1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* Lock to allow exclusive modification to the device and opp lists */ 33 DEFINE_MUTEX(opp_table_lock); 34 /* Flag indicating that opp_tables list is being updated at the moment */ 35 static bool opp_tables_busy; 36 37 /* OPP ID allocator */ 38 static DEFINE_XARRAY_ALLOC1(opp_configs); 39 40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 41 { 42 struct opp_device *opp_dev; 43 bool found = false; 44 45 mutex_lock(&opp_table->lock); 46 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 47 if (opp_dev->dev == dev) { 48 found = true; 49 break; 50 } 51 52 mutex_unlock(&opp_table->lock); 53 return found; 54 } 55 56 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 57 { 58 struct opp_table *opp_table; 59 60 list_for_each_entry(opp_table, &opp_tables, node) { 61 if (_find_opp_dev(dev, opp_table)) { 62 _get_opp_table_kref(opp_table); 63 return opp_table; 64 } 65 } 66 67 return ERR_PTR(-ENODEV); 68 } 69 70 /** 71 * _find_opp_table() - find opp_table struct using device pointer 72 * @dev: device pointer used to lookup OPP table 73 * 74 * Search OPP table for one containing matching device. 75 * 76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 77 * -EINVAL based on type of error. 78 * 79 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 80 */ 81 struct opp_table *_find_opp_table(struct device *dev) 82 { 83 struct opp_table *opp_table; 84 85 if (IS_ERR_OR_NULL(dev)) { 86 pr_err("%s: Invalid parameters\n", __func__); 87 return ERR_PTR(-EINVAL); 88 } 89 90 mutex_lock(&opp_table_lock); 91 opp_table = _find_opp_table_unlocked(dev); 92 mutex_unlock(&opp_table_lock); 93 94 return opp_table; 95 } 96 97 /* 98 * Returns true if multiple clocks aren't there, else returns false with WARN. 99 * 100 * We don't force clk_count == 1 here as there are users who don't have a clock 101 * representation in the OPP table and manage the clock configuration themselves 102 * in an platform specific way. 103 */ 104 static bool assert_single_clk(struct opp_table *opp_table) 105 { 106 return !WARN_ON(opp_table->clk_count > 1); 107 } 108 109 /** 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 111 * @opp: opp for which voltage has to be returned for 112 * 113 * Return: voltage in micro volt corresponding to the opp, else 114 * return 0 115 * 116 * This is useful only for devices with single power supply. 117 */ 118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 119 { 120 if (IS_ERR_OR_NULL(opp)) { 121 pr_err("%s: Invalid parameters\n", __func__); 122 return 0; 123 } 124 125 return opp->supplies[0].u_volt; 126 } 127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 128 129 /** 130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 131 * @opp: opp for which voltage has to be returned for 132 * @supplies: Placeholder for copying the supply information. 133 * 134 * Return: negative error number on failure, 0 otherwise on success after 135 * setting @supplies. 136 * 137 * This can be used for devices with any number of power supplies. The caller 138 * must ensure the @supplies array must contain space for each regulator. 139 */ 140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 141 struct dev_pm_opp_supply *supplies) 142 { 143 if (IS_ERR_OR_NULL(opp) || !supplies) { 144 pr_err("%s: Invalid parameters\n", __func__); 145 return -EINVAL; 146 } 147 148 memcpy(supplies, opp->supplies, 149 sizeof(*supplies) * opp->opp_table->regulator_count); 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 153 154 /** 155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 156 * @opp: opp for which power has to be returned for 157 * 158 * Return: power in micro watt corresponding to the opp, else 159 * return 0 160 * 161 * This is useful only for devices with single power supply. 162 */ 163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 164 { 165 unsigned long opp_power = 0; 166 int i; 167 168 if (IS_ERR_OR_NULL(opp)) { 169 pr_err("%s: Invalid parameters\n", __func__); 170 return 0; 171 } 172 for (i = 0; i < opp->opp_table->regulator_count; i++) 173 opp_power += opp->supplies[i].u_watt; 174 175 return opp_power; 176 } 177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 178 179 /** 180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an 181 * available opp with specified index 182 * @opp: opp for which frequency has to be returned for 183 * @index: index of the frequency within the required opp 184 * 185 * Return: frequency in hertz corresponding to the opp with specified index, 186 * else return 0 187 */ 188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index) 189 { 190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) { 191 pr_err("%s: Invalid parameters\n", __func__); 192 return 0; 193 } 194 195 return opp->rates[index]; 196 } 197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed); 198 199 /** 200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 201 * @opp: opp for which level value has to be returned for 202 * 203 * Return: level read from device tree corresponding to the opp, else 204 * return U32_MAX. 205 */ 206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 207 { 208 if (IS_ERR_OR_NULL(opp) || !opp->available) { 209 pr_err("%s: Invalid parameters\n", __func__); 210 return 0; 211 } 212 213 return opp->level; 214 } 215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 216 217 /** 218 * dev_pm_opp_get_required_pstate() - Gets the required performance state 219 * corresponding to an available opp 220 * @opp: opp for which performance state has to be returned for 221 * @index: index of the required opp 222 * 223 * Return: performance state read from device tree corresponding to the 224 * required opp, else return U32_MAX. 225 */ 226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 227 unsigned int index) 228 { 229 if (IS_ERR_OR_NULL(opp) || !opp->available || 230 index >= opp->opp_table->required_opp_count) { 231 pr_err("%s: Invalid parameters\n", __func__); 232 return 0; 233 } 234 235 /* required-opps not fully initialized yet */ 236 if (lazy_linking_pending(opp->opp_table)) 237 return 0; 238 239 /* The required OPP table must belong to a genpd */ 240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) { 241 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 242 return 0; 243 } 244 245 return opp->required_opps[index]->level; 246 } 247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 248 249 /** 250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 251 * @opp: opp for which turbo mode is being verified 252 * 253 * Turbo OPPs are not for normal use, and can be enabled (under certain 254 * conditions) for short duration of times to finish high throughput work 255 * quickly. Running on them for longer times may overheat the chip. 256 * 257 * Return: true if opp is turbo opp, else false. 258 */ 259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 260 { 261 if (IS_ERR_OR_NULL(opp) || !opp->available) { 262 pr_err("%s: Invalid parameters\n", __func__); 263 return false; 264 } 265 266 return opp->turbo; 267 } 268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 269 270 /** 271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 272 * @dev: device for which we do this operation 273 * 274 * Return: This function returns the max clock latency in nanoseconds. 275 */ 276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 277 { 278 struct opp_table *opp_table; 279 unsigned long clock_latency_ns; 280 281 opp_table = _find_opp_table(dev); 282 if (IS_ERR(opp_table)) 283 return 0; 284 285 clock_latency_ns = opp_table->clock_latency_ns_max; 286 287 dev_pm_opp_put_opp_table(opp_table); 288 289 return clock_latency_ns; 290 } 291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 292 293 /** 294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 295 * @dev: device for which we do this operation 296 * 297 * Return: This function returns the max voltage latency in nanoseconds. 298 */ 299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 300 { 301 struct opp_table *opp_table; 302 struct dev_pm_opp *opp; 303 struct regulator *reg; 304 unsigned long latency_ns = 0; 305 int ret, i, count; 306 struct { 307 unsigned long min; 308 unsigned long max; 309 } *uV; 310 311 opp_table = _find_opp_table(dev); 312 if (IS_ERR(opp_table)) 313 return 0; 314 315 /* Regulator may not be required for the device */ 316 if (!opp_table->regulators) 317 goto put_opp_table; 318 319 count = opp_table->regulator_count; 320 321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 322 if (!uV) 323 goto put_opp_table; 324 325 mutex_lock(&opp_table->lock); 326 327 for (i = 0; i < count; i++) { 328 uV[i].min = ~0; 329 uV[i].max = 0; 330 331 list_for_each_entry(opp, &opp_table->opp_list, node) { 332 if (!opp->available) 333 continue; 334 335 if (opp->supplies[i].u_volt_min < uV[i].min) 336 uV[i].min = opp->supplies[i].u_volt_min; 337 if (opp->supplies[i].u_volt_max > uV[i].max) 338 uV[i].max = opp->supplies[i].u_volt_max; 339 } 340 } 341 342 mutex_unlock(&opp_table->lock); 343 344 /* 345 * The caller needs to ensure that opp_table (and hence the regulator) 346 * isn't freed, while we are executing this routine. 347 */ 348 for (i = 0; i < count; i++) { 349 reg = opp_table->regulators[i]; 350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 351 if (ret > 0) 352 latency_ns += ret * 1000; 353 } 354 355 kfree(uV); 356 put_opp_table: 357 dev_pm_opp_put_opp_table(opp_table); 358 359 return latency_ns; 360 } 361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 362 363 /** 364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 365 * nanoseconds 366 * @dev: device for which we do this operation 367 * 368 * Return: This function returns the max transition latency, in nanoseconds, to 369 * switch from one OPP to other. 370 */ 371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 372 { 373 return dev_pm_opp_get_max_volt_latency(dev) + 374 dev_pm_opp_get_max_clock_latency(dev); 375 } 376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 377 378 /** 379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 380 * @dev: device for which we do this operation 381 * 382 * Return: This function returns the frequency of the OPP marked as suspend_opp 383 * if one is available, else returns 0; 384 */ 385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 386 { 387 struct opp_table *opp_table; 388 unsigned long freq = 0; 389 390 opp_table = _find_opp_table(dev); 391 if (IS_ERR(opp_table)) 392 return 0; 393 394 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 396 397 dev_pm_opp_put_opp_table(opp_table); 398 399 return freq; 400 } 401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 402 403 int _get_opp_count(struct opp_table *opp_table) 404 { 405 struct dev_pm_opp *opp; 406 int count = 0; 407 408 mutex_lock(&opp_table->lock); 409 410 list_for_each_entry(opp, &opp_table->opp_list, node) { 411 if (opp->available) 412 count++; 413 } 414 415 mutex_unlock(&opp_table->lock); 416 417 return count; 418 } 419 420 /** 421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 422 * @dev: device for which we do this operation 423 * 424 * Return: This function returns the number of available opps if there are any, 425 * else returns 0 if none or the corresponding error value. 426 */ 427 int dev_pm_opp_get_opp_count(struct device *dev) 428 { 429 struct opp_table *opp_table; 430 int count; 431 432 opp_table = _find_opp_table(dev); 433 if (IS_ERR(opp_table)) { 434 count = PTR_ERR(opp_table); 435 dev_dbg(dev, "%s: OPP table not found (%d)\n", 436 __func__, count); 437 return count; 438 } 439 440 count = _get_opp_count(opp_table); 441 dev_pm_opp_put_opp_table(opp_table); 442 443 return count; 444 } 445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 446 447 /* Helpers to read keys */ 448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 449 { 450 return opp->rates[index]; 451 } 452 453 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 454 { 455 return opp->level; 456 } 457 458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 459 { 460 return opp->bandwidth[index].peak; 461 } 462 463 /* Generic comparison helpers */ 464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 465 unsigned long opp_key, unsigned long key) 466 { 467 if (opp_key == key) { 468 *opp = temp_opp; 469 return true; 470 } 471 472 return false; 473 } 474 475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 476 unsigned long opp_key, unsigned long key) 477 { 478 if (opp_key >= key) { 479 *opp = temp_opp; 480 return true; 481 } 482 483 return false; 484 } 485 486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 487 unsigned long opp_key, unsigned long key) 488 { 489 if (opp_key > key) 490 return true; 491 492 *opp = temp_opp; 493 return false; 494 } 495 496 /* Generic key finding helpers */ 497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 498 unsigned long *key, int index, bool available, 499 unsigned long (*read)(struct dev_pm_opp *opp, int index), 500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 501 unsigned long opp_key, unsigned long key), 502 bool (*assert)(struct opp_table *opp_table)) 503 { 504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 505 506 /* Assert that the requirement is met */ 507 if (assert && !assert(opp_table)) 508 return ERR_PTR(-EINVAL); 509 510 mutex_lock(&opp_table->lock); 511 512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 513 if (temp_opp->available == available) { 514 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 515 break; 516 } 517 } 518 519 /* Increment the reference count of OPP */ 520 if (!IS_ERR(opp)) { 521 *key = read(opp, index); 522 dev_pm_opp_get(opp); 523 } 524 525 mutex_unlock(&opp_table->lock); 526 527 return opp; 528 } 529 530 static struct dev_pm_opp * 531 _find_key(struct device *dev, unsigned long *key, int index, bool available, 532 unsigned long (*read)(struct dev_pm_opp *opp, int index), 533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 534 unsigned long opp_key, unsigned long key), 535 bool (*assert)(struct opp_table *opp_table)) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *opp; 539 540 opp_table = _find_opp_table(dev); 541 if (IS_ERR(opp_table)) { 542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 543 PTR_ERR(opp_table)); 544 return ERR_CAST(opp_table); 545 } 546 547 opp = _opp_table_find_key(opp_table, key, index, available, read, 548 compare, assert); 549 550 dev_pm_opp_put_opp_table(opp_table); 551 552 return opp; 553 } 554 555 static struct dev_pm_opp *_find_key_exact(struct device *dev, 556 unsigned long key, int index, bool available, 557 unsigned long (*read)(struct dev_pm_opp *opp, int index), 558 bool (*assert)(struct opp_table *opp_table)) 559 { 560 /* 561 * The value of key will be updated here, but will be ignored as the 562 * caller doesn't need it. 563 */ 564 return _find_key(dev, &key, index, available, read, _compare_exact, 565 assert); 566 } 567 568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 569 unsigned long *key, int index, bool available, 570 unsigned long (*read)(struct dev_pm_opp *opp, int index), 571 bool (*assert)(struct opp_table *opp_table)) 572 { 573 return _opp_table_find_key(opp_table, key, index, available, read, 574 _compare_ceil, assert); 575 } 576 577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 578 int index, bool available, 579 unsigned long (*read)(struct dev_pm_opp *opp, int index), 580 bool (*assert)(struct opp_table *opp_table)) 581 { 582 return _find_key(dev, key, index, available, read, _compare_ceil, 583 assert); 584 } 585 586 static struct dev_pm_opp *_find_key_floor(struct device *dev, 587 unsigned long *key, int index, bool available, 588 unsigned long (*read)(struct dev_pm_opp *opp, int index), 589 bool (*assert)(struct opp_table *opp_table)) 590 { 591 return _find_key(dev, key, index, available, read, _compare_floor, 592 assert); 593 } 594 595 /** 596 * dev_pm_opp_find_freq_exact() - search for an exact frequency 597 * @dev: device for which we do this operation 598 * @freq: frequency to search for 599 * @available: true/false - match for available opp 600 * 601 * Return: Searches for exact match in the opp table and returns pointer to the 602 * matching opp if found, else returns ERR_PTR in case of error and should 603 * be handled using IS_ERR. Error return values can be: 604 * EINVAL: for bad pointer 605 * ERANGE: no match found for search 606 * ENODEV: if device not found in list of registered devices 607 * 608 * Note: available is a modifier for the search. if available=true, then the 609 * match is for exact matching frequency and is available in the stored OPP 610 * table. if false, the match is for exact frequency which is not available. 611 * 612 * This provides a mechanism to enable an opp which is not available currently 613 * or the opposite as well. 614 * 615 * The callers are required to call dev_pm_opp_put() for the returned OPP after 616 * use. 617 */ 618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 619 unsigned long freq, bool available) 620 { 621 return _find_key_exact(dev, freq, 0, available, _read_freq, 622 assert_single_clk); 623 } 624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 625 626 /** 627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the 628 * clock corresponding to the index 629 * @dev: Device for which we do this operation 630 * @freq: frequency to search for 631 * @index: Clock index 632 * @available: true/false - match for available opp 633 * 634 * Search for the matching exact OPP for the clock corresponding to the 635 * specified index from a starting freq for a device. 636 * 637 * Return: matching *opp , else returns ERR_PTR in case of error and should be 638 * handled using IS_ERR. Error return values can be: 639 * EINVAL: for bad pointer 640 * ERANGE: no match found for search 641 * ENODEV: if device not found in list of registered devices 642 * 643 * The callers are required to call dev_pm_opp_put() for the returned OPP after 644 * use. 645 */ 646 struct dev_pm_opp * 647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq, 648 u32 index, bool available) 649 { 650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL); 651 } 652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed); 653 654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 655 unsigned long *freq) 656 { 657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 658 assert_single_clk); 659 } 660 661 /** 662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 663 * @dev: device for which we do this operation 664 * @freq: Start frequency 665 * 666 * Search for the matching ceil *available* OPP from a starting freq 667 * for a device. 668 * 669 * Return: matching *opp and refreshes *freq accordingly, else returns 670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 671 * values can be: 672 * EINVAL: for bad pointer 673 * ERANGE: no match found for search 674 * ENODEV: if device not found in list of registered devices 675 * 676 * The callers are required to call dev_pm_opp_put() for the returned OPP after 677 * use. 678 */ 679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 680 unsigned long *freq) 681 { 682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 683 } 684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 685 686 /** 687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the 688 * clock corresponding to the index 689 * @dev: Device for which we do this operation 690 * @freq: Start frequency 691 * @index: Clock index 692 * 693 * Search for the matching ceil *available* OPP for the clock corresponding to 694 * the specified index from a starting freq for a device. 695 * 696 * Return: matching *opp and refreshes *freq accordingly, else returns 697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 698 * values can be: 699 * EINVAL: for bad pointer 700 * ERANGE: no match found for search 701 * ENODEV: if device not found in list of registered devices 702 * 703 * The callers are required to call dev_pm_opp_put() for the returned OPP after 704 * use. 705 */ 706 struct dev_pm_opp * 707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq, 708 u32 index) 709 { 710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL); 711 } 712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed); 713 714 /** 715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 716 * @dev: device for which we do this operation 717 * @freq: Start frequency 718 * 719 * Search for the matching floor *available* OPP from a starting freq 720 * for a device. 721 * 722 * Return: matching *opp and refreshes *freq accordingly, else returns 723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 724 * values can be: 725 * EINVAL: for bad pointer 726 * ERANGE: no match found for search 727 * ENODEV: if device not found in list of registered devices 728 * 729 * The callers are required to call dev_pm_opp_put() for the returned OPP after 730 * use. 731 */ 732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 733 unsigned long *freq) 734 { 735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 736 } 737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 738 739 /** 740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the 741 * clock corresponding to the index 742 * @dev: Device for which we do this operation 743 * @freq: Start frequency 744 * @index: Clock index 745 * 746 * Search for the matching floor *available* OPP for the clock corresponding to 747 * the specified index from a starting freq for a device. 748 * 749 * Return: matching *opp and refreshes *freq accordingly, else returns 750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 751 * values can be: 752 * EINVAL: for bad pointer 753 * ERANGE: no match found for search 754 * ENODEV: if device not found in list of registered devices 755 * 756 * The callers are required to call dev_pm_opp_put() for the returned OPP after 757 * use. 758 */ 759 struct dev_pm_opp * 760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq, 761 u32 index) 762 { 763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL); 764 } 765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed); 766 767 /** 768 * dev_pm_opp_find_level_exact() - search for an exact level 769 * @dev: device for which we do this operation 770 * @level: level to search for 771 * 772 * Return: Searches for exact match in the opp table and returns pointer to the 773 * matching opp if found, else returns ERR_PTR in case of error and should 774 * be handled using IS_ERR. Error return values can be: 775 * EINVAL: for bad pointer 776 * ERANGE: no match found for search 777 * ENODEV: if device not found in list of registered devices 778 * 779 * The callers are required to call dev_pm_opp_put() for the returned OPP after 780 * use. 781 */ 782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 783 unsigned int level) 784 { 785 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 786 } 787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 788 789 /** 790 * dev_pm_opp_find_level_ceil() - search for an rounded up level 791 * @dev: device for which we do this operation 792 * @level: level to search for 793 * 794 * Return: Searches for rounded up match in the opp table and returns pointer 795 * to the matching opp if found, else returns ERR_PTR in case of error and 796 * should be handled using IS_ERR. Error return values can be: 797 * EINVAL: for bad pointer 798 * ERANGE: no match found for search 799 * ENODEV: if device not found in list of registered devices 800 * 801 * The callers are required to call dev_pm_opp_put() for the returned OPP after 802 * use. 803 */ 804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 805 unsigned int *level) 806 { 807 unsigned long temp = *level; 808 struct dev_pm_opp *opp; 809 810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 811 if (IS_ERR(opp)) 812 return opp; 813 814 /* False match */ 815 if (temp == OPP_LEVEL_UNSET) { 816 dev_err(dev, "%s: OPP levels aren't available\n", __func__); 817 dev_pm_opp_put(opp); 818 return ERR_PTR(-ENODEV); 819 } 820 821 *level = temp; 822 return opp; 823 } 824 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 825 826 /** 827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level 828 * @dev: device for which we do this operation 829 * @level: Start level 830 * 831 * Search for the matching floor *available* OPP from a starting level 832 * for a device. 833 * 834 * Return: matching *opp and refreshes *level accordingly, else returns 835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 836 * values can be: 837 * EINVAL: for bad pointer 838 * ERANGE: no match found for search 839 * ENODEV: if device not found in list of registered devices 840 * 841 * The callers are required to call dev_pm_opp_put() for the returned OPP after 842 * use. 843 */ 844 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev, 845 unsigned int *level) 846 { 847 unsigned long temp = *level; 848 struct dev_pm_opp *opp; 849 850 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL); 851 *level = temp; 852 return opp; 853 } 854 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor); 855 856 /** 857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 858 * @dev: device for which we do this operation 859 * @bw: start bandwidth 860 * @index: which bandwidth to compare, in case of OPPs with several values 861 * 862 * Search for the matching floor *available* OPP from a starting bandwidth 863 * for a device. 864 * 865 * Return: matching *opp and refreshes *bw accordingly, else returns 866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 867 * values can be: 868 * EINVAL: for bad pointer 869 * ERANGE: no match found for search 870 * ENODEV: if device not found in list of registered devices 871 * 872 * The callers are required to call dev_pm_opp_put() for the returned OPP after 873 * use. 874 */ 875 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 876 int index) 877 { 878 unsigned long temp = *bw; 879 struct dev_pm_opp *opp; 880 881 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL); 882 *bw = temp; 883 return opp; 884 } 885 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 886 887 /** 888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 889 * @dev: device for which we do this operation 890 * @bw: start bandwidth 891 * @index: which bandwidth to compare, in case of OPPs with several values 892 * 893 * Search for the matching floor *available* OPP from a starting bandwidth 894 * for a device. 895 * 896 * Return: matching *opp and refreshes *bw accordingly, else returns 897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 898 * values can be: 899 * EINVAL: for bad pointer 900 * ERANGE: no match found for search 901 * ENODEV: if device not found in list of registered devices 902 * 903 * The callers are required to call dev_pm_opp_put() for the returned OPP after 904 * use. 905 */ 906 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 907 unsigned int *bw, int index) 908 { 909 unsigned long temp = *bw; 910 struct dev_pm_opp *opp; 911 912 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL); 913 *bw = temp; 914 return opp; 915 } 916 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 917 918 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 919 struct dev_pm_opp_supply *supply) 920 { 921 int ret; 922 923 /* Regulator not available for device */ 924 if (IS_ERR(reg)) { 925 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 926 PTR_ERR(reg)); 927 return 0; 928 } 929 930 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 931 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 932 933 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 934 supply->u_volt, supply->u_volt_max); 935 if (ret) 936 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 937 __func__, supply->u_volt_min, supply->u_volt, 938 supply->u_volt_max, ret); 939 940 return ret; 941 } 942 943 static int 944 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 945 struct dev_pm_opp *opp, void *data, bool scaling_down) 946 { 947 unsigned long *target = data; 948 unsigned long freq; 949 int ret; 950 951 /* One of target and opp must be available */ 952 if (target) { 953 freq = *target; 954 } else if (opp) { 955 freq = opp->rates[0]; 956 } else { 957 WARN_ON(1); 958 return -EINVAL; 959 } 960 961 ret = clk_set_rate(opp_table->clk, freq); 962 if (ret) { 963 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 964 ret); 965 } else { 966 opp_table->current_rate_single_clk = freq; 967 } 968 969 return ret; 970 } 971 972 /* 973 * Simple implementation for configuring multiple clocks. Configure clocks in 974 * the order in which they are present in the array while scaling up. 975 */ 976 int dev_pm_opp_config_clks_simple(struct device *dev, 977 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 978 bool scaling_down) 979 { 980 int ret, i; 981 982 if (scaling_down) { 983 for (i = opp_table->clk_count - 1; i >= 0; i--) { 984 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 985 if (ret) { 986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 987 ret); 988 return ret; 989 } 990 } 991 } else { 992 for (i = 0; i < opp_table->clk_count; i++) { 993 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 994 if (ret) { 995 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 996 ret); 997 return ret; 998 } 999 } 1000 } 1001 1002 return 0; 1003 } 1004 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 1005 1006 static int _opp_config_regulator_single(struct device *dev, 1007 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 1008 struct regulator **regulators, unsigned int count) 1009 { 1010 struct regulator *reg = regulators[0]; 1011 int ret; 1012 1013 /* This function only supports single regulator per device */ 1014 if (WARN_ON(count > 1)) { 1015 dev_err(dev, "multiple regulators are not supported\n"); 1016 return -EINVAL; 1017 } 1018 1019 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 1020 if (ret) 1021 return ret; 1022 1023 /* 1024 * Enable the regulator after setting its voltages, otherwise it breaks 1025 * some boot-enabled regulators. 1026 */ 1027 if (unlikely(!new_opp->opp_table->enabled)) { 1028 ret = regulator_enable(reg); 1029 if (ret < 0) 1030 dev_warn(dev, "Failed to enable regulator: %d", ret); 1031 } 1032 1033 return 0; 1034 } 1035 1036 static int _set_opp_bw(const struct opp_table *opp_table, 1037 struct dev_pm_opp *opp, struct device *dev) 1038 { 1039 u32 avg, peak; 1040 int i, ret; 1041 1042 if (!opp_table->paths) 1043 return 0; 1044 1045 for (i = 0; i < opp_table->path_count; i++) { 1046 if (!opp) { 1047 avg = 0; 1048 peak = 0; 1049 } else { 1050 avg = opp->bandwidth[i].avg; 1051 peak = opp->bandwidth[i].peak; 1052 } 1053 ret = icc_set_bw(opp_table->paths[i], avg, peak); 1054 if (ret) { 1055 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 1056 opp ? "set" : "remove", i, ret); 1057 return ret; 1058 } 1059 } 1060 1061 return 0; 1062 } 1063 1064 /* This is only called for PM domain for now */ 1065 static int _set_required_opps(struct device *dev, struct opp_table *opp_table, 1066 struct dev_pm_opp *opp, bool up) 1067 { 1068 struct device **devs = opp_table->required_devs; 1069 struct dev_pm_opp *required_opp; 1070 int index, target, delta, ret; 1071 1072 if (!devs) 1073 return 0; 1074 1075 /* required-opps not fully initialized yet */ 1076 if (lazy_linking_pending(opp_table)) 1077 return -EBUSY; 1078 1079 /* Scaling up? Set required OPPs in normal order, else reverse */ 1080 if (up) { 1081 index = 0; 1082 target = opp_table->required_opp_count; 1083 delta = 1; 1084 } else { 1085 index = opp_table->required_opp_count - 1; 1086 target = -1; 1087 delta = -1; 1088 } 1089 1090 while (index != target) { 1091 if (devs[index]) { 1092 required_opp = opp ? opp->required_opps[index] : NULL; 1093 1094 ret = dev_pm_opp_set_opp(devs[index], required_opp); 1095 if (ret) 1096 return ret; 1097 } 1098 1099 index += delta; 1100 } 1101 1102 return 0; 1103 } 1104 1105 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp) 1106 { 1107 unsigned int level = 0; 1108 int ret = 0; 1109 1110 if (opp) { 1111 if (opp->level == OPP_LEVEL_UNSET) 1112 return 0; 1113 1114 level = opp->level; 1115 } 1116 1117 /* Request a new performance state through the device's PM domain. */ 1118 ret = dev_pm_domain_set_performance_state(dev, level); 1119 if (ret) 1120 dev_err(dev, "Failed to set performance state %u (%d)\n", level, 1121 ret); 1122 1123 return ret; 1124 } 1125 1126 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1127 { 1128 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1129 unsigned long freq; 1130 1131 if (!IS_ERR(opp_table->clk)) { 1132 freq = clk_get_rate(opp_table->clk); 1133 opp = _find_freq_ceil(opp_table, &freq); 1134 } 1135 1136 /* 1137 * Unable to find the current OPP ? Pick the first from the list since 1138 * it is in ascending order, otherwise rest of the code will need to 1139 * make special checks to validate current_opp. 1140 */ 1141 if (IS_ERR(opp)) { 1142 mutex_lock(&opp_table->lock); 1143 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 1144 dev_pm_opp_get(opp); 1145 mutex_unlock(&opp_table->lock); 1146 } 1147 1148 opp_table->current_opp = opp; 1149 } 1150 1151 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1152 { 1153 int ret; 1154 1155 if (!opp_table->enabled) 1156 return 0; 1157 1158 /* 1159 * Some drivers need to support cases where some platforms may 1160 * have OPP table for the device, while others don't and 1161 * opp_set_rate() just needs to behave like clk_set_rate(). 1162 */ 1163 if (!_get_opp_count(opp_table)) 1164 return 0; 1165 1166 ret = _set_opp_bw(opp_table, NULL, dev); 1167 if (ret) 1168 return ret; 1169 1170 if (opp_table->regulators) 1171 regulator_disable(opp_table->regulators[0]); 1172 1173 ret = _set_opp_level(dev, NULL); 1174 if (ret) 1175 goto out; 1176 1177 ret = _set_required_opps(dev, opp_table, NULL, false); 1178 1179 out: 1180 opp_table->enabled = false; 1181 return ret; 1182 } 1183 1184 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1185 struct dev_pm_opp *opp, void *clk_data, bool forced) 1186 { 1187 struct dev_pm_opp *old_opp; 1188 int scaling_down, ret; 1189 1190 if (unlikely(!opp)) 1191 return _disable_opp_table(dev, opp_table); 1192 1193 /* Find the currently set OPP if we don't know already */ 1194 if (unlikely(!opp_table->current_opp)) 1195 _find_current_opp(dev, opp_table); 1196 1197 old_opp = opp_table->current_opp; 1198 1199 /* Return early if nothing to do */ 1200 if (!forced && old_opp == opp && opp_table->enabled) { 1201 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__); 1202 return 0; 1203 } 1204 1205 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1206 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1207 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1208 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1209 1210 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1211 if (scaling_down == -1) 1212 scaling_down = 0; 1213 1214 /* Scaling up? Configure required OPPs before frequency */ 1215 if (!scaling_down) { 1216 ret = _set_required_opps(dev, opp_table, opp, true); 1217 if (ret) { 1218 dev_err(dev, "Failed to set required opps: %d\n", ret); 1219 return ret; 1220 } 1221 1222 ret = _set_opp_level(dev, opp); 1223 if (ret) 1224 return ret; 1225 1226 ret = _set_opp_bw(opp_table, opp, dev); 1227 if (ret) { 1228 dev_err(dev, "Failed to set bw: %d\n", ret); 1229 return ret; 1230 } 1231 1232 if (opp_table->config_regulators) { 1233 ret = opp_table->config_regulators(dev, old_opp, opp, 1234 opp_table->regulators, 1235 opp_table->regulator_count); 1236 if (ret) { 1237 dev_err(dev, "Failed to set regulator voltages: %d\n", 1238 ret); 1239 return ret; 1240 } 1241 } 1242 } 1243 1244 if (opp_table->config_clks) { 1245 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1246 if (ret) 1247 return ret; 1248 } 1249 1250 /* Scaling down? Configure required OPPs after frequency */ 1251 if (scaling_down) { 1252 if (opp_table->config_regulators) { 1253 ret = opp_table->config_regulators(dev, old_opp, opp, 1254 opp_table->regulators, 1255 opp_table->regulator_count); 1256 if (ret) { 1257 dev_err(dev, "Failed to set regulator voltages: %d\n", 1258 ret); 1259 return ret; 1260 } 1261 } 1262 1263 ret = _set_opp_bw(opp_table, opp, dev); 1264 if (ret) { 1265 dev_err(dev, "Failed to set bw: %d\n", ret); 1266 return ret; 1267 } 1268 1269 ret = _set_opp_level(dev, opp); 1270 if (ret) 1271 return ret; 1272 1273 ret = _set_required_opps(dev, opp_table, opp, false); 1274 if (ret) { 1275 dev_err(dev, "Failed to set required opps: %d\n", ret); 1276 return ret; 1277 } 1278 } 1279 1280 opp_table->enabled = true; 1281 dev_pm_opp_put(old_opp); 1282 1283 /* Make sure current_opp doesn't get freed */ 1284 dev_pm_opp_get(opp); 1285 opp_table->current_opp = opp; 1286 1287 return ret; 1288 } 1289 1290 /** 1291 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1292 * @dev: device for which we do this operation 1293 * @target_freq: frequency to achieve 1294 * 1295 * This configures the power-supplies to the levels specified by the OPP 1296 * corresponding to the target_freq, and programs the clock to a value <= 1297 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1298 * provided by the opp, should have already rounded to the target OPP's 1299 * frequency. 1300 */ 1301 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1302 { 1303 struct opp_table *opp_table; 1304 unsigned long freq = 0, temp_freq; 1305 struct dev_pm_opp *opp = NULL; 1306 bool forced = false; 1307 int ret; 1308 1309 opp_table = _find_opp_table(dev); 1310 if (IS_ERR(opp_table)) { 1311 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1312 return PTR_ERR(opp_table); 1313 } 1314 1315 if (target_freq) { 1316 /* 1317 * For IO devices which require an OPP on some platforms/SoCs 1318 * while just needing to scale the clock on some others 1319 * we look for empty OPP tables with just a clock handle and 1320 * scale only the clk. This makes dev_pm_opp_set_rate() 1321 * equivalent to a clk_set_rate() 1322 */ 1323 if (!_get_opp_count(opp_table)) { 1324 ret = opp_table->config_clks(dev, opp_table, NULL, 1325 &target_freq, false); 1326 goto put_opp_table; 1327 } 1328 1329 freq = clk_round_rate(opp_table->clk, target_freq); 1330 if ((long)freq <= 0) 1331 freq = target_freq; 1332 1333 /* 1334 * The clock driver may support finer resolution of the 1335 * frequencies than the OPP table, don't update the frequency we 1336 * pass to clk_set_rate() here. 1337 */ 1338 temp_freq = freq; 1339 opp = _find_freq_ceil(opp_table, &temp_freq); 1340 if (IS_ERR(opp)) { 1341 ret = PTR_ERR(opp); 1342 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1343 __func__, freq, ret); 1344 goto put_opp_table; 1345 } 1346 1347 /* 1348 * An OPP entry specifies the highest frequency at which other 1349 * properties of the OPP entry apply. Even if the new OPP is 1350 * same as the old one, we may still reach here for a different 1351 * value of the frequency. In such a case, do not abort but 1352 * configure the hardware to the desired frequency forcefully. 1353 */ 1354 forced = opp_table->current_rate_single_clk != freq; 1355 } 1356 1357 ret = _set_opp(dev, opp_table, opp, &freq, forced); 1358 1359 if (freq) 1360 dev_pm_opp_put(opp); 1361 1362 put_opp_table: 1363 dev_pm_opp_put_opp_table(opp_table); 1364 return ret; 1365 } 1366 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1367 1368 /** 1369 * dev_pm_opp_set_opp() - Configure device for OPP 1370 * @dev: device for which we do this operation 1371 * @opp: OPP to set to 1372 * 1373 * This configures the device based on the properties of the OPP passed to this 1374 * routine. 1375 * 1376 * Return: 0 on success, a negative error number otherwise. 1377 */ 1378 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1379 { 1380 struct opp_table *opp_table; 1381 int ret; 1382 1383 opp_table = _find_opp_table(dev); 1384 if (IS_ERR(opp_table)) { 1385 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1386 return PTR_ERR(opp_table); 1387 } 1388 1389 ret = _set_opp(dev, opp_table, opp, NULL, false); 1390 dev_pm_opp_put_opp_table(opp_table); 1391 1392 return ret; 1393 } 1394 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1395 1396 /* OPP-dev Helpers */ 1397 static void _remove_opp_dev(struct opp_device *opp_dev, 1398 struct opp_table *opp_table) 1399 { 1400 opp_debug_unregister(opp_dev, opp_table); 1401 list_del(&opp_dev->node); 1402 kfree(opp_dev); 1403 } 1404 1405 struct opp_device *_add_opp_dev(const struct device *dev, 1406 struct opp_table *opp_table) 1407 { 1408 struct opp_device *opp_dev; 1409 1410 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1411 if (!opp_dev) 1412 return NULL; 1413 1414 /* Initialize opp-dev */ 1415 opp_dev->dev = dev; 1416 1417 mutex_lock(&opp_table->lock); 1418 list_add(&opp_dev->node, &opp_table->dev_list); 1419 mutex_unlock(&opp_table->lock); 1420 1421 /* Create debugfs entries for the opp_table */ 1422 opp_debug_register(opp_dev, opp_table); 1423 1424 return opp_dev; 1425 } 1426 1427 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1428 { 1429 struct opp_table *opp_table; 1430 struct opp_device *opp_dev; 1431 int ret; 1432 1433 /* 1434 * Allocate a new OPP table. In the infrequent case where a new 1435 * device is needed to be added, we pay this penalty. 1436 */ 1437 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1438 if (!opp_table) 1439 return ERR_PTR(-ENOMEM); 1440 1441 mutex_init(&opp_table->lock); 1442 INIT_LIST_HEAD(&opp_table->dev_list); 1443 INIT_LIST_HEAD(&opp_table->lazy); 1444 1445 opp_table->clk = ERR_PTR(-ENODEV); 1446 1447 /* Mark regulator count uninitialized */ 1448 opp_table->regulator_count = -1; 1449 1450 opp_dev = _add_opp_dev(dev, opp_table); 1451 if (!opp_dev) { 1452 ret = -ENOMEM; 1453 goto err; 1454 } 1455 1456 _of_init_opp_table(opp_table, dev, index); 1457 1458 /* Find interconnect path(s) for the device */ 1459 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1460 if (ret) { 1461 if (ret == -EPROBE_DEFER) 1462 goto remove_opp_dev; 1463 1464 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1465 __func__, ret); 1466 } 1467 1468 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1469 INIT_LIST_HEAD(&opp_table->opp_list); 1470 kref_init(&opp_table->kref); 1471 1472 return opp_table; 1473 1474 remove_opp_dev: 1475 _of_clear_opp_table(opp_table); 1476 _remove_opp_dev(opp_dev, opp_table); 1477 mutex_destroy(&opp_table->lock); 1478 err: 1479 kfree(opp_table); 1480 return ERR_PTR(ret); 1481 } 1482 1483 void _get_opp_table_kref(struct opp_table *opp_table) 1484 { 1485 kref_get(&opp_table->kref); 1486 } 1487 1488 static struct opp_table *_update_opp_table_clk(struct device *dev, 1489 struct opp_table *opp_table, 1490 bool getclk) 1491 { 1492 int ret; 1493 1494 /* 1495 * Return early if we don't need to get clk or we have already done it 1496 * earlier. 1497 */ 1498 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1499 opp_table->clks) 1500 return opp_table; 1501 1502 /* Find clk for the device */ 1503 opp_table->clk = clk_get(dev, NULL); 1504 1505 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1506 if (!ret) { 1507 opp_table->config_clks = _opp_config_clk_single; 1508 opp_table->clk_count = 1; 1509 return opp_table; 1510 } 1511 1512 if (ret == -ENOENT) { 1513 /* 1514 * There are few platforms which don't want the OPP core to 1515 * manage device's clock settings. In such cases neither the 1516 * platform provides the clks explicitly to us, nor the DT 1517 * contains a valid clk entry. The OPP nodes in DT may still 1518 * contain "opp-hz" property though, which we need to parse and 1519 * allow the platform to find an OPP based on freq later on. 1520 * 1521 * This is a simple solution to take care of such corner cases, 1522 * i.e. make the clk_count 1, which lets us allocate space for 1523 * frequency in opp->rates and also parse the entries in DT. 1524 */ 1525 opp_table->clk_count = 1; 1526 1527 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1528 return opp_table; 1529 } 1530 1531 dev_pm_opp_put_opp_table(opp_table); 1532 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1533 1534 return ERR_PTR(ret); 1535 } 1536 1537 /* 1538 * We need to make sure that the OPP table for a device doesn't get added twice, 1539 * if this routine gets called in parallel with the same device pointer. 1540 * 1541 * The simplest way to enforce that is to perform everything (find existing 1542 * table and if not found, create a new one) under the opp_table_lock, so only 1543 * one creator gets access to the same. But that expands the critical section 1544 * under the lock and may end up causing circular dependencies with frameworks 1545 * like debugfs, interconnect or clock framework as they may be direct or 1546 * indirect users of OPP core. 1547 * 1548 * And for that reason we have to go for a bit tricky implementation here, which 1549 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1550 * of adding an OPP table and others should wait for it to finish. 1551 */ 1552 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1553 bool getclk) 1554 { 1555 struct opp_table *opp_table; 1556 1557 again: 1558 mutex_lock(&opp_table_lock); 1559 1560 opp_table = _find_opp_table_unlocked(dev); 1561 if (!IS_ERR(opp_table)) 1562 goto unlock; 1563 1564 /* 1565 * The opp_tables list or an OPP table's dev_list is getting updated by 1566 * another user, wait for it to finish. 1567 */ 1568 if (unlikely(opp_tables_busy)) { 1569 mutex_unlock(&opp_table_lock); 1570 cpu_relax(); 1571 goto again; 1572 } 1573 1574 opp_tables_busy = true; 1575 opp_table = _managed_opp(dev, index); 1576 1577 /* Drop the lock to reduce the size of critical section */ 1578 mutex_unlock(&opp_table_lock); 1579 1580 if (opp_table) { 1581 if (!_add_opp_dev(dev, opp_table)) { 1582 dev_pm_opp_put_opp_table(opp_table); 1583 opp_table = ERR_PTR(-ENOMEM); 1584 } 1585 1586 mutex_lock(&opp_table_lock); 1587 } else { 1588 opp_table = _allocate_opp_table(dev, index); 1589 1590 mutex_lock(&opp_table_lock); 1591 if (!IS_ERR(opp_table)) 1592 list_add(&opp_table->node, &opp_tables); 1593 } 1594 1595 opp_tables_busy = false; 1596 1597 unlock: 1598 mutex_unlock(&opp_table_lock); 1599 1600 return _update_opp_table_clk(dev, opp_table, getclk); 1601 } 1602 1603 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1604 { 1605 return _add_opp_table_indexed(dev, 0, getclk); 1606 } 1607 1608 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1609 { 1610 return _find_opp_table(dev); 1611 } 1612 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1613 1614 static void _opp_table_kref_release(struct kref *kref) 1615 { 1616 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1617 struct opp_device *opp_dev, *temp; 1618 int i; 1619 1620 /* Drop the lock as soon as we can */ 1621 list_del(&opp_table->node); 1622 mutex_unlock(&opp_table_lock); 1623 1624 if (opp_table->current_opp) 1625 dev_pm_opp_put(opp_table->current_opp); 1626 1627 _of_clear_opp_table(opp_table); 1628 1629 /* Release automatically acquired single clk */ 1630 if (!IS_ERR(opp_table->clk)) 1631 clk_put(opp_table->clk); 1632 1633 if (opp_table->paths) { 1634 for (i = 0; i < opp_table->path_count; i++) 1635 icc_put(opp_table->paths[i]); 1636 kfree(opp_table->paths); 1637 } 1638 1639 WARN_ON(!list_empty(&opp_table->opp_list)); 1640 1641 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) 1642 _remove_opp_dev(opp_dev, opp_table); 1643 1644 mutex_destroy(&opp_table->lock); 1645 kfree(opp_table); 1646 } 1647 1648 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1649 { 1650 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1651 &opp_table_lock); 1652 } 1653 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1654 1655 void _opp_free(struct dev_pm_opp *opp) 1656 { 1657 kfree(opp); 1658 } 1659 1660 static void _opp_kref_release(struct kref *kref) 1661 { 1662 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1663 struct opp_table *opp_table = opp->opp_table; 1664 1665 list_del(&opp->node); 1666 mutex_unlock(&opp_table->lock); 1667 1668 /* 1669 * Notify the changes in the availability of the operable 1670 * frequency/voltage list. 1671 */ 1672 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1673 _of_clear_opp(opp_table, opp); 1674 opp_debug_remove_one(opp); 1675 kfree(opp); 1676 } 1677 1678 void dev_pm_opp_get(struct dev_pm_opp *opp) 1679 { 1680 kref_get(&opp->kref); 1681 } 1682 1683 void dev_pm_opp_put(struct dev_pm_opp *opp) 1684 { 1685 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1686 } 1687 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1688 1689 /** 1690 * dev_pm_opp_remove() - Remove an OPP from OPP table 1691 * @dev: device for which we do this operation 1692 * @freq: OPP to remove with matching 'freq' 1693 * 1694 * This function removes an opp from the opp table. 1695 */ 1696 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1697 { 1698 struct dev_pm_opp *opp = NULL, *iter; 1699 struct opp_table *opp_table; 1700 1701 opp_table = _find_opp_table(dev); 1702 if (IS_ERR(opp_table)) 1703 return; 1704 1705 if (!assert_single_clk(opp_table)) 1706 goto put_table; 1707 1708 mutex_lock(&opp_table->lock); 1709 1710 list_for_each_entry(iter, &opp_table->opp_list, node) { 1711 if (iter->rates[0] == freq) { 1712 opp = iter; 1713 break; 1714 } 1715 } 1716 1717 mutex_unlock(&opp_table->lock); 1718 1719 if (opp) { 1720 dev_pm_opp_put(opp); 1721 1722 /* Drop the reference taken by dev_pm_opp_add() */ 1723 dev_pm_opp_put_opp_table(opp_table); 1724 } else { 1725 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1726 __func__, freq); 1727 } 1728 1729 put_table: 1730 /* Drop the reference taken by _find_opp_table() */ 1731 dev_pm_opp_put_opp_table(opp_table); 1732 } 1733 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1734 1735 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1736 bool dynamic) 1737 { 1738 struct dev_pm_opp *opp = NULL, *temp; 1739 1740 mutex_lock(&opp_table->lock); 1741 list_for_each_entry(temp, &opp_table->opp_list, node) { 1742 /* 1743 * Refcount must be dropped only once for each OPP by OPP core, 1744 * do that with help of "removed" flag. 1745 */ 1746 if (!temp->removed && dynamic == temp->dynamic) { 1747 opp = temp; 1748 break; 1749 } 1750 } 1751 1752 mutex_unlock(&opp_table->lock); 1753 return opp; 1754 } 1755 1756 /* 1757 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1758 * happen lock less to avoid circular dependency issues. This routine must be 1759 * called without the opp_table->lock held. 1760 */ 1761 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1762 { 1763 struct dev_pm_opp *opp; 1764 1765 while ((opp = _opp_get_next(opp_table, dynamic))) { 1766 opp->removed = true; 1767 dev_pm_opp_put(opp); 1768 1769 /* Drop the references taken by dev_pm_opp_add() */ 1770 if (dynamic) 1771 dev_pm_opp_put_opp_table(opp_table); 1772 } 1773 } 1774 1775 bool _opp_remove_all_static(struct opp_table *opp_table) 1776 { 1777 mutex_lock(&opp_table->lock); 1778 1779 if (!opp_table->parsed_static_opps) { 1780 mutex_unlock(&opp_table->lock); 1781 return false; 1782 } 1783 1784 if (--opp_table->parsed_static_opps) { 1785 mutex_unlock(&opp_table->lock); 1786 return true; 1787 } 1788 1789 mutex_unlock(&opp_table->lock); 1790 1791 _opp_remove_all(opp_table, false); 1792 return true; 1793 } 1794 1795 /** 1796 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1797 * @dev: device for which we do this operation 1798 * 1799 * This function removes all dynamically created OPPs from the opp table. 1800 */ 1801 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1802 { 1803 struct opp_table *opp_table; 1804 1805 opp_table = _find_opp_table(dev); 1806 if (IS_ERR(opp_table)) 1807 return; 1808 1809 _opp_remove_all(opp_table, true); 1810 1811 /* Drop the reference taken by _find_opp_table() */ 1812 dev_pm_opp_put_opp_table(opp_table); 1813 } 1814 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1815 1816 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1817 { 1818 struct dev_pm_opp *opp; 1819 int supply_count, supply_size, icc_size, clk_size; 1820 1821 /* Allocate space for at least one supply */ 1822 supply_count = opp_table->regulator_count > 0 ? 1823 opp_table->regulator_count : 1; 1824 supply_size = sizeof(*opp->supplies) * supply_count; 1825 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1826 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1827 1828 /* allocate new OPP node and supplies structures */ 1829 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1830 if (!opp) 1831 return NULL; 1832 1833 /* Put the supplies, bw and clock at the end of the OPP structure */ 1834 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1835 1836 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1837 1838 if (icc_size) 1839 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1840 1841 INIT_LIST_HEAD(&opp->node); 1842 1843 opp->level = OPP_LEVEL_UNSET; 1844 1845 return opp; 1846 } 1847 1848 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1849 struct opp_table *opp_table) 1850 { 1851 struct regulator *reg; 1852 int i; 1853 1854 if (!opp_table->regulators) 1855 return true; 1856 1857 for (i = 0; i < opp_table->regulator_count; i++) { 1858 reg = opp_table->regulators[i]; 1859 1860 if (!regulator_is_supported_voltage(reg, 1861 opp->supplies[i].u_volt_min, 1862 opp->supplies[i].u_volt_max)) { 1863 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1864 __func__, opp->supplies[i].u_volt_min, 1865 opp->supplies[i].u_volt_max); 1866 return false; 1867 } 1868 } 1869 1870 return true; 1871 } 1872 1873 static int _opp_compare_rate(struct opp_table *opp_table, 1874 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1875 { 1876 int i; 1877 1878 for (i = 0; i < opp_table->clk_count; i++) { 1879 if (opp1->rates[i] != opp2->rates[i]) 1880 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1881 } 1882 1883 /* Same rates for both OPPs */ 1884 return 0; 1885 } 1886 1887 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1888 struct dev_pm_opp *opp2) 1889 { 1890 int i; 1891 1892 for (i = 0; i < opp_table->path_count; i++) { 1893 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1894 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1895 } 1896 1897 /* Same bw for both OPPs */ 1898 return 0; 1899 } 1900 1901 /* 1902 * Returns 1903 * 0: opp1 == opp2 1904 * 1: opp1 > opp2 1905 * -1: opp1 < opp2 1906 */ 1907 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1908 struct dev_pm_opp *opp2) 1909 { 1910 int ret; 1911 1912 ret = _opp_compare_rate(opp_table, opp1, opp2); 1913 if (ret) 1914 return ret; 1915 1916 ret = _opp_compare_bw(opp_table, opp1, opp2); 1917 if (ret) 1918 return ret; 1919 1920 if (opp1->level != opp2->level) 1921 return opp1->level < opp2->level ? -1 : 1; 1922 1923 /* Duplicate OPPs */ 1924 return 0; 1925 } 1926 1927 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1928 struct opp_table *opp_table, 1929 struct list_head **head) 1930 { 1931 struct dev_pm_opp *opp; 1932 int opp_cmp; 1933 1934 /* 1935 * Insert new OPP in order of increasing frequency and discard if 1936 * already present. 1937 * 1938 * Need to use &opp_table->opp_list in the condition part of the 'for' 1939 * loop, don't replace it with head otherwise it will become an infinite 1940 * loop. 1941 */ 1942 list_for_each_entry(opp, &opp_table->opp_list, node) { 1943 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 1944 if (opp_cmp > 0) { 1945 *head = &opp->node; 1946 continue; 1947 } 1948 1949 if (opp_cmp < 0) 1950 return 0; 1951 1952 /* Duplicate OPPs */ 1953 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1954 __func__, opp->rates[0], opp->supplies[0].u_volt, 1955 opp->available, new_opp->rates[0], 1956 new_opp->supplies[0].u_volt, new_opp->available); 1957 1958 /* Should we compare voltages for all regulators here ? */ 1959 return opp->available && 1960 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1961 } 1962 1963 return 0; 1964 } 1965 1966 void _required_opps_available(struct dev_pm_opp *opp, int count) 1967 { 1968 int i; 1969 1970 for (i = 0; i < count; i++) { 1971 if (opp->required_opps[i]->available) 1972 continue; 1973 1974 opp->available = false; 1975 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1976 __func__, opp->required_opps[i]->np, opp->rates[0]); 1977 return; 1978 } 1979 } 1980 1981 /* 1982 * Returns: 1983 * 0: On success. And appropriate error message for duplicate OPPs. 1984 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1985 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1986 * sure we don't print error messages unnecessarily if different parts of 1987 * kernel try to initialize the OPP table. 1988 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1989 * should be considered an error by the callers of _opp_add(). 1990 */ 1991 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1992 struct opp_table *opp_table) 1993 { 1994 struct list_head *head; 1995 int ret; 1996 1997 mutex_lock(&opp_table->lock); 1998 head = &opp_table->opp_list; 1999 2000 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 2001 if (ret) { 2002 mutex_unlock(&opp_table->lock); 2003 return ret; 2004 } 2005 2006 list_add(&new_opp->node, head); 2007 mutex_unlock(&opp_table->lock); 2008 2009 new_opp->opp_table = opp_table; 2010 kref_init(&new_opp->kref); 2011 2012 opp_debug_create_one(new_opp, opp_table); 2013 2014 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 2015 new_opp->available = false; 2016 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 2017 __func__, new_opp->rates[0]); 2018 } 2019 2020 /* required-opps not fully initialized yet */ 2021 if (lazy_linking_pending(opp_table)) 2022 return 0; 2023 2024 _required_opps_available(new_opp, opp_table->required_opp_count); 2025 2026 return 0; 2027 } 2028 2029 /** 2030 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 2031 * @opp_table: OPP table 2032 * @dev: device for which we do this operation 2033 * @data: The OPP data for the OPP to add 2034 * @dynamic: Dynamically added OPPs. 2035 * 2036 * This function adds an opp definition to the opp table and returns status. 2037 * The opp is made available by default and it can be controlled using 2038 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 2039 * 2040 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 2041 * and freed by dev_pm_opp_of_remove_table. 2042 * 2043 * Return: 2044 * 0 On success OR 2045 * Duplicate OPPs (both freq and volt are same) and opp->available 2046 * -EEXIST Freq are same and volt are different OR 2047 * Duplicate OPPs (both freq and volt are same) and !opp->available 2048 * -ENOMEM Memory allocation failure 2049 */ 2050 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 2051 struct dev_pm_opp_data *data, bool dynamic) 2052 { 2053 struct dev_pm_opp *new_opp; 2054 unsigned long tol, u_volt = data->u_volt; 2055 int ret; 2056 2057 if (!assert_single_clk(opp_table)) 2058 return -EINVAL; 2059 2060 new_opp = _opp_allocate(opp_table); 2061 if (!new_opp) 2062 return -ENOMEM; 2063 2064 /* populate the opp table */ 2065 new_opp->rates[0] = data->freq; 2066 new_opp->level = data->level; 2067 new_opp->turbo = data->turbo; 2068 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 2069 new_opp->supplies[0].u_volt = u_volt; 2070 new_opp->supplies[0].u_volt_min = u_volt - tol; 2071 new_opp->supplies[0].u_volt_max = u_volt + tol; 2072 new_opp->available = true; 2073 new_opp->dynamic = dynamic; 2074 2075 ret = _opp_add(dev, new_opp, opp_table); 2076 if (ret) { 2077 /* Don't return error for duplicate OPPs */ 2078 if (ret == -EBUSY) 2079 ret = 0; 2080 goto free_opp; 2081 } 2082 2083 /* 2084 * Notify the changes in the availability of the operable 2085 * frequency/voltage list. 2086 */ 2087 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 2088 return 0; 2089 2090 free_opp: 2091 _opp_free(new_opp); 2092 2093 return ret; 2094 } 2095 2096 /* 2097 * This is required only for the V2 bindings, and it enables a platform to 2098 * specify the hierarchy of versions it supports. OPP layer will then enable 2099 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 2100 * property. 2101 */ 2102 static int _opp_set_supported_hw(struct opp_table *opp_table, 2103 const u32 *versions, unsigned int count) 2104 { 2105 /* Another CPU that shares the OPP table has set the property ? */ 2106 if (opp_table->supported_hw) 2107 return 0; 2108 2109 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 2110 GFP_KERNEL); 2111 if (!opp_table->supported_hw) 2112 return -ENOMEM; 2113 2114 opp_table->supported_hw_count = count; 2115 2116 return 0; 2117 } 2118 2119 static void _opp_put_supported_hw(struct opp_table *opp_table) 2120 { 2121 if (opp_table->supported_hw) { 2122 kfree(opp_table->supported_hw); 2123 opp_table->supported_hw = NULL; 2124 opp_table->supported_hw_count = 0; 2125 } 2126 } 2127 2128 /* 2129 * This is required only for the V2 bindings, and it enables a platform to 2130 * specify the extn to be used for certain property names. The properties to 2131 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2132 * should postfix the property name with -<name> while looking for them. 2133 */ 2134 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2135 { 2136 /* Another CPU that shares the OPP table has set the property ? */ 2137 if (!opp_table->prop_name) { 2138 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2139 if (!opp_table->prop_name) 2140 return -ENOMEM; 2141 } 2142 2143 return 0; 2144 } 2145 2146 static void _opp_put_prop_name(struct opp_table *opp_table) 2147 { 2148 if (opp_table->prop_name) { 2149 kfree(opp_table->prop_name); 2150 opp_table->prop_name = NULL; 2151 } 2152 } 2153 2154 /* 2155 * In order to support OPP switching, OPP layer needs to know the name of the 2156 * device's regulators, as the core would be required to switch voltages as 2157 * well. 2158 * 2159 * This must be called before any OPPs are initialized for the device. 2160 */ 2161 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2162 const char * const names[]) 2163 { 2164 const char * const *temp = names; 2165 struct regulator *reg; 2166 int count = 0, ret, i; 2167 2168 /* Count number of regulators */ 2169 while (*temp++) 2170 count++; 2171 2172 if (!count) 2173 return -EINVAL; 2174 2175 /* Another CPU that shares the OPP table has set the regulators ? */ 2176 if (opp_table->regulators) 2177 return 0; 2178 2179 opp_table->regulators = kmalloc_array(count, 2180 sizeof(*opp_table->regulators), 2181 GFP_KERNEL); 2182 if (!opp_table->regulators) 2183 return -ENOMEM; 2184 2185 for (i = 0; i < count; i++) { 2186 reg = regulator_get_optional(dev, names[i]); 2187 if (IS_ERR(reg)) { 2188 ret = dev_err_probe(dev, PTR_ERR(reg), 2189 "%s: no regulator (%s) found\n", 2190 __func__, names[i]); 2191 goto free_regulators; 2192 } 2193 2194 opp_table->regulators[i] = reg; 2195 } 2196 2197 opp_table->regulator_count = count; 2198 2199 /* Set generic config_regulators() for single regulators here */ 2200 if (count == 1) 2201 opp_table->config_regulators = _opp_config_regulator_single; 2202 2203 return 0; 2204 2205 free_regulators: 2206 while (i != 0) 2207 regulator_put(opp_table->regulators[--i]); 2208 2209 kfree(opp_table->regulators); 2210 opp_table->regulators = NULL; 2211 opp_table->regulator_count = -1; 2212 2213 return ret; 2214 } 2215 2216 static void _opp_put_regulators(struct opp_table *opp_table) 2217 { 2218 int i; 2219 2220 if (!opp_table->regulators) 2221 return; 2222 2223 if (opp_table->enabled) { 2224 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2225 regulator_disable(opp_table->regulators[i]); 2226 } 2227 2228 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2229 regulator_put(opp_table->regulators[i]); 2230 2231 kfree(opp_table->regulators); 2232 opp_table->regulators = NULL; 2233 opp_table->regulator_count = -1; 2234 } 2235 2236 static void _put_clks(struct opp_table *opp_table, int count) 2237 { 2238 int i; 2239 2240 for (i = count - 1; i >= 0; i--) 2241 clk_put(opp_table->clks[i]); 2242 2243 kfree(opp_table->clks); 2244 opp_table->clks = NULL; 2245 } 2246 2247 /* 2248 * In order to support OPP switching, OPP layer needs to get pointers to the 2249 * clocks for the device. Simple cases work fine without using this routine 2250 * (i.e. by passing connection-id as NULL), but for a device with multiple 2251 * clocks available, the OPP core needs to know the exact names of the clks to 2252 * use. 2253 * 2254 * This must be called before any OPPs are initialized for the device. 2255 */ 2256 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2257 const char * const names[], 2258 config_clks_t config_clks) 2259 { 2260 const char * const *temp = names; 2261 int count = 0, ret, i; 2262 struct clk *clk; 2263 2264 /* Count number of clks */ 2265 while (*temp++) 2266 count++; 2267 2268 /* 2269 * This is a special case where we have a single clock, whose connection 2270 * id name is NULL, i.e. first two entries are NULL in the array. 2271 */ 2272 if (!count && !names[1]) 2273 count = 1; 2274 2275 /* Fail early for invalid configurations */ 2276 if (!count || (!config_clks && count > 1)) 2277 return -EINVAL; 2278 2279 /* Another CPU that shares the OPP table has set the clkname ? */ 2280 if (opp_table->clks) 2281 return 0; 2282 2283 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2284 GFP_KERNEL); 2285 if (!opp_table->clks) 2286 return -ENOMEM; 2287 2288 /* Find clks for the device */ 2289 for (i = 0; i < count; i++) { 2290 clk = clk_get(dev, names[i]); 2291 if (IS_ERR(clk)) { 2292 ret = dev_err_probe(dev, PTR_ERR(clk), 2293 "%s: Couldn't find clock with name: %s\n", 2294 __func__, names[i]); 2295 goto free_clks; 2296 } 2297 2298 opp_table->clks[i] = clk; 2299 } 2300 2301 opp_table->clk_count = count; 2302 opp_table->config_clks = config_clks; 2303 2304 /* Set generic single clk set here */ 2305 if (count == 1) { 2306 if (!opp_table->config_clks) 2307 opp_table->config_clks = _opp_config_clk_single; 2308 2309 /* 2310 * We could have just dropped the "clk" field and used "clks" 2311 * everywhere. Instead we kept the "clk" field around for 2312 * following reasons: 2313 * 2314 * - avoiding clks[0] everywhere else. 2315 * - not running single clk helpers for multiple clk usecase by 2316 * mistake. 2317 * 2318 * Since this is single-clk case, just update the clk pointer 2319 * too. 2320 */ 2321 opp_table->clk = opp_table->clks[0]; 2322 } 2323 2324 return 0; 2325 2326 free_clks: 2327 _put_clks(opp_table, i); 2328 return ret; 2329 } 2330 2331 static void _opp_put_clknames(struct opp_table *opp_table) 2332 { 2333 if (!opp_table->clks) 2334 return; 2335 2336 opp_table->config_clks = NULL; 2337 opp_table->clk = ERR_PTR(-ENODEV); 2338 2339 _put_clks(opp_table, opp_table->clk_count); 2340 } 2341 2342 /* 2343 * This is useful to support platforms with multiple regulators per device. 2344 * 2345 * This must be called before any OPPs are initialized for the device. 2346 */ 2347 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2348 struct device *dev, config_regulators_t config_regulators) 2349 { 2350 /* Another CPU that shares the OPP table has set the helper ? */ 2351 if (!opp_table->config_regulators) 2352 opp_table->config_regulators = config_regulators; 2353 2354 return 0; 2355 } 2356 2357 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2358 { 2359 if (opp_table->config_regulators) 2360 opp_table->config_regulators = NULL; 2361 } 2362 2363 static void _opp_detach_genpd(struct opp_table *opp_table) 2364 { 2365 int index; 2366 2367 for (index = 0; index < opp_table->required_opp_count; index++) { 2368 if (!opp_table->required_devs[index]) 2369 continue; 2370 2371 dev_pm_domain_detach(opp_table->required_devs[index], false); 2372 opp_table->required_devs[index] = NULL; 2373 } 2374 } 2375 2376 /* 2377 * Multiple generic power domains for a device are supported with the help of 2378 * virtual genpd devices, which are created for each consumer device - genpd 2379 * pair. These are the device structures which are attached to the power domain 2380 * and are required by the OPP core to set the performance state of the genpd. 2381 * The same API also works for the case where single genpd is available and so 2382 * we don't need to support that separately. 2383 * 2384 * This helper will normally be called by the consumer driver of the device 2385 * "dev", as only that has details of the genpd names. 2386 * 2387 * This helper needs to be called once with a list of all genpd to attach. 2388 * Otherwise the original device structure will be used instead by the OPP core. 2389 * 2390 * The order of entries in the names array must match the order in which 2391 * "required-opps" are added in DT. 2392 */ 2393 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev, 2394 const char * const *names, struct device ***virt_devs) 2395 { 2396 struct device *virt_dev, *gdev; 2397 struct opp_table *genpd_table; 2398 int index = 0, ret = -EINVAL; 2399 const char * const *name = names; 2400 2401 if (!opp_table->required_devs) { 2402 dev_err(dev, "Required OPPs not available, can't attach genpd\n"); 2403 return -EINVAL; 2404 } 2405 2406 /* Genpd core takes care of propagation to parent genpd */ 2407 if (opp_table->is_genpd) { 2408 dev_err(dev, "%s: Operation not supported for genpds\n", __func__); 2409 return -EOPNOTSUPP; 2410 } 2411 2412 /* Checking only the first one is enough ? */ 2413 if (opp_table->required_devs[0]) 2414 return 0; 2415 2416 while (*name) { 2417 if (index >= opp_table->required_opp_count) { 2418 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2419 *name, opp_table->required_opp_count, index); 2420 goto err; 2421 } 2422 2423 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2424 if (IS_ERR_OR_NULL(virt_dev)) { 2425 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV; 2426 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2427 goto err; 2428 } 2429 2430 /* 2431 * The required_opp_tables parsing is not perfect, as the OPP 2432 * core does the parsing solely based on the DT node pointers. 2433 * The core sets the required_opp_tables entry to the first OPP 2434 * table in the "opp_tables" list, that matches with the node 2435 * pointer. 2436 * 2437 * If the target DT OPP table is used by multiple devices and 2438 * they all create separate instances of 'struct opp_table' from 2439 * it, then it is possible that the required_opp_tables entry 2440 * may be set to the incorrect sibling device. 2441 * 2442 * Cross check it again and fix if required. 2443 */ 2444 gdev = dev_to_genpd_dev(virt_dev); 2445 if (IS_ERR(gdev)) { 2446 ret = PTR_ERR(gdev); 2447 goto err; 2448 } 2449 2450 genpd_table = _find_opp_table(gdev); 2451 if (!IS_ERR(genpd_table)) { 2452 if (genpd_table != opp_table->required_opp_tables[index]) { 2453 dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]); 2454 opp_table->required_opp_tables[index] = genpd_table; 2455 } else { 2456 dev_pm_opp_put_opp_table(genpd_table); 2457 } 2458 } 2459 2460 /* 2461 * Add the virtual genpd device as a user of the OPP table, so 2462 * we can call dev_pm_opp_set_opp() on it directly. 2463 * 2464 * This will be automatically removed when the OPP table is 2465 * removed, don't need to handle that here. 2466 */ 2467 if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) { 2468 ret = -ENOMEM; 2469 goto err; 2470 } 2471 2472 opp_table->required_devs[index] = virt_dev; 2473 index++; 2474 name++; 2475 } 2476 2477 if (virt_devs) 2478 *virt_devs = opp_table->required_devs; 2479 2480 return 0; 2481 2482 err: 2483 _opp_detach_genpd(opp_table); 2484 return ret; 2485 2486 } 2487 2488 static int _opp_set_required_devs(struct opp_table *opp_table, 2489 struct device *dev, 2490 struct device **required_devs) 2491 { 2492 int i; 2493 2494 if (!opp_table->required_devs) { 2495 dev_err(dev, "Required OPPs not available, can't set required devs\n"); 2496 return -EINVAL; 2497 } 2498 2499 /* Another device that shares the OPP table has set the required devs ? */ 2500 if (opp_table->required_devs[0]) 2501 return 0; 2502 2503 for (i = 0; i < opp_table->required_opp_count; i++) { 2504 /* Genpd core takes care of propagation to parent genpd */ 2505 if (required_devs[i] && opp_table->is_genpd && 2506 opp_table->required_opp_tables[i]->is_genpd) { 2507 dev_err(dev, "%s: Operation not supported for genpds\n", __func__); 2508 return -EOPNOTSUPP; 2509 } 2510 2511 opp_table->required_devs[i] = required_devs[i]; 2512 } 2513 2514 return 0; 2515 } 2516 2517 static void _opp_put_required_devs(struct opp_table *opp_table) 2518 { 2519 int i; 2520 2521 for (i = 0; i < opp_table->required_opp_count; i++) 2522 opp_table->required_devs[i] = NULL; 2523 } 2524 2525 static void _opp_clear_config(struct opp_config_data *data) 2526 { 2527 if (data->flags & OPP_CONFIG_REQUIRED_DEVS) 2528 _opp_put_required_devs(data->opp_table); 2529 else if (data->flags & OPP_CONFIG_GENPD) 2530 _opp_detach_genpd(data->opp_table); 2531 2532 if (data->flags & OPP_CONFIG_REGULATOR) 2533 _opp_put_regulators(data->opp_table); 2534 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2535 _opp_put_supported_hw(data->opp_table); 2536 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2537 _opp_put_config_regulators_helper(data->opp_table); 2538 if (data->flags & OPP_CONFIG_PROP_NAME) 2539 _opp_put_prop_name(data->opp_table); 2540 if (data->flags & OPP_CONFIG_CLK) 2541 _opp_put_clknames(data->opp_table); 2542 2543 dev_pm_opp_put_opp_table(data->opp_table); 2544 kfree(data); 2545 } 2546 2547 /** 2548 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2549 * @dev: Device for which configuration is being set. 2550 * @config: OPP configuration. 2551 * 2552 * This allows all device OPP configurations to be performed at once. 2553 * 2554 * This must be called before any OPPs are initialized for the device. This may 2555 * be called multiple times for the same OPP table, for example once for each 2556 * CPU that share the same table. This must be balanced by the same number of 2557 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2558 * 2559 * This returns a token to the caller, which must be passed to 2560 * dev_pm_opp_clear_config() to free the resources later. The value of the 2561 * returned token will be >= 1 for success and negative for errors. The minimum 2562 * value of 1 is chosen here to make it easy for callers to manage the resource. 2563 */ 2564 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2565 { 2566 struct opp_table *opp_table; 2567 struct opp_config_data *data; 2568 unsigned int id; 2569 int ret; 2570 2571 data = kmalloc(sizeof(*data), GFP_KERNEL); 2572 if (!data) 2573 return -ENOMEM; 2574 2575 opp_table = _add_opp_table(dev, false); 2576 if (IS_ERR(opp_table)) { 2577 kfree(data); 2578 return PTR_ERR(opp_table); 2579 } 2580 2581 data->opp_table = opp_table; 2582 data->flags = 0; 2583 2584 /* This should be called before OPPs are initialized */ 2585 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2586 ret = -EBUSY; 2587 goto err; 2588 } 2589 2590 /* Configure clocks */ 2591 if (config->clk_names) { 2592 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2593 config->config_clks); 2594 if (ret) 2595 goto err; 2596 2597 data->flags |= OPP_CONFIG_CLK; 2598 } else if (config->config_clks) { 2599 /* Don't allow config callback without clocks */ 2600 ret = -EINVAL; 2601 goto err; 2602 } 2603 2604 /* Configure property names */ 2605 if (config->prop_name) { 2606 ret = _opp_set_prop_name(opp_table, config->prop_name); 2607 if (ret) 2608 goto err; 2609 2610 data->flags |= OPP_CONFIG_PROP_NAME; 2611 } 2612 2613 /* Configure config_regulators helper */ 2614 if (config->config_regulators) { 2615 ret = _opp_set_config_regulators_helper(opp_table, dev, 2616 config->config_regulators); 2617 if (ret) 2618 goto err; 2619 2620 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2621 } 2622 2623 /* Configure supported hardware */ 2624 if (config->supported_hw) { 2625 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2626 config->supported_hw_count); 2627 if (ret) 2628 goto err; 2629 2630 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2631 } 2632 2633 /* Configure supplies */ 2634 if (config->regulator_names) { 2635 ret = _opp_set_regulators(opp_table, dev, 2636 config->regulator_names); 2637 if (ret) 2638 goto err; 2639 2640 data->flags |= OPP_CONFIG_REGULATOR; 2641 } 2642 2643 /* Attach genpds */ 2644 if (config->genpd_names) { 2645 if (config->required_devs) 2646 goto err; 2647 2648 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names, 2649 config->virt_devs); 2650 if (ret) 2651 goto err; 2652 2653 data->flags |= OPP_CONFIG_GENPD; 2654 } else if (config->required_devs) { 2655 ret = _opp_set_required_devs(opp_table, dev, 2656 config->required_devs); 2657 if (ret) 2658 goto err; 2659 2660 data->flags |= OPP_CONFIG_REQUIRED_DEVS; 2661 } 2662 2663 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2664 GFP_KERNEL); 2665 if (ret) 2666 goto err; 2667 2668 return id; 2669 2670 err: 2671 _opp_clear_config(data); 2672 return ret; 2673 } 2674 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2675 2676 /** 2677 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2678 * @token: The token returned by dev_pm_opp_set_config() previously. 2679 * 2680 * This allows all device OPP configurations to be cleared at once. This must be 2681 * called once for each call made to dev_pm_opp_set_config(), in order to free 2682 * the OPPs properly. 2683 * 2684 * Currently the first call itself ends up freeing all the OPP configurations, 2685 * while the later ones only drop the OPP table reference. This works well for 2686 * now as we would never want to use an half initialized OPP table and want to 2687 * remove the configurations together. 2688 */ 2689 void dev_pm_opp_clear_config(int token) 2690 { 2691 struct opp_config_data *data; 2692 2693 /* 2694 * This lets the callers call this unconditionally and keep their code 2695 * simple. 2696 */ 2697 if (unlikely(token <= 0)) 2698 return; 2699 2700 data = xa_erase(&opp_configs, token); 2701 if (WARN_ON(!data)) 2702 return; 2703 2704 _opp_clear_config(data); 2705 } 2706 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2707 2708 static void devm_pm_opp_config_release(void *token) 2709 { 2710 dev_pm_opp_clear_config((unsigned long)token); 2711 } 2712 2713 /** 2714 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2715 * @dev: Device for which configuration is being set. 2716 * @config: OPP configuration. 2717 * 2718 * This allows all device OPP configurations to be performed at once. 2719 * This is a resource-managed variant of dev_pm_opp_set_config(). 2720 * 2721 * Return: 0 on success and errorno otherwise. 2722 */ 2723 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2724 { 2725 int token = dev_pm_opp_set_config(dev, config); 2726 2727 if (token < 0) 2728 return token; 2729 2730 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2731 (void *) ((unsigned long) token)); 2732 } 2733 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2734 2735 /** 2736 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2737 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2738 * @dst_table: Required OPP table of the @src_table. 2739 * @src_opp: OPP from the @src_table. 2740 * 2741 * This function returns the OPP (present in @dst_table) pointed out by the 2742 * "required-opps" property of the @src_opp (present in @src_table). 2743 * 2744 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2745 * use. 2746 * 2747 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2748 */ 2749 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2750 struct opp_table *dst_table, 2751 struct dev_pm_opp *src_opp) 2752 { 2753 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2754 int i; 2755 2756 if (!src_table || !dst_table || !src_opp || 2757 !src_table->required_opp_tables) 2758 return ERR_PTR(-EINVAL); 2759 2760 /* required-opps not fully initialized yet */ 2761 if (lazy_linking_pending(src_table)) 2762 return ERR_PTR(-EBUSY); 2763 2764 for (i = 0; i < src_table->required_opp_count; i++) { 2765 if (src_table->required_opp_tables[i] == dst_table) { 2766 mutex_lock(&src_table->lock); 2767 2768 list_for_each_entry(opp, &src_table->opp_list, node) { 2769 if (opp == src_opp) { 2770 dest_opp = opp->required_opps[i]; 2771 dev_pm_opp_get(dest_opp); 2772 break; 2773 } 2774 } 2775 2776 mutex_unlock(&src_table->lock); 2777 break; 2778 } 2779 } 2780 2781 if (IS_ERR(dest_opp)) { 2782 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2783 src_table, dst_table); 2784 } 2785 2786 return dest_opp; 2787 } 2788 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2789 2790 /** 2791 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2792 * @src_table: OPP table which has dst_table as one of its required OPP table. 2793 * @dst_table: Required OPP table of the src_table. 2794 * @pstate: Current performance state of the src_table. 2795 * 2796 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2797 * "required-opps" property of the OPP (present in @src_table) which has 2798 * performance state set to @pstate. 2799 * 2800 * Return: Zero or positive performance state on success, otherwise negative 2801 * value on errors. 2802 */ 2803 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2804 struct opp_table *dst_table, 2805 unsigned int pstate) 2806 { 2807 struct dev_pm_opp *opp; 2808 int dest_pstate = -EINVAL; 2809 int i; 2810 2811 /* 2812 * Normally the src_table will have the "required_opps" property set to 2813 * point to one of the OPPs in the dst_table, but in some cases the 2814 * genpd and its master have one to one mapping of performance states 2815 * and so none of them have the "required-opps" property set. Return the 2816 * pstate of the src_table as it is in such cases. 2817 */ 2818 if (!src_table || !src_table->required_opp_count) 2819 return pstate; 2820 2821 /* Both OPP tables must belong to genpds */ 2822 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) { 2823 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 2824 return -EINVAL; 2825 } 2826 2827 /* required-opps not fully initialized yet */ 2828 if (lazy_linking_pending(src_table)) 2829 return -EBUSY; 2830 2831 for (i = 0; i < src_table->required_opp_count; i++) { 2832 if (src_table->required_opp_tables[i]->np == dst_table->np) 2833 break; 2834 } 2835 2836 if (unlikely(i == src_table->required_opp_count)) { 2837 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2838 __func__, src_table, dst_table); 2839 return -EINVAL; 2840 } 2841 2842 mutex_lock(&src_table->lock); 2843 2844 list_for_each_entry(opp, &src_table->opp_list, node) { 2845 if (opp->level == pstate) { 2846 dest_pstate = opp->required_opps[i]->level; 2847 goto unlock; 2848 } 2849 } 2850 2851 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2852 dst_table); 2853 2854 unlock: 2855 mutex_unlock(&src_table->lock); 2856 2857 return dest_pstate; 2858 } 2859 2860 /** 2861 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions 2862 * @dev: The device for which we do this operation 2863 * @data: The OPP data for the OPP to add 2864 * 2865 * This function adds an opp definition to the opp table and returns status. 2866 * The opp is made available by default and it can be controlled using 2867 * dev_pm_opp_enable/disable functions. 2868 * 2869 * Return: 2870 * 0 On success OR 2871 * Duplicate OPPs (both freq and volt are same) and opp->available 2872 * -EEXIST Freq are same and volt are different OR 2873 * Duplicate OPPs (both freq and volt are same) and !opp->available 2874 * -ENOMEM Memory allocation failure 2875 */ 2876 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data) 2877 { 2878 struct opp_table *opp_table; 2879 int ret; 2880 2881 opp_table = _add_opp_table(dev, true); 2882 if (IS_ERR(opp_table)) 2883 return PTR_ERR(opp_table); 2884 2885 /* Fix regulator count for dynamic OPPs */ 2886 opp_table->regulator_count = 1; 2887 2888 ret = _opp_add_v1(opp_table, dev, data, true); 2889 if (ret) 2890 dev_pm_opp_put_opp_table(opp_table); 2891 2892 return ret; 2893 } 2894 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic); 2895 2896 /** 2897 * _opp_set_availability() - helper to set the availability of an opp 2898 * @dev: device for which we do this operation 2899 * @freq: OPP frequency to modify availability 2900 * @availability_req: availability status requested for this opp 2901 * 2902 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2903 * which is isolated here. 2904 * 2905 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2906 * copy operation, returns 0 if no modification was done OR modification was 2907 * successful. 2908 */ 2909 static int _opp_set_availability(struct device *dev, unsigned long freq, 2910 bool availability_req) 2911 { 2912 struct opp_table *opp_table; 2913 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2914 int r = 0; 2915 2916 /* Find the opp_table */ 2917 opp_table = _find_opp_table(dev); 2918 if (IS_ERR(opp_table)) { 2919 r = PTR_ERR(opp_table); 2920 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2921 return r; 2922 } 2923 2924 if (!assert_single_clk(opp_table)) { 2925 r = -EINVAL; 2926 goto put_table; 2927 } 2928 2929 mutex_lock(&opp_table->lock); 2930 2931 /* Do we have the frequency? */ 2932 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2933 if (tmp_opp->rates[0] == freq) { 2934 opp = tmp_opp; 2935 break; 2936 } 2937 } 2938 2939 if (IS_ERR(opp)) { 2940 r = PTR_ERR(opp); 2941 goto unlock; 2942 } 2943 2944 /* Is update really needed? */ 2945 if (opp->available == availability_req) 2946 goto unlock; 2947 2948 opp->available = availability_req; 2949 2950 dev_pm_opp_get(opp); 2951 mutex_unlock(&opp_table->lock); 2952 2953 /* Notify the change of the OPP availability */ 2954 if (availability_req) 2955 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2956 opp); 2957 else 2958 blocking_notifier_call_chain(&opp_table->head, 2959 OPP_EVENT_DISABLE, opp); 2960 2961 dev_pm_opp_put(opp); 2962 goto put_table; 2963 2964 unlock: 2965 mutex_unlock(&opp_table->lock); 2966 put_table: 2967 dev_pm_opp_put_opp_table(opp_table); 2968 return r; 2969 } 2970 2971 /** 2972 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2973 * @dev: device for which we do this operation 2974 * @freq: OPP frequency to adjust voltage of 2975 * @u_volt: new OPP target voltage 2976 * @u_volt_min: new OPP min voltage 2977 * @u_volt_max: new OPP max voltage 2978 * 2979 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2980 * copy operation, returns 0 if no modifcation was done OR modification was 2981 * successful. 2982 */ 2983 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2984 unsigned long u_volt, unsigned long u_volt_min, 2985 unsigned long u_volt_max) 2986 2987 { 2988 struct opp_table *opp_table; 2989 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2990 int r = 0; 2991 2992 /* Find the opp_table */ 2993 opp_table = _find_opp_table(dev); 2994 if (IS_ERR(opp_table)) { 2995 r = PTR_ERR(opp_table); 2996 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2997 return r; 2998 } 2999 3000 if (!assert_single_clk(opp_table)) { 3001 r = -EINVAL; 3002 goto put_table; 3003 } 3004 3005 mutex_lock(&opp_table->lock); 3006 3007 /* Do we have the frequency? */ 3008 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 3009 if (tmp_opp->rates[0] == freq) { 3010 opp = tmp_opp; 3011 break; 3012 } 3013 } 3014 3015 if (IS_ERR(opp)) { 3016 r = PTR_ERR(opp); 3017 goto adjust_unlock; 3018 } 3019 3020 /* Is update really needed? */ 3021 if (opp->supplies->u_volt == u_volt) 3022 goto adjust_unlock; 3023 3024 opp->supplies->u_volt = u_volt; 3025 opp->supplies->u_volt_min = u_volt_min; 3026 opp->supplies->u_volt_max = u_volt_max; 3027 3028 dev_pm_opp_get(opp); 3029 mutex_unlock(&opp_table->lock); 3030 3031 /* Notify the voltage change of the OPP */ 3032 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 3033 opp); 3034 3035 dev_pm_opp_put(opp); 3036 goto put_table; 3037 3038 adjust_unlock: 3039 mutex_unlock(&opp_table->lock); 3040 put_table: 3041 dev_pm_opp_put_opp_table(opp_table); 3042 return r; 3043 } 3044 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 3045 3046 /** 3047 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 3048 * @dev: device for which we do this operation 3049 * 3050 * Sync voltage state of the OPP table regulators. 3051 * 3052 * Return: 0 on success or a negative error value. 3053 */ 3054 int dev_pm_opp_sync_regulators(struct device *dev) 3055 { 3056 struct opp_table *opp_table; 3057 struct regulator *reg; 3058 int i, ret = 0; 3059 3060 /* Device may not have OPP table */ 3061 opp_table = _find_opp_table(dev); 3062 if (IS_ERR(opp_table)) 3063 return 0; 3064 3065 /* Regulator may not be required for the device */ 3066 if (unlikely(!opp_table->regulators)) 3067 goto put_table; 3068 3069 /* Nothing to sync if voltage wasn't changed */ 3070 if (!opp_table->enabled) 3071 goto put_table; 3072 3073 for (i = 0; i < opp_table->regulator_count; i++) { 3074 reg = opp_table->regulators[i]; 3075 ret = regulator_sync_voltage(reg); 3076 if (ret) 3077 break; 3078 } 3079 put_table: 3080 /* Drop reference taken by _find_opp_table() */ 3081 dev_pm_opp_put_opp_table(opp_table); 3082 3083 return ret; 3084 } 3085 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3086 3087 /** 3088 * dev_pm_opp_enable() - Enable a specific OPP 3089 * @dev: device for which we do this operation 3090 * @freq: OPP frequency to enable 3091 * 3092 * Enables a provided opp. If the operation is valid, this returns 0, else the 3093 * corresponding error value. It is meant to be used for users an OPP available 3094 * after being temporarily made unavailable with dev_pm_opp_disable. 3095 * 3096 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3097 * copy operation, returns 0 if no modification was done OR modification was 3098 * successful. 3099 */ 3100 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 3101 { 3102 return _opp_set_availability(dev, freq, true); 3103 } 3104 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 3105 3106 /** 3107 * dev_pm_opp_disable() - Disable a specific OPP 3108 * @dev: device for which we do this operation 3109 * @freq: OPP frequency to disable 3110 * 3111 * Disables a provided opp. If the operation is valid, this returns 3112 * 0, else the corresponding error value. It is meant to be a temporary 3113 * control by users to make this OPP not available until the circumstances are 3114 * right to make it available again (with a call to dev_pm_opp_enable). 3115 * 3116 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3117 * copy operation, returns 0 if no modification was done OR modification was 3118 * successful. 3119 */ 3120 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 3121 { 3122 return _opp_set_availability(dev, freq, false); 3123 } 3124 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 3125 3126 /** 3127 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 3128 * @dev: Device for which notifier needs to be registered 3129 * @nb: Notifier block to be registered 3130 * 3131 * Return: 0 on success or a negative error value. 3132 */ 3133 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 3134 { 3135 struct opp_table *opp_table; 3136 int ret; 3137 3138 opp_table = _find_opp_table(dev); 3139 if (IS_ERR(opp_table)) 3140 return PTR_ERR(opp_table); 3141 3142 ret = blocking_notifier_chain_register(&opp_table->head, nb); 3143 3144 dev_pm_opp_put_opp_table(opp_table); 3145 3146 return ret; 3147 } 3148 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 3149 3150 /** 3151 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 3152 * @dev: Device for which notifier needs to be unregistered 3153 * @nb: Notifier block to be unregistered 3154 * 3155 * Return: 0 on success or a negative error value. 3156 */ 3157 int dev_pm_opp_unregister_notifier(struct device *dev, 3158 struct notifier_block *nb) 3159 { 3160 struct opp_table *opp_table; 3161 int ret; 3162 3163 opp_table = _find_opp_table(dev); 3164 if (IS_ERR(opp_table)) 3165 return PTR_ERR(opp_table); 3166 3167 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 3168 3169 dev_pm_opp_put_opp_table(opp_table); 3170 3171 return ret; 3172 } 3173 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3174 3175 /** 3176 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3177 * @dev: device pointer used to lookup OPP table. 3178 * 3179 * Free both OPPs created using static entries present in DT and the 3180 * dynamically added entries. 3181 */ 3182 void dev_pm_opp_remove_table(struct device *dev) 3183 { 3184 struct opp_table *opp_table; 3185 3186 /* Check for existing table for 'dev' */ 3187 opp_table = _find_opp_table(dev); 3188 if (IS_ERR(opp_table)) { 3189 int error = PTR_ERR(opp_table); 3190 3191 if (error != -ENODEV) 3192 WARN(1, "%s: opp_table: %d\n", 3193 IS_ERR_OR_NULL(dev) ? 3194 "Invalid device" : dev_name(dev), 3195 error); 3196 return; 3197 } 3198 3199 /* 3200 * Drop the extra reference only if the OPP table was successfully added 3201 * with dev_pm_opp_of_add_table() earlier. 3202 **/ 3203 if (_opp_remove_all_static(opp_table)) 3204 dev_pm_opp_put_opp_table(opp_table); 3205 3206 /* Drop reference taken by _find_opp_table() */ 3207 dev_pm_opp_put_opp_table(opp_table); 3208 } 3209 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3210