1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/slab.h> 17 #include <linux/device.h> 18 #include <linux/export.h> 19 #include <linux/pm_domain.h> 20 #include <linux/regulator/consumer.h> 21 22 #include "opp.h" 23 24 /* 25 * The root of the list of all opp-tables. All opp_table structures branch off 26 * from here, with each opp_table containing the list of opps it supports in 27 * various states of availability. 28 */ 29 LIST_HEAD(opp_tables); 30 /* Lock to allow exclusive modification to the device and opp lists */ 31 DEFINE_MUTEX(opp_table_lock); 32 33 static struct opp_device *_find_opp_dev(const struct device *dev, 34 struct opp_table *opp_table) 35 { 36 struct opp_device *opp_dev; 37 38 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 39 if (opp_dev->dev == dev) 40 return opp_dev; 41 42 return NULL; 43 } 44 45 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 46 { 47 struct opp_table *opp_table; 48 bool found; 49 50 list_for_each_entry(opp_table, &opp_tables, node) { 51 mutex_lock(&opp_table->lock); 52 found = !!_find_opp_dev(dev, opp_table); 53 mutex_unlock(&opp_table->lock); 54 55 if (found) { 56 _get_opp_table_kref(opp_table); 57 58 return opp_table; 59 } 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 struct opp_table *opp_table; 79 80 if (IS_ERR_OR_NULL(dev)) { 81 pr_err("%s: Invalid parameters\n", __func__); 82 return ERR_PTR(-EINVAL); 83 } 84 85 mutex_lock(&opp_table_lock); 86 opp_table = _find_opp_table_unlocked(dev); 87 mutex_unlock(&opp_table_lock); 88 89 return opp_table; 90 } 91 92 /** 93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 94 * @opp: opp for which voltage has to be returned for 95 * 96 * Return: voltage in micro volt corresponding to the opp, else 97 * return 0 98 * 99 * This is useful only for devices with single power supply. 100 */ 101 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 102 { 103 if (IS_ERR_OR_NULL(opp)) { 104 pr_err("%s: Invalid parameters\n", __func__); 105 return 0; 106 } 107 108 return opp->supplies[0].u_volt; 109 } 110 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 111 112 /** 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp 114 * @opp: opp for which frequency has to be returned for 115 * 116 * Return: frequency in hertz corresponding to the opp, else 117 * return 0 118 */ 119 unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp) 120 { 121 if (IS_ERR_OR_NULL(opp) || !opp->available) { 122 pr_err("%s: Invalid parameters\n", __func__); 123 return 0; 124 } 125 126 return opp->rate; 127 } 128 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq); 129 130 /** 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 132 * @opp: opp for which level value has to be returned for 133 * 134 * Return: level read from device tree corresponding to the opp, else 135 * return 0. 136 */ 137 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 138 { 139 if (IS_ERR_OR_NULL(opp) || !opp->available) { 140 pr_err("%s: Invalid parameters\n", __func__); 141 return 0; 142 } 143 144 return opp->level; 145 } 146 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 147 148 /** 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 150 * @opp: opp for which turbo mode is being verified 151 * 152 * Turbo OPPs are not for normal use, and can be enabled (under certain 153 * conditions) for short duration of times to finish high throughput work 154 * quickly. Running on them for longer times may overheat the chip. 155 * 156 * Return: true if opp is turbo opp, else false. 157 */ 158 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 159 { 160 if (IS_ERR_OR_NULL(opp) || !opp->available) { 161 pr_err("%s: Invalid parameters\n", __func__); 162 return false; 163 } 164 165 return opp->turbo; 166 } 167 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 168 169 /** 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 171 * @dev: device for which we do this operation 172 * 173 * Return: This function returns the max clock latency in nanoseconds. 174 */ 175 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 176 { 177 struct opp_table *opp_table; 178 unsigned long clock_latency_ns; 179 180 opp_table = _find_opp_table(dev); 181 if (IS_ERR(opp_table)) 182 return 0; 183 184 clock_latency_ns = opp_table->clock_latency_ns_max; 185 186 dev_pm_opp_put_opp_table(opp_table); 187 188 return clock_latency_ns; 189 } 190 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 191 192 /** 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 194 * @dev: device for which we do this operation 195 * 196 * Return: This function returns the max voltage latency in nanoseconds. 197 */ 198 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 199 { 200 struct opp_table *opp_table; 201 struct dev_pm_opp *opp; 202 struct regulator *reg; 203 unsigned long latency_ns = 0; 204 int ret, i, count; 205 struct { 206 unsigned long min; 207 unsigned long max; 208 } *uV; 209 210 opp_table = _find_opp_table(dev); 211 if (IS_ERR(opp_table)) 212 return 0; 213 214 /* Regulator may not be required for the device */ 215 if (!opp_table->regulators) 216 goto put_opp_table; 217 218 count = opp_table->regulator_count; 219 220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 221 if (!uV) 222 goto put_opp_table; 223 224 mutex_lock(&opp_table->lock); 225 226 for (i = 0; i < count; i++) { 227 uV[i].min = ~0; 228 uV[i].max = 0; 229 230 list_for_each_entry(opp, &opp_table->opp_list, node) { 231 if (!opp->available) 232 continue; 233 234 if (opp->supplies[i].u_volt_min < uV[i].min) 235 uV[i].min = opp->supplies[i].u_volt_min; 236 if (opp->supplies[i].u_volt_max > uV[i].max) 237 uV[i].max = opp->supplies[i].u_volt_max; 238 } 239 } 240 241 mutex_unlock(&opp_table->lock); 242 243 /* 244 * The caller needs to ensure that opp_table (and hence the regulator) 245 * isn't freed, while we are executing this routine. 246 */ 247 for (i = 0; i < count; i++) { 248 reg = opp_table->regulators[i]; 249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 250 if (ret > 0) 251 latency_ns += ret * 1000; 252 } 253 254 kfree(uV); 255 put_opp_table: 256 dev_pm_opp_put_opp_table(opp_table); 257 258 return latency_ns; 259 } 260 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 261 262 /** 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 264 * nanoseconds 265 * @dev: device for which we do this operation 266 * 267 * Return: This function returns the max transition latency, in nanoseconds, to 268 * switch from one OPP to other. 269 */ 270 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 271 { 272 return dev_pm_opp_get_max_volt_latency(dev) + 273 dev_pm_opp_get_max_clock_latency(dev); 274 } 275 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 276 277 /** 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 279 * @dev: device for which we do this operation 280 * 281 * Return: This function returns the frequency of the OPP marked as suspend_opp 282 * if one is available, else returns 0; 283 */ 284 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 285 { 286 struct opp_table *opp_table; 287 unsigned long freq = 0; 288 289 opp_table = _find_opp_table(dev); 290 if (IS_ERR(opp_table)) 291 return 0; 292 293 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 295 296 dev_pm_opp_put_opp_table(opp_table); 297 298 return freq; 299 } 300 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 301 302 int _get_opp_count(struct opp_table *opp_table) 303 { 304 struct dev_pm_opp *opp; 305 int count = 0; 306 307 mutex_lock(&opp_table->lock); 308 309 list_for_each_entry(opp, &opp_table->opp_list, node) { 310 if (opp->available) 311 count++; 312 } 313 314 mutex_unlock(&opp_table->lock); 315 316 return count; 317 } 318 319 /** 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 321 * @dev: device for which we do this operation 322 * 323 * Return: This function returns the number of available opps if there are any, 324 * else returns 0 if none or the corresponding error value. 325 */ 326 int dev_pm_opp_get_opp_count(struct device *dev) 327 { 328 struct opp_table *opp_table; 329 int count; 330 331 opp_table = _find_opp_table(dev); 332 if (IS_ERR(opp_table)) { 333 count = PTR_ERR(opp_table); 334 dev_dbg(dev, "%s: OPP table not found (%d)\n", 335 __func__, count); 336 return count; 337 } 338 339 count = _get_opp_count(opp_table); 340 dev_pm_opp_put_opp_table(opp_table); 341 342 return count; 343 } 344 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 345 346 /** 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency 348 * @dev: device for which we do this operation 349 * @freq: frequency to search for 350 * @available: true/false - match for available opp 351 * 352 * Return: Searches for exact match in the opp table and returns pointer to the 353 * matching opp if found, else returns ERR_PTR in case of error and should 354 * be handled using IS_ERR. Error return values can be: 355 * EINVAL: for bad pointer 356 * ERANGE: no match found for search 357 * ENODEV: if device not found in list of registered devices 358 * 359 * Note: available is a modifier for the search. if available=true, then the 360 * match is for exact matching frequency and is available in the stored OPP 361 * table. if false, the match is for exact frequency which is not available. 362 * 363 * This provides a mechanism to enable an opp which is not available currently 364 * or the opposite as well. 365 * 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after 367 * use. 368 */ 369 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 370 unsigned long freq, 371 bool available) 372 { 373 struct opp_table *opp_table; 374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 375 376 opp_table = _find_opp_table(dev); 377 if (IS_ERR(opp_table)) { 378 int r = PTR_ERR(opp_table); 379 380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 381 return ERR_PTR(r); 382 } 383 384 mutex_lock(&opp_table->lock); 385 386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 387 if (temp_opp->available == available && 388 temp_opp->rate == freq) { 389 opp = temp_opp; 390 391 /* Increment the reference count of OPP */ 392 dev_pm_opp_get(opp); 393 break; 394 } 395 } 396 397 mutex_unlock(&opp_table->lock); 398 dev_pm_opp_put_opp_table(opp_table); 399 400 return opp; 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 403 404 /** 405 * dev_pm_opp_find_level_exact() - search for an exact level 406 * @dev: device for which we do this operation 407 * @level: level to search for 408 * 409 * Return: Searches for exact match in the opp table and returns pointer to the 410 * matching opp if found, else returns ERR_PTR in case of error and should 411 * be handled using IS_ERR. Error return values can be: 412 * EINVAL: for bad pointer 413 * ERANGE: no match found for search 414 * ENODEV: if device not found in list of registered devices 415 * 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after 417 * use. 418 */ 419 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 420 unsigned int level) 421 { 422 struct opp_table *opp_table; 423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 424 425 opp_table = _find_opp_table(dev); 426 if (IS_ERR(opp_table)) { 427 int r = PTR_ERR(opp_table); 428 429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r); 430 return ERR_PTR(r); 431 } 432 433 mutex_lock(&opp_table->lock); 434 435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 436 if (temp_opp->level == level) { 437 opp = temp_opp; 438 439 /* Increment the reference count of OPP */ 440 dev_pm_opp_get(opp); 441 break; 442 } 443 } 444 445 mutex_unlock(&opp_table->lock); 446 dev_pm_opp_put_opp_table(opp_table); 447 448 return opp; 449 } 450 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 451 452 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 453 unsigned long *freq) 454 { 455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 456 457 mutex_lock(&opp_table->lock); 458 459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 460 if (temp_opp->available && temp_opp->rate >= *freq) { 461 opp = temp_opp; 462 *freq = opp->rate; 463 464 /* Increment the reference count of OPP */ 465 dev_pm_opp_get(opp); 466 break; 467 } 468 } 469 470 mutex_unlock(&opp_table->lock); 471 472 return opp; 473 } 474 475 /** 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 477 * @dev: device for which we do this operation 478 * @freq: Start frequency 479 * 480 * Search for the matching ceil *available* OPP from a starting freq 481 * for a device. 482 * 483 * Return: matching *opp and refreshes *freq accordingly, else returns 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 485 * values can be: 486 * EINVAL: for bad pointer 487 * ERANGE: no match found for search 488 * ENODEV: if device not found in list of registered devices 489 * 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after 491 * use. 492 */ 493 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 494 unsigned long *freq) 495 { 496 struct opp_table *opp_table; 497 struct dev_pm_opp *opp; 498 499 if (!dev || !freq) { 500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 501 return ERR_PTR(-EINVAL); 502 } 503 504 opp_table = _find_opp_table(dev); 505 if (IS_ERR(opp_table)) 506 return ERR_CAST(opp_table); 507 508 opp = _find_freq_ceil(opp_table, freq); 509 510 dev_pm_opp_put_opp_table(opp_table); 511 512 return opp; 513 } 514 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 515 516 /** 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 518 * @dev: device for which we do this operation 519 * @freq: Start frequency 520 * 521 * Search for the matching floor *available* OPP from a starting freq 522 * for a device. 523 * 524 * Return: matching *opp and refreshes *freq accordingly, else returns 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 526 * values can be: 527 * EINVAL: for bad pointer 528 * ERANGE: no match found for search 529 * ENODEV: if device not found in list of registered devices 530 * 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after 532 * use. 533 */ 534 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 535 unsigned long *freq) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 539 540 if (!dev || !freq) { 541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq); 542 return ERR_PTR(-EINVAL); 543 } 544 545 opp_table = _find_opp_table(dev); 546 if (IS_ERR(opp_table)) 547 return ERR_CAST(opp_table); 548 549 mutex_lock(&opp_table->lock); 550 551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 552 if (temp_opp->available) { 553 /* go to the next node, before choosing prev */ 554 if (temp_opp->rate > *freq) 555 break; 556 else 557 opp = temp_opp; 558 } 559 } 560 561 /* Increment the reference count of OPP */ 562 if (!IS_ERR(opp)) 563 dev_pm_opp_get(opp); 564 mutex_unlock(&opp_table->lock); 565 dev_pm_opp_put_opp_table(opp_table); 566 567 if (!IS_ERR(opp)) 568 *freq = opp->rate; 569 570 return opp; 571 } 572 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 573 574 /** 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for 576 * target voltage. 577 * @dev: Device for which we do this operation. 578 * @u_volt: Target voltage. 579 * 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt. 581 * 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be 583 * handled using IS_ERR. 584 * 585 * Error return values can be: 586 * EINVAL: bad parameters 587 * 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after 589 * use. 590 */ 591 struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev, 592 unsigned long u_volt) 593 { 594 struct opp_table *opp_table; 595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 596 597 if (!dev || !u_volt) { 598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__, 599 u_volt); 600 return ERR_PTR(-EINVAL); 601 } 602 603 opp_table = _find_opp_table(dev); 604 if (IS_ERR(opp_table)) 605 return ERR_CAST(opp_table); 606 607 mutex_lock(&opp_table->lock); 608 609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 610 if (temp_opp->available) { 611 if (temp_opp->supplies[0].u_volt > u_volt) 612 break; 613 opp = temp_opp; 614 } 615 } 616 617 /* Increment the reference count of OPP */ 618 if (!IS_ERR(opp)) 619 dev_pm_opp_get(opp); 620 621 mutex_unlock(&opp_table->lock); 622 dev_pm_opp_put_opp_table(opp_table); 623 624 return opp; 625 } 626 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt); 627 628 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 629 struct dev_pm_opp_supply *supply) 630 { 631 int ret; 632 633 /* Regulator not available for device */ 634 if (IS_ERR(reg)) { 635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 636 PTR_ERR(reg)); 637 return 0; 638 } 639 640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 641 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 642 643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 644 supply->u_volt, supply->u_volt_max); 645 if (ret) 646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 647 __func__, supply->u_volt_min, supply->u_volt, 648 supply->u_volt_max, ret); 649 650 return ret; 651 } 652 653 static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk, 654 unsigned long freq) 655 { 656 int ret; 657 658 ret = clk_set_rate(clk, freq); 659 if (ret) { 660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 661 ret); 662 } 663 664 return ret; 665 } 666 667 static int _generic_set_opp_regulator(const struct opp_table *opp_table, 668 struct device *dev, 669 unsigned long old_freq, 670 unsigned long freq, 671 struct dev_pm_opp_supply *old_supply, 672 struct dev_pm_opp_supply *new_supply) 673 { 674 struct regulator *reg = opp_table->regulators[0]; 675 int ret; 676 677 /* This function only supports single regulator per device */ 678 if (WARN_ON(opp_table->regulator_count > 1)) { 679 dev_err(dev, "multiple regulators are not supported\n"); 680 return -EINVAL; 681 } 682 683 /* Scaling up? Scale voltage before frequency */ 684 if (freq >= old_freq) { 685 ret = _set_opp_voltage(dev, reg, new_supply); 686 if (ret) 687 goto restore_voltage; 688 } 689 690 /* Change frequency */ 691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq); 692 if (ret) 693 goto restore_voltage; 694 695 /* Scaling down? Scale voltage after frequency */ 696 if (freq < old_freq) { 697 ret = _set_opp_voltage(dev, reg, new_supply); 698 if (ret) 699 goto restore_freq; 700 } 701 702 return 0; 703 704 restore_freq: 705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq)) 706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n", 707 __func__, old_freq); 708 restore_voltage: 709 /* This shouldn't harm even if the voltages weren't updated earlier */ 710 if (old_supply) 711 _set_opp_voltage(dev, reg, old_supply); 712 713 return ret; 714 } 715 716 static int _set_opp_custom(const struct opp_table *opp_table, 717 struct device *dev, unsigned long old_freq, 718 unsigned long freq, 719 struct dev_pm_opp_supply *old_supply, 720 struct dev_pm_opp_supply *new_supply) 721 { 722 struct dev_pm_set_opp_data *data; 723 int size; 724 725 data = opp_table->set_opp_data; 726 data->regulators = opp_table->regulators; 727 data->regulator_count = opp_table->regulator_count; 728 data->clk = opp_table->clk; 729 data->dev = dev; 730 731 data->old_opp.rate = old_freq; 732 size = sizeof(*old_supply) * opp_table->regulator_count; 733 if (!old_supply) 734 memset(data->old_opp.supplies, 0, size); 735 else 736 memcpy(data->old_opp.supplies, old_supply, size); 737 738 data->new_opp.rate = freq; 739 memcpy(data->new_opp.supplies, new_supply, size); 740 741 return opp_table->set_opp(data); 742 } 743 744 /* This is only called for PM domain for now */ 745 static int _set_required_opps(struct device *dev, 746 struct opp_table *opp_table, 747 struct dev_pm_opp *opp) 748 { 749 struct opp_table **required_opp_tables = opp_table->required_opp_tables; 750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs; 751 unsigned int pstate; 752 int i, ret = 0; 753 754 if (!required_opp_tables) 755 return 0; 756 757 /* Single genpd case */ 758 if (!genpd_virt_devs) { 759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0; 760 ret = dev_pm_genpd_set_performance_state(dev, pstate); 761 if (ret) { 762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n", 763 dev_name(dev), pstate, ret); 764 } 765 return ret; 766 } 767 768 /* Multiple genpd case */ 769 770 /* 771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev 772 * after it is freed from another thread. 773 */ 774 mutex_lock(&opp_table->genpd_virt_dev_lock); 775 776 for (i = 0; i < opp_table->required_opp_count; i++) { 777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0; 778 779 if (!genpd_virt_devs[i]) 780 continue; 781 782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate); 783 if (ret) { 784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n", 785 dev_name(genpd_virt_devs[i]), pstate, ret); 786 break; 787 } 788 } 789 mutex_unlock(&opp_table->genpd_virt_dev_lock); 790 791 return ret; 792 } 793 794 /** 795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 796 * @dev: device for which we do this operation 797 * @target_freq: frequency to achieve 798 * 799 * This configures the power-supplies to the levels specified by the OPP 800 * corresponding to the target_freq, and programs the clock to a value <= 801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 802 * provided by the opp, should have already rounded to the target OPP's 803 * frequency. 804 */ 805 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 806 { 807 struct opp_table *opp_table; 808 unsigned long freq, old_freq, temp_freq; 809 struct dev_pm_opp *old_opp, *opp; 810 struct clk *clk; 811 int ret; 812 813 opp_table = _find_opp_table(dev); 814 if (IS_ERR(opp_table)) { 815 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 816 return PTR_ERR(opp_table); 817 } 818 819 if (unlikely(!target_freq)) { 820 if (opp_table->required_opp_tables) { 821 ret = _set_required_opps(dev, opp_table, NULL); 822 } else { 823 dev_err(dev, "target frequency can't be 0\n"); 824 ret = -EINVAL; 825 } 826 827 goto put_opp_table; 828 } 829 830 clk = opp_table->clk; 831 if (IS_ERR(clk)) { 832 dev_err(dev, "%s: No clock available for the device\n", 833 __func__); 834 ret = PTR_ERR(clk); 835 goto put_opp_table; 836 } 837 838 freq = clk_round_rate(clk, target_freq); 839 if ((long)freq <= 0) 840 freq = target_freq; 841 842 old_freq = clk_get_rate(clk); 843 844 /* Return early if nothing to do */ 845 if (old_freq == freq) { 846 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n", 847 __func__, freq); 848 ret = 0; 849 goto put_opp_table; 850 } 851 852 temp_freq = old_freq; 853 old_opp = _find_freq_ceil(opp_table, &temp_freq); 854 if (IS_ERR(old_opp)) { 855 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n", 856 __func__, old_freq, PTR_ERR(old_opp)); 857 } 858 859 temp_freq = freq; 860 opp = _find_freq_ceil(opp_table, &temp_freq); 861 if (IS_ERR(opp)) { 862 ret = PTR_ERR(opp); 863 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 864 __func__, freq, ret); 865 goto put_old_opp; 866 } 867 868 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__, 869 old_freq, freq); 870 871 /* Scaling up? Configure required OPPs before frequency */ 872 if (freq >= old_freq) { 873 ret = _set_required_opps(dev, opp_table, opp); 874 if (ret) 875 goto put_opp; 876 } 877 878 if (opp_table->set_opp) { 879 ret = _set_opp_custom(opp_table, dev, old_freq, freq, 880 IS_ERR(old_opp) ? NULL : old_opp->supplies, 881 opp->supplies); 882 } else if (opp_table->regulators) { 883 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq, 884 IS_ERR(old_opp) ? NULL : old_opp->supplies, 885 opp->supplies); 886 } else { 887 /* Only frequency scaling */ 888 ret = _generic_set_opp_clk_only(dev, clk, freq); 889 } 890 891 /* Scaling down? Configure required OPPs after frequency */ 892 if (!ret && freq < old_freq) { 893 ret = _set_required_opps(dev, opp_table, opp); 894 if (ret) 895 dev_err(dev, "Failed to set required opps: %d\n", ret); 896 } 897 898 put_opp: 899 dev_pm_opp_put(opp); 900 put_old_opp: 901 if (!IS_ERR(old_opp)) 902 dev_pm_opp_put(old_opp); 903 put_opp_table: 904 dev_pm_opp_put_opp_table(opp_table); 905 return ret; 906 } 907 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 908 909 /* OPP-dev Helpers */ 910 static void _remove_opp_dev(struct opp_device *opp_dev, 911 struct opp_table *opp_table) 912 { 913 opp_debug_unregister(opp_dev, opp_table); 914 list_del(&opp_dev->node); 915 kfree(opp_dev); 916 } 917 918 static struct opp_device *_add_opp_dev_unlocked(const struct device *dev, 919 struct opp_table *opp_table) 920 { 921 struct opp_device *opp_dev; 922 923 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 924 if (!opp_dev) 925 return NULL; 926 927 /* Initialize opp-dev */ 928 opp_dev->dev = dev; 929 930 list_add(&opp_dev->node, &opp_table->dev_list); 931 932 /* Create debugfs entries for the opp_table */ 933 opp_debug_register(opp_dev, opp_table); 934 935 return opp_dev; 936 } 937 938 struct opp_device *_add_opp_dev(const struct device *dev, 939 struct opp_table *opp_table) 940 { 941 struct opp_device *opp_dev; 942 943 mutex_lock(&opp_table->lock); 944 opp_dev = _add_opp_dev_unlocked(dev, opp_table); 945 mutex_unlock(&opp_table->lock); 946 947 return opp_dev; 948 } 949 950 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 951 { 952 struct opp_table *opp_table; 953 struct opp_device *opp_dev; 954 int ret; 955 956 /* 957 * Allocate a new OPP table. In the infrequent case where a new 958 * device is needed to be added, we pay this penalty. 959 */ 960 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 961 if (!opp_table) 962 return NULL; 963 964 mutex_init(&opp_table->lock); 965 mutex_init(&opp_table->genpd_virt_dev_lock); 966 INIT_LIST_HEAD(&opp_table->dev_list); 967 968 /* Mark regulator count uninitialized */ 969 opp_table->regulator_count = -1; 970 971 opp_dev = _add_opp_dev(dev, opp_table); 972 if (!opp_dev) { 973 kfree(opp_table); 974 return NULL; 975 } 976 977 _of_init_opp_table(opp_table, dev, index); 978 979 /* Find clk for the device */ 980 opp_table->clk = clk_get(dev, NULL); 981 if (IS_ERR(opp_table->clk)) { 982 ret = PTR_ERR(opp_table->clk); 983 if (ret != -EPROBE_DEFER) 984 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, 985 ret); 986 } 987 988 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 989 INIT_LIST_HEAD(&opp_table->opp_list); 990 kref_init(&opp_table->kref); 991 992 /* Secure the device table modification */ 993 list_add(&opp_table->node, &opp_tables); 994 return opp_table; 995 } 996 997 void _get_opp_table_kref(struct opp_table *opp_table) 998 { 999 kref_get(&opp_table->kref); 1000 } 1001 1002 static struct opp_table *_opp_get_opp_table(struct device *dev, int index) 1003 { 1004 struct opp_table *opp_table; 1005 1006 /* Hold our table modification lock here */ 1007 mutex_lock(&opp_table_lock); 1008 1009 opp_table = _find_opp_table_unlocked(dev); 1010 if (!IS_ERR(opp_table)) 1011 goto unlock; 1012 1013 opp_table = _managed_opp(dev, index); 1014 if (opp_table) { 1015 if (!_add_opp_dev_unlocked(dev, opp_table)) { 1016 dev_pm_opp_put_opp_table(opp_table); 1017 opp_table = NULL; 1018 } 1019 goto unlock; 1020 } 1021 1022 opp_table = _allocate_opp_table(dev, index); 1023 1024 unlock: 1025 mutex_unlock(&opp_table_lock); 1026 1027 return opp_table; 1028 } 1029 1030 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1031 { 1032 return _opp_get_opp_table(dev, 0); 1033 } 1034 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1035 1036 struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev, 1037 int index) 1038 { 1039 return _opp_get_opp_table(dev, index); 1040 } 1041 1042 static void _opp_table_kref_release(struct kref *kref) 1043 { 1044 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1045 struct opp_device *opp_dev, *temp; 1046 1047 _of_clear_opp_table(opp_table); 1048 1049 /* Release clk */ 1050 if (!IS_ERR(opp_table->clk)) 1051 clk_put(opp_table->clk); 1052 1053 WARN_ON(!list_empty(&opp_table->opp_list)); 1054 1055 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) { 1056 /* 1057 * The OPP table is getting removed, drop the performance state 1058 * constraints. 1059 */ 1060 if (opp_table->genpd_performance_state) 1061 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0); 1062 1063 _remove_opp_dev(opp_dev, opp_table); 1064 } 1065 1066 mutex_destroy(&opp_table->genpd_virt_dev_lock); 1067 mutex_destroy(&opp_table->lock); 1068 list_del(&opp_table->node); 1069 kfree(opp_table); 1070 1071 mutex_unlock(&opp_table_lock); 1072 } 1073 1074 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1075 { 1076 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1077 &opp_table_lock); 1078 } 1079 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1080 1081 void _opp_free(struct dev_pm_opp *opp) 1082 { 1083 kfree(opp); 1084 } 1085 1086 static void _opp_kref_release(struct dev_pm_opp *opp, 1087 struct opp_table *opp_table) 1088 { 1089 /* 1090 * Notify the changes in the availability of the operable 1091 * frequency/voltage list. 1092 */ 1093 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1094 _of_opp_free_required_opps(opp_table, opp); 1095 opp_debug_remove_one(opp); 1096 list_del(&opp->node); 1097 kfree(opp); 1098 } 1099 1100 static void _opp_kref_release_unlocked(struct kref *kref) 1101 { 1102 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1103 struct opp_table *opp_table = opp->opp_table; 1104 1105 _opp_kref_release(opp, opp_table); 1106 } 1107 1108 static void _opp_kref_release_locked(struct kref *kref) 1109 { 1110 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1111 struct opp_table *opp_table = opp->opp_table; 1112 1113 _opp_kref_release(opp, opp_table); 1114 mutex_unlock(&opp_table->lock); 1115 } 1116 1117 void dev_pm_opp_get(struct dev_pm_opp *opp) 1118 { 1119 kref_get(&opp->kref); 1120 } 1121 1122 void dev_pm_opp_put(struct dev_pm_opp *opp) 1123 { 1124 kref_put_mutex(&opp->kref, _opp_kref_release_locked, 1125 &opp->opp_table->lock); 1126 } 1127 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1128 1129 static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp) 1130 { 1131 kref_put(&opp->kref, _opp_kref_release_unlocked); 1132 } 1133 1134 /** 1135 * dev_pm_opp_remove() - Remove an OPP from OPP table 1136 * @dev: device for which we do this operation 1137 * @freq: OPP to remove with matching 'freq' 1138 * 1139 * This function removes an opp from the opp table. 1140 */ 1141 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1142 { 1143 struct dev_pm_opp *opp; 1144 struct opp_table *opp_table; 1145 bool found = false; 1146 1147 opp_table = _find_opp_table(dev); 1148 if (IS_ERR(opp_table)) 1149 return; 1150 1151 mutex_lock(&opp_table->lock); 1152 1153 list_for_each_entry(opp, &opp_table->opp_list, node) { 1154 if (opp->rate == freq) { 1155 found = true; 1156 break; 1157 } 1158 } 1159 1160 mutex_unlock(&opp_table->lock); 1161 1162 if (found) { 1163 dev_pm_opp_put(opp); 1164 1165 /* Drop the reference taken by dev_pm_opp_add() */ 1166 dev_pm_opp_put_opp_table(opp_table); 1167 } else { 1168 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1169 __func__, freq); 1170 } 1171 1172 /* Drop the reference taken by _find_opp_table() */ 1173 dev_pm_opp_put_opp_table(opp_table); 1174 } 1175 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1176 1177 void _opp_remove_all_static(struct opp_table *opp_table) 1178 { 1179 struct dev_pm_opp *opp, *tmp; 1180 1181 mutex_lock(&opp_table->lock); 1182 1183 if (!opp_table->parsed_static_opps || --opp_table->parsed_static_opps) 1184 goto unlock; 1185 1186 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) { 1187 if (!opp->dynamic) 1188 dev_pm_opp_put_unlocked(opp); 1189 } 1190 1191 unlock: 1192 mutex_unlock(&opp_table->lock); 1193 } 1194 1195 /** 1196 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1197 * @dev: device for which we do this operation 1198 * 1199 * This function removes all dynamically created OPPs from the opp table. 1200 */ 1201 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1202 { 1203 struct opp_table *opp_table; 1204 struct dev_pm_opp *opp, *temp; 1205 int count = 0; 1206 1207 opp_table = _find_opp_table(dev); 1208 if (IS_ERR(opp_table)) 1209 return; 1210 1211 mutex_lock(&opp_table->lock); 1212 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) { 1213 if (opp->dynamic) { 1214 dev_pm_opp_put_unlocked(opp); 1215 count++; 1216 } 1217 } 1218 mutex_unlock(&opp_table->lock); 1219 1220 /* Drop the references taken by dev_pm_opp_add() */ 1221 while (count--) 1222 dev_pm_opp_put_opp_table(opp_table); 1223 1224 /* Drop the reference taken by _find_opp_table() */ 1225 dev_pm_opp_put_opp_table(opp_table); 1226 } 1227 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1228 1229 struct dev_pm_opp *_opp_allocate(struct opp_table *table) 1230 { 1231 struct dev_pm_opp *opp; 1232 int count, supply_size; 1233 1234 /* Allocate space for at least one supply */ 1235 count = table->regulator_count > 0 ? table->regulator_count : 1; 1236 supply_size = sizeof(*opp->supplies) * count; 1237 1238 /* allocate new OPP node and supplies structures */ 1239 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL); 1240 if (!opp) 1241 return NULL; 1242 1243 /* Put the supplies at the end of the OPP structure as an empty array */ 1244 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1245 INIT_LIST_HEAD(&opp->node); 1246 1247 return opp; 1248 } 1249 1250 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1251 struct opp_table *opp_table) 1252 { 1253 struct regulator *reg; 1254 int i; 1255 1256 if (!opp_table->regulators) 1257 return true; 1258 1259 for (i = 0; i < opp_table->regulator_count; i++) { 1260 reg = opp_table->regulators[i]; 1261 1262 if (!regulator_is_supported_voltage(reg, 1263 opp->supplies[i].u_volt_min, 1264 opp->supplies[i].u_volt_max)) { 1265 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1266 __func__, opp->supplies[i].u_volt_min, 1267 opp->supplies[i].u_volt_max); 1268 return false; 1269 } 1270 } 1271 1272 return true; 1273 } 1274 1275 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1276 struct opp_table *opp_table, 1277 struct list_head **head) 1278 { 1279 struct dev_pm_opp *opp; 1280 1281 /* 1282 * Insert new OPP in order of increasing frequency and discard if 1283 * already present. 1284 * 1285 * Need to use &opp_table->opp_list in the condition part of the 'for' 1286 * loop, don't replace it with head otherwise it will become an infinite 1287 * loop. 1288 */ 1289 list_for_each_entry(opp, &opp_table->opp_list, node) { 1290 if (new_opp->rate > opp->rate) { 1291 *head = &opp->node; 1292 continue; 1293 } 1294 1295 if (new_opp->rate < opp->rate) 1296 return 0; 1297 1298 /* Duplicate OPPs */ 1299 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1300 __func__, opp->rate, opp->supplies[0].u_volt, 1301 opp->available, new_opp->rate, 1302 new_opp->supplies[0].u_volt, new_opp->available); 1303 1304 /* Should we compare voltages for all regulators here ? */ 1305 return opp->available && 1306 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1307 } 1308 1309 return 0; 1310 } 1311 1312 /* 1313 * Returns: 1314 * 0: On success. And appropriate error message for duplicate OPPs. 1315 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1316 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1317 * sure we don't print error messages unnecessarily if different parts of 1318 * kernel try to initialize the OPP table. 1319 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1320 * should be considered an error by the callers of _opp_add(). 1321 */ 1322 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1323 struct opp_table *opp_table, bool rate_not_available) 1324 { 1325 struct list_head *head; 1326 int ret; 1327 1328 mutex_lock(&opp_table->lock); 1329 head = &opp_table->opp_list; 1330 1331 if (likely(!rate_not_available)) { 1332 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 1333 if (ret) { 1334 mutex_unlock(&opp_table->lock); 1335 return ret; 1336 } 1337 } 1338 1339 list_add(&new_opp->node, head); 1340 mutex_unlock(&opp_table->lock); 1341 1342 new_opp->opp_table = opp_table; 1343 kref_init(&new_opp->kref); 1344 1345 opp_debug_create_one(new_opp, opp_table); 1346 1347 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 1348 new_opp->available = false; 1349 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 1350 __func__, new_opp->rate); 1351 } 1352 1353 return 0; 1354 } 1355 1356 /** 1357 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 1358 * @opp_table: OPP table 1359 * @dev: device for which we do this operation 1360 * @freq: Frequency in Hz for this OPP 1361 * @u_volt: Voltage in uVolts for this OPP 1362 * @dynamic: Dynamically added OPPs. 1363 * 1364 * This function adds an opp definition to the opp table and returns status. 1365 * The opp is made available by default and it can be controlled using 1366 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 1367 * 1368 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 1369 * and freed by dev_pm_opp_of_remove_table. 1370 * 1371 * Return: 1372 * 0 On success OR 1373 * Duplicate OPPs (both freq and volt are same) and opp->available 1374 * -EEXIST Freq are same and volt are different OR 1375 * Duplicate OPPs (both freq and volt are same) and !opp->available 1376 * -ENOMEM Memory allocation failure 1377 */ 1378 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 1379 unsigned long freq, long u_volt, bool dynamic) 1380 { 1381 struct dev_pm_opp *new_opp; 1382 unsigned long tol; 1383 int ret; 1384 1385 new_opp = _opp_allocate(opp_table); 1386 if (!new_opp) 1387 return -ENOMEM; 1388 1389 /* populate the opp table */ 1390 new_opp->rate = freq; 1391 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 1392 new_opp->supplies[0].u_volt = u_volt; 1393 new_opp->supplies[0].u_volt_min = u_volt - tol; 1394 new_opp->supplies[0].u_volt_max = u_volt + tol; 1395 new_opp->available = true; 1396 new_opp->dynamic = dynamic; 1397 1398 ret = _opp_add(dev, new_opp, opp_table, false); 1399 if (ret) { 1400 /* Don't return error for duplicate OPPs */ 1401 if (ret == -EBUSY) 1402 ret = 0; 1403 goto free_opp; 1404 } 1405 1406 /* 1407 * Notify the changes in the availability of the operable 1408 * frequency/voltage list. 1409 */ 1410 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 1411 return 0; 1412 1413 free_opp: 1414 _opp_free(new_opp); 1415 1416 return ret; 1417 } 1418 1419 /** 1420 * dev_pm_opp_set_supported_hw() - Set supported platforms 1421 * @dev: Device for which supported-hw has to be set. 1422 * @versions: Array of hierarchy of versions to match. 1423 * @count: Number of elements in the array. 1424 * 1425 * This is required only for the V2 bindings, and it enables a platform to 1426 * specify the hierarchy of versions it supports. OPP layer will then enable 1427 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 1428 * property. 1429 */ 1430 struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev, 1431 const u32 *versions, unsigned int count) 1432 { 1433 struct opp_table *opp_table; 1434 1435 opp_table = dev_pm_opp_get_opp_table(dev); 1436 if (!opp_table) 1437 return ERR_PTR(-ENOMEM); 1438 1439 /* Make sure there are no concurrent readers while updating opp_table */ 1440 WARN_ON(!list_empty(&opp_table->opp_list)); 1441 1442 /* Another CPU that shares the OPP table has set the property ? */ 1443 if (opp_table->supported_hw) 1444 return opp_table; 1445 1446 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 1447 GFP_KERNEL); 1448 if (!opp_table->supported_hw) { 1449 dev_pm_opp_put_opp_table(opp_table); 1450 return ERR_PTR(-ENOMEM); 1451 } 1452 1453 opp_table->supported_hw_count = count; 1454 1455 return opp_table; 1456 } 1457 EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw); 1458 1459 /** 1460 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw 1461 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw(). 1462 * 1463 * This is required only for the V2 bindings, and is called for a matching 1464 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure 1465 * will not be freed. 1466 */ 1467 void dev_pm_opp_put_supported_hw(struct opp_table *opp_table) 1468 { 1469 /* Make sure there are no concurrent readers while updating opp_table */ 1470 WARN_ON(!list_empty(&opp_table->opp_list)); 1471 1472 kfree(opp_table->supported_hw); 1473 opp_table->supported_hw = NULL; 1474 opp_table->supported_hw_count = 0; 1475 1476 dev_pm_opp_put_opp_table(opp_table); 1477 } 1478 EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw); 1479 1480 /** 1481 * dev_pm_opp_set_prop_name() - Set prop-extn name 1482 * @dev: Device for which the prop-name has to be set. 1483 * @name: name to postfix to properties. 1484 * 1485 * This is required only for the V2 bindings, and it enables a platform to 1486 * specify the extn to be used for certain property names. The properties to 1487 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 1488 * should postfix the property name with -<name> while looking for them. 1489 */ 1490 struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name) 1491 { 1492 struct opp_table *opp_table; 1493 1494 opp_table = dev_pm_opp_get_opp_table(dev); 1495 if (!opp_table) 1496 return ERR_PTR(-ENOMEM); 1497 1498 /* Make sure there are no concurrent readers while updating opp_table */ 1499 WARN_ON(!list_empty(&opp_table->opp_list)); 1500 1501 /* Another CPU that shares the OPP table has set the property ? */ 1502 if (opp_table->prop_name) 1503 return opp_table; 1504 1505 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 1506 if (!opp_table->prop_name) { 1507 dev_pm_opp_put_opp_table(opp_table); 1508 return ERR_PTR(-ENOMEM); 1509 } 1510 1511 return opp_table; 1512 } 1513 EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name); 1514 1515 /** 1516 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name 1517 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name(). 1518 * 1519 * This is required only for the V2 bindings, and is called for a matching 1520 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure 1521 * will not be freed. 1522 */ 1523 void dev_pm_opp_put_prop_name(struct opp_table *opp_table) 1524 { 1525 /* Make sure there are no concurrent readers while updating opp_table */ 1526 WARN_ON(!list_empty(&opp_table->opp_list)); 1527 1528 kfree(opp_table->prop_name); 1529 opp_table->prop_name = NULL; 1530 1531 dev_pm_opp_put_opp_table(opp_table); 1532 } 1533 EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name); 1534 1535 static int _allocate_set_opp_data(struct opp_table *opp_table) 1536 { 1537 struct dev_pm_set_opp_data *data; 1538 int len, count = opp_table->regulator_count; 1539 1540 if (WARN_ON(!opp_table->regulators)) 1541 return -EINVAL; 1542 1543 /* space for set_opp_data */ 1544 len = sizeof(*data); 1545 1546 /* space for old_opp.supplies and new_opp.supplies */ 1547 len += 2 * sizeof(struct dev_pm_opp_supply) * count; 1548 1549 data = kzalloc(len, GFP_KERNEL); 1550 if (!data) 1551 return -ENOMEM; 1552 1553 data->old_opp.supplies = (void *)(data + 1); 1554 data->new_opp.supplies = data->old_opp.supplies + count; 1555 1556 opp_table->set_opp_data = data; 1557 1558 return 0; 1559 } 1560 1561 static void _free_set_opp_data(struct opp_table *opp_table) 1562 { 1563 kfree(opp_table->set_opp_data); 1564 opp_table->set_opp_data = NULL; 1565 } 1566 1567 /** 1568 * dev_pm_opp_set_regulators() - Set regulator names for the device 1569 * @dev: Device for which regulator name is being set. 1570 * @names: Array of pointers to the names of the regulator. 1571 * @count: Number of regulators. 1572 * 1573 * In order to support OPP switching, OPP layer needs to know the name of the 1574 * device's regulators, as the core would be required to switch voltages as 1575 * well. 1576 * 1577 * This must be called before any OPPs are initialized for the device. 1578 */ 1579 struct opp_table *dev_pm_opp_set_regulators(struct device *dev, 1580 const char * const names[], 1581 unsigned int count) 1582 { 1583 struct opp_table *opp_table; 1584 struct regulator *reg; 1585 int ret, i; 1586 1587 opp_table = dev_pm_opp_get_opp_table(dev); 1588 if (!opp_table) 1589 return ERR_PTR(-ENOMEM); 1590 1591 /* This should be called before OPPs are initialized */ 1592 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1593 ret = -EBUSY; 1594 goto err; 1595 } 1596 1597 /* Another CPU that shares the OPP table has set the regulators ? */ 1598 if (opp_table->regulators) 1599 return opp_table; 1600 1601 opp_table->regulators = kmalloc_array(count, 1602 sizeof(*opp_table->regulators), 1603 GFP_KERNEL); 1604 if (!opp_table->regulators) { 1605 ret = -ENOMEM; 1606 goto err; 1607 } 1608 1609 for (i = 0; i < count; i++) { 1610 reg = regulator_get_optional(dev, names[i]); 1611 if (IS_ERR(reg)) { 1612 ret = PTR_ERR(reg); 1613 if (ret != -EPROBE_DEFER) 1614 dev_err(dev, "%s: no regulator (%s) found: %d\n", 1615 __func__, names[i], ret); 1616 goto free_regulators; 1617 } 1618 1619 opp_table->regulators[i] = reg; 1620 } 1621 1622 opp_table->regulator_count = count; 1623 1624 /* Allocate block only once to pass to set_opp() routines */ 1625 ret = _allocate_set_opp_data(opp_table); 1626 if (ret) 1627 goto free_regulators; 1628 1629 return opp_table; 1630 1631 free_regulators: 1632 while (i != 0) 1633 regulator_put(opp_table->regulators[--i]); 1634 1635 kfree(opp_table->regulators); 1636 opp_table->regulators = NULL; 1637 opp_table->regulator_count = -1; 1638 err: 1639 dev_pm_opp_put_opp_table(opp_table); 1640 1641 return ERR_PTR(ret); 1642 } 1643 EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators); 1644 1645 /** 1646 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator 1647 * @opp_table: OPP table returned from dev_pm_opp_set_regulators(). 1648 */ 1649 void dev_pm_opp_put_regulators(struct opp_table *opp_table) 1650 { 1651 int i; 1652 1653 if (!opp_table->regulators) 1654 goto put_opp_table; 1655 1656 /* Make sure there are no concurrent readers while updating opp_table */ 1657 WARN_ON(!list_empty(&opp_table->opp_list)); 1658 1659 for (i = opp_table->regulator_count - 1; i >= 0; i--) 1660 regulator_put(opp_table->regulators[i]); 1661 1662 _free_set_opp_data(opp_table); 1663 1664 kfree(opp_table->regulators); 1665 opp_table->regulators = NULL; 1666 opp_table->regulator_count = -1; 1667 1668 put_opp_table: 1669 dev_pm_opp_put_opp_table(opp_table); 1670 } 1671 EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators); 1672 1673 /** 1674 * dev_pm_opp_set_clkname() - Set clk name for the device 1675 * @dev: Device for which clk name is being set. 1676 * @name: Clk name. 1677 * 1678 * In order to support OPP switching, OPP layer needs to get pointer to the 1679 * clock for the device. Simple cases work fine without using this routine (i.e. 1680 * by passing connection-id as NULL), but for a device with multiple clocks 1681 * available, the OPP core needs to know the exact name of the clk to use. 1682 * 1683 * This must be called before any OPPs are initialized for the device. 1684 */ 1685 struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name) 1686 { 1687 struct opp_table *opp_table; 1688 int ret; 1689 1690 opp_table = dev_pm_opp_get_opp_table(dev); 1691 if (!opp_table) 1692 return ERR_PTR(-ENOMEM); 1693 1694 /* This should be called before OPPs are initialized */ 1695 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1696 ret = -EBUSY; 1697 goto err; 1698 } 1699 1700 /* Already have default clk set, free it */ 1701 if (!IS_ERR(opp_table->clk)) 1702 clk_put(opp_table->clk); 1703 1704 /* Find clk for the device */ 1705 opp_table->clk = clk_get(dev, name); 1706 if (IS_ERR(opp_table->clk)) { 1707 ret = PTR_ERR(opp_table->clk); 1708 if (ret != -EPROBE_DEFER) { 1709 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__, 1710 ret); 1711 } 1712 goto err; 1713 } 1714 1715 return opp_table; 1716 1717 err: 1718 dev_pm_opp_put_opp_table(opp_table); 1719 1720 return ERR_PTR(ret); 1721 } 1722 EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname); 1723 1724 /** 1725 * dev_pm_opp_put_clkname() - Releases resources blocked for clk. 1726 * @opp_table: OPP table returned from dev_pm_opp_set_clkname(). 1727 */ 1728 void dev_pm_opp_put_clkname(struct opp_table *opp_table) 1729 { 1730 /* Make sure there are no concurrent readers while updating opp_table */ 1731 WARN_ON(!list_empty(&opp_table->opp_list)); 1732 1733 clk_put(opp_table->clk); 1734 opp_table->clk = ERR_PTR(-EINVAL); 1735 1736 dev_pm_opp_put_opp_table(opp_table); 1737 } 1738 EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname); 1739 1740 /** 1741 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper 1742 * @dev: Device for which the helper is getting registered. 1743 * @set_opp: Custom set OPP helper. 1744 * 1745 * This is useful to support complex platforms (like platforms with multiple 1746 * regulators per device), instead of the generic OPP set rate helper. 1747 * 1748 * This must be called before any OPPs are initialized for the device. 1749 */ 1750 struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev, 1751 int (*set_opp)(struct dev_pm_set_opp_data *data)) 1752 { 1753 struct opp_table *opp_table; 1754 1755 if (!set_opp) 1756 return ERR_PTR(-EINVAL); 1757 1758 opp_table = dev_pm_opp_get_opp_table(dev); 1759 if (!opp_table) 1760 return ERR_PTR(-ENOMEM); 1761 1762 /* This should be called before OPPs are initialized */ 1763 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 1764 dev_pm_opp_put_opp_table(opp_table); 1765 return ERR_PTR(-EBUSY); 1766 } 1767 1768 /* Another CPU that shares the OPP table has set the helper ? */ 1769 if (!opp_table->set_opp) 1770 opp_table->set_opp = set_opp; 1771 1772 return opp_table; 1773 } 1774 EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper); 1775 1776 /** 1777 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for 1778 * set_opp helper 1779 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper(). 1780 * 1781 * Release resources blocked for platform specific set_opp helper. 1782 */ 1783 void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table) 1784 { 1785 /* Make sure there are no concurrent readers while updating opp_table */ 1786 WARN_ON(!list_empty(&opp_table->opp_list)); 1787 1788 opp_table->set_opp = NULL; 1789 dev_pm_opp_put_opp_table(opp_table); 1790 } 1791 EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper); 1792 1793 static void _opp_detach_genpd(struct opp_table *opp_table) 1794 { 1795 int index; 1796 1797 for (index = 0; index < opp_table->required_opp_count; index++) { 1798 if (!opp_table->genpd_virt_devs[index]) 1799 continue; 1800 1801 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false); 1802 opp_table->genpd_virt_devs[index] = NULL; 1803 } 1804 1805 kfree(opp_table->genpd_virt_devs); 1806 opp_table->genpd_virt_devs = NULL; 1807 } 1808 1809 /** 1810 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer 1811 * @dev: Consumer device for which the genpd is getting attached. 1812 * @names: Null terminated array of pointers containing names of genpd to attach. 1813 * @virt_devs: Pointer to return the array of virtual devices. 1814 * 1815 * Multiple generic power domains for a device are supported with the help of 1816 * virtual genpd devices, which are created for each consumer device - genpd 1817 * pair. These are the device structures which are attached to the power domain 1818 * and are required by the OPP core to set the performance state of the genpd. 1819 * The same API also works for the case where single genpd is available and so 1820 * we don't need to support that separately. 1821 * 1822 * This helper will normally be called by the consumer driver of the device 1823 * "dev", as only that has details of the genpd names. 1824 * 1825 * This helper needs to be called once with a list of all genpd to attach. 1826 * Otherwise the original device structure will be used instead by the OPP core. 1827 * 1828 * The order of entries in the names array must match the order in which 1829 * "required-opps" are added in DT. 1830 */ 1831 struct opp_table *dev_pm_opp_attach_genpd(struct device *dev, 1832 const char **names, struct device ***virt_devs) 1833 { 1834 struct opp_table *opp_table; 1835 struct device *virt_dev; 1836 int index = 0, ret = -EINVAL; 1837 const char **name = names; 1838 1839 opp_table = dev_pm_opp_get_opp_table(dev); 1840 if (!opp_table) 1841 return ERR_PTR(-ENOMEM); 1842 1843 /* 1844 * If the genpd's OPP table isn't already initialized, parsing of the 1845 * required-opps fail for dev. We should retry this after genpd's OPP 1846 * table is added. 1847 */ 1848 if (!opp_table->required_opp_count) { 1849 ret = -EPROBE_DEFER; 1850 goto put_table; 1851 } 1852 1853 mutex_lock(&opp_table->genpd_virt_dev_lock); 1854 1855 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count, 1856 sizeof(*opp_table->genpd_virt_devs), 1857 GFP_KERNEL); 1858 if (!opp_table->genpd_virt_devs) 1859 goto unlock; 1860 1861 while (*name) { 1862 if (index >= opp_table->required_opp_count) { 1863 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 1864 *name, opp_table->required_opp_count, index); 1865 goto err; 1866 } 1867 1868 if (opp_table->genpd_virt_devs[index]) { 1869 dev_err(dev, "Genpd virtual device already set %s\n", 1870 *name); 1871 goto err; 1872 } 1873 1874 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 1875 if (IS_ERR(virt_dev)) { 1876 ret = PTR_ERR(virt_dev); 1877 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 1878 goto err; 1879 } 1880 1881 opp_table->genpd_virt_devs[index] = virt_dev; 1882 index++; 1883 name++; 1884 } 1885 1886 if (virt_devs) 1887 *virt_devs = opp_table->genpd_virt_devs; 1888 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1889 1890 return opp_table; 1891 1892 err: 1893 _opp_detach_genpd(opp_table); 1894 unlock: 1895 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1896 1897 put_table: 1898 dev_pm_opp_put_opp_table(opp_table); 1899 1900 return ERR_PTR(ret); 1901 } 1902 EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd); 1903 1904 /** 1905 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device. 1906 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd(). 1907 * 1908 * This detaches the genpd(s), resets the virtual device pointers, and puts the 1909 * OPP table. 1910 */ 1911 void dev_pm_opp_detach_genpd(struct opp_table *opp_table) 1912 { 1913 /* 1914 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting 1915 * used in parallel. 1916 */ 1917 mutex_lock(&opp_table->genpd_virt_dev_lock); 1918 _opp_detach_genpd(opp_table); 1919 mutex_unlock(&opp_table->genpd_virt_dev_lock); 1920 1921 dev_pm_opp_put_opp_table(opp_table); 1922 } 1923 EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd); 1924 1925 /** 1926 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 1927 * @src_table: OPP table which has dst_table as one of its required OPP table. 1928 * @dst_table: Required OPP table of the src_table. 1929 * @pstate: Current performance state of the src_table. 1930 * 1931 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 1932 * "required-opps" property of the OPP (present in @src_table) which has 1933 * performance state set to @pstate. 1934 * 1935 * Return: Zero or positive performance state on success, otherwise negative 1936 * value on errors. 1937 */ 1938 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 1939 struct opp_table *dst_table, 1940 unsigned int pstate) 1941 { 1942 struct dev_pm_opp *opp; 1943 int dest_pstate = -EINVAL; 1944 int i; 1945 1946 if (!pstate) 1947 return 0; 1948 1949 /* 1950 * Normally the src_table will have the "required_opps" property set to 1951 * point to one of the OPPs in the dst_table, but in some cases the 1952 * genpd and its master have one to one mapping of performance states 1953 * and so none of them have the "required-opps" property set. Return the 1954 * pstate of the src_table as it is in such cases. 1955 */ 1956 if (!src_table->required_opp_count) 1957 return pstate; 1958 1959 for (i = 0; i < src_table->required_opp_count; i++) { 1960 if (src_table->required_opp_tables[i]->np == dst_table->np) 1961 break; 1962 } 1963 1964 if (unlikely(i == src_table->required_opp_count)) { 1965 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 1966 __func__, src_table, dst_table); 1967 return -EINVAL; 1968 } 1969 1970 mutex_lock(&src_table->lock); 1971 1972 list_for_each_entry(opp, &src_table->opp_list, node) { 1973 if (opp->pstate == pstate) { 1974 dest_pstate = opp->required_opps[i]->pstate; 1975 goto unlock; 1976 } 1977 } 1978 1979 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 1980 dst_table); 1981 1982 unlock: 1983 mutex_unlock(&src_table->lock); 1984 1985 return dest_pstate; 1986 } 1987 1988 /** 1989 * dev_pm_opp_add() - Add an OPP table from a table definitions 1990 * @dev: device for which we do this operation 1991 * @freq: Frequency in Hz for this OPP 1992 * @u_volt: Voltage in uVolts for this OPP 1993 * 1994 * This function adds an opp definition to the opp table and returns status. 1995 * The opp is made available by default and it can be controlled using 1996 * dev_pm_opp_enable/disable functions. 1997 * 1998 * Return: 1999 * 0 On success OR 2000 * Duplicate OPPs (both freq and volt are same) and opp->available 2001 * -EEXIST Freq are same and volt are different OR 2002 * Duplicate OPPs (both freq and volt are same) and !opp->available 2003 * -ENOMEM Memory allocation failure 2004 */ 2005 int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt) 2006 { 2007 struct opp_table *opp_table; 2008 int ret; 2009 2010 opp_table = dev_pm_opp_get_opp_table(dev); 2011 if (!opp_table) 2012 return -ENOMEM; 2013 2014 /* Fix regulator count for dynamic OPPs */ 2015 opp_table->regulator_count = 1; 2016 2017 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true); 2018 if (ret) 2019 dev_pm_opp_put_opp_table(opp_table); 2020 2021 return ret; 2022 } 2023 EXPORT_SYMBOL_GPL(dev_pm_opp_add); 2024 2025 /** 2026 * _opp_set_availability() - helper to set the availability of an opp 2027 * @dev: device for which we do this operation 2028 * @freq: OPP frequency to modify availability 2029 * @availability_req: availability status requested for this opp 2030 * 2031 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2032 * which is isolated here. 2033 * 2034 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2035 * copy operation, returns 0 if no modification was done OR modification was 2036 * successful. 2037 */ 2038 static int _opp_set_availability(struct device *dev, unsigned long freq, 2039 bool availability_req) 2040 { 2041 struct opp_table *opp_table; 2042 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2043 int r = 0; 2044 2045 /* Find the opp_table */ 2046 opp_table = _find_opp_table(dev); 2047 if (IS_ERR(opp_table)) { 2048 r = PTR_ERR(opp_table); 2049 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2050 return r; 2051 } 2052 2053 mutex_lock(&opp_table->lock); 2054 2055 /* Do we have the frequency? */ 2056 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2057 if (tmp_opp->rate == freq) { 2058 opp = tmp_opp; 2059 break; 2060 } 2061 } 2062 2063 if (IS_ERR(opp)) { 2064 r = PTR_ERR(opp); 2065 goto unlock; 2066 } 2067 2068 /* Is update really needed? */ 2069 if (opp->available == availability_req) 2070 goto unlock; 2071 2072 opp->available = availability_req; 2073 2074 dev_pm_opp_get(opp); 2075 mutex_unlock(&opp_table->lock); 2076 2077 /* Notify the change of the OPP availability */ 2078 if (availability_req) 2079 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2080 opp); 2081 else 2082 blocking_notifier_call_chain(&opp_table->head, 2083 OPP_EVENT_DISABLE, opp); 2084 2085 dev_pm_opp_put(opp); 2086 goto put_table; 2087 2088 unlock: 2089 mutex_unlock(&opp_table->lock); 2090 put_table: 2091 dev_pm_opp_put_opp_table(opp_table); 2092 return r; 2093 } 2094 2095 /** 2096 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2097 * @dev: device for which we do this operation 2098 * @freq: OPP frequency to adjust voltage of 2099 * @u_volt: new OPP target voltage 2100 * @u_volt_min: new OPP min voltage 2101 * @u_volt_max: new OPP max voltage 2102 * 2103 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2104 * copy operation, returns 0 if no modifcation was done OR modification was 2105 * successful. 2106 */ 2107 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2108 unsigned long u_volt, unsigned long u_volt_min, 2109 unsigned long u_volt_max) 2110 2111 { 2112 struct opp_table *opp_table; 2113 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2114 int r = 0; 2115 2116 /* Find the opp_table */ 2117 opp_table = _find_opp_table(dev); 2118 if (IS_ERR(opp_table)) { 2119 r = PTR_ERR(opp_table); 2120 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2121 return r; 2122 } 2123 2124 mutex_lock(&opp_table->lock); 2125 2126 /* Do we have the frequency? */ 2127 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2128 if (tmp_opp->rate == freq) { 2129 opp = tmp_opp; 2130 break; 2131 } 2132 } 2133 2134 if (IS_ERR(opp)) { 2135 r = PTR_ERR(opp); 2136 goto adjust_unlock; 2137 } 2138 2139 /* Is update really needed? */ 2140 if (opp->supplies->u_volt == u_volt) 2141 goto adjust_unlock; 2142 2143 opp->supplies->u_volt = u_volt; 2144 opp->supplies->u_volt_min = u_volt_min; 2145 opp->supplies->u_volt_max = u_volt_max; 2146 2147 dev_pm_opp_get(opp); 2148 mutex_unlock(&opp_table->lock); 2149 2150 /* Notify the voltage change of the OPP */ 2151 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2152 opp); 2153 2154 dev_pm_opp_put(opp); 2155 goto adjust_put_table; 2156 2157 adjust_unlock: 2158 mutex_unlock(&opp_table->lock); 2159 adjust_put_table: 2160 dev_pm_opp_put_opp_table(opp_table); 2161 return r; 2162 } 2163 2164 /** 2165 * dev_pm_opp_enable() - Enable a specific OPP 2166 * @dev: device for which we do this operation 2167 * @freq: OPP frequency to enable 2168 * 2169 * Enables a provided opp. If the operation is valid, this returns 0, else the 2170 * corresponding error value. It is meant to be used for users an OPP available 2171 * after being temporarily made unavailable with dev_pm_opp_disable. 2172 * 2173 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2174 * copy operation, returns 0 if no modification was done OR modification was 2175 * successful. 2176 */ 2177 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 2178 { 2179 return _opp_set_availability(dev, freq, true); 2180 } 2181 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 2182 2183 /** 2184 * dev_pm_opp_disable() - Disable a specific OPP 2185 * @dev: device for which we do this operation 2186 * @freq: OPP frequency to disable 2187 * 2188 * Disables a provided opp. If the operation is valid, this returns 2189 * 0, else the corresponding error value. It is meant to be a temporary 2190 * control by users to make this OPP not available until the circumstances are 2191 * right to make it available again (with a call to dev_pm_opp_enable). 2192 * 2193 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2194 * copy operation, returns 0 if no modification was done OR modification was 2195 * successful. 2196 */ 2197 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 2198 { 2199 return _opp_set_availability(dev, freq, false); 2200 } 2201 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 2202 2203 /** 2204 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 2205 * @dev: Device for which notifier needs to be registered 2206 * @nb: Notifier block to be registered 2207 * 2208 * Return: 0 on success or a negative error value. 2209 */ 2210 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 2211 { 2212 struct opp_table *opp_table; 2213 int ret; 2214 2215 opp_table = _find_opp_table(dev); 2216 if (IS_ERR(opp_table)) 2217 return PTR_ERR(opp_table); 2218 2219 ret = blocking_notifier_chain_register(&opp_table->head, nb); 2220 2221 dev_pm_opp_put_opp_table(opp_table); 2222 2223 return ret; 2224 } 2225 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 2226 2227 /** 2228 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 2229 * @dev: Device for which notifier needs to be unregistered 2230 * @nb: Notifier block to be unregistered 2231 * 2232 * Return: 0 on success or a negative error value. 2233 */ 2234 int dev_pm_opp_unregister_notifier(struct device *dev, 2235 struct notifier_block *nb) 2236 { 2237 struct opp_table *opp_table; 2238 int ret; 2239 2240 opp_table = _find_opp_table(dev); 2241 if (IS_ERR(opp_table)) 2242 return PTR_ERR(opp_table); 2243 2244 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 2245 2246 dev_pm_opp_put_opp_table(opp_table); 2247 2248 return ret; 2249 } 2250 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 2251 2252 void _dev_pm_opp_find_and_remove_table(struct device *dev) 2253 { 2254 struct opp_table *opp_table; 2255 2256 /* Check for existing table for 'dev' */ 2257 opp_table = _find_opp_table(dev); 2258 if (IS_ERR(opp_table)) { 2259 int error = PTR_ERR(opp_table); 2260 2261 if (error != -ENODEV) 2262 WARN(1, "%s: opp_table: %d\n", 2263 IS_ERR_OR_NULL(dev) ? 2264 "Invalid device" : dev_name(dev), 2265 error); 2266 return; 2267 } 2268 2269 _opp_remove_all_static(opp_table); 2270 2271 /* Drop reference taken by _find_opp_table() */ 2272 dev_pm_opp_put_opp_table(opp_table); 2273 2274 /* Drop reference taken while the OPP table was added */ 2275 dev_pm_opp_put_opp_table(opp_table); 2276 } 2277 2278 /** 2279 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 2280 * @dev: device pointer used to lookup OPP table. 2281 * 2282 * Free both OPPs created using static entries present in DT and the 2283 * dynamically added entries. 2284 */ 2285 void dev_pm_opp_remove_table(struct device *dev) 2286 { 2287 _dev_pm_opp_find_and_remove_table(dev); 2288 } 2289 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 2290