with multiple clocks 2143 * available, the OPP core needs to know the exact name of the clk to use. 2144 * 2145 * This must be called before any OPPs are initialized for the device. 2146 */ 2147 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 2148 { 2149 struct opp_table *opp_table; 2150 int ret; 2151 2152 opp_table = _add_opp_table(dev, false); 2153 if (IS_ERR(opp_table)) 2154 return opp_table; 2155 2156 /* This should be called before OPPs are initialized */ 2157 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2158 ret = -EBUSY; 2159 goto err; 2160 } 2161 2162 /* clk shouldn't be initialized at this point */ 2163 if (WARN_ON(opp_table->clk)) { 2164 ret = -EBUSY; 2165 goto err; 2166 } 2167 2168 /* Find clk for the device */ 2169 opp_table->clk = clk_get(dev, name); 2170 if (IS_ERR(opp_table->clk)) { 2171 ret = PTR_ERR(opp_table->clk); 2172 if (ret != -EPROBE_DEFER) { 2173 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 2174 ret); 2175 } 2176 goto err; 2177 } 2178 2179 return opp_table; 2180 2181 err: 2182 dev_pm_opp_put_opp_table(opp_table); 2183 2184 return ERR_PTR(ret); 2185 } 2186 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 2187 2188 /** 2189 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 2190 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 2191 */ 2192 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 2193 { 2194 if (unlikely(!opp_table)) 2195 return; 2196 2197 clk_put(opp_table->clk); 2198 opp_table->clk = ERR_PTR(-EINVAL); 2199 2200 dev_pm_opp_put_opp_table(opp_table); 2201 } 2202 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 2203 2204 static void devm_pm_opp_clkname_release(void *data) 2205 { 2206 dev_pm_opp_put_clkname(data); 2207 } 2208 2209 /** 2210 * devm_pm_opp_set_clkname() - Set clk name for the device 2211 * @dev: Device for which clk name is being set. 2212 * @name: Clk name. 2213 * 2214 * This is a resource-managed variant of dev_pm_opp_set_clkname(). 2215 * 2216 * Return: 0 on success and errorno otherwise. 2217 */ 2218 int devm_pm_opp_set_clkname(struct device *dev, const char *name) 2219 { 2220 struct opp_table *opp_table; 2221 2222 opp_table = dev_pm_opp_set_clkname(dev, name); 2223 if (IS_ERR(opp_table)) 2224 return PTR_ERR(opp_table); 2225 2226 return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release, 2227 opp_table); 2228 } 2229 EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname); 2230 2231 /** 2232 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 2233 * @dev: Device for which the helper is getting registered. 2234 * @set_opp: Custom set OPP helper. 2235 * 2236 * This is useful to support complex platforms (like platforms with multiple 2237 * regulators per device), instead of the generic OPP set rate helper. 2238 * 2239 * This must be called before any OPPs are initialized for the device. 2240 */ 2241 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 2242 int (*set_opp)(struct dev_pm_set_opp_data *data)) 2243 { 2244 struct dev_pm_set_opp_data *data; 2245 struct opp_table *opp_table; 2246 2247 if (!set_opp) 2248 return ERR_PTR(-EINVAL); 2249 2250 opp_table = _add_opp_table(dev, false); 2251 if (IS_ERR(opp_table)) 2252 return opp_table; 2253 2254 /* This should be called before OPPs are initialized */ 2255 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2256 dev_pm_opp_put_opp_table(opp_table); 2257 return ERR_PTR(-EBUSY); 2258 } 2259 2260 /* Another CPU that shares the OPP table has set the helper ? */ 2261 if (opp_table->set_opp) 2262 return opp_table; 2263 2264 data = kzalloc(sizeof(*data), GFP_KERNEL); 2265 if (!data) 2266 return ERR_PTR(-ENOMEM); 2267 2268 mutex_lock(&opp_table->lock); 2269 opp_table->set_opp_data = data; 2270 if (opp_table->sod_supplies) { 2271 data->old_opp.supplies = opp_table->sod_supplies; 2272 data->new_opp.supplies = opp_table->sod_supplies + 2273 opp_table->regulator_count; 2274 } 2275 mutex_unlock(&opp_table->lock); 2276 2277 opp_table->set_opp = set_opp; 2278 2279 return opp_table; 2280 } 2281 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 2282 2283 /** 2284 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 2285 * set_opp helper 2286 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 2287 * 2288 * Release resources blocked for platform specific set_opp helper. 2289 */ 2290 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 2291 { 2292 if (unlikely(!opp_table)) 2293 return; 2294 2295 opp_table->set_opp = NULL; 2296 2297 mutex_lock(&opp_table->lock); 2298 kfree(opp_table->set_opp_data); 2299 opp_table->set_opp_data = NULL; 2300 mutex_unlock(&opp_table->lock); 2301 2302 dev_pm_opp_put_opp_table(opp_table); 2303 } 2304 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 2305 2306 static void devm_pm_opp_unregister_set_opp_helper(void *data) 2307 { 2308 dev_pm_opp_unregister_set_opp_helper(data); 2309 } 2310 2311 /** 2312 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper 2313 * @dev: Device for which the helper is getting registered. 2314 * @set_opp: Custom set OPP helper. 2315 * 2316 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper(). 2317 * 2318 * Return: 0 on success and errorno otherwise. 2319 */ 2320 int devm_pm_opp_register_set_opp_helper(struct device *dev, 2321 int (*set_opp)(struct dev_pm_set_opp_data *data)) 2322 { 2323 struct opp_table *opp_table; 2324 2325 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp); 2326 if (IS_ERR(opp_table)) 2327 return PTR_ERR(opp_table); 2328 2329 return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper, 2330 opp_table); 2331 } 2332 EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper); 2333 2334 static void _opp_detach_genpd(struct opp_table *opp_table) 2335 { 2336 int index; 2337 2338 if (!opp_table->genpd_virt_devs) 2339 return; 2340 2341 for (index = 0; index < opp_table->required_opp_count; index++) { 2342 if (!opp_table->genpd_virt_devs[index]) 2343 continue; 2344 2345 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 2346 opp_table->genpd_virt_devs[index] = NULL; 2347 } 2348 2349 kfree(opp_table->genpd_virt_devs); 2350 opp_table->genpd_virt_devs = NULL; 2351 } 2352 2353 /** 2354 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 2355 * @dev: Consumer device for which the genpd is getting attached. 2356 * @names: Null terminated array of pointers containing names of genpd to attach. 2357 * @virt_devs: Pointer to return the array of virtual devices. 2358 * 2359 * Multiple generic power domains for a device are supported with the help of 2360 * virtual genpd devices, which are created for each consumer device - genpd 2361 * pair. These are the device structures which are attached to the power domain 2362 * and are required by the OPP core to set the performance state of the genpd. 2363 * The same API also works for the case where single genpd is available and so 2364 * we don't need to support that separately. 2365 * 2366 * This helper will normally be called by the consumer driver of the device 2367 * "dev", as only that has details of the genpd names. 2368 * 2369 * This helper needs to be called once with a list of all genpd to attach. 2370 * Otherwise the original device structure will be used instead by the OPP core. 2371 * 2372 * The order of entries in the names array must match the order in which 2373 * "required-opps" are added in DT. 2374 */ 2375 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 2376 const char * const *names, struct device ***virt_devs) 2377 { 2378 struct opp_table *opp_table; 2379 struct device *virt_dev; 2380 int index = 0, ret = -EINVAL; 2381 const char * const *name = names; 2382 2383 opp_table = _add_opp_table(dev, false); 2384 if (IS_ERR(opp_table)) 2385 return opp_table; 2386 2387 if (opp_table->genpd_virt_devs) 2388 return opp_table; 2389 2390 /* 2391 * If the genpd's OPP table isn't already initialized, parsing of the 2392 * required-opps fail for dev. We should retry this after genpd's OPP 2393 * table is added. 2394 */ 2395 if (!opp_table->required_opp_count) { 2396 ret = -EPROBE_DEFER; 2397 goto put_table; 2398 } 2399 2400 mutex_lock(&opp_table->genpd_virt_dev_lock); 2401 2402 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 2403 sizeof(*opp_table->genpd_virt_devs), 2404 GFP_KERNEL); 2405 if (!opp_table->genpd_virt_devs) 2406 goto unlock; 2407 2408 while (*name) { 2409 if (index >= opp_table->required_opp_count) { 2410 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2411 *name, opp_table->required_opp_count, index); 2412 goto err; 2413 } 2414 2415 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2416 if (IS_ERR(virt_dev)) { 2417 ret = PTR_ERR(virt_dev); 2418 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2419 goto err; 2420 } 2421 2422 opp_table->genpd_virt_devs[index] = virt_dev; 2423 index++; 2424 name++; 2425 } 2426 2427 if (virt_devs) 2428 *virt_devs = opp_table->genpd_virt_devs; 2429 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2430 2431 return opp_table; 2432 2433 err: 2434 _opp_detach_genpd(opp_table); 2435 unlock: 2436 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2437 2438 put_table: 2439 dev_pm_opp_put_opp_table(opp_table); 2440 2441 return ERR_PTR(ret); 2442 } 2443 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 2444 2445 /** 2446 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 2447 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 2448 * 2449 * This detaches the genpd(s), resets the virtual device pointers, and puts the 2450 * OPP table. 2451 */ 2452 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 2453 { 2454 if (unlikely(!opp_table)) 2455 return; 2456 2457 /* 2458 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 2459 * used in parallel. 2460 */ 2461 mutex_lock(&opp_table->genpd_virt_dev_lock); 2462 _opp_detach_genpd(opp_table); 2463 mutex_unlock(&opp_table->genpd_virt_dev_lock); 2464 2465 dev_pm_opp_put_opp_table(opp_table); 2466 } 2467 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 2468 2469 static void devm_pm_opp_detach_genpd(void *data) 2470 { 2471 dev_pm_opp_detach_genpd(data); 2472 } 2473 2474 /** 2475 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual 2476 * device pointer 2477 * @dev: Consumer device for which the genpd is getting attached. 2478 * @names: Null terminated array of pointers containing names of genpd to attach. 2479 * @virt_devs: Pointer to return the array of virtual devices. 2480 * 2481 * This is a resource-managed version of dev_pm_opp_attach_genpd(). 2482 * 2483 * Return: 0 on success and errorno otherwise. 2484 */ 2485 int devm_pm_opp_attach_genpd(struct device *dev, const char * const *names, 2486 struct device ***virt_devs) 2487 { 2488 struct opp_table *opp_table; 2489 2490 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs); 2491 if (IS_ERR(opp_table)) 2492 return PTR_ERR(opp_table); 2493 2494 return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd, 2495 opp_table); 2496 } 2497 EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd); 2498 2499 /** 2500 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2501 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2502 * @dst_table: Required OPP table of the @src_table. 2503 * @src_opp: OPP from the @src_table. 2504 * 2505 * This function returns the OPP (present in @dst_table) pointed out by the 2506 * "required-opps" property of the @src_opp (present in @src_table). 2507 * 2508 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2509 * use. 2510 * 2511 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2512 */ 2513 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2514 struct opp_table *dst_table, 2515 struct dev_pm_opp *src_opp) 2516 { 2517 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2518 int i; 2519 2520 if (!src_table || !dst_table || !src_opp || 2521 !src_table->required_opp_tables) 2522 return ERR_PTR(-EINVAL); 2523 2524 /* required-opps not fully initialized yet */ 2525 if (lazy_linking_pending(src_table)) 2526 return ERR_PTR(-EBUSY); 2527 2528 for (i = 0; i < src_table->required_opp_count; i++) { 2529 if (src_table->required_opp_tables[i] == dst_table) { 2530 mutex_lock(&src_table->lock); 2531 2532 list_for_each_entry(opp, &src_table->opp_list, node) { 2533 if (opp == src_opp) { 2534 dest_opp = opp->required_opps[i]; 2535 dev_pm_opp_get(dest_opp); 2536 break; 2537 } 2538 } 2539 2540 mutex_unlock(&src_table->lock); 2541 break; 2542 } 2543 } 2544 2545 if (IS_ERR(dest_opp)) { 2546 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2547 src_table, dst_table); 2548 } 2549 2550 return dest_opp; 2551 } 2552 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2553 2554 /** 2555 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2556 * @src_table: OPP table which has dst_table as one of its required OPP table. 2557 * @dst_table: Required OPP table of the src_table. 2558 * @pstate: Current performance state of the src_table. 2559 * 2560 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2561 * "required-opps" property of the OPP (present in @src_table) which has 2562 * performance state set to @pstate. 2563 * 2564 * Return: Zero or positive performance state on success, otherwise negative 2565 * value on errors. 2566 */ 2567 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2568 struct opp_table *dst_table, 2569 unsigned int pstate) 2570 { 2571 struct dev_pm_opp *opp; 2572 int dest_pstate = -EINVAL; 2573 int i; 2574 2575 /* 2576 * Normally the src_table will have the "required_opps" property set to 2577 * point to one of the OPPs in the dst_table, but in some cases the 2578 * genpd and its master have one to one mapping of performance states 2579 * and so none of them have the "required-opps" property set. Return the 2580 * pstate of the src_table as it is in such cases. 2581 */ 2582 if (!src_table || !src_table->required_opp_count) 2583 return pstate; 2584 2585 /* required-opps not fully initialized yet */ 2586 if (lazy_linking_pending(src_table)) 2587 return -EBUSY; 2588 2589 for (i = 0; i < src_table->required_opp_count; i++) { 2590 if (src_table->required_opp_tables[i]->np == dst_table->np) 2591 break; 2592 } 2593 2594 if (unlikely(i == src_table->required_opp_count)) { 2595 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2596 __func__, src_table, dst_table); 2597 return -EINVAL; 2598 } 2599 2600 mutex_lock(&src_table->lock); 2601 2602 list_for_each_entry(opp, &src_table->opp_list, node) { 2603 if (opp->pstate == pstate) { 2604 dest_pstate = opp->required_opps[i]->pstate; 2605 goto unlock; 2606 } 2607 } 2608 2609 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2610 dst_table); 2611 2612 unlock: 2613 mutex_unlock(&src_table->lock); 2614 2615 return dest_pstate; 2616 } 2617 2618 /** 2619 * dev_pm_opp_add() - Add an OPP table from a table definitions 2620 * @dev: device for which we do this operation 2621 * @freq: Frequency in Hz for this OPP 2622 * @u_volt: Voltage in uVolts for this OPP 2623 * 2624 * This function adds an opp definition to the opp table and returns status. 2625 * The opp is made available by default and it can be controlled using 2626 * dev_pm_opp_enable/disable functions. 2627 * 2628 * Return: 2629 * 0 On success OR 2630 * Duplicate OPPs (both freq and volt are same) and opp->available 2631 * -EEXIST Freq are same and volt are different OR 2632 * Duplicate OPPs (both freq and volt are same) and !opp->available 2633 * -ENOMEM Memory allocation failure 2634 */ 2635 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2636 { 2637 struct opp_table *opp_table; 2638 int ret; 2639 2640 opp_table = _add_opp_table(dev, true); 2641 if (IS_ERR(opp_table)) 2642 return PTR_ERR(opp_table); 2643 2644 /* Fix regulator count for dynamic OPPs */ 2645 opp_table->regulator_count = 1; 2646 2647 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2648 if (ret) 2649 dev_pm_opp_put_opp_table(opp_table); 2650 2651 return ret; 2652 } 2653 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2654 2655 /** 2656 * _opp_set_availability() - helper to set the availability of an opp 2657 * @dev: device for which we do this operation 2658 * @freq: OPP frequency to modify availability 2659 * @availability_req: availability status requested for this opp 2660 * 2661 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2662 * which is isolated here. 2663 * 2664 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2665 * copy operation, returns 0 if no modification was done OR modification was 2666 * successful. 2667 */ 2668 static int _opp_set_availability(struct device *dev, unsigned long freq, 2669 bool availability_req) 2670 { 2671 struct opp_table *opp_table; 2672 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2673 int r = 0; 2674 2675 /* Find the opp_table */ 2676 opp_table = _find_opp_table(dev); 2677 if (IS_ERR(opp_table)) { 2678 r = PTR_ERR(opp_table); 2679 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2680 return r; 2681 } 2682 2683 mutex_lock(&opp_table->lock); 2684 2685 /* Do we have the frequency? */ 2686 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2687 if (tmp_opp->rate == freq) { 2688 opp = tmp_opp; 2689 break; 2690 } 2691 } 2692 2693 if (IS_ERR(opp)) { 2694 r = PTR_ERR(opp); 2695 goto unlock; 2696 } 2697 2698 /* Is update really needed? */ 2699 if (opp->available == availability_req) 2700 goto unlock; 2701 2702 opp->available = availability_req; 2703 2704 dev_pm_opp_get(opp); 2705 mutex_unlock(&opp_table->lock); 2706 2707 /* Notify the change of the OPP availability */ 2708 if (availability_req) 2709 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2710 opp); 2711 else 2712 blocking_notifier_call_chain(&opp_table->head, 2713 OPP_EVENT_DISABLE, opp); 2714 2715 dev_pm_opp_put(opp); 2716 goto put_table; 2717 2718 unlock: 2719 mutex_unlock(&opp_table->lock); 2720 put_table: 2721 dev_pm_opp_put_opp_table(opp_table); 2722 return r; 2723 } 2724 2725 /** 2726 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2727 * @dev: device for which we do this operation 2728 * @freq: OPP frequency to adjust voltage of 2729 * @u_volt: new OPP target voltage 2730 * @u_volt_min: new OPP min voltage 2731 * @u_volt_max: new OPP max voltage 2732 * 2733 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2734 * copy operation, returns 0 if no modifcation was done OR modification was 2735 * successful. 2736 */ 2737 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2738 unsigned long u_volt, unsigned long u_volt_min, 2739 unsigned long u_volt_max) 2740 2741 { 2742 struct opp_table *opp_table; 2743 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2744 int r = 0; 2745 2746 /* Find the opp_table */ 2747 opp_table = _find_opp_table(dev); 2748 if (IS_ERR(opp_table)) { 2749 r = PTR_ERR(opp_table); 2750 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2751 return r; 2752 } 2753 2754 mutex_lock(&opp_table->lock); 2755 2756 /* Do we have the frequency? */ 2757 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2758 if (tmp_opp->rate == freq) { 2759 opp = tmp_opp; 2760 break; 2761 } 2762 } 2763 2764 if (IS_ERR(opp)) { 2765 r = PTR_ERR(opp); 2766 goto adjust_unlock; 2767 } 2768 2769 /* Is update really needed? */ 2770 if (opp->supplies->u_volt == u_volt) 2771 goto adjust_unlock; 2772 2773 opp->supplies->u_volt = u_volt; 2774 opp->supplies->u_volt_min = u_volt_min; 2775 opp->supplies->u_volt_max = u_volt_max; 2776 2777 dev_pm_opp_get(opp); 2778 mutex_unlock(&opp_table->lock); 2779 2780 /* Notify the voltage change of the OPP */ 2781 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2782 opp); 2783 2784 dev_pm_opp_put(opp); 2785 goto adjust_put_table; 2786 2787 adjust_unlock: 2788 mutex_unlock(&opp_table->lock); 2789 adjust_put_table: 2790 dev_pm_opp_put_opp_table(opp_table); 2791 return r; 2792 } 2793 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2794 2795 /** 2796 * dev_pm_opp_enable() - Enable a specific OPP 2797 * @dev: device for which we do this operation 2798 * @freq: OPP frequency to enable 2799 * 2800 * Enables a provided opp. If the operation is valid, this returns 0, else the 2801 * corresponding error value. It is meant to be used for users an OPP available 2802 * after being temporarily made unavailable with dev_pm_opp_disable. 2803 * 2804 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2805 * copy operation, returns 0 if no modification was done OR modification was 2806 * successful. 2807 */ 2808 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2809 { 2810 return _opp_set_availability(dev, freq, true); 2811 } 2812 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2813 2814 /** 2815 * dev_pm_opp_disable() - Disable a specific OPP 2816 * @dev: device for which we do this operation 2817 * @freq: OPP frequency to disable 2818 * 2819 * Disables a provided opp. If the operation is valid, this returns 2820 * 0, else the corresponding error value. It is meant to be a temporary 2821 * control by users to make this OPP not available until the circumstances are 2822 * right to make it available again (with a call to dev_pm_opp_enable). 2823 * 2824 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2825 * copy operation, returns 0 if no modification was done OR modification was 2826 * successful. 2827 */ 2828 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2829 { 2830 return _opp_set_availability(dev, freq, false); 2831 } 2832 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2833 2834 /** 2835 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2836 * @dev: Device for which notifier needs to be registered 2837 * @nb: Notifier block to be registered 2838 * 2839 * Return: 0 on success or a negative error value. 2840 */ 2841 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2842 { 2843 struct opp_table *opp_table; 2844 int ret; 2845 2846 opp_table = _find_opp_table(dev); 2847 if (IS_ERR(opp_table)) 2848 return PTR_ERR(opp_table); 2849 2850 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2851 2852 dev_pm_opp_put_opp_table(opp_table); 2853 2854 return ret; 2855 } 2856 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2857 2858 /** 2859 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2860 * @dev: Device for which notifier needs to be unregistered 2861 * @nb: Notifier block to be unregistered 2862 * 2863 * Return: 0 on success or a negative error value. 2864 */ 2865 int dev_pm_opp_unregister_notifier(struct device *dev, 2866 struct notifier_block *nb) 2867 { 2868 struct opp_table *opp_table; 2869 int ret; 2870 2871 opp_table = _find_opp_table(dev); 2872 if (IS_ERR(opp_table)) 2873 return PTR_ERR(opp_table); 2874 2875 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2876 2877 dev_pm_opp_put_opp_table(opp_table); 2878 2879 return ret; 2880 } 2881 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2882 2883 /** 2884 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2885 * @dev: device pointer used to lookup OPP table. 2886 * 2887 * Free both OPPs created using static entries present in DT and the 2888 * dynamically added entries. 2889 */ 2890 void dev_pm_opp_remove_table(struct device *dev) 2891 { 2892 struct opp_table *opp_table; 2893 2894 /* Check for existing table for 'dev' */ 2895 opp_table = _find_opp_table(dev); 2896 if (IS_ERR(opp_table)) { 2897 int error = PTR_ERR(opp_table); 2898 2899 if (error != -ENODEV) 2900 WARN(1, "%s: opp_table: %d\n", 2901 IS_ERR_OR_NULL(dev) ? 2902 "Invalid device" : dev_name(dev), 2903 error); 2904 return; 2905 } 2906 2907 /* 2908 * Drop the extra reference only if the OPP table was successfully added 2909 * with dev_pm_opp_of_add_table() earlier. 2910 **/ 2911 if (_opp_remove_all_static(opp_table)) 2912 dev_pm_opp_put_opp_table(opp_table); 2913 2914 /* Drop reference taken by _find_opp_table() */ 2915 dev_pm_opp_put_opp_table(opp_table); 2916 } 2917 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2918 2919 /** 2920 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 2921 * @dev: device for which we do this operation 2922 * 2923 * Sync voltage state of the OPP table regulators. 2924 * 2925 * Return: 0 on success or a negative error value. 2926 */ 2927 int dev_pm_opp_sync_regulators(struct device *dev) 2928 { 2929 struct opp_table *opp_table; 2930 struct regulator *reg; 2931 int i, ret = 0; 2932 2933 /* Device may not have OPP table */ 2934 opp_table = _find_opp_table(dev); 2935 if (IS_ERR(opp_table)) 2936 return 0; 2937 2938 /* Regulator may not be required for the device */ 2939 if (unlikely(!opp_table->regulators)) 2940 goto put_table; 2941 2942 /* Nothing to sync if voltage wasn't changed */ 2943 if (!opp_table->enabled) 2944 goto put_table; 2945 2946 for (i = 0; i < opp_table->regulator_count; i++) { 2947 reg = opp_table->regulators[i]; 2948 ret = regulator_sync_voltage(reg); 2949 if (ret) 2950 break; 2951 } 2952 put_table: 2953 /* Drop reference taken by _find_opp_table() */ 2954 dev_pm_opp_put_opp_table(opp_table); 2955 2956 return ret; 2957 } 2958 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 2959