xref: /linux/drivers/opp/core.c (revision e9f0878c4b2004ac19581274c1ae4c61ae3ca70e)
1 /*
2  * Generic OPP Interface
3  *
4  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
5  *	Nishanth Menon
6  *	Romit Dasgupta
7  *	Kevin Hilman
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License version 2 as
11  * published by the Free Software Foundation.
12  */
13 
14 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
15 
16 #include <linux/clk.h>
17 #include <linux/errno.h>
18 #include <linux/err.h>
19 #include <linux/slab.h>
20 #include <linux/device.h>
21 #include <linux/export.h>
22 #include <linux/pm_domain.h>
23 #include <linux/regulator/consumer.h>
24 
25 #include "opp.h"
26 
27 /*
28  * The root of the list of all opp-tables. All opp_table structures branch off
29  * from here, with each opp_table containing the list of opps it supports in
30  * various states of availability.
31  */
32 LIST_HEAD(opp_tables);
33 /* Lock to allow exclusive modification to the device and opp lists */
34 DEFINE_MUTEX(opp_table_lock);
35 
36 static struct opp_device *_find_opp_dev(const struct device *dev,
37 					struct opp_table *opp_table)
38 {
39 	struct opp_device *opp_dev;
40 
41 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
42 		if (opp_dev->dev == dev)
43 			return opp_dev;
44 
45 	return NULL;
46 }
47 
48 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
49 {
50 	struct opp_table *opp_table;
51 
52 	list_for_each_entry(opp_table, &opp_tables, node) {
53 		if (_find_opp_dev(dev, opp_table)) {
54 			_get_opp_table_kref(opp_table);
55 
56 			return opp_table;
57 		}
58 	}
59 
60 	return ERR_PTR(-ENODEV);
61 }
62 
63 /**
64  * _find_opp_table() - find opp_table struct using device pointer
65  * @dev:	device pointer used to lookup OPP table
66  *
67  * Search OPP table for one containing matching device.
68  *
69  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
70  * -EINVAL based on type of error.
71  *
72  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
73  */
74 struct opp_table *_find_opp_table(struct device *dev)
75 {
76 	struct opp_table *opp_table;
77 
78 	if (IS_ERR_OR_NULL(dev)) {
79 		pr_err("%s: Invalid parameters\n", __func__);
80 		return ERR_PTR(-EINVAL);
81 	}
82 
83 	mutex_lock(&opp_table_lock);
84 	opp_table = _find_opp_table_unlocked(dev);
85 	mutex_unlock(&opp_table_lock);
86 
87 	return opp_table;
88 }
89 
90 /**
91  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
92  * @opp:	opp for which voltage has to be returned for
93  *
94  * Return: voltage in micro volt corresponding to the opp, else
95  * return 0
96  *
97  * This is useful only for devices with single power supply.
98  */
99 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
100 {
101 	if (IS_ERR_OR_NULL(opp)) {
102 		pr_err("%s: Invalid parameters\n", __func__);
103 		return 0;
104 	}
105 
106 	return opp->supplies[0].u_volt;
107 }
108 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
109 
110 /**
111  * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
112  * @opp:	opp for which frequency has to be returned for
113  *
114  * Return: frequency in hertz corresponding to the opp, else
115  * return 0
116  */
117 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
118 {
119 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
120 		pr_err("%s: Invalid parameters\n", __func__);
121 		return 0;
122 	}
123 
124 	return opp->rate;
125 }
126 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
127 
128 /**
129  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
130  * @opp: opp for which turbo mode is being verified
131  *
132  * Turbo OPPs are not for normal use, and can be enabled (under certain
133  * conditions) for short duration of times to finish high throughput work
134  * quickly. Running on them for longer times may overheat the chip.
135  *
136  * Return: true if opp is turbo opp, else false.
137  */
138 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
139 {
140 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
141 		pr_err("%s: Invalid parameters\n", __func__);
142 		return false;
143 	}
144 
145 	return opp->turbo;
146 }
147 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
148 
149 /**
150  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
151  * @dev:	device for which we do this operation
152  *
153  * Return: This function returns the max clock latency in nanoseconds.
154  */
155 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
156 {
157 	struct opp_table *opp_table;
158 	unsigned long clock_latency_ns;
159 
160 	opp_table = _find_opp_table(dev);
161 	if (IS_ERR(opp_table))
162 		return 0;
163 
164 	clock_latency_ns = opp_table->clock_latency_ns_max;
165 
166 	dev_pm_opp_put_opp_table(opp_table);
167 
168 	return clock_latency_ns;
169 }
170 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
171 
172 /**
173  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
174  * @dev: device for which we do this operation
175  *
176  * Return: This function returns the max voltage latency in nanoseconds.
177  */
178 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
179 {
180 	struct opp_table *opp_table;
181 	struct dev_pm_opp *opp;
182 	struct regulator *reg;
183 	unsigned long latency_ns = 0;
184 	int ret, i, count;
185 	struct {
186 		unsigned long min;
187 		unsigned long max;
188 	} *uV;
189 
190 	opp_table = _find_opp_table(dev);
191 	if (IS_ERR(opp_table))
192 		return 0;
193 
194 	count = opp_table->regulator_count;
195 
196 	/* Regulator may not be required for the device */
197 	if (!count)
198 		goto put_opp_table;
199 
200 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
201 	if (!uV)
202 		goto put_opp_table;
203 
204 	mutex_lock(&opp_table->lock);
205 
206 	for (i = 0; i < count; i++) {
207 		uV[i].min = ~0;
208 		uV[i].max = 0;
209 
210 		list_for_each_entry(opp, &opp_table->opp_list, node) {
211 			if (!opp->available)
212 				continue;
213 
214 			if (opp->supplies[i].u_volt_min < uV[i].min)
215 				uV[i].min = opp->supplies[i].u_volt_min;
216 			if (opp->supplies[i].u_volt_max > uV[i].max)
217 				uV[i].max = opp->supplies[i].u_volt_max;
218 		}
219 	}
220 
221 	mutex_unlock(&opp_table->lock);
222 
223 	/*
224 	 * The caller needs to ensure that opp_table (and hence the regulator)
225 	 * isn't freed, while we are executing this routine.
226 	 */
227 	for (i = 0; i < count; i++) {
228 		reg = opp_table->regulators[i];
229 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
230 		if (ret > 0)
231 			latency_ns += ret * 1000;
232 	}
233 
234 	kfree(uV);
235 put_opp_table:
236 	dev_pm_opp_put_opp_table(opp_table);
237 
238 	return latency_ns;
239 }
240 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
241 
242 /**
243  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
244  *					     nanoseconds
245  * @dev: device for which we do this operation
246  *
247  * Return: This function returns the max transition latency, in nanoseconds, to
248  * switch from one OPP to other.
249  */
250 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
251 {
252 	return dev_pm_opp_get_max_volt_latency(dev) +
253 		dev_pm_opp_get_max_clock_latency(dev);
254 }
255 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
256 
257 /**
258  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
259  * @dev:	device for which we do this operation
260  *
261  * Return: This function returns the frequency of the OPP marked as suspend_opp
262  * if one is available, else returns 0;
263  */
264 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
265 {
266 	struct opp_table *opp_table;
267 	unsigned long freq = 0;
268 
269 	opp_table = _find_opp_table(dev);
270 	if (IS_ERR(opp_table))
271 		return 0;
272 
273 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
274 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
275 
276 	dev_pm_opp_put_opp_table(opp_table);
277 
278 	return freq;
279 }
280 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
281 
282 int _get_opp_count(struct opp_table *opp_table)
283 {
284 	struct dev_pm_opp *opp;
285 	int count = 0;
286 
287 	mutex_lock(&opp_table->lock);
288 
289 	list_for_each_entry(opp, &opp_table->opp_list, node) {
290 		if (opp->available)
291 			count++;
292 	}
293 
294 	mutex_unlock(&opp_table->lock);
295 
296 	return count;
297 }
298 
299 /**
300  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
301  * @dev:	device for which we do this operation
302  *
303  * Return: This function returns the number of available opps if there are any,
304  * else returns 0 if none or the corresponding error value.
305  */
306 int dev_pm_opp_get_opp_count(struct device *dev)
307 {
308 	struct opp_table *opp_table;
309 	int count;
310 
311 	opp_table = _find_opp_table(dev);
312 	if (IS_ERR(opp_table)) {
313 		count = PTR_ERR(opp_table);
314 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
315 			__func__, count);
316 		return 0;
317 	}
318 
319 	count = _get_opp_count(opp_table);
320 	dev_pm_opp_put_opp_table(opp_table);
321 
322 	return count;
323 }
324 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
325 
326 /**
327  * dev_pm_opp_find_freq_exact() - search for an exact frequency
328  * @dev:		device for which we do this operation
329  * @freq:		frequency to search for
330  * @available:		true/false - match for available opp
331  *
332  * Return: Searches for exact match in the opp table and returns pointer to the
333  * matching opp if found, else returns ERR_PTR in case of error and should
334  * be handled using IS_ERR. Error return values can be:
335  * EINVAL:	for bad pointer
336  * ERANGE:	no match found for search
337  * ENODEV:	if device not found in list of registered devices
338  *
339  * Note: available is a modifier for the search. if available=true, then the
340  * match is for exact matching frequency and is available in the stored OPP
341  * table. if false, the match is for exact frequency which is not available.
342  *
343  * This provides a mechanism to enable an opp which is not available currently
344  * or the opposite as well.
345  *
346  * The callers are required to call dev_pm_opp_put() for the returned OPP after
347  * use.
348  */
349 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
350 					      unsigned long freq,
351 					      bool available)
352 {
353 	struct opp_table *opp_table;
354 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
355 
356 	opp_table = _find_opp_table(dev);
357 	if (IS_ERR(opp_table)) {
358 		int r = PTR_ERR(opp_table);
359 
360 		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
361 		return ERR_PTR(r);
362 	}
363 
364 	mutex_lock(&opp_table->lock);
365 
366 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
367 		if (temp_opp->available == available &&
368 				temp_opp->rate == freq) {
369 			opp = temp_opp;
370 
371 			/* Increment the reference count of OPP */
372 			dev_pm_opp_get(opp);
373 			break;
374 		}
375 	}
376 
377 	mutex_unlock(&opp_table->lock);
378 	dev_pm_opp_put_opp_table(opp_table);
379 
380 	return opp;
381 }
382 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
383 
384 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
385 						   unsigned long *freq)
386 {
387 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
388 
389 	mutex_lock(&opp_table->lock);
390 
391 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
392 		if (temp_opp->available && temp_opp->rate >= *freq) {
393 			opp = temp_opp;
394 			*freq = opp->rate;
395 
396 			/* Increment the reference count of OPP */
397 			dev_pm_opp_get(opp);
398 			break;
399 		}
400 	}
401 
402 	mutex_unlock(&opp_table->lock);
403 
404 	return opp;
405 }
406 
407 /**
408  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
409  * @dev:	device for which we do this operation
410  * @freq:	Start frequency
411  *
412  * Search for the matching ceil *available* OPP from a starting freq
413  * for a device.
414  *
415  * Return: matching *opp and refreshes *freq accordingly, else returns
416  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
417  * values can be:
418  * EINVAL:	for bad pointer
419  * ERANGE:	no match found for search
420  * ENODEV:	if device not found in list of registered devices
421  *
422  * The callers are required to call dev_pm_opp_put() for the returned OPP after
423  * use.
424  */
425 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
426 					     unsigned long *freq)
427 {
428 	struct opp_table *opp_table;
429 	struct dev_pm_opp *opp;
430 
431 	if (!dev || !freq) {
432 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
433 		return ERR_PTR(-EINVAL);
434 	}
435 
436 	opp_table = _find_opp_table(dev);
437 	if (IS_ERR(opp_table))
438 		return ERR_CAST(opp_table);
439 
440 	opp = _find_freq_ceil(opp_table, freq);
441 
442 	dev_pm_opp_put_opp_table(opp_table);
443 
444 	return opp;
445 }
446 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
447 
448 /**
449  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
450  * @dev:	device for which we do this operation
451  * @freq:	Start frequency
452  *
453  * Search for the matching floor *available* OPP from a starting freq
454  * for a device.
455  *
456  * Return: matching *opp and refreshes *freq accordingly, else returns
457  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
458  * values can be:
459  * EINVAL:	for bad pointer
460  * ERANGE:	no match found for search
461  * ENODEV:	if device not found in list of registered devices
462  *
463  * The callers are required to call dev_pm_opp_put() for the returned OPP after
464  * use.
465  */
466 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
467 					      unsigned long *freq)
468 {
469 	struct opp_table *opp_table;
470 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
471 
472 	if (!dev || !freq) {
473 		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
474 		return ERR_PTR(-EINVAL);
475 	}
476 
477 	opp_table = _find_opp_table(dev);
478 	if (IS_ERR(opp_table))
479 		return ERR_CAST(opp_table);
480 
481 	mutex_lock(&opp_table->lock);
482 
483 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
484 		if (temp_opp->available) {
485 			/* go to the next node, before choosing prev */
486 			if (temp_opp->rate > *freq)
487 				break;
488 			else
489 				opp = temp_opp;
490 		}
491 	}
492 
493 	/* Increment the reference count of OPP */
494 	if (!IS_ERR(opp))
495 		dev_pm_opp_get(opp);
496 	mutex_unlock(&opp_table->lock);
497 	dev_pm_opp_put_opp_table(opp_table);
498 
499 	if (!IS_ERR(opp))
500 		*freq = opp->rate;
501 
502 	return opp;
503 }
504 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
505 
506 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
507 			    struct dev_pm_opp_supply *supply)
508 {
509 	int ret;
510 
511 	/* Regulator not available for device */
512 	if (IS_ERR(reg)) {
513 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
514 			PTR_ERR(reg));
515 		return 0;
516 	}
517 
518 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
519 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
520 
521 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
522 					    supply->u_volt, supply->u_volt_max);
523 	if (ret)
524 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
525 			__func__, supply->u_volt_min, supply->u_volt,
526 			supply->u_volt_max, ret);
527 
528 	return ret;
529 }
530 
531 static inline int
532 _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
533 			  unsigned long old_freq, unsigned long freq)
534 {
535 	int ret;
536 
537 	ret = clk_set_rate(clk, freq);
538 	if (ret) {
539 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
540 			ret);
541 	}
542 
543 	return ret;
544 }
545 
546 static inline int
547 _generic_set_opp_domain(struct device *dev, struct clk *clk,
548 			unsigned long old_freq, unsigned long freq,
549 			unsigned int old_pstate, unsigned int new_pstate)
550 {
551 	int ret;
552 
553 	/* Scaling up? Scale domain performance state before frequency */
554 	if (freq > old_freq) {
555 		ret = dev_pm_genpd_set_performance_state(dev, new_pstate);
556 		if (ret)
557 			return ret;
558 	}
559 
560 	ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
561 	if (ret)
562 		goto restore_domain_state;
563 
564 	/* Scaling down? Scale domain performance state after frequency */
565 	if (freq < old_freq) {
566 		ret = dev_pm_genpd_set_performance_state(dev, new_pstate);
567 		if (ret)
568 			goto restore_freq;
569 	}
570 
571 	return 0;
572 
573 restore_freq:
574 	if (_generic_set_opp_clk_only(dev, clk, freq, old_freq))
575 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
576 			__func__, old_freq);
577 restore_domain_state:
578 	if (freq > old_freq)
579 		dev_pm_genpd_set_performance_state(dev, old_pstate);
580 
581 	return ret;
582 }
583 
584 static int _generic_set_opp_regulator(const struct opp_table *opp_table,
585 				      struct device *dev,
586 				      unsigned long old_freq,
587 				      unsigned long freq,
588 				      struct dev_pm_opp_supply *old_supply,
589 				      struct dev_pm_opp_supply *new_supply)
590 {
591 	struct regulator *reg = opp_table->regulators[0];
592 	int ret;
593 
594 	/* This function only supports single regulator per device */
595 	if (WARN_ON(opp_table->regulator_count > 1)) {
596 		dev_err(dev, "multiple regulators are not supported\n");
597 		return -EINVAL;
598 	}
599 
600 	/* Scaling up? Scale voltage before frequency */
601 	if (freq >= old_freq) {
602 		ret = _set_opp_voltage(dev, reg, new_supply);
603 		if (ret)
604 			goto restore_voltage;
605 	}
606 
607 	/* Change frequency */
608 	ret = _generic_set_opp_clk_only(dev, opp_table->clk, old_freq, freq);
609 	if (ret)
610 		goto restore_voltage;
611 
612 	/* Scaling down? Scale voltage after frequency */
613 	if (freq < old_freq) {
614 		ret = _set_opp_voltage(dev, reg, new_supply);
615 		if (ret)
616 			goto restore_freq;
617 	}
618 
619 	return 0;
620 
621 restore_freq:
622 	if (_generic_set_opp_clk_only(dev, opp_table->clk, freq, old_freq))
623 		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
624 			__func__, old_freq);
625 restore_voltage:
626 	/* This shouldn't harm even if the voltages weren't updated earlier */
627 	if (old_supply)
628 		_set_opp_voltage(dev, reg, old_supply);
629 
630 	return ret;
631 }
632 
633 /**
634  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
635  * @dev:	 device for which we do this operation
636  * @target_freq: frequency to achieve
637  *
638  * This configures the power-supplies and clock source to the levels specified
639  * by the OPP corresponding to the target_freq.
640  */
641 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
642 {
643 	struct opp_table *opp_table;
644 	unsigned long freq, old_freq;
645 	struct dev_pm_opp *old_opp, *opp;
646 	struct clk *clk;
647 	int ret, size;
648 
649 	if (unlikely(!target_freq)) {
650 		dev_err(dev, "%s: Invalid target frequency %lu\n", __func__,
651 			target_freq);
652 		return -EINVAL;
653 	}
654 
655 	opp_table = _find_opp_table(dev);
656 	if (IS_ERR(opp_table)) {
657 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
658 		return PTR_ERR(opp_table);
659 	}
660 
661 	clk = opp_table->clk;
662 	if (IS_ERR(clk)) {
663 		dev_err(dev, "%s: No clock available for the device\n",
664 			__func__);
665 		ret = PTR_ERR(clk);
666 		goto put_opp_table;
667 	}
668 
669 	freq = clk_round_rate(clk, target_freq);
670 	if ((long)freq <= 0)
671 		freq = target_freq;
672 
673 	old_freq = clk_get_rate(clk);
674 
675 	/* Return early if nothing to do */
676 	if (old_freq == freq) {
677 		dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
678 			__func__, freq);
679 		ret = 0;
680 		goto put_opp_table;
681 	}
682 
683 	old_opp = _find_freq_ceil(opp_table, &old_freq);
684 	if (IS_ERR(old_opp)) {
685 		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
686 			__func__, old_freq, PTR_ERR(old_opp));
687 	}
688 
689 	opp = _find_freq_ceil(opp_table, &freq);
690 	if (IS_ERR(opp)) {
691 		ret = PTR_ERR(opp);
692 		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
693 			__func__, freq, ret);
694 		goto put_old_opp;
695 	}
696 
697 	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
698 		old_freq, freq);
699 
700 	/* Only frequency scaling */
701 	if (!opp_table->regulators) {
702 		/*
703 		 * We don't support devices with both regulator and
704 		 * domain performance-state for now.
705 		 */
706 		if (opp_table->genpd_performance_state)
707 			ret = _generic_set_opp_domain(dev, clk, old_freq, freq,
708 						      IS_ERR(old_opp) ? 0 : old_opp->pstate,
709 						      opp->pstate);
710 		else
711 			ret = _generic_set_opp_clk_only(dev, clk, old_freq, freq);
712 	} else if (!opp_table->set_opp) {
713 		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
714 						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
715 						 opp->supplies);
716 	} else {
717 		struct dev_pm_set_opp_data *data;
718 
719 		data = opp_table->set_opp_data;
720 		data->regulators = opp_table->regulators;
721 		data->regulator_count = opp_table->regulator_count;
722 		data->clk = clk;
723 		data->dev = dev;
724 
725 		data->old_opp.rate = old_freq;
726 		size = sizeof(*opp->supplies) * opp_table->regulator_count;
727 		if (IS_ERR(old_opp))
728 			memset(data->old_opp.supplies, 0, size);
729 		else
730 			memcpy(data->old_opp.supplies, old_opp->supplies, size);
731 
732 		data->new_opp.rate = freq;
733 		memcpy(data->new_opp.supplies, opp->supplies, size);
734 
735 		ret = opp_table->set_opp(data);
736 	}
737 
738 	dev_pm_opp_put(opp);
739 put_old_opp:
740 	if (!IS_ERR(old_opp))
741 		dev_pm_opp_put(old_opp);
742 put_opp_table:
743 	dev_pm_opp_put_opp_table(opp_table);
744 	return ret;
745 }
746 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
747 
748 /* OPP-dev Helpers */
749 static void _remove_opp_dev(struct opp_device *opp_dev,
750 			    struct opp_table *opp_table)
751 {
752 	opp_debug_unregister(opp_dev, opp_table);
753 	list_del(&opp_dev->node);
754 	kfree(opp_dev);
755 }
756 
757 struct opp_device *_add_opp_dev(const struct device *dev,
758 				struct opp_table *opp_table)
759 {
760 	struct opp_device *opp_dev;
761 	int ret;
762 
763 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
764 	if (!opp_dev)
765 		return NULL;
766 
767 	/* Initialize opp-dev */
768 	opp_dev->dev = dev;
769 	list_add(&opp_dev->node, &opp_table->dev_list);
770 
771 	/* Create debugfs entries for the opp_table */
772 	ret = opp_debug_register(opp_dev, opp_table);
773 	if (ret)
774 		dev_err(dev, "%s: Failed to register opp debugfs (%d)\n",
775 			__func__, ret);
776 
777 	return opp_dev;
778 }
779 
780 static struct opp_table *_allocate_opp_table(struct device *dev)
781 {
782 	struct opp_table *opp_table;
783 	struct opp_device *opp_dev;
784 	int ret;
785 
786 	/*
787 	 * Allocate a new OPP table. In the infrequent case where a new
788 	 * device is needed to be added, we pay this penalty.
789 	 */
790 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
791 	if (!opp_table)
792 		return NULL;
793 
794 	INIT_LIST_HEAD(&opp_table->dev_list);
795 
796 	opp_dev = _add_opp_dev(dev, opp_table);
797 	if (!opp_dev) {
798 		kfree(opp_table);
799 		return NULL;
800 	}
801 
802 	_of_init_opp_table(opp_table, dev);
803 
804 	/* Find clk for the device */
805 	opp_table->clk = clk_get(dev, NULL);
806 	if (IS_ERR(opp_table->clk)) {
807 		ret = PTR_ERR(opp_table->clk);
808 		if (ret != -EPROBE_DEFER)
809 			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
810 				ret);
811 	}
812 
813 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
814 	INIT_LIST_HEAD(&opp_table->opp_list);
815 	mutex_init(&opp_table->lock);
816 	kref_init(&opp_table->kref);
817 
818 	/* Secure the device table modification */
819 	list_add(&opp_table->node, &opp_tables);
820 	return opp_table;
821 }
822 
823 void _get_opp_table_kref(struct opp_table *opp_table)
824 {
825 	kref_get(&opp_table->kref);
826 }
827 
828 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
829 {
830 	struct opp_table *opp_table;
831 
832 	/* Hold our table modification lock here */
833 	mutex_lock(&opp_table_lock);
834 
835 	opp_table = _find_opp_table_unlocked(dev);
836 	if (!IS_ERR(opp_table))
837 		goto unlock;
838 
839 	opp_table = _allocate_opp_table(dev);
840 
841 unlock:
842 	mutex_unlock(&opp_table_lock);
843 
844 	return opp_table;
845 }
846 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
847 
848 static void _opp_table_kref_release(struct kref *kref)
849 {
850 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
851 	struct opp_device *opp_dev;
852 
853 	/* Release clk */
854 	if (!IS_ERR(opp_table->clk))
855 		clk_put(opp_table->clk);
856 
857 	opp_dev = list_first_entry(&opp_table->dev_list, struct opp_device,
858 				   node);
859 
860 	_remove_opp_dev(opp_dev, opp_table);
861 
862 	/* dev_list must be empty now */
863 	WARN_ON(!list_empty(&opp_table->dev_list));
864 
865 	mutex_destroy(&opp_table->lock);
866 	list_del(&opp_table->node);
867 	kfree(opp_table);
868 
869 	mutex_unlock(&opp_table_lock);
870 }
871 
872 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
873 {
874 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
875 		       &opp_table_lock);
876 }
877 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
878 
879 void _opp_free(struct dev_pm_opp *opp)
880 {
881 	kfree(opp);
882 }
883 
884 static void _opp_kref_release(struct kref *kref)
885 {
886 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
887 	struct opp_table *opp_table = opp->opp_table;
888 
889 	/*
890 	 * Notify the changes in the availability of the operable
891 	 * frequency/voltage list.
892 	 */
893 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
894 	opp_debug_remove_one(opp);
895 	list_del(&opp->node);
896 	kfree(opp);
897 
898 	mutex_unlock(&opp_table->lock);
899 	dev_pm_opp_put_opp_table(opp_table);
900 }
901 
902 void dev_pm_opp_get(struct dev_pm_opp *opp)
903 {
904 	kref_get(&opp->kref);
905 }
906 
907 void dev_pm_opp_put(struct dev_pm_opp *opp)
908 {
909 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
910 }
911 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
912 
913 /**
914  * dev_pm_opp_remove()  - Remove an OPP from OPP table
915  * @dev:	device for which we do this operation
916  * @freq:	OPP to remove with matching 'freq'
917  *
918  * This function removes an opp from the opp table.
919  */
920 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
921 {
922 	struct dev_pm_opp *opp;
923 	struct opp_table *opp_table;
924 	bool found = false;
925 
926 	opp_table = _find_opp_table(dev);
927 	if (IS_ERR(opp_table))
928 		return;
929 
930 	mutex_lock(&opp_table->lock);
931 
932 	list_for_each_entry(opp, &opp_table->opp_list, node) {
933 		if (opp->rate == freq) {
934 			found = true;
935 			break;
936 		}
937 	}
938 
939 	mutex_unlock(&opp_table->lock);
940 
941 	if (found) {
942 		dev_pm_opp_put(opp);
943 	} else {
944 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
945 			 __func__, freq);
946 	}
947 
948 	dev_pm_opp_put_opp_table(opp_table);
949 }
950 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
951 
952 struct dev_pm_opp *_opp_allocate(struct opp_table *table)
953 {
954 	struct dev_pm_opp *opp;
955 	int count, supply_size;
956 
957 	/* Allocate space for at least one supply */
958 	count = table->regulator_count ? table->regulator_count : 1;
959 	supply_size = sizeof(*opp->supplies) * count;
960 
961 	/* allocate new OPP node and supplies structures */
962 	opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
963 	if (!opp)
964 		return NULL;
965 
966 	/* Put the supplies at the end of the OPP structure as an empty array */
967 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
968 	INIT_LIST_HEAD(&opp->node);
969 
970 	return opp;
971 }
972 
973 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
974 					 struct opp_table *opp_table)
975 {
976 	struct regulator *reg;
977 	int i;
978 
979 	for (i = 0; i < opp_table->regulator_count; i++) {
980 		reg = opp_table->regulators[i];
981 
982 		if (!regulator_is_supported_voltage(reg,
983 					opp->supplies[i].u_volt_min,
984 					opp->supplies[i].u_volt_max)) {
985 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
986 				__func__, opp->supplies[i].u_volt_min,
987 				opp->supplies[i].u_volt_max);
988 			return false;
989 		}
990 	}
991 
992 	return true;
993 }
994 
995 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
996 			     struct opp_table *opp_table,
997 			     struct list_head **head)
998 {
999 	struct dev_pm_opp *opp;
1000 
1001 	/*
1002 	 * Insert new OPP in order of increasing frequency and discard if
1003 	 * already present.
1004 	 *
1005 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1006 	 * loop, don't replace it with head otherwise it will become an infinite
1007 	 * loop.
1008 	 */
1009 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1010 		if (new_opp->rate > opp->rate) {
1011 			*head = &opp->node;
1012 			continue;
1013 		}
1014 
1015 		if (new_opp->rate < opp->rate)
1016 			return 0;
1017 
1018 		/* Duplicate OPPs */
1019 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1020 			 __func__, opp->rate, opp->supplies[0].u_volt,
1021 			 opp->available, new_opp->rate,
1022 			 new_opp->supplies[0].u_volt, new_opp->available);
1023 
1024 		/* Should we compare voltages for all regulators here ? */
1025 		return opp->available &&
1026 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1027 	}
1028 
1029 	return 0;
1030 }
1031 
1032 /*
1033  * Returns:
1034  * 0: On success. And appropriate error message for duplicate OPPs.
1035  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1036  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1037  *  sure we don't print error messages unnecessarily if different parts of
1038  *  kernel try to initialize the OPP table.
1039  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1040  *  should be considered an error by the callers of _opp_add().
1041  */
1042 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1043 	     struct opp_table *opp_table, bool rate_not_available)
1044 {
1045 	struct list_head *head;
1046 	int ret;
1047 
1048 	mutex_lock(&opp_table->lock);
1049 	head = &opp_table->opp_list;
1050 
1051 	if (likely(!rate_not_available)) {
1052 		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1053 		if (ret) {
1054 			mutex_unlock(&opp_table->lock);
1055 			return ret;
1056 		}
1057 	}
1058 
1059 	list_add(&new_opp->node, head);
1060 	mutex_unlock(&opp_table->lock);
1061 
1062 	new_opp->opp_table = opp_table;
1063 	kref_init(&new_opp->kref);
1064 
1065 	/* Get a reference to the OPP table */
1066 	_get_opp_table_kref(opp_table);
1067 
1068 	ret = opp_debug_create_one(new_opp, opp_table);
1069 	if (ret)
1070 		dev_err(dev, "%s: Failed to register opp to debugfs (%d)\n",
1071 			__func__, ret);
1072 
1073 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1074 		new_opp->available = false;
1075 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1076 			 __func__, new_opp->rate);
1077 	}
1078 
1079 	return 0;
1080 }
1081 
1082 /**
1083  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1084  * @opp_table:	OPP table
1085  * @dev:	device for which we do this operation
1086  * @freq:	Frequency in Hz for this OPP
1087  * @u_volt:	Voltage in uVolts for this OPP
1088  * @dynamic:	Dynamically added OPPs.
1089  *
1090  * This function adds an opp definition to the opp table and returns status.
1091  * The opp is made available by default and it can be controlled using
1092  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1093  *
1094  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1095  * and freed by dev_pm_opp_of_remove_table.
1096  *
1097  * Return:
1098  * 0		On success OR
1099  *		Duplicate OPPs (both freq and volt are same) and opp->available
1100  * -EEXIST	Freq are same and volt are different OR
1101  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1102  * -ENOMEM	Memory allocation failure
1103  */
1104 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1105 		unsigned long freq, long u_volt, bool dynamic)
1106 {
1107 	struct dev_pm_opp *new_opp;
1108 	unsigned long tol;
1109 	int ret;
1110 
1111 	new_opp = _opp_allocate(opp_table);
1112 	if (!new_opp)
1113 		return -ENOMEM;
1114 
1115 	/* populate the opp table */
1116 	new_opp->rate = freq;
1117 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1118 	new_opp->supplies[0].u_volt = u_volt;
1119 	new_opp->supplies[0].u_volt_min = u_volt - tol;
1120 	new_opp->supplies[0].u_volt_max = u_volt + tol;
1121 	new_opp->available = true;
1122 	new_opp->dynamic = dynamic;
1123 
1124 	ret = _opp_add(dev, new_opp, opp_table, false);
1125 	if (ret) {
1126 		/* Don't return error for duplicate OPPs */
1127 		if (ret == -EBUSY)
1128 			ret = 0;
1129 		goto free_opp;
1130 	}
1131 
1132 	/*
1133 	 * Notify the changes in the availability of the operable
1134 	 * frequency/voltage list.
1135 	 */
1136 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1137 	return 0;
1138 
1139 free_opp:
1140 	_opp_free(new_opp);
1141 
1142 	return ret;
1143 }
1144 
1145 /**
1146  * dev_pm_opp_set_supported_hw() - Set supported platforms
1147  * @dev: Device for which supported-hw has to be set.
1148  * @versions: Array of hierarchy of versions to match.
1149  * @count: Number of elements in the array.
1150  *
1151  * This is required only for the V2 bindings, and it enables a platform to
1152  * specify the hierarchy of versions it supports. OPP layer will then enable
1153  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1154  * property.
1155  */
1156 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1157 			const u32 *versions, unsigned int count)
1158 {
1159 	struct opp_table *opp_table;
1160 
1161 	opp_table = dev_pm_opp_get_opp_table(dev);
1162 	if (!opp_table)
1163 		return ERR_PTR(-ENOMEM);
1164 
1165 	/* Make sure there are no concurrent readers while updating opp_table */
1166 	WARN_ON(!list_empty(&opp_table->opp_list));
1167 
1168 	/* Another CPU that shares the OPP table has set the property ? */
1169 	if (opp_table->supported_hw)
1170 		return opp_table;
1171 
1172 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1173 					GFP_KERNEL);
1174 	if (!opp_table->supported_hw) {
1175 		dev_pm_opp_put_opp_table(opp_table);
1176 		return ERR_PTR(-ENOMEM);
1177 	}
1178 
1179 	opp_table->supported_hw_count = count;
1180 
1181 	return opp_table;
1182 }
1183 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1184 
1185 /**
1186  * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1187  * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1188  *
1189  * This is required only for the V2 bindings, and is called for a matching
1190  * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1191  * will not be freed.
1192  */
1193 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1194 {
1195 	/* Make sure there are no concurrent readers while updating opp_table */
1196 	WARN_ON(!list_empty(&opp_table->opp_list));
1197 
1198 	kfree(opp_table->supported_hw);
1199 	opp_table->supported_hw = NULL;
1200 	opp_table->supported_hw_count = 0;
1201 
1202 	dev_pm_opp_put_opp_table(opp_table);
1203 }
1204 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1205 
1206 /**
1207  * dev_pm_opp_set_prop_name() - Set prop-extn name
1208  * @dev: Device for which the prop-name has to be set.
1209  * @name: name to postfix to properties.
1210  *
1211  * This is required only for the V2 bindings, and it enables a platform to
1212  * specify the extn to be used for certain property names. The properties to
1213  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1214  * should postfix the property name with -<name> while looking for them.
1215  */
1216 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1217 {
1218 	struct opp_table *opp_table;
1219 
1220 	opp_table = dev_pm_opp_get_opp_table(dev);
1221 	if (!opp_table)
1222 		return ERR_PTR(-ENOMEM);
1223 
1224 	/* Make sure there are no concurrent readers while updating opp_table */
1225 	WARN_ON(!list_empty(&opp_table->opp_list));
1226 
1227 	/* Another CPU that shares the OPP table has set the property ? */
1228 	if (opp_table->prop_name)
1229 		return opp_table;
1230 
1231 	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1232 	if (!opp_table->prop_name) {
1233 		dev_pm_opp_put_opp_table(opp_table);
1234 		return ERR_PTR(-ENOMEM);
1235 	}
1236 
1237 	return opp_table;
1238 }
1239 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1240 
1241 /**
1242  * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1243  * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1244  *
1245  * This is required only for the V2 bindings, and is called for a matching
1246  * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1247  * will not be freed.
1248  */
1249 void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1250 {
1251 	/* Make sure there are no concurrent readers while updating opp_table */
1252 	WARN_ON(!list_empty(&opp_table->opp_list));
1253 
1254 	kfree(opp_table->prop_name);
1255 	opp_table->prop_name = NULL;
1256 
1257 	dev_pm_opp_put_opp_table(opp_table);
1258 }
1259 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1260 
1261 static int _allocate_set_opp_data(struct opp_table *opp_table)
1262 {
1263 	struct dev_pm_set_opp_data *data;
1264 	int len, count = opp_table->regulator_count;
1265 
1266 	if (WARN_ON(!count))
1267 		return -EINVAL;
1268 
1269 	/* space for set_opp_data */
1270 	len = sizeof(*data);
1271 
1272 	/* space for old_opp.supplies and new_opp.supplies */
1273 	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1274 
1275 	data = kzalloc(len, GFP_KERNEL);
1276 	if (!data)
1277 		return -ENOMEM;
1278 
1279 	data->old_opp.supplies = (void *)(data + 1);
1280 	data->new_opp.supplies = data->old_opp.supplies + count;
1281 
1282 	opp_table->set_opp_data = data;
1283 
1284 	return 0;
1285 }
1286 
1287 static void _free_set_opp_data(struct opp_table *opp_table)
1288 {
1289 	kfree(opp_table->set_opp_data);
1290 	opp_table->set_opp_data = NULL;
1291 }
1292 
1293 /**
1294  * dev_pm_opp_set_regulators() - Set regulator names for the device
1295  * @dev: Device for which regulator name is being set.
1296  * @names: Array of pointers to the names of the regulator.
1297  * @count: Number of regulators.
1298  *
1299  * In order to support OPP switching, OPP layer needs to know the name of the
1300  * device's regulators, as the core would be required to switch voltages as
1301  * well.
1302  *
1303  * This must be called before any OPPs are initialized for the device.
1304  */
1305 struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1306 					    const char * const names[],
1307 					    unsigned int count)
1308 {
1309 	struct opp_table *opp_table;
1310 	struct regulator *reg;
1311 	int ret, i;
1312 
1313 	opp_table = dev_pm_opp_get_opp_table(dev);
1314 	if (!opp_table)
1315 		return ERR_PTR(-ENOMEM);
1316 
1317 	/* This should be called before OPPs are initialized */
1318 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1319 		ret = -EBUSY;
1320 		goto err;
1321 	}
1322 
1323 	/* Another CPU that shares the OPP table has set the regulators ? */
1324 	if (opp_table->regulators)
1325 		return opp_table;
1326 
1327 	opp_table->regulators = kmalloc_array(count,
1328 					      sizeof(*opp_table->regulators),
1329 					      GFP_KERNEL);
1330 	if (!opp_table->regulators) {
1331 		ret = -ENOMEM;
1332 		goto err;
1333 	}
1334 
1335 	for (i = 0; i < count; i++) {
1336 		reg = regulator_get_optional(dev, names[i]);
1337 		if (IS_ERR(reg)) {
1338 			ret = PTR_ERR(reg);
1339 			if (ret != -EPROBE_DEFER)
1340 				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1341 					__func__, names[i], ret);
1342 			goto free_regulators;
1343 		}
1344 
1345 		opp_table->regulators[i] = reg;
1346 	}
1347 
1348 	opp_table->regulator_count = count;
1349 
1350 	/* Allocate block only once to pass to set_opp() routines */
1351 	ret = _allocate_set_opp_data(opp_table);
1352 	if (ret)
1353 		goto free_regulators;
1354 
1355 	return opp_table;
1356 
1357 free_regulators:
1358 	while (i != 0)
1359 		regulator_put(opp_table->regulators[--i]);
1360 
1361 	kfree(opp_table->regulators);
1362 	opp_table->regulators = NULL;
1363 	opp_table->regulator_count = 0;
1364 err:
1365 	dev_pm_opp_put_opp_table(opp_table);
1366 
1367 	return ERR_PTR(ret);
1368 }
1369 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1370 
1371 /**
1372  * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1373  * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1374  */
1375 void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1376 {
1377 	int i;
1378 
1379 	if (!opp_table->regulators)
1380 		goto put_opp_table;
1381 
1382 	/* Make sure there are no concurrent readers while updating opp_table */
1383 	WARN_ON(!list_empty(&opp_table->opp_list));
1384 
1385 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1386 		regulator_put(opp_table->regulators[i]);
1387 
1388 	_free_set_opp_data(opp_table);
1389 
1390 	kfree(opp_table->regulators);
1391 	opp_table->regulators = NULL;
1392 	opp_table->regulator_count = 0;
1393 
1394 put_opp_table:
1395 	dev_pm_opp_put_opp_table(opp_table);
1396 }
1397 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1398 
1399 /**
1400  * dev_pm_opp_set_clkname() - Set clk name for the device
1401  * @dev: Device for which clk name is being set.
1402  * @name: Clk name.
1403  *
1404  * In order to support OPP switching, OPP layer needs to get pointer to the
1405  * clock for the device. Simple cases work fine without using this routine (i.e.
1406  * by passing connection-id as NULL), but for a device with multiple clocks
1407  * available, the OPP core needs to know the exact name of the clk to use.
1408  *
1409  * This must be called before any OPPs are initialized for the device.
1410  */
1411 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1412 {
1413 	struct opp_table *opp_table;
1414 	int ret;
1415 
1416 	opp_table = dev_pm_opp_get_opp_table(dev);
1417 	if (!opp_table)
1418 		return ERR_PTR(-ENOMEM);
1419 
1420 	/* This should be called before OPPs are initialized */
1421 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1422 		ret = -EBUSY;
1423 		goto err;
1424 	}
1425 
1426 	/* Already have default clk set, free it */
1427 	if (!IS_ERR(opp_table->clk))
1428 		clk_put(opp_table->clk);
1429 
1430 	/* Find clk for the device */
1431 	opp_table->clk = clk_get(dev, name);
1432 	if (IS_ERR(opp_table->clk)) {
1433 		ret = PTR_ERR(opp_table->clk);
1434 		if (ret != -EPROBE_DEFER) {
1435 			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1436 				ret);
1437 		}
1438 		goto err;
1439 	}
1440 
1441 	return opp_table;
1442 
1443 err:
1444 	dev_pm_opp_put_opp_table(opp_table);
1445 
1446 	return ERR_PTR(ret);
1447 }
1448 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1449 
1450 /**
1451  * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1452  * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1453  */
1454 void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1455 {
1456 	/* Make sure there are no concurrent readers while updating opp_table */
1457 	WARN_ON(!list_empty(&opp_table->opp_list));
1458 
1459 	clk_put(opp_table->clk);
1460 	opp_table->clk = ERR_PTR(-EINVAL);
1461 
1462 	dev_pm_opp_put_opp_table(opp_table);
1463 }
1464 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1465 
1466 /**
1467  * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1468  * @dev: Device for which the helper is getting registered.
1469  * @set_opp: Custom set OPP helper.
1470  *
1471  * This is useful to support complex platforms (like platforms with multiple
1472  * regulators per device), instead of the generic OPP set rate helper.
1473  *
1474  * This must be called before any OPPs are initialized for the device.
1475  */
1476 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1477 			int (*set_opp)(struct dev_pm_set_opp_data *data))
1478 {
1479 	struct opp_table *opp_table;
1480 
1481 	if (!set_opp)
1482 		return ERR_PTR(-EINVAL);
1483 
1484 	opp_table = dev_pm_opp_get_opp_table(dev);
1485 	if (!opp_table)
1486 		return ERR_PTR(-ENOMEM);
1487 
1488 	/* This should be called before OPPs are initialized */
1489 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1490 		dev_pm_opp_put_opp_table(opp_table);
1491 		return ERR_PTR(-EBUSY);
1492 	}
1493 
1494 	/* Another CPU that shares the OPP table has set the helper ? */
1495 	if (!opp_table->set_opp)
1496 		opp_table->set_opp = set_opp;
1497 
1498 	return opp_table;
1499 }
1500 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1501 
1502 /**
1503  * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1504  *					   set_opp helper
1505  * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1506  *
1507  * Release resources blocked for platform specific set_opp helper.
1508  */
1509 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1510 {
1511 	/* Make sure there are no concurrent readers while updating opp_table */
1512 	WARN_ON(!list_empty(&opp_table->opp_list));
1513 
1514 	opp_table->set_opp = NULL;
1515 	dev_pm_opp_put_opp_table(opp_table);
1516 }
1517 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1518 
1519 /**
1520  * dev_pm_opp_add()  - Add an OPP table from a table definitions
1521  * @dev:	device for which we do this operation
1522  * @freq:	Frequency in Hz for this OPP
1523  * @u_volt:	Voltage in uVolts for this OPP
1524  *
1525  * This function adds an opp definition to the opp table and returns status.
1526  * The opp is made available by default and it can be controlled using
1527  * dev_pm_opp_enable/disable functions.
1528  *
1529  * Return:
1530  * 0		On success OR
1531  *		Duplicate OPPs (both freq and volt are same) and opp->available
1532  * -EEXIST	Freq are same and volt are different OR
1533  *		Duplicate OPPs (both freq and volt are same) and !opp->available
1534  * -ENOMEM	Memory allocation failure
1535  */
1536 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
1537 {
1538 	struct opp_table *opp_table;
1539 	int ret;
1540 
1541 	opp_table = dev_pm_opp_get_opp_table(dev);
1542 	if (!opp_table)
1543 		return -ENOMEM;
1544 
1545 	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
1546 
1547 	dev_pm_opp_put_opp_table(opp_table);
1548 	return ret;
1549 }
1550 EXPORT_SYMBOL_GPL(dev_pm_opp_add);
1551 
1552 /**
1553  * _opp_set_availability() - helper to set the availability of an opp
1554  * @dev:		device for which we do this operation
1555  * @freq:		OPP frequency to modify availability
1556  * @availability_req:	availability status requested for this opp
1557  *
1558  * Set the availability of an OPP, opp_{enable,disable} share a common logic
1559  * which is isolated here.
1560  *
1561  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1562  * copy operation, returns 0 if no modification was done OR modification was
1563  * successful.
1564  */
1565 static int _opp_set_availability(struct device *dev, unsigned long freq,
1566 				 bool availability_req)
1567 {
1568 	struct opp_table *opp_table;
1569 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
1570 	int r = 0;
1571 
1572 	/* Find the opp_table */
1573 	opp_table = _find_opp_table(dev);
1574 	if (IS_ERR(opp_table)) {
1575 		r = PTR_ERR(opp_table);
1576 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
1577 		return r;
1578 	}
1579 
1580 	mutex_lock(&opp_table->lock);
1581 
1582 	/* Do we have the frequency? */
1583 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
1584 		if (tmp_opp->rate == freq) {
1585 			opp = tmp_opp;
1586 			break;
1587 		}
1588 	}
1589 
1590 	if (IS_ERR(opp)) {
1591 		r = PTR_ERR(opp);
1592 		goto unlock;
1593 	}
1594 
1595 	/* Is update really needed? */
1596 	if (opp->available == availability_req)
1597 		goto unlock;
1598 
1599 	opp->available = availability_req;
1600 
1601 	dev_pm_opp_get(opp);
1602 	mutex_unlock(&opp_table->lock);
1603 
1604 	/* Notify the change of the OPP availability */
1605 	if (availability_req)
1606 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
1607 					     opp);
1608 	else
1609 		blocking_notifier_call_chain(&opp_table->head,
1610 					     OPP_EVENT_DISABLE, opp);
1611 
1612 	dev_pm_opp_put(opp);
1613 	goto put_table;
1614 
1615 unlock:
1616 	mutex_unlock(&opp_table->lock);
1617 put_table:
1618 	dev_pm_opp_put_opp_table(opp_table);
1619 	return r;
1620 }
1621 
1622 /**
1623  * dev_pm_opp_enable() - Enable a specific OPP
1624  * @dev:	device for which we do this operation
1625  * @freq:	OPP frequency to enable
1626  *
1627  * Enables a provided opp. If the operation is valid, this returns 0, else the
1628  * corresponding error value. It is meant to be used for users an OPP available
1629  * after being temporarily made unavailable with dev_pm_opp_disable.
1630  *
1631  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1632  * copy operation, returns 0 if no modification was done OR modification was
1633  * successful.
1634  */
1635 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
1636 {
1637 	return _opp_set_availability(dev, freq, true);
1638 }
1639 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
1640 
1641 /**
1642  * dev_pm_opp_disable() - Disable a specific OPP
1643  * @dev:	device for which we do this operation
1644  * @freq:	OPP frequency to disable
1645  *
1646  * Disables a provided opp. If the operation is valid, this returns
1647  * 0, else the corresponding error value. It is meant to be a temporary
1648  * control by users to make this OPP not available until the circumstances are
1649  * right to make it available again (with a call to dev_pm_opp_enable).
1650  *
1651  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
1652  * copy operation, returns 0 if no modification was done OR modification was
1653  * successful.
1654  */
1655 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
1656 {
1657 	return _opp_set_availability(dev, freq, false);
1658 }
1659 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
1660 
1661 /**
1662  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
1663  * @dev:	Device for which notifier needs to be registered
1664  * @nb:		Notifier block to be registered
1665  *
1666  * Return: 0 on success or a negative error value.
1667  */
1668 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
1669 {
1670 	struct opp_table *opp_table;
1671 	int ret;
1672 
1673 	opp_table = _find_opp_table(dev);
1674 	if (IS_ERR(opp_table))
1675 		return PTR_ERR(opp_table);
1676 
1677 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
1678 
1679 	dev_pm_opp_put_opp_table(opp_table);
1680 
1681 	return ret;
1682 }
1683 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
1684 
1685 /**
1686  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
1687  * @dev:	Device for which notifier needs to be unregistered
1688  * @nb:		Notifier block to be unregistered
1689  *
1690  * Return: 0 on success or a negative error value.
1691  */
1692 int dev_pm_opp_unregister_notifier(struct device *dev,
1693 				   struct notifier_block *nb)
1694 {
1695 	struct opp_table *opp_table;
1696 	int ret;
1697 
1698 	opp_table = _find_opp_table(dev);
1699 	if (IS_ERR(opp_table))
1700 		return PTR_ERR(opp_table);
1701 
1702 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
1703 
1704 	dev_pm_opp_put_opp_table(opp_table);
1705 
1706 	return ret;
1707 }
1708 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
1709 
1710 /*
1711  * Free OPPs either created using static entries present in DT or even the
1712  * dynamically added entries based on remove_all param.
1713  */
1714 void _dev_pm_opp_remove_table(struct opp_table *opp_table, struct device *dev,
1715 			      bool remove_all)
1716 {
1717 	struct dev_pm_opp *opp, *tmp;
1718 
1719 	/* Find if opp_table manages a single device */
1720 	if (list_is_singular(&opp_table->dev_list)) {
1721 		/* Free static OPPs */
1722 		list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1723 			if (remove_all || !opp->dynamic)
1724 				dev_pm_opp_put(opp);
1725 		}
1726 
1727 		/*
1728 		 * The OPP table is getting removed, drop the performance state
1729 		 * constraints.
1730 		 */
1731 		if (opp_table->genpd_performance_state)
1732 			dev_pm_genpd_set_performance_state(dev, 0);
1733 	} else {
1734 		_remove_opp_dev(_find_opp_dev(dev, opp_table), opp_table);
1735 	}
1736 }
1737 
1738 void _dev_pm_opp_find_and_remove_table(struct device *dev, bool remove_all)
1739 {
1740 	struct opp_table *opp_table;
1741 
1742 	/* Check for existing table for 'dev' */
1743 	opp_table = _find_opp_table(dev);
1744 	if (IS_ERR(opp_table)) {
1745 		int error = PTR_ERR(opp_table);
1746 
1747 		if (error != -ENODEV)
1748 			WARN(1, "%s: opp_table: %d\n",
1749 			     IS_ERR_OR_NULL(dev) ?
1750 					"Invalid device" : dev_name(dev),
1751 			     error);
1752 		return;
1753 	}
1754 
1755 	_dev_pm_opp_remove_table(opp_table, dev, remove_all);
1756 
1757 	dev_pm_opp_put_opp_table(opp_table);
1758 }
1759 
1760 /**
1761  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
1762  * @dev:	device pointer used to lookup OPP table.
1763  *
1764  * Free both OPPs created using static entries present in DT and the
1765  * dynamically added entries.
1766  */
1767 void dev_pm_opp_remove_table(struct device *dev)
1768 {
1769 	_dev_pm_opp_find_and_remove_table(dev, true);
1770 }
1771 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1772