xref: /linux/drivers/opp/core.c (revision ba199dc909a20fe62270ae4e93f263987bb9d119)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic OPP Interface
4  *
5  * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6  *	Nishanth Menon
7  *	Romit Dasgupta
8  *	Kevin Hilman
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/clk.h>
14 #include <linux/errno.h>
15 #include <linux/err.h>
16 #include <linux/device.h>
17 #include <linux/export.h>
18 #include <linux/pm_domain.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/slab.h>
21 #include <linux/xarray.h>
22 
23 #include "opp.h"
24 
25 /*
26  * The root of the list of all opp-tables. All opp_table structures branch off
27  * from here, with each opp_table containing the list of opps it supports in
28  * various states of availability.
29  */
30 LIST_HEAD(opp_tables);
31 
32 /* Lock to allow exclusive modification to the device and opp lists */
33 DEFINE_MUTEX(opp_table_lock);
34 /* Flag indicating that opp_tables list is being updated at the moment */
35 static bool opp_tables_busy;
36 
37 /* OPP ID allocator */
38 static DEFINE_XARRAY_ALLOC1(opp_configs);
39 
40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41 {
42 	struct opp_device *opp_dev;
43 	bool found = false;
44 
45 	mutex_lock(&opp_table->lock);
46 	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 		if (opp_dev->dev == dev) {
48 			found = true;
49 			break;
50 		}
51 
52 	mutex_unlock(&opp_table->lock);
53 	return found;
54 }
55 
56 static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57 {
58 	struct opp_table *opp_table;
59 
60 	list_for_each_entry(opp_table, &opp_tables, node) {
61 		if (_find_opp_dev(dev, opp_table)) {
62 			_get_opp_table_kref(opp_table);
63 			return opp_table;
64 		}
65 	}
66 
67 	return ERR_PTR(-ENODEV);
68 }
69 
70 /**
71  * _find_opp_table() - find opp_table struct using device pointer
72  * @dev:	device pointer used to lookup OPP table
73  *
74  * Search OPP table for one containing matching device.
75  *
76  * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77  * -EINVAL based on type of error.
78  *
79  * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80  */
81 struct opp_table *_find_opp_table(struct device *dev)
82 {
83 	struct opp_table *opp_table;
84 
85 	if (IS_ERR_OR_NULL(dev)) {
86 		pr_err("%s: Invalid parameters\n", __func__);
87 		return ERR_PTR(-EINVAL);
88 	}
89 
90 	mutex_lock(&opp_table_lock);
91 	opp_table = _find_opp_table_unlocked(dev);
92 	mutex_unlock(&opp_table_lock);
93 
94 	return opp_table;
95 }
96 
97 /*
98  * Returns true if multiple clocks aren't there, else returns false with WARN.
99  *
100  * We don't force clk_count == 1 here as there are users who don't have a clock
101  * representation in the OPP table and manage the clock configuration themselves
102  * in an platform specific way.
103  */
104 static bool assert_single_clk(struct opp_table *opp_table)
105 {
106 	return !WARN_ON(opp_table->clk_count > 1);
107 }
108 
109 /**
110  * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111  * @opp:	opp for which voltage has to be returned for
112  *
113  * Return: voltage in micro volt corresponding to the opp, else
114  * return 0
115  *
116  * This is useful only for devices with single power supply.
117  */
118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119 {
120 	if (IS_ERR_OR_NULL(opp)) {
121 		pr_err("%s: Invalid parameters\n", __func__);
122 		return 0;
123 	}
124 
125 	return opp->supplies[0].u_volt;
126 }
127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128 
129 /**
130  * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131  * @opp:	opp for which voltage has to be returned for
132  * @supplies:	Placeholder for copying the supply information.
133  *
134  * Return: negative error number on failure, 0 otherwise on success after
135  * setting @supplies.
136  *
137  * This can be used for devices with any number of power supplies. The caller
138  * must ensure the @supplies array must contain space for each regulator.
139  */
140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 			    struct dev_pm_opp_supply *supplies)
142 {
143 	if (IS_ERR_OR_NULL(opp) || !supplies) {
144 		pr_err("%s: Invalid parameters\n", __func__);
145 		return -EINVAL;
146 	}
147 
148 	memcpy(supplies, opp->supplies,
149 	       sizeof(*supplies) * opp->opp_table->regulator_count);
150 	return 0;
151 }
152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153 
154 /**
155  * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156  * @opp:	opp for which power has to be returned for
157  *
158  * Return: power in micro watt corresponding to the opp, else
159  * return 0
160  *
161  * This is useful only for devices with single power supply.
162  */
163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164 {
165 	unsigned long opp_power = 0;
166 	int i;
167 
168 	if (IS_ERR_OR_NULL(opp)) {
169 		pr_err("%s: Invalid parameters\n", __func__);
170 		return 0;
171 	}
172 	for (i = 0; i < opp->opp_table->regulator_count; i++)
173 		opp_power += opp->supplies[i].u_watt;
174 
175 	return opp_power;
176 }
177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178 
179 /**
180  * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181  *				   available opp with specified index
182  * @opp: opp for which frequency has to be returned for
183  * @index: index of the frequency within the required opp
184  *
185  * Return: frequency in hertz corresponding to the opp with specified index,
186  * else return 0
187  */
188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189 {
190 	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 		pr_err("%s: Invalid parameters\n", __func__);
192 		return 0;
193 	}
194 
195 	return opp->rates[index];
196 }
197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198 
199 /**
200  * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201  * @opp:	opp for which level value has to be returned for
202  *
203  * Return: level read from device tree corresponding to the opp, else
204  * return U32_MAX.
205  */
206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207 {
208 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 		pr_err("%s: Invalid parameters\n", __func__);
210 		return 0;
211 	}
212 
213 	return opp->level;
214 }
215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216 
217 /**
218  * dev_pm_opp_get_required_pstate() - Gets the required performance state
219  *                                    corresponding to an available opp
220  * @opp:	opp for which performance state has to be returned for
221  * @index:	index of the required opp
222  *
223  * Return: performance state read from device tree corresponding to the
224  * required opp, else return U32_MAX.
225  */
226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 					    unsigned int index)
228 {
229 	if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 	    index >= opp->opp_table->required_opp_count) {
231 		pr_err("%s: Invalid parameters\n", __func__);
232 		return 0;
233 	}
234 
235 	/* required-opps not fully initialized yet */
236 	if (lazy_linking_pending(opp->opp_table))
237 		return 0;
238 
239 	/* The required OPP table must belong to a genpd */
240 	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 		return 0;
243 	}
244 
245 	return opp->required_opps[index]->level;
246 }
247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248 
249 /**
250  * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251  * @opp: opp for which turbo mode is being verified
252  *
253  * Turbo OPPs are not for normal use, and can be enabled (under certain
254  * conditions) for short duration of times to finish high throughput work
255  * quickly. Running on them for longer times may overheat the chip.
256  *
257  * Return: true if opp is turbo opp, else false.
258  */
259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260 {
261 	if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 		pr_err("%s: Invalid parameters\n", __func__);
263 		return false;
264 	}
265 
266 	return opp->turbo;
267 }
268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269 
270 /**
271  * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272  * @dev:	device for which we do this operation
273  *
274  * Return: This function returns the max clock latency in nanoseconds.
275  */
276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277 {
278 	struct opp_table *opp_table;
279 	unsigned long clock_latency_ns;
280 
281 	opp_table = _find_opp_table(dev);
282 	if (IS_ERR(opp_table))
283 		return 0;
284 
285 	clock_latency_ns = opp_table->clock_latency_ns_max;
286 
287 	dev_pm_opp_put_opp_table(opp_table);
288 
289 	return clock_latency_ns;
290 }
291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292 
293 /**
294  * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295  * @dev: device for which we do this operation
296  *
297  * Return: This function returns the max voltage latency in nanoseconds.
298  */
299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300 {
301 	struct opp_table *opp_table;
302 	struct dev_pm_opp *opp;
303 	struct regulator *reg;
304 	unsigned long latency_ns = 0;
305 	int ret, i, count;
306 	struct {
307 		unsigned long min;
308 		unsigned long max;
309 	} *uV;
310 
311 	opp_table = _find_opp_table(dev);
312 	if (IS_ERR(opp_table))
313 		return 0;
314 
315 	/* Regulator may not be required for the device */
316 	if (!opp_table->regulators)
317 		goto put_opp_table;
318 
319 	count = opp_table->regulator_count;
320 
321 	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 	if (!uV)
323 		goto put_opp_table;
324 
325 	mutex_lock(&opp_table->lock);
326 
327 	for (i = 0; i < count; i++) {
328 		uV[i].min = ~0;
329 		uV[i].max = 0;
330 
331 		list_for_each_entry(opp, &opp_table->opp_list, node) {
332 			if (!opp->available)
333 				continue;
334 
335 			if (opp->supplies[i].u_volt_min < uV[i].min)
336 				uV[i].min = opp->supplies[i].u_volt_min;
337 			if (opp->supplies[i].u_volt_max > uV[i].max)
338 				uV[i].max = opp->supplies[i].u_volt_max;
339 		}
340 	}
341 
342 	mutex_unlock(&opp_table->lock);
343 
344 	/*
345 	 * The caller needs to ensure that opp_table (and hence the regulator)
346 	 * isn't freed, while we are executing this routine.
347 	 */
348 	for (i = 0; i < count; i++) {
349 		reg = opp_table->regulators[i];
350 		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 		if (ret > 0)
352 			latency_ns += ret * 1000;
353 	}
354 
355 	kfree(uV);
356 put_opp_table:
357 	dev_pm_opp_put_opp_table(opp_table);
358 
359 	return latency_ns;
360 }
361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362 
363 /**
364  * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365  *					     nanoseconds
366  * @dev: device for which we do this operation
367  *
368  * Return: This function returns the max transition latency, in nanoseconds, to
369  * switch from one OPP to other.
370  */
371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372 {
373 	return dev_pm_opp_get_max_volt_latency(dev) +
374 		dev_pm_opp_get_max_clock_latency(dev);
375 }
376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377 
378 /**
379  * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380  * @dev:	device for which we do this operation
381  *
382  * Return: This function returns the frequency of the OPP marked as suspend_opp
383  * if one is available, else returns 0;
384  */
385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386 {
387 	struct opp_table *opp_table;
388 	unsigned long freq = 0;
389 
390 	opp_table = _find_opp_table(dev);
391 	if (IS_ERR(opp_table))
392 		return 0;
393 
394 	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396 
397 	dev_pm_opp_put_opp_table(opp_table);
398 
399 	return freq;
400 }
401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402 
403 int _get_opp_count(struct opp_table *opp_table)
404 {
405 	struct dev_pm_opp *opp;
406 	int count = 0;
407 
408 	mutex_lock(&opp_table->lock);
409 
410 	list_for_each_entry(opp, &opp_table->opp_list, node) {
411 		if (opp->available)
412 			count++;
413 	}
414 
415 	mutex_unlock(&opp_table->lock);
416 
417 	return count;
418 }
419 
420 /**
421  * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422  * @dev:	device for which we do this operation
423  *
424  * Return: This function returns the number of available opps if there are any,
425  * else returns 0 if none or the corresponding error value.
426  */
427 int dev_pm_opp_get_opp_count(struct device *dev)
428 {
429 	struct opp_table *opp_table;
430 	int count;
431 
432 	opp_table = _find_opp_table(dev);
433 	if (IS_ERR(opp_table)) {
434 		count = PTR_ERR(opp_table);
435 		dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 			__func__, count);
437 		return count;
438 	}
439 
440 	count = _get_opp_count(opp_table);
441 	dev_pm_opp_put_opp_table(opp_table);
442 
443 	return count;
444 }
445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446 
447 /* Helpers to read keys */
448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449 {
450 	return opp->rates[index];
451 }
452 
453 static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454 {
455 	return opp->level;
456 }
457 
458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459 {
460 	return opp->bandwidth[index].peak;
461 }
462 
463 /* Generic comparison helpers */
464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 			   unsigned long opp_key, unsigned long key)
466 {
467 	if (opp_key == key) {
468 		*opp = temp_opp;
469 		return true;
470 	}
471 
472 	return false;
473 }
474 
475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 			  unsigned long opp_key, unsigned long key)
477 {
478 	if (opp_key >= key) {
479 		*opp = temp_opp;
480 		return true;
481 	}
482 
483 	return false;
484 }
485 
486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 			   unsigned long opp_key, unsigned long key)
488 {
489 	if (opp_key > key)
490 		return true;
491 
492 	*opp = temp_opp;
493 	return false;
494 }
495 
496 /* Generic key finding helpers */
497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 		unsigned long *key, int index, bool available,
499 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 				unsigned long opp_key, unsigned long key),
502 		bool (*assert)(struct opp_table *opp_table))
503 {
504 	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505 
506 	/* Assert that the requirement is met */
507 	if (assert && !assert(opp_table))
508 		return ERR_PTR(-EINVAL);
509 
510 	mutex_lock(&opp_table->lock);
511 
512 	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 		if (temp_opp->available == available) {
514 			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 				break;
516 		}
517 	}
518 
519 	/* Increment the reference count of OPP */
520 	if (!IS_ERR(opp)) {
521 		*key = read(opp, index);
522 		dev_pm_opp_get(opp);
523 	}
524 
525 	mutex_unlock(&opp_table->lock);
526 
527 	return opp;
528 }
529 
530 static struct dev_pm_opp *
531 _find_key(struct device *dev, unsigned long *key, int index, bool available,
532 	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 			  unsigned long opp_key, unsigned long key),
535 	  bool (*assert)(struct opp_table *opp_table))
536 {
537 	struct opp_table *opp_table;
538 	struct dev_pm_opp *opp;
539 
540 	opp_table = _find_opp_table(dev);
541 	if (IS_ERR(opp_table)) {
542 		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 			PTR_ERR(opp_table));
544 		return ERR_CAST(opp_table);
545 	}
546 
547 	opp = _opp_table_find_key(opp_table, key, index, available, read,
548 				  compare, assert);
549 
550 	dev_pm_opp_put_opp_table(opp_table);
551 
552 	return opp;
553 }
554 
555 static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 		unsigned long key, int index, bool available,
557 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 		bool (*assert)(struct opp_table *opp_table))
559 {
560 	/*
561 	 * The value of key will be updated here, but will be ignored as the
562 	 * caller doesn't need it.
563 	 */
564 	return _find_key(dev, &key, index, available, read, _compare_exact,
565 			 assert);
566 }
567 
568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 		unsigned long *key, int index, bool available,
570 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 		bool (*assert)(struct opp_table *opp_table))
572 {
573 	return _opp_table_find_key(opp_table, key, index, available, read,
574 				   _compare_ceil, assert);
575 }
576 
577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 		int index, bool available,
579 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 		bool (*assert)(struct opp_table *opp_table))
581 {
582 	return _find_key(dev, key, index, available, read, _compare_ceil,
583 			 assert);
584 }
585 
586 static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 		unsigned long *key, int index, bool available,
588 		unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 		bool (*assert)(struct opp_table *opp_table))
590 {
591 	return _find_key(dev, key, index, available, read, _compare_floor,
592 			 assert);
593 }
594 
595 /**
596  * dev_pm_opp_find_freq_exact() - search for an exact frequency
597  * @dev:		device for which we do this operation
598  * @freq:		frequency to search for
599  * @available:		true/false - match for available opp
600  *
601  * Return: Searches for exact match in the opp table and returns pointer to the
602  * matching opp if found, else returns ERR_PTR in case of error and should
603  * be handled using IS_ERR. Error return values can be:
604  * EINVAL:	for bad pointer
605  * ERANGE:	no match found for search
606  * ENODEV:	if device not found in list of registered devices
607  *
608  * Note: available is a modifier for the search. if available=true, then the
609  * match is for exact matching frequency and is available in the stored OPP
610  * table. if false, the match is for exact frequency which is not available.
611  *
612  * This provides a mechanism to enable an opp which is not available currently
613  * or the opposite as well.
614  *
615  * The callers are required to call dev_pm_opp_put() for the returned OPP after
616  * use.
617  */
618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 		unsigned long freq, bool available)
620 {
621 	return _find_key_exact(dev, freq, 0, available, _read_freq,
622 			       assert_single_clk);
623 }
624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625 
626 /**
627  * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628  *					 clock corresponding to the index
629  * @dev:	Device for which we do this operation
630  * @freq:	frequency to search for
631  * @index:	Clock index
632  * @available:	true/false - match for available opp
633  *
634  * Search for the matching exact OPP for the clock corresponding to the
635  * specified index from a starting freq for a device.
636  *
637  * Return: matching *opp , else returns ERR_PTR in case of error and should be
638  * handled using IS_ERR. Error return values can be:
639  * EINVAL:	for bad pointer
640  * ERANGE:	no match found for search
641  * ENODEV:	if device not found in list of registered devices
642  *
643  * The callers are required to call dev_pm_opp_put() for the returned OPP after
644  * use.
645  */
646 struct dev_pm_opp *
647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 				   u32 index, bool available)
649 {
650 	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651 }
652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653 
654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 						   unsigned long *freq)
656 {
657 	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 					assert_single_clk);
659 }
660 
661 /**
662  * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663  * @dev:	device for which we do this operation
664  * @freq:	Start frequency
665  *
666  * Search for the matching ceil *available* OPP from a starting freq
667  * for a device.
668  *
669  * Return: matching *opp and refreshes *freq accordingly, else returns
670  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671  * values can be:
672  * EINVAL:	for bad pointer
673  * ERANGE:	no match found for search
674  * ENODEV:	if device not found in list of registered devices
675  *
676  * The callers are required to call dev_pm_opp_put() for the returned OPP after
677  * use.
678  */
679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 					     unsigned long *freq)
681 {
682 	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683 }
684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685 
686 /**
687  * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688  *					 clock corresponding to the index
689  * @dev:	Device for which we do this operation
690  * @freq:	Start frequency
691  * @index:	Clock index
692  *
693  * Search for the matching ceil *available* OPP for the clock corresponding to
694  * the specified index from a starting freq for a device.
695  *
696  * Return: matching *opp and refreshes *freq accordingly, else returns
697  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698  * values can be:
699  * EINVAL:	for bad pointer
700  * ERANGE:	no match found for search
701  * ENODEV:	if device not found in list of registered devices
702  *
703  * The callers are required to call dev_pm_opp_put() for the returned OPP after
704  * use.
705  */
706 struct dev_pm_opp *
707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 				  u32 index)
709 {
710 	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711 }
712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713 
714 /**
715  * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716  * @dev:	device for which we do this operation
717  * @freq:	Start frequency
718  *
719  * Search for the matching floor *available* OPP from a starting freq
720  * for a device.
721  *
722  * Return: matching *opp and refreshes *freq accordingly, else returns
723  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724  * values can be:
725  * EINVAL:	for bad pointer
726  * ERANGE:	no match found for search
727  * ENODEV:	if device not found in list of registered devices
728  *
729  * The callers are required to call dev_pm_opp_put() for the returned OPP after
730  * use.
731  */
732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 					      unsigned long *freq)
734 {
735 	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736 }
737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738 
739 /**
740  * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741  *					  clock corresponding to the index
742  * @dev:	Device for which we do this operation
743  * @freq:	Start frequency
744  * @index:	Clock index
745  *
746  * Search for the matching floor *available* OPP for the clock corresponding to
747  * the specified index from a starting freq for a device.
748  *
749  * Return: matching *opp and refreshes *freq accordingly, else returns
750  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751  * values can be:
752  * EINVAL:	for bad pointer
753  * ERANGE:	no match found for search
754  * ENODEV:	if device not found in list of registered devices
755  *
756  * The callers are required to call dev_pm_opp_put() for the returned OPP after
757  * use.
758  */
759 struct dev_pm_opp *
760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 				   u32 index)
762 {
763 	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764 }
765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766 
767 /**
768  * dev_pm_opp_find_level_exact() - search for an exact level
769  * @dev:		device for which we do this operation
770  * @level:		level to search for
771  *
772  * Return: Searches for exact match in the opp table and returns pointer to the
773  * matching opp if found, else returns ERR_PTR in case of error and should
774  * be handled using IS_ERR. Error return values can be:
775  * EINVAL:	for bad pointer
776  * ERANGE:	no match found for search
777  * ENODEV:	if device not found in list of registered devices
778  *
779  * The callers are required to call dev_pm_opp_put() for the returned OPP after
780  * use.
781  */
782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 					       unsigned int level)
784 {
785 	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786 }
787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788 
789 /**
790  * dev_pm_opp_find_level_ceil() - search for an rounded up level
791  * @dev:		device for which we do this operation
792  * @level:		level to search for
793  *
794  * Return: Searches for rounded up match in the opp table and returns pointer
795  * to the  matching opp if found, else returns ERR_PTR in case of error and
796  * should be handled using IS_ERR. Error return values can be:
797  * EINVAL:	for bad pointer
798  * ERANGE:	no match found for search
799  * ENODEV:	if device not found in list of registered devices
800  *
801  * The callers are required to call dev_pm_opp_put() for the returned OPP after
802  * use.
803  */
804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 					      unsigned int *level)
806 {
807 	unsigned long temp = *level;
808 	struct dev_pm_opp *opp;
809 
810 	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 	if (IS_ERR(opp))
812 		return opp;
813 
814 	/* False match */
815 	if (temp == OPP_LEVEL_UNSET) {
816 		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817 		dev_pm_opp_put(opp);
818 		return ERR_PTR(-ENODEV);
819 	}
820 
821 	*level = temp;
822 	return opp;
823 }
824 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825 
826 /**
827  * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828  * @dev:	device for which we do this operation
829  * @level:	Start level
830  *
831  * Search for the matching floor *available* OPP from a starting level
832  * for a device.
833  *
834  * Return: matching *opp and refreshes *level accordingly, else returns
835  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836  * values can be:
837  * EINVAL:	for bad pointer
838  * ERANGE:	no match found for search
839  * ENODEV:	if device not found in list of registered devices
840  *
841  * The callers are required to call dev_pm_opp_put() for the returned OPP after
842  * use.
843  */
844 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845 					       unsigned int *level)
846 {
847 	unsigned long temp = *level;
848 	struct dev_pm_opp *opp;
849 
850 	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
851 	*level = temp;
852 	return opp;
853 }
854 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855 
856 /**
857  * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858  * @dev:	device for which we do this operation
859  * @bw:	start bandwidth
860  * @index:	which bandwidth to compare, in case of OPPs with several values
861  *
862  * Search for the matching floor *available* OPP from a starting bandwidth
863  * for a device.
864  *
865  * Return: matching *opp and refreshes *bw accordingly, else returns
866  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867  * values can be:
868  * EINVAL:	for bad pointer
869  * ERANGE:	no match found for search
870  * ENODEV:	if device not found in list of registered devices
871  *
872  * The callers are required to call dev_pm_opp_put() for the returned OPP after
873  * use.
874  */
875 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876 					   int index)
877 {
878 	unsigned long temp = *bw;
879 	struct dev_pm_opp *opp;
880 
881 	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
882 	*bw = temp;
883 	return opp;
884 }
885 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886 
887 /**
888  * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889  * @dev:	device for which we do this operation
890  * @bw:	start bandwidth
891  * @index:	which bandwidth to compare, in case of OPPs with several values
892  *
893  * Search for the matching floor *available* OPP from a starting bandwidth
894  * for a device.
895  *
896  * Return: matching *opp and refreshes *bw accordingly, else returns
897  * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898  * values can be:
899  * EINVAL:	for bad pointer
900  * ERANGE:	no match found for search
901  * ENODEV:	if device not found in list of registered devices
902  *
903  * The callers are required to call dev_pm_opp_put() for the returned OPP after
904  * use.
905  */
906 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907 					    unsigned int *bw, int index)
908 {
909 	unsigned long temp = *bw;
910 	struct dev_pm_opp *opp;
911 
912 	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
913 	*bw = temp;
914 	return opp;
915 }
916 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917 
918 static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919 			    struct dev_pm_opp_supply *supply)
920 {
921 	int ret;
922 
923 	/* Regulator not available for device */
924 	if (IS_ERR(reg)) {
925 		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926 			PTR_ERR(reg));
927 		return 0;
928 	}
929 
930 	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931 		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932 
933 	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
934 					    supply->u_volt, supply->u_volt_max);
935 	if (ret)
936 		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937 			__func__, supply->u_volt_min, supply->u_volt,
938 			supply->u_volt_max, ret);
939 
940 	return ret;
941 }
942 
943 static int
944 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945 		       struct dev_pm_opp *opp, void *data, bool scaling_down)
946 {
947 	unsigned long *target = data;
948 	unsigned long freq;
949 	int ret;
950 
951 	/* One of target and opp must be available */
952 	if (target) {
953 		freq = *target;
954 	} else if (opp) {
955 		freq = opp->rates[0];
956 	} else {
957 		WARN_ON(1);
958 		return -EINVAL;
959 	}
960 
961 	ret = clk_set_rate(opp_table->clk, freq);
962 	if (ret) {
963 		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964 			ret);
965 	} else {
966 		opp_table->current_rate_single_clk = freq;
967 	}
968 
969 	return ret;
970 }
971 
972 /*
973  * Simple implementation for configuring multiple clocks. Configure clocks in
974  * the order in which they are present in the array while scaling up.
975  */
976 int dev_pm_opp_config_clks_simple(struct device *dev,
977 		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978 		bool scaling_down)
979 {
980 	int ret, i;
981 
982 	if (scaling_down) {
983 		for (i = opp_table->clk_count - 1; i >= 0; i--) {
984 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
985 			if (ret) {
986 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 					ret);
988 				return ret;
989 			}
990 		}
991 	} else {
992 		for (i = 0; i < opp_table->clk_count; i++) {
993 			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
994 			if (ret) {
995 				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996 					ret);
997 				return ret;
998 			}
999 		}
1000 	}
1001 
1002 	return 0;
1003 }
1004 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005 
1006 static int _opp_config_regulator_single(struct device *dev,
1007 			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008 			struct regulator **regulators, unsigned int count)
1009 {
1010 	struct regulator *reg = regulators[0];
1011 	int ret;
1012 
1013 	/* This function only supports single regulator per device */
1014 	if (WARN_ON(count > 1)) {
1015 		dev_err(dev, "multiple regulators are not supported\n");
1016 		return -EINVAL;
1017 	}
1018 
1019 	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020 	if (ret)
1021 		return ret;
1022 
1023 	/*
1024 	 * Enable the regulator after setting its voltages, otherwise it breaks
1025 	 * some boot-enabled regulators.
1026 	 */
1027 	if (unlikely(!new_opp->opp_table->enabled)) {
1028 		ret = regulator_enable(reg);
1029 		if (ret < 0)
1030 			dev_warn(dev, "Failed to enable regulator: %d", ret);
1031 	}
1032 
1033 	return 0;
1034 }
1035 
1036 static int _set_opp_bw(const struct opp_table *opp_table,
1037 		       struct dev_pm_opp *opp, struct device *dev)
1038 {
1039 	u32 avg, peak;
1040 	int i, ret;
1041 
1042 	if (!opp_table->paths)
1043 		return 0;
1044 
1045 	for (i = 0; i < opp_table->path_count; i++) {
1046 		if (!opp) {
1047 			avg = 0;
1048 			peak = 0;
1049 		} else {
1050 			avg = opp->bandwidth[i].avg;
1051 			peak = opp->bandwidth[i].peak;
1052 		}
1053 		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054 		if (ret) {
1055 			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056 				opp ? "set" : "remove", i, ret);
1057 			return ret;
1058 		}
1059 	}
1060 
1061 	return 0;
1062 }
1063 
1064 /* This is only called for PM domain for now */
1065 static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066 			      struct dev_pm_opp *opp, bool up)
1067 {
1068 	struct device **devs = opp_table->required_devs;
1069 	struct dev_pm_opp *required_opp;
1070 	int index, target, delta, ret;
1071 
1072 	if (!devs)
1073 		return 0;
1074 
1075 	/* required-opps not fully initialized yet */
1076 	if (lazy_linking_pending(opp_table))
1077 		return -EBUSY;
1078 
1079 	/* Scaling up? Set required OPPs in normal order, else reverse */
1080 	if (up) {
1081 		index = 0;
1082 		target = opp_table->required_opp_count;
1083 		delta = 1;
1084 	} else {
1085 		index = opp_table->required_opp_count - 1;
1086 		target = -1;
1087 		delta = -1;
1088 	}
1089 
1090 	while (index != target) {
1091 		if (devs[index]) {
1092 			required_opp = opp ? opp->required_opps[index] : NULL;
1093 
1094 			ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095 			if (ret)
1096 				return ret;
1097 		}
1098 
1099 		index += delta;
1100 	}
1101 
1102 	return 0;
1103 }
1104 
1105 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1106 {
1107 	unsigned int level = 0;
1108 	int ret = 0;
1109 
1110 	if (opp) {
1111 		if (opp->level == OPP_LEVEL_UNSET)
1112 			return 0;
1113 
1114 		level = opp->level;
1115 	}
1116 
1117 	/* Request a new performance state through the device's PM domain. */
1118 	ret = dev_pm_domain_set_performance_state(dev, level);
1119 	if (ret)
1120 		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1121 			ret);
1122 
1123 	return ret;
1124 }
1125 
1126 static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1127 {
1128 	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1129 	unsigned long freq;
1130 
1131 	if (!IS_ERR(opp_table->clk)) {
1132 		freq = clk_get_rate(opp_table->clk);
1133 		opp = _find_freq_ceil(opp_table, &freq);
1134 	}
1135 
1136 	/*
1137 	 * Unable to find the current OPP ? Pick the first from the list since
1138 	 * it is in ascending order, otherwise rest of the code will need to
1139 	 * make special checks to validate current_opp.
1140 	 */
1141 	if (IS_ERR(opp)) {
1142 		mutex_lock(&opp_table->lock);
1143 		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1144 		dev_pm_opp_get(opp);
1145 		mutex_unlock(&opp_table->lock);
1146 	}
1147 
1148 	opp_table->current_opp = opp;
1149 }
1150 
1151 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1152 {
1153 	int ret;
1154 
1155 	if (!opp_table->enabled)
1156 		return 0;
1157 
1158 	/*
1159 	 * Some drivers need to support cases where some platforms may
1160 	 * have OPP table for the device, while others don't and
1161 	 * opp_set_rate() just needs to behave like clk_set_rate().
1162 	 */
1163 	if (!_get_opp_count(opp_table))
1164 		return 0;
1165 
1166 	ret = _set_opp_bw(opp_table, NULL, dev);
1167 	if (ret)
1168 		return ret;
1169 
1170 	if (opp_table->regulators)
1171 		regulator_disable(opp_table->regulators[0]);
1172 
1173 	ret = _set_opp_level(dev, NULL);
1174 	if (ret)
1175 		goto out;
1176 
1177 	ret = _set_required_opps(dev, opp_table, NULL, false);
1178 
1179 out:
1180 	opp_table->enabled = false;
1181 	return ret;
1182 }
1183 
1184 static int _set_opp(struct device *dev, struct opp_table *opp_table,
1185 		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1186 {
1187 	struct dev_pm_opp *old_opp;
1188 	int scaling_down, ret;
1189 
1190 	if (unlikely(!opp))
1191 		return _disable_opp_table(dev, opp_table);
1192 
1193 	/* Find the currently set OPP if we don't know already */
1194 	if (unlikely(!opp_table->current_opp))
1195 		_find_current_opp(dev, opp_table);
1196 
1197 	old_opp = opp_table->current_opp;
1198 
1199 	/* Return early if nothing to do */
1200 	if (!forced && old_opp == opp && opp_table->enabled) {
1201 		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1202 		return 0;
1203 	}
1204 
1205 	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1206 		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1207 		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1208 		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1209 
1210 	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1211 	if (scaling_down == -1)
1212 		scaling_down = 0;
1213 
1214 	/* Scaling up? Configure required OPPs before frequency */
1215 	if (!scaling_down) {
1216 		ret = _set_required_opps(dev, opp_table, opp, true);
1217 		if (ret) {
1218 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1219 			return ret;
1220 		}
1221 
1222 		ret = _set_opp_level(dev, opp);
1223 		if (ret)
1224 			return ret;
1225 
1226 		ret = _set_opp_bw(opp_table, opp, dev);
1227 		if (ret) {
1228 			dev_err(dev, "Failed to set bw: %d\n", ret);
1229 			return ret;
1230 		}
1231 
1232 		if (opp_table->config_regulators) {
1233 			ret = opp_table->config_regulators(dev, old_opp, opp,
1234 							   opp_table->regulators,
1235 							   opp_table->regulator_count);
1236 			if (ret) {
1237 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1238 					ret);
1239 				return ret;
1240 			}
1241 		}
1242 	}
1243 
1244 	if (opp_table->config_clks) {
1245 		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1246 		if (ret)
1247 			return ret;
1248 	}
1249 
1250 	/* Scaling down? Configure required OPPs after frequency */
1251 	if (scaling_down) {
1252 		if (opp_table->config_regulators) {
1253 			ret = opp_table->config_regulators(dev, old_opp, opp,
1254 							   opp_table->regulators,
1255 							   opp_table->regulator_count);
1256 			if (ret) {
1257 				dev_err(dev, "Failed to set regulator voltages: %d\n",
1258 					ret);
1259 				return ret;
1260 			}
1261 		}
1262 
1263 		ret = _set_opp_bw(opp_table, opp, dev);
1264 		if (ret) {
1265 			dev_err(dev, "Failed to set bw: %d\n", ret);
1266 			return ret;
1267 		}
1268 
1269 		ret = _set_opp_level(dev, opp);
1270 		if (ret)
1271 			return ret;
1272 
1273 		ret = _set_required_opps(dev, opp_table, opp, false);
1274 		if (ret) {
1275 			dev_err(dev, "Failed to set required opps: %d\n", ret);
1276 			return ret;
1277 		}
1278 	}
1279 
1280 	opp_table->enabled = true;
1281 	dev_pm_opp_put(old_opp);
1282 
1283 	/* Make sure current_opp doesn't get freed */
1284 	dev_pm_opp_get(opp);
1285 	opp_table->current_opp = opp;
1286 
1287 	return ret;
1288 }
1289 
1290 /**
1291  * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1292  * @dev:	 device for which we do this operation
1293  * @target_freq: frequency to achieve
1294  *
1295  * This configures the power-supplies to the levels specified by the OPP
1296  * corresponding to the target_freq, and programs the clock to a value <=
1297  * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1298  * provided by the opp, should have already rounded to the target OPP's
1299  * frequency.
1300  */
1301 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1302 {
1303 	struct opp_table *opp_table;
1304 	unsigned long freq = 0, temp_freq;
1305 	struct dev_pm_opp *opp = NULL;
1306 	bool forced = false;
1307 	int ret;
1308 
1309 	opp_table = _find_opp_table(dev);
1310 	if (IS_ERR(opp_table)) {
1311 		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1312 		return PTR_ERR(opp_table);
1313 	}
1314 
1315 	if (target_freq) {
1316 		/*
1317 		 * For IO devices which require an OPP on some platforms/SoCs
1318 		 * while just needing to scale the clock on some others
1319 		 * we look for empty OPP tables with just a clock handle and
1320 		 * scale only the clk. This makes dev_pm_opp_set_rate()
1321 		 * equivalent to a clk_set_rate()
1322 		 */
1323 		if (!_get_opp_count(opp_table)) {
1324 			ret = opp_table->config_clks(dev, opp_table, NULL,
1325 						     &target_freq, false);
1326 			goto put_opp_table;
1327 		}
1328 
1329 		freq = clk_round_rate(opp_table->clk, target_freq);
1330 		if ((long)freq <= 0)
1331 			freq = target_freq;
1332 
1333 		/*
1334 		 * The clock driver may support finer resolution of the
1335 		 * frequencies than the OPP table, don't update the frequency we
1336 		 * pass to clk_set_rate() here.
1337 		 */
1338 		temp_freq = freq;
1339 		opp = _find_freq_ceil(opp_table, &temp_freq);
1340 		if (IS_ERR(opp)) {
1341 			ret = PTR_ERR(opp);
1342 			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1343 				__func__, freq, ret);
1344 			goto put_opp_table;
1345 		}
1346 
1347 		/*
1348 		 * An OPP entry specifies the highest frequency at which other
1349 		 * properties of the OPP entry apply. Even if the new OPP is
1350 		 * same as the old one, we may still reach here for a different
1351 		 * value of the frequency. In such a case, do not abort but
1352 		 * configure the hardware to the desired frequency forcefully.
1353 		 */
1354 		forced = opp_table->current_rate_single_clk != freq;
1355 	}
1356 
1357 	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1358 
1359 	if (freq)
1360 		dev_pm_opp_put(opp);
1361 
1362 put_opp_table:
1363 	dev_pm_opp_put_opp_table(opp_table);
1364 	return ret;
1365 }
1366 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1367 
1368 /**
1369  * dev_pm_opp_set_opp() - Configure device for OPP
1370  * @dev: device for which we do this operation
1371  * @opp: OPP to set to
1372  *
1373  * This configures the device based on the properties of the OPP passed to this
1374  * routine.
1375  *
1376  * Return: 0 on success, a negative error number otherwise.
1377  */
1378 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1379 {
1380 	struct opp_table *opp_table;
1381 	int ret;
1382 
1383 	opp_table = _find_opp_table(dev);
1384 	if (IS_ERR(opp_table)) {
1385 		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1386 		return PTR_ERR(opp_table);
1387 	}
1388 
1389 	ret = _set_opp(dev, opp_table, opp, NULL, false);
1390 	dev_pm_opp_put_opp_table(opp_table);
1391 
1392 	return ret;
1393 }
1394 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1395 
1396 /* OPP-dev Helpers */
1397 static void _remove_opp_dev(struct opp_device *opp_dev,
1398 			    struct opp_table *opp_table)
1399 {
1400 	opp_debug_unregister(opp_dev, opp_table);
1401 	list_del(&opp_dev->node);
1402 	kfree(opp_dev);
1403 }
1404 
1405 struct opp_device *_add_opp_dev(const struct device *dev,
1406 				struct opp_table *opp_table)
1407 {
1408 	struct opp_device *opp_dev;
1409 
1410 	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1411 	if (!opp_dev)
1412 		return NULL;
1413 
1414 	/* Initialize opp-dev */
1415 	opp_dev->dev = dev;
1416 
1417 	mutex_lock(&opp_table->lock);
1418 	list_add(&opp_dev->node, &opp_table->dev_list);
1419 	mutex_unlock(&opp_table->lock);
1420 
1421 	/* Create debugfs entries for the opp_table */
1422 	opp_debug_register(opp_dev, opp_table);
1423 
1424 	return opp_dev;
1425 }
1426 
1427 static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1428 {
1429 	struct opp_table *opp_table;
1430 	struct opp_device *opp_dev;
1431 	int ret;
1432 
1433 	/*
1434 	 * Allocate a new OPP table. In the infrequent case where a new
1435 	 * device is needed to be added, we pay this penalty.
1436 	 */
1437 	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1438 	if (!opp_table)
1439 		return ERR_PTR(-ENOMEM);
1440 
1441 	mutex_init(&opp_table->lock);
1442 	INIT_LIST_HEAD(&opp_table->dev_list);
1443 	INIT_LIST_HEAD(&opp_table->lazy);
1444 
1445 	opp_table->clk = ERR_PTR(-ENODEV);
1446 
1447 	/* Mark regulator count uninitialized */
1448 	opp_table->regulator_count = -1;
1449 
1450 	opp_dev = _add_opp_dev(dev, opp_table);
1451 	if (!opp_dev) {
1452 		ret = -ENOMEM;
1453 		goto err;
1454 	}
1455 
1456 	_of_init_opp_table(opp_table, dev, index);
1457 
1458 	/* Find interconnect path(s) for the device */
1459 	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1460 	if (ret) {
1461 		if (ret == -EPROBE_DEFER)
1462 			goto remove_opp_dev;
1463 
1464 		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1465 			 __func__, ret);
1466 	}
1467 
1468 	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1469 	INIT_LIST_HEAD(&opp_table->opp_list);
1470 	kref_init(&opp_table->kref);
1471 
1472 	return opp_table;
1473 
1474 remove_opp_dev:
1475 	_of_clear_opp_table(opp_table);
1476 	_remove_opp_dev(opp_dev, opp_table);
1477 	mutex_destroy(&opp_table->lock);
1478 err:
1479 	kfree(opp_table);
1480 	return ERR_PTR(ret);
1481 }
1482 
1483 void _get_opp_table_kref(struct opp_table *opp_table)
1484 {
1485 	kref_get(&opp_table->kref);
1486 }
1487 
1488 static struct opp_table *_update_opp_table_clk(struct device *dev,
1489 					       struct opp_table *opp_table,
1490 					       bool getclk)
1491 {
1492 	int ret;
1493 
1494 	/*
1495 	 * Return early if we don't need to get clk or we have already done it
1496 	 * earlier.
1497 	 */
1498 	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1499 	    opp_table->clks)
1500 		return opp_table;
1501 
1502 	/* Find clk for the device */
1503 	opp_table->clk = clk_get(dev, NULL);
1504 
1505 	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1506 	if (!ret) {
1507 		opp_table->config_clks = _opp_config_clk_single;
1508 		opp_table->clk_count = 1;
1509 		return opp_table;
1510 	}
1511 
1512 	if (ret == -ENOENT) {
1513 		/*
1514 		 * There are few platforms which don't want the OPP core to
1515 		 * manage device's clock settings. In such cases neither the
1516 		 * platform provides the clks explicitly to us, nor the DT
1517 		 * contains a valid clk entry. The OPP nodes in DT may still
1518 		 * contain "opp-hz" property though, which we need to parse and
1519 		 * allow the platform to find an OPP based on freq later on.
1520 		 *
1521 		 * This is a simple solution to take care of such corner cases,
1522 		 * i.e. make the clk_count 1, which lets us allocate space for
1523 		 * frequency in opp->rates and also parse the entries in DT.
1524 		 */
1525 		opp_table->clk_count = 1;
1526 
1527 		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1528 		return opp_table;
1529 	}
1530 
1531 	dev_pm_opp_put_opp_table(opp_table);
1532 	dev_err_probe(dev, ret, "Couldn't find clock\n");
1533 
1534 	return ERR_PTR(ret);
1535 }
1536 
1537 /*
1538  * We need to make sure that the OPP table for a device doesn't get added twice,
1539  * if this routine gets called in parallel with the same device pointer.
1540  *
1541  * The simplest way to enforce that is to perform everything (find existing
1542  * table and if not found, create a new one) under the opp_table_lock, so only
1543  * one creator gets access to the same. But that expands the critical section
1544  * under the lock and may end up causing circular dependencies with frameworks
1545  * like debugfs, interconnect or clock framework as they may be direct or
1546  * indirect users of OPP core.
1547  *
1548  * And for that reason we have to go for a bit tricky implementation here, which
1549  * uses the opp_tables_busy flag to indicate if another creator is in the middle
1550  * of adding an OPP table and others should wait for it to finish.
1551  */
1552 struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1553 					 bool getclk)
1554 {
1555 	struct opp_table *opp_table;
1556 
1557 again:
1558 	mutex_lock(&opp_table_lock);
1559 
1560 	opp_table = _find_opp_table_unlocked(dev);
1561 	if (!IS_ERR(opp_table))
1562 		goto unlock;
1563 
1564 	/*
1565 	 * The opp_tables list or an OPP table's dev_list is getting updated by
1566 	 * another user, wait for it to finish.
1567 	 */
1568 	if (unlikely(opp_tables_busy)) {
1569 		mutex_unlock(&opp_table_lock);
1570 		cpu_relax();
1571 		goto again;
1572 	}
1573 
1574 	opp_tables_busy = true;
1575 	opp_table = _managed_opp(dev, index);
1576 
1577 	/* Drop the lock to reduce the size of critical section */
1578 	mutex_unlock(&opp_table_lock);
1579 
1580 	if (opp_table) {
1581 		if (!_add_opp_dev(dev, opp_table)) {
1582 			dev_pm_opp_put_opp_table(opp_table);
1583 			opp_table = ERR_PTR(-ENOMEM);
1584 		}
1585 
1586 		mutex_lock(&opp_table_lock);
1587 	} else {
1588 		opp_table = _allocate_opp_table(dev, index);
1589 
1590 		mutex_lock(&opp_table_lock);
1591 		if (!IS_ERR(opp_table))
1592 			list_add(&opp_table->node, &opp_tables);
1593 	}
1594 
1595 	opp_tables_busy = false;
1596 
1597 unlock:
1598 	mutex_unlock(&opp_table_lock);
1599 
1600 	return _update_opp_table_clk(dev, opp_table, getclk);
1601 }
1602 
1603 static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1604 {
1605 	return _add_opp_table_indexed(dev, 0, getclk);
1606 }
1607 
1608 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1609 {
1610 	return _find_opp_table(dev);
1611 }
1612 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1613 
1614 static void _opp_table_kref_release(struct kref *kref)
1615 {
1616 	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1617 	struct opp_device *opp_dev, *temp;
1618 	int i;
1619 
1620 	/* Drop the lock as soon as we can */
1621 	list_del(&opp_table->node);
1622 	mutex_unlock(&opp_table_lock);
1623 
1624 	if (opp_table->current_opp)
1625 		dev_pm_opp_put(opp_table->current_opp);
1626 
1627 	_of_clear_opp_table(opp_table);
1628 
1629 	/* Release automatically acquired single clk */
1630 	if (!IS_ERR(opp_table->clk))
1631 		clk_put(opp_table->clk);
1632 
1633 	if (opp_table->paths) {
1634 		for (i = 0; i < opp_table->path_count; i++)
1635 			icc_put(opp_table->paths[i]);
1636 		kfree(opp_table->paths);
1637 	}
1638 
1639 	WARN_ON(!list_empty(&opp_table->opp_list));
1640 
1641 	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1642 		_remove_opp_dev(opp_dev, opp_table);
1643 
1644 	mutex_destroy(&opp_table->lock);
1645 	kfree(opp_table);
1646 }
1647 
1648 void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1649 {
1650 	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1651 		       &opp_table_lock);
1652 }
1653 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1654 
1655 void _opp_free(struct dev_pm_opp *opp)
1656 {
1657 	kfree(opp);
1658 }
1659 
1660 static void _opp_kref_release(struct kref *kref)
1661 {
1662 	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1663 	struct opp_table *opp_table = opp->opp_table;
1664 
1665 	list_del(&opp->node);
1666 	mutex_unlock(&opp_table->lock);
1667 
1668 	/*
1669 	 * Notify the changes in the availability of the operable
1670 	 * frequency/voltage list.
1671 	 */
1672 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1673 	_of_clear_opp(opp_table, opp);
1674 	opp_debug_remove_one(opp);
1675 	kfree(opp);
1676 }
1677 
1678 void dev_pm_opp_get(struct dev_pm_opp *opp)
1679 {
1680 	kref_get(&opp->kref);
1681 }
1682 
1683 void dev_pm_opp_put(struct dev_pm_opp *opp)
1684 {
1685 	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1686 }
1687 EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1688 
1689 /**
1690  * dev_pm_opp_remove()  - Remove an OPP from OPP table
1691  * @dev:	device for which we do this operation
1692  * @freq:	OPP to remove with matching 'freq'
1693  *
1694  * This function removes an opp from the opp table.
1695  */
1696 void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1697 {
1698 	struct dev_pm_opp *opp = NULL, *iter;
1699 	struct opp_table *opp_table;
1700 
1701 	opp_table = _find_opp_table(dev);
1702 	if (IS_ERR(opp_table))
1703 		return;
1704 
1705 	if (!assert_single_clk(opp_table))
1706 		goto put_table;
1707 
1708 	mutex_lock(&opp_table->lock);
1709 
1710 	list_for_each_entry(iter, &opp_table->opp_list, node) {
1711 		if (iter->rates[0] == freq) {
1712 			opp = iter;
1713 			break;
1714 		}
1715 	}
1716 
1717 	mutex_unlock(&opp_table->lock);
1718 
1719 	if (opp) {
1720 		dev_pm_opp_put(opp);
1721 
1722 		/* Drop the reference taken by dev_pm_opp_add() */
1723 		dev_pm_opp_put_opp_table(opp_table);
1724 	} else {
1725 		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1726 			 __func__, freq);
1727 	}
1728 
1729 put_table:
1730 	/* Drop the reference taken by _find_opp_table() */
1731 	dev_pm_opp_put_opp_table(opp_table);
1732 }
1733 EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1734 
1735 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1736 					bool dynamic)
1737 {
1738 	struct dev_pm_opp *opp = NULL, *temp;
1739 
1740 	mutex_lock(&opp_table->lock);
1741 	list_for_each_entry(temp, &opp_table->opp_list, node) {
1742 		/*
1743 		 * Refcount must be dropped only once for each OPP by OPP core,
1744 		 * do that with help of "removed" flag.
1745 		 */
1746 		if (!temp->removed && dynamic == temp->dynamic) {
1747 			opp = temp;
1748 			break;
1749 		}
1750 	}
1751 
1752 	mutex_unlock(&opp_table->lock);
1753 	return opp;
1754 }
1755 
1756 /*
1757  * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1758  * happen lock less to avoid circular dependency issues. This routine must be
1759  * called without the opp_table->lock held.
1760  */
1761 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1762 {
1763 	struct dev_pm_opp *opp;
1764 
1765 	while ((opp = _opp_get_next(opp_table, dynamic))) {
1766 		opp->removed = true;
1767 		dev_pm_opp_put(opp);
1768 
1769 		/* Drop the references taken by dev_pm_opp_add() */
1770 		if (dynamic)
1771 			dev_pm_opp_put_opp_table(opp_table);
1772 	}
1773 }
1774 
1775 bool _opp_remove_all_static(struct opp_table *opp_table)
1776 {
1777 	mutex_lock(&opp_table->lock);
1778 
1779 	if (!opp_table->parsed_static_opps) {
1780 		mutex_unlock(&opp_table->lock);
1781 		return false;
1782 	}
1783 
1784 	if (--opp_table->parsed_static_opps) {
1785 		mutex_unlock(&opp_table->lock);
1786 		return true;
1787 	}
1788 
1789 	mutex_unlock(&opp_table->lock);
1790 
1791 	_opp_remove_all(opp_table, false);
1792 	return true;
1793 }
1794 
1795 /**
1796  * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1797  * @dev:	device for which we do this operation
1798  *
1799  * This function removes all dynamically created OPPs from the opp table.
1800  */
1801 void dev_pm_opp_remove_all_dynamic(struct device *dev)
1802 {
1803 	struct opp_table *opp_table;
1804 
1805 	opp_table = _find_opp_table(dev);
1806 	if (IS_ERR(opp_table))
1807 		return;
1808 
1809 	_opp_remove_all(opp_table, true);
1810 
1811 	/* Drop the reference taken by _find_opp_table() */
1812 	dev_pm_opp_put_opp_table(opp_table);
1813 }
1814 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1815 
1816 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1817 {
1818 	struct dev_pm_opp *opp;
1819 	int supply_count, supply_size, icc_size, clk_size;
1820 
1821 	/* Allocate space for at least one supply */
1822 	supply_count = opp_table->regulator_count > 0 ?
1823 			opp_table->regulator_count : 1;
1824 	supply_size = sizeof(*opp->supplies) * supply_count;
1825 	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1826 	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1827 
1828 	/* allocate new OPP node and supplies structures */
1829 	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1830 	if (!opp)
1831 		return NULL;
1832 
1833 	/* Put the supplies, bw and clock at the end of the OPP structure */
1834 	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1835 
1836 	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1837 
1838 	if (icc_size)
1839 		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1840 
1841 	INIT_LIST_HEAD(&opp->node);
1842 
1843 	opp->level = OPP_LEVEL_UNSET;
1844 
1845 	return opp;
1846 }
1847 
1848 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1849 					 struct opp_table *opp_table)
1850 {
1851 	struct regulator *reg;
1852 	int i;
1853 
1854 	if (!opp_table->regulators)
1855 		return true;
1856 
1857 	for (i = 0; i < opp_table->regulator_count; i++) {
1858 		reg = opp_table->regulators[i];
1859 
1860 		if (!regulator_is_supported_voltage(reg,
1861 					opp->supplies[i].u_volt_min,
1862 					opp->supplies[i].u_volt_max)) {
1863 			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1864 				__func__, opp->supplies[i].u_volt_min,
1865 				opp->supplies[i].u_volt_max);
1866 			return false;
1867 		}
1868 	}
1869 
1870 	return true;
1871 }
1872 
1873 static int _opp_compare_rate(struct opp_table *opp_table,
1874 			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1875 {
1876 	int i;
1877 
1878 	for (i = 0; i < opp_table->clk_count; i++) {
1879 		if (opp1->rates[i] != opp2->rates[i])
1880 			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1881 	}
1882 
1883 	/* Same rates for both OPPs */
1884 	return 0;
1885 }
1886 
1887 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1888 			   struct dev_pm_opp *opp2)
1889 {
1890 	int i;
1891 
1892 	for (i = 0; i < opp_table->path_count; i++) {
1893 		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1894 			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1895 	}
1896 
1897 	/* Same bw for both OPPs */
1898 	return 0;
1899 }
1900 
1901 /*
1902  * Returns
1903  * 0: opp1 == opp2
1904  * 1: opp1 > opp2
1905  * -1: opp1 < opp2
1906  */
1907 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1908 		     struct dev_pm_opp *opp2)
1909 {
1910 	int ret;
1911 
1912 	ret = _opp_compare_rate(opp_table, opp1, opp2);
1913 	if (ret)
1914 		return ret;
1915 
1916 	ret = _opp_compare_bw(opp_table, opp1, opp2);
1917 	if (ret)
1918 		return ret;
1919 
1920 	if (opp1->level != opp2->level)
1921 		return opp1->level < opp2->level ? -1 : 1;
1922 
1923 	/* Duplicate OPPs */
1924 	return 0;
1925 }
1926 
1927 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1928 			     struct opp_table *opp_table,
1929 			     struct list_head **head)
1930 {
1931 	struct dev_pm_opp *opp;
1932 	int opp_cmp;
1933 
1934 	/*
1935 	 * Insert new OPP in order of increasing frequency and discard if
1936 	 * already present.
1937 	 *
1938 	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1939 	 * loop, don't replace it with head otherwise it will become an infinite
1940 	 * loop.
1941 	 */
1942 	list_for_each_entry(opp, &opp_table->opp_list, node) {
1943 		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1944 		if (opp_cmp > 0) {
1945 			*head = &opp->node;
1946 			continue;
1947 		}
1948 
1949 		if (opp_cmp < 0)
1950 			return 0;
1951 
1952 		/* Duplicate OPPs */
1953 		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1954 			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1955 			 opp->available, new_opp->rates[0],
1956 			 new_opp->supplies[0].u_volt, new_opp->available);
1957 
1958 		/* Should we compare voltages for all regulators here ? */
1959 		return opp->available &&
1960 		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1961 	}
1962 
1963 	return 0;
1964 }
1965 
1966 void _required_opps_available(struct dev_pm_opp *opp, int count)
1967 {
1968 	int i;
1969 
1970 	for (i = 0; i < count; i++) {
1971 		if (opp->required_opps[i]->available)
1972 			continue;
1973 
1974 		opp->available = false;
1975 		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1976 			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1977 		return;
1978 	}
1979 }
1980 
1981 /*
1982  * Returns:
1983  * 0: On success. And appropriate error message for duplicate OPPs.
1984  * -EBUSY: For OPP with same freq/volt and is available. The callers of
1985  *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1986  *  sure we don't print error messages unnecessarily if different parts of
1987  *  kernel try to initialize the OPP table.
1988  * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1989  *  should be considered an error by the callers of _opp_add().
1990  */
1991 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1992 	     struct opp_table *opp_table)
1993 {
1994 	struct list_head *head;
1995 	int ret;
1996 
1997 	mutex_lock(&opp_table->lock);
1998 	head = &opp_table->opp_list;
1999 
2000 	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2001 	if (ret) {
2002 		mutex_unlock(&opp_table->lock);
2003 		return ret;
2004 	}
2005 
2006 	list_add(&new_opp->node, head);
2007 	mutex_unlock(&opp_table->lock);
2008 
2009 	new_opp->opp_table = opp_table;
2010 	kref_init(&new_opp->kref);
2011 
2012 	opp_debug_create_one(new_opp, opp_table);
2013 
2014 	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2015 		new_opp->available = false;
2016 		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2017 			 __func__, new_opp->rates[0]);
2018 	}
2019 
2020 	/* required-opps not fully initialized yet */
2021 	if (lazy_linking_pending(opp_table))
2022 		return 0;
2023 
2024 	_required_opps_available(new_opp, opp_table->required_opp_count);
2025 
2026 	return 0;
2027 }
2028 
2029 /**
2030  * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2031  * @opp_table:	OPP table
2032  * @dev:	device for which we do this operation
2033  * @data:	The OPP data for the OPP to add
2034  * @dynamic:	Dynamically added OPPs.
2035  *
2036  * This function adds an opp definition to the opp table and returns status.
2037  * The opp is made available by default and it can be controlled using
2038  * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2039  *
2040  * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2041  * and freed by dev_pm_opp_of_remove_table.
2042  *
2043  * Return:
2044  * 0		On success OR
2045  *		Duplicate OPPs (both freq and volt are same) and opp->available
2046  * -EEXIST	Freq are same and volt are different OR
2047  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2048  * -ENOMEM	Memory allocation failure
2049  */
2050 int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2051 		struct dev_pm_opp_data *data, bool dynamic)
2052 {
2053 	struct dev_pm_opp *new_opp;
2054 	unsigned long tol, u_volt = data->u_volt;
2055 	int ret;
2056 
2057 	if (!assert_single_clk(opp_table))
2058 		return -EINVAL;
2059 
2060 	new_opp = _opp_allocate(opp_table);
2061 	if (!new_opp)
2062 		return -ENOMEM;
2063 
2064 	/* populate the opp table */
2065 	new_opp->rates[0] = data->freq;
2066 	new_opp->level = data->level;
2067 	new_opp->turbo = data->turbo;
2068 	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2069 	new_opp->supplies[0].u_volt = u_volt;
2070 	new_opp->supplies[0].u_volt_min = u_volt - tol;
2071 	new_opp->supplies[0].u_volt_max = u_volt + tol;
2072 	new_opp->available = true;
2073 	new_opp->dynamic = dynamic;
2074 
2075 	ret = _opp_add(dev, new_opp, opp_table);
2076 	if (ret) {
2077 		/* Don't return error for duplicate OPPs */
2078 		if (ret == -EBUSY)
2079 			ret = 0;
2080 		goto free_opp;
2081 	}
2082 
2083 	/*
2084 	 * Notify the changes in the availability of the operable
2085 	 * frequency/voltage list.
2086 	 */
2087 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2088 	return 0;
2089 
2090 free_opp:
2091 	_opp_free(new_opp);
2092 
2093 	return ret;
2094 }
2095 
2096 /*
2097  * This is required only for the V2 bindings, and it enables a platform to
2098  * specify the hierarchy of versions it supports. OPP layer will then enable
2099  * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2100  * property.
2101  */
2102 static int _opp_set_supported_hw(struct opp_table *opp_table,
2103 				 const u32 *versions, unsigned int count)
2104 {
2105 	/* Another CPU that shares the OPP table has set the property ? */
2106 	if (opp_table->supported_hw)
2107 		return 0;
2108 
2109 	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2110 					GFP_KERNEL);
2111 	if (!opp_table->supported_hw)
2112 		return -ENOMEM;
2113 
2114 	opp_table->supported_hw_count = count;
2115 
2116 	return 0;
2117 }
2118 
2119 static void _opp_put_supported_hw(struct opp_table *opp_table)
2120 {
2121 	if (opp_table->supported_hw) {
2122 		kfree(opp_table->supported_hw);
2123 		opp_table->supported_hw = NULL;
2124 		opp_table->supported_hw_count = 0;
2125 	}
2126 }
2127 
2128 /*
2129  * This is required only for the V2 bindings, and it enables a platform to
2130  * specify the extn to be used for certain property names. The properties to
2131  * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2132  * should postfix the property name with -<name> while looking for them.
2133  */
2134 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2135 {
2136 	/* Another CPU that shares the OPP table has set the property ? */
2137 	if (!opp_table->prop_name) {
2138 		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2139 		if (!opp_table->prop_name)
2140 			return -ENOMEM;
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 static void _opp_put_prop_name(struct opp_table *opp_table)
2147 {
2148 	if (opp_table->prop_name) {
2149 		kfree(opp_table->prop_name);
2150 		opp_table->prop_name = NULL;
2151 	}
2152 }
2153 
2154 /*
2155  * In order to support OPP switching, OPP layer needs to know the name of the
2156  * device's regulators, as the core would be required to switch voltages as
2157  * well.
2158  *
2159  * This must be called before any OPPs are initialized for the device.
2160  */
2161 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2162 			       const char * const names[])
2163 {
2164 	const char * const *temp = names;
2165 	struct regulator *reg;
2166 	int count = 0, ret, i;
2167 
2168 	/* Count number of regulators */
2169 	while (*temp++)
2170 		count++;
2171 
2172 	if (!count)
2173 		return -EINVAL;
2174 
2175 	/* Another CPU that shares the OPP table has set the regulators ? */
2176 	if (opp_table->regulators)
2177 		return 0;
2178 
2179 	opp_table->regulators = kmalloc_array(count,
2180 					      sizeof(*opp_table->regulators),
2181 					      GFP_KERNEL);
2182 	if (!opp_table->regulators)
2183 		return -ENOMEM;
2184 
2185 	for (i = 0; i < count; i++) {
2186 		reg = regulator_get_optional(dev, names[i]);
2187 		if (IS_ERR(reg)) {
2188 			ret = dev_err_probe(dev, PTR_ERR(reg),
2189 					    "%s: no regulator (%s) found\n",
2190 					    __func__, names[i]);
2191 			goto free_regulators;
2192 		}
2193 
2194 		opp_table->regulators[i] = reg;
2195 	}
2196 
2197 	opp_table->regulator_count = count;
2198 
2199 	/* Set generic config_regulators() for single regulators here */
2200 	if (count == 1)
2201 		opp_table->config_regulators = _opp_config_regulator_single;
2202 
2203 	return 0;
2204 
2205 free_regulators:
2206 	while (i != 0)
2207 		regulator_put(opp_table->regulators[--i]);
2208 
2209 	kfree(opp_table->regulators);
2210 	opp_table->regulators = NULL;
2211 	opp_table->regulator_count = -1;
2212 
2213 	return ret;
2214 }
2215 
2216 static void _opp_put_regulators(struct opp_table *opp_table)
2217 {
2218 	int i;
2219 
2220 	if (!opp_table->regulators)
2221 		return;
2222 
2223 	if (opp_table->enabled) {
2224 		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2225 			regulator_disable(opp_table->regulators[i]);
2226 	}
2227 
2228 	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2229 		regulator_put(opp_table->regulators[i]);
2230 
2231 	kfree(opp_table->regulators);
2232 	opp_table->regulators = NULL;
2233 	opp_table->regulator_count = -1;
2234 }
2235 
2236 static void _put_clks(struct opp_table *opp_table, int count)
2237 {
2238 	int i;
2239 
2240 	for (i = count - 1; i >= 0; i--)
2241 		clk_put(opp_table->clks[i]);
2242 
2243 	kfree(opp_table->clks);
2244 	opp_table->clks = NULL;
2245 }
2246 
2247 /*
2248  * In order to support OPP switching, OPP layer needs to get pointers to the
2249  * clocks for the device. Simple cases work fine without using this routine
2250  * (i.e. by passing connection-id as NULL), but for a device with multiple
2251  * clocks available, the OPP core needs to know the exact names of the clks to
2252  * use.
2253  *
2254  * This must be called before any OPPs are initialized for the device.
2255  */
2256 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2257 			     const char * const names[],
2258 			     config_clks_t config_clks)
2259 {
2260 	const char * const *temp = names;
2261 	int count = 0, ret, i;
2262 	struct clk *clk;
2263 
2264 	/* Count number of clks */
2265 	while (*temp++)
2266 		count++;
2267 
2268 	/*
2269 	 * This is a special case where we have a single clock, whose connection
2270 	 * id name is NULL, i.e. first two entries are NULL in the array.
2271 	 */
2272 	if (!count && !names[1])
2273 		count = 1;
2274 
2275 	/* Fail early for invalid configurations */
2276 	if (!count || (!config_clks && count > 1))
2277 		return -EINVAL;
2278 
2279 	/* Another CPU that shares the OPP table has set the clkname ? */
2280 	if (opp_table->clks)
2281 		return 0;
2282 
2283 	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2284 					GFP_KERNEL);
2285 	if (!opp_table->clks)
2286 		return -ENOMEM;
2287 
2288 	/* Find clks for the device */
2289 	for (i = 0; i < count; i++) {
2290 		clk = clk_get(dev, names[i]);
2291 		if (IS_ERR(clk)) {
2292 			ret = dev_err_probe(dev, PTR_ERR(clk),
2293 					    "%s: Couldn't find clock with name: %s\n",
2294 					    __func__, names[i]);
2295 			goto free_clks;
2296 		}
2297 
2298 		opp_table->clks[i] = clk;
2299 	}
2300 
2301 	opp_table->clk_count = count;
2302 	opp_table->config_clks = config_clks;
2303 
2304 	/* Set generic single clk set here */
2305 	if (count == 1) {
2306 		if (!opp_table->config_clks)
2307 			opp_table->config_clks = _opp_config_clk_single;
2308 
2309 		/*
2310 		 * We could have just dropped the "clk" field and used "clks"
2311 		 * everywhere. Instead we kept the "clk" field around for
2312 		 * following reasons:
2313 		 *
2314 		 * - avoiding clks[0] everywhere else.
2315 		 * - not running single clk helpers for multiple clk usecase by
2316 		 *   mistake.
2317 		 *
2318 		 * Since this is single-clk case, just update the clk pointer
2319 		 * too.
2320 		 */
2321 		opp_table->clk = opp_table->clks[0];
2322 	}
2323 
2324 	return 0;
2325 
2326 free_clks:
2327 	_put_clks(opp_table, i);
2328 	return ret;
2329 }
2330 
2331 static void _opp_put_clknames(struct opp_table *opp_table)
2332 {
2333 	if (!opp_table->clks)
2334 		return;
2335 
2336 	opp_table->config_clks = NULL;
2337 	opp_table->clk = ERR_PTR(-ENODEV);
2338 
2339 	_put_clks(opp_table, opp_table->clk_count);
2340 }
2341 
2342 /*
2343  * This is useful to support platforms with multiple regulators per device.
2344  *
2345  * This must be called before any OPPs are initialized for the device.
2346  */
2347 static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2348 		struct device *dev, config_regulators_t config_regulators)
2349 {
2350 	/* Another CPU that shares the OPP table has set the helper ? */
2351 	if (!opp_table->config_regulators)
2352 		opp_table->config_regulators = config_regulators;
2353 
2354 	return 0;
2355 }
2356 
2357 static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2358 {
2359 	if (opp_table->config_regulators)
2360 		opp_table->config_regulators = NULL;
2361 }
2362 
2363 static void _opp_detach_genpd(struct opp_table *opp_table)
2364 {
2365 	int index;
2366 
2367 	for (index = 0; index < opp_table->required_opp_count; index++) {
2368 		if (!opp_table->required_devs[index])
2369 			continue;
2370 
2371 		dev_pm_domain_detach(opp_table->required_devs[index], false);
2372 		opp_table->required_devs[index] = NULL;
2373 	}
2374 }
2375 
2376 /*
2377  * Multiple generic power domains for a device are supported with the help of
2378  * virtual genpd devices, which are created for each consumer device - genpd
2379  * pair. These are the device structures which are attached to the power domain
2380  * and are required by the OPP core to set the performance state of the genpd.
2381  * The same API also works for the case where single genpd is available and so
2382  * we don't need to support that separately.
2383  *
2384  * This helper will normally be called by the consumer driver of the device
2385  * "dev", as only that has details of the genpd names.
2386  *
2387  * This helper needs to be called once with a list of all genpd to attach.
2388  * Otherwise the original device structure will be used instead by the OPP core.
2389  *
2390  * The order of entries in the names array must match the order in which
2391  * "required-opps" are added in DT.
2392  */
2393 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2394 			const char * const *names, struct device ***virt_devs)
2395 {
2396 	struct device *virt_dev, *gdev;
2397 	struct opp_table *genpd_table;
2398 	int index = 0, ret = -EINVAL;
2399 	const char * const *name = names;
2400 
2401 	if (!opp_table->required_devs) {
2402 		dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2403 		return -EINVAL;
2404 	}
2405 
2406 	/* Genpd core takes care of propagation to parent genpd */
2407 	if (opp_table->is_genpd) {
2408 		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2409 		return -EOPNOTSUPP;
2410 	}
2411 
2412 	/* Checking only the first one is enough ? */
2413 	if (opp_table->required_devs[0])
2414 		return 0;
2415 
2416 	while (*name) {
2417 		if (index >= opp_table->required_opp_count) {
2418 			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2419 				*name, opp_table->required_opp_count, index);
2420 			goto err;
2421 		}
2422 
2423 		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2424 		if (IS_ERR_OR_NULL(virt_dev)) {
2425 			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2426 			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2427 			goto err;
2428 		}
2429 
2430 		/*
2431 		 * The required_opp_tables parsing is not perfect, as the OPP
2432 		 * core does the parsing solely based on the DT node pointers.
2433 		 * The core sets the required_opp_tables entry to the first OPP
2434 		 * table in the "opp_tables" list, that matches with the node
2435 		 * pointer.
2436 		 *
2437 		 * If the target DT OPP table is used by multiple devices and
2438 		 * they all create separate instances of 'struct opp_table' from
2439 		 * it, then it is possible that the required_opp_tables entry
2440 		 * may be set to the incorrect sibling device.
2441 		 *
2442 		 * Cross check it again and fix if required.
2443 		 */
2444 		gdev = dev_to_genpd_dev(virt_dev);
2445 		if (IS_ERR(gdev)) {
2446 			ret = PTR_ERR(gdev);
2447 			goto err;
2448 		}
2449 
2450 		genpd_table = _find_opp_table(gdev);
2451 		if (!IS_ERR(genpd_table)) {
2452 			if (genpd_table != opp_table->required_opp_tables[index]) {
2453 				dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]);
2454 				opp_table->required_opp_tables[index] = genpd_table;
2455 			} else {
2456 				dev_pm_opp_put_opp_table(genpd_table);
2457 			}
2458 		}
2459 
2460 		/*
2461 		 * Add the virtual genpd device as a user of the OPP table, so
2462 		 * we can call dev_pm_opp_set_opp() on it directly.
2463 		 *
2464 		 * This will be automatically removed when the OPP table is
2465 		 * removed, don't need to handle that here.
2466 		 */
2467 		if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2468 			ret = -ENOMEM;
2469 			goto err;
2470 		}
2471 
2472 		opp_table->required_devs[index] = virt_dev;
2473 		index++;
2474 		name++;
2475 	}
2476 
2477 	if (virt_devs)
2478 		*virt_devs = opp_table->required_devs;
2479 
2480 	return 0;
2481 
2482 err:
2483 	_opp_detach_genpd(opp_table);
2484 	return ret;
2485 
2486 }
2487 
2488 static int _opp_set_required_devs(struct opp_table *opp_table,
2489 				  struct device *dev,
2490 				  struct device **required_devs)
2491 {
2492 	int i;
2493 
2494 	if (!opp_table->required_devs) {
2495 		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2496 		return -EINVAL;
2497 	}
2498 
2499 	/* Another device that shares the OPP table has set the required devs ? */
2500 	if (opp_table->required_devs[0])
2501 		return 0;
2502 
2503 	for (i = 0; i < opp_table->required_opp_count; i++) {
2504 		/* Genpd core takes care of propagation to parent genpd */
2505 		if (required_devs[i] && opp_table->is_genpd &&
2506 		    opp_table->required_opp_tables[i]->is_genpd) {
2507 			dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2508 			return -EOPNOTSUPP;
2509 		}
2510 
2511 		opp_table->required_devs[i] = required_devs[i];
2512 	}
2513 
2514 	return 0;
2515 }
2516 
2517 static void _opp_put_required_devs(struct opp_table *opp_table)
2518 {
2519 	int i;
2520 
2521 	for (i = 0; i < opp_table->required_opp_count; i++)
2522 		opp_table->required_devs[i] = NULL;
2523 }
2524 
2525 static void _opp_clear_config(struct opp_config_data *data)
2526 {
2527 	if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2528 		_opp_put_required_devs(data->opp_table);
2529 	else if (data->flags & OPP_CONFIG_GENPD)
2530 		_opp_detach_genpd(data->opp_table);
2531 
2532 	if (data->flags & OPP_CONFIG_REGULATOR)
2533 		_opp_put_regulators(data->opp_table);
2534 	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2535 		_opp_put_supported_hw(data->opp_table);
2536 	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2537 		_opp_put_config_regulators_helper(data->opp_table);
2538 	if (data->flags & OPP_CONFIG_PROP_NAME)
2539 		_opp_put_prop_name(data->opp_table);
2540 	if (data->flags & OPP_CONFIG_CLK)
2541 		_opp_put_clknames(data->opp_table);
2542 
2543 	dev_pm_opp_put_opp_table(data->opp_table);
2544 	kfree(data);
2545 }
2546 
2547 /**
2548  * dev_pm_opp_set_config() - Set OPP configuration for the device.
2549  * @dev: Device for which configuration is being set.
2550  * @config: OPP configuration.
2551  *
2552  * This allows all device OPP configurations to be performed at once.
2553  *
2554  * This must be called before any OPPs are initialized for the device. This may
2555  * be called multiple times for the same OPP table, for example once for each
2556  * CPU that share the same table. This must be balanced by the same number of
2557  * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2558  *
2559  * This returns a token to the caller, which must be passed to
2560  * dev_pm_opp_clear_config() to free the resources later. The value of the
2561  * returned token will be >= 1 for success and negative for errors. The minimum
2562  * value of 1 is chosen here to make it easy for callers to manage the resource.
2563  */
2564 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2565 {
2566 	struct opp_table *opp_table;
2567 	struct opp_config_data *data;
2568 	unsigned int id;
2569 	int ret;
2570 
2571 	data = kmalloc(sizeof(*data), GFP_KERNEL);
2572 	if (!data)
2573 		return -ENOMEM;
2574 
2575 	opp_table = _add_opp_table(dev, false);
2576 	if (IS_ERR(opp_table)) {
2577 		kfree(data);
2578 		return PTR_ERR(opp_table);
2579 	}
2580 
2581 	data->opp_table = opp_table;
2582 	data->flags = 0;
2583 
2584 	/* This should be called before OPPs are initialized */
2585 	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2586 		ret = -EBUSY;
2587 		goto err;
2588 	}
2589 
2590 	/* Configure clocks */
2591 	if (config->clk_names) {
2592 		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2593 					config->config_clks);
2594 		if (ret)
2595 			goto err;
2596 
2597 		data->flags |= OPP_CONFIG_CLK;
2598 	} else if (config->config_clks) {
2599 		/* Don't allow config callback without clocks */
2600 		ret = -EINVAL;
2601 		goto err;
2602 	}
2603 
2604 	/* Configure property names */
2605 	if (config->prop_name) {
2606 		ret = _opp_set_prop_name(opp_table, config->prop_name);
2607 		if (ret)
2608 			goto err;
2609 
2610 		data->flags |= OPP_CONFIG_PROP_NAME;
2611 	}
2612 
2613 	/* Configure config_regulators helper */
2614 	if (config->config_regulators) {
2615 		ret = _opp_set_config_regulators_helper(opp_table, dev,
2616 						config->config_regulators);
2617 		if (ret)
2618 			goto err;
2619 
2620 		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2621 	}
2622 
2623 	/* Configure supported hardware */
2624 	if (config->supported_hw) {
2625 		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2626 					    config->supported_hw_count);
2627 		if (ret)
2628 			goto err;
2629 
2630 		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2631 	}
2632 
2633 	/* Configure supplies */
2634 	if (config->regulator_names) {
2635 		ret = _opp_set_regulators(opp_table, dev,
2636 					  config->regulator_names);
2637 		if (ret)
2638 			goto err;
2639 
2640 		data->flags |= OPP_CONFIG_REGULATOR;
2641 	}
2642 
2643 	/* Attach genpds */
2644 	if (config->genpd_names) {
2645 		if (config->required_devs)
2646 			goto err;
2647 
2648 		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2649 					config->virt_devs);
2650 		if (ret)
2651 			goto err;
2652 
2653 		data->flags |= OPP_CONFIG_GENPD;
2654 	} else if (config->required_devs) {
2655 		ret = _opp_set_required_devs(opp_table, dev,
2656 					     config->required_devs);
2657 		if (ret)
2658 			goto err;
2659 
2660 		data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2661 	}
2662 
2663 	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2664 		       GFP_KERNEL);
2665 	if (ret)
2666 		goto err;
2667 
2668 	return id;
2669 
2670 err:
2671 	_opp_clear_config(data);
2672 	return ret;
2673 }
2674 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2675 
2676 /**
2677  * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2678  * @token: The token returned by dev_pm_opp_set_config() previously.
2679  *
2680  * This allows all device OPP configurations to be cleared at once. This must be
2681  * called once for each call made to dev_pm_opp_set_config(), in order to free
2682  * the OPPs properly.
2683  *
2684  * Currently the first call itself ends up freeing all the OPP configurations,
2685  * while the later ones only drop the OPP table reference. This works well for
2686  * now as we would never want to use an half initialized OPP table and want to
2687  * remove the configurations together.
2688  */
2689 void dev_pm_opp_clear_config(int token)
2690 {
2691 	struct opp_config_data *data;
2692 
2693 	/*
2694 	 * This lets the callers call this unconditionally and keep their code
2695 	 * simple.
2696 	 */
2697 	if (unlikely(token <= 0))
2698 		return;
2699 
2700 	data = xa_erase(&opp_configs, token);
2701 	if (WARN_ON(!data))
2702 		return;
2703 
2704 	_opp_clear_config(data);
2705 }
2706 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2707 
2708 static void devm_pm_opp_config_release(void *token)
2709 {
2710 	dev_pm_opp_clear_config((unsigned long)token);
2711 }
2712 
2713 /**
2714  * devm_pm_opp_set_config() - Set OPP configuration for the device.
2715  * @dev: Device for which configuration is being set.
2716  * @config: OPP configuration.
2717  *
2718  * This allows all device OPP configurations to be performed at once.
2719  * This is a resource-managed variant of dev_pm_opp_set_config().
2720  *
2721  * Return: 0 on success and errorno otherwise.
2722  */
2723 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2724 {
2725 	int token = dev_pm_opp_set_config(dev, config);
2726 
2727 	if (token < 0)
2728 		return token;
2729 
2730 	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2731 					(void *) ((unsigned long) token));
2732 }
2733 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2734 
2735 /**
2736  * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2737  * @src_table: OPP table which has @dst_table as one of its required OPP table.
2738  * @dst_table: Required OPP table of the @src_table.
2739  * @src_opp: OPP from the @src_table.
2740  *
2741  * This function returns the OPP (present in @dst_table) pointed out by the
2742  * "required-opps" property of the @src_opp (present in @src_table).
2743  *
2744  * The callers are required to call dev_pm_opp_put() for the returned OPP after
2745  * use.
2746  *
2747  * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2748  */
2749 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2750 						 struct opp_table *dst_table,
2751 						 struct dev_pm_opp *src_opp)
2752 {
2753 	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2754 	int i;
2755 
2756 	if (!src_table || !dst_table || !src_opp ||
2757 	    !src_table->required_opp_tables)
2758 		return ERR_PTR(-EINVAL);
2759 
2760 	/* required-opps not fully initialized yet */
2761 	if (lazy_linking_pending(src_table))
2762 		return ERR_PTR(-EBUSY);
2763 
2764 	for (i = 0; i < src_table->required_opp_count; i++) {
2765 		if (src_table->required_opp_tables[i] == dst_table) {
2766 			mutex_lock(&src_table->lock);
2767 
2768 			list_for_each_entry(opp, &src_table->opp_list, node) {
2769 				if (opp == src_opp) {
2770 					dest_opp = opp->required_opps[i];
2771 					dev_pm_opp_get(dest_opp);
2772 					break;
2773 				}
2774 			}
2775 
2776 			mutex_unlock(&src_table->lock);
2777 			break;
2778 		}
2779 	}
2780 
2781 	if (IS_ERR(dest_opp)) {
2782 		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2783 		       src_table, dst_table);
2784 	}
2785 
2786 	return dest_opp;
2787 }
2788 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2789 
2790 /**
2791  * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2792  * @src_table: OPP table which has dst_table as one of its required OPP table.
2793  * @dst_table: Required OPP table of the src_table.
2794  * @pstate: Current performance state of the src_table.
2795  *
2796  * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2797  * "required-opps" property of the OPP (present in @src_table) which has
2798  * performance state set to @pstate.
2799  *
2800  * Return: Zero or positive performance state on success, otherwise negative
2801  * value on errors.
2802  */
2803 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2804 				       struct opp_table *dst_table,
2805 				       unsigned int pstate)
2806 {
2807 	struct dev_pm_opp *opp;
2808 	int dest_pstate = -EINVAL;
2809 	int i;
2810 
2811 	/*
2812 	 * Normally the src_table will have the "required_opps" property set to
2813 	 * point to one of the OPPs in the dst_table, but in some cases the
2814 	 * genpd and its master have one to one mapping of performance states
2815 	 * and so none of them have the "required-opps" property set. Return the
2816 	 * pstate of the src_table as it is in such cases.
2817 	 */
2818 	if (!src_table || !src_table->required_opp_count)
2819 		return pstate;
2820 
2821 	/* Both OPP tables must belong to genpds */
2822 	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2823 		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2824 		return -EINVAL;
2825 	}
2826 
2827 	/* required-opps not fully initialized yet */
2828 	if (lazy_linking_pending(src_table))
2829 		return -EBUSY;
2830 
2831 	for (i = 0; i < src_table->required_opp_count; i++) {
2832 		if (src_table->required_opp_tables[i]->np == dst_table->np)
2833 			break;
2834 	}
2835 
2836 	if (unlikely(i == src_table->required_opp_count)) {
2837 		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2838 		       __func__, src_table, dst_table);
2839 		return -EINVAL;
2840 	}
2841 
2842 	mutex_lock(&src_table->lock);
2843 
2844 	list_for_each_entry(opp, &src_table->opp_list, node) {
2845 		if (opp->level == pstate) {
2846 			dest_pstate = opp->required_opps[i]->level;
2847 			goto unlock;
2848 		}
2849 	}
2850 
2851 	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2852 	       dst_table);
2853 
2854 unlock:
2855 	mutex_unlock(&src_table->lock);
2856 
2857 	return dest_pstate;
2858 }
2859 
2860 /**
2861  * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2862  * @dev:	The device for which we do this operation
2863  * @data:	The OPP data for the OPP to add
2864  *
2865  * This function adds an opp definition to the opp table and returns status.
2866  * The opp is made available by default and it can be controlled using
2867  * dev_pm_opp_enable/disable functions.
2868  *
2869  * Return:
2870  * 0		On success OR
2871  *		Duplicate OPPs (both freq and volt are same) and opp->available
2872  * -EEXIST	Freq are same and volt are different OR
2873  *		Duplicate OPPs (both freq and volt are same) and !opp->available
2874  * -ENOMEM	Memory allocation failure
2875  */
2876 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2877 {
2878 	struct opp_table *opp_table;
2879 	int ret;
2880 
2881 	opp_table = _add_opp_table(dev, true);
2882 	if (IS_ERR(opp_table))
2883 		return PTR_ERR(opp_table);
2884 
2885 	/* Fix regulator count for dynamic OPPs */
2886 	opp_table->regulator_count = 1;
2887 
2888 	ret = _opp_add_v1(opp_table, dev, data, true);
2889 	if (ret)
2890 		dev_pm_opp_put_opp_table(opp_table);
2891 
2892 	return ret;
2893 }
2894 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2895 
2896 /**
2897  * _opp_set_availability() - helper to set the availability of an opp
2898  * @dev:		device for which we do this operation
2899  * @freq:		OPP frequency to modify availability
2900  * @availability_req:	availability status requested for this opp
2901  *
2902  * Set the availability of an OPP, opp_{enable,disable} share a common logic
2903  * which is isolated here.
2904  *
2905  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2906  * copy operation, returns 0 if no modification was done OR modification was
2907  * successful.
2908  */
2909 static int _opp_set_availability(struct device *dev, unsigned long freq,
2910 				 bool availability_req)
2911 {
2912 	struct opp_table *opp_table;
2913 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2914 	int r = 0;
2915 
2916 	/* Find the opp_table */
2917 	opp_table = _find_opp_table(dev);
2918 	if (IS_ERR(opp_table)) {
2919 		r = PTR_ERR(opp_table);
2920 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2921 		return r;
2922 	}
2923 
2924 	if (!assert_single_clk(opp_table)) {
2925 		r = -EINVAL;
2926 		goto put_table;
2927 	}
2928 
2929 	mutex_lock(&opp_table->lock);
2930 
2931 	/* Do we have the frequency? */
2932 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2933 		if (tmp_opp->rates[0] == freq) {
2934 			opp = tmp_opp;
2935 			break;
2936 		}
2937 	}
2938 
2939 	if (IS_ERR(opp)) {
2940 		r = PTR_ERR(opp);
2941 		goto unlock;
2942 	}
2943 
2944 	/* Is update really needed? */
2945 	if (opp->available == availability_req)
2946 		goto unlock;
2947 
2948 	opp->available = availability_req;
2949 
2950 	dev_pm_opp_get(opp);
2951 	mutex_unlock(&opp_table->lock);
2952 
2953 	/* Notify the change of the OPP availability */
2954 	if (availability_req)
2955 		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2956 					     opp);
2957 	else
2958 		blocking_notifier_call_chain(&opp_table->head,
2959 					     OPP_EVENT_DISABLE, opp);
2960 
2961 	dev_pm_opp_put(opp);
2962 	goto put_table;
2963 
2964 unlock:
2965 	mutex_unlock(&opp_table->lock);
2966 put_table:
2967 	dev_pm_opp_put_opp_table(opp_table);
2968 	return r;
2969 }
2970 
2971 /**
2972  * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2973  * @dev:		device for which we do this operation
2974  * @freq:		OPP frequency to adjust voltage of
2975  * @u_volt:		new OPP target voltage
2976  * @u_volt_min:		new OPP min voltage
2977  * @u_volt_max:		new OPP max voltage
2978  *
2979  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2980  * copy operation, returns 0 if no modifcation was done OR modification was
2981  * successful.
2982  */
2983 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2984 			      unsigned long u_volt, unsigned long u_volt_min,
2985 			      unsigned long u_volt_max)
2986 
2987 {
2988 	struct opp_table *opp_table;
2989 	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2990 	int r = 0;
2991 
2992 	/* Find the opp_table */
2993 	opp_table = _find_opp_table(dev);
2994 	if (IS_ERR(opp_table)) {
2995 		r = PTR_ERR(opp_table);
2996 		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2997 		return r;
2998 	}
2999 
3000 	if (!assert_single_clk(opp_table)) {
3001 		r = -EINVAL;
3002 		goto put_table;
3003 	}
3004 
3005 	mutex_lock(&opp_table->lock);
3006 
3007 	/* Do we have the frequency? */
3008 	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
3009 		if (tmp_opp->rates[0] == freq) {
3010 			opp = tmp_opp;
3011 			break;
3012 		}
3013 	}
3014 
3015 	if (IS_ERR(opp)) {
3016 		r = PTR_ERR(opp);
3017 		goto adjust_unlock;
3018 	}
3019 
3020 	/* Is update really needed? */
3021 	if (opp->supplies->u_volt == u_volt)
3022 		goto adjust_unlock;
3023 
3024 	opp->supplies->u_volt = u_volt;
3025 	opp->supplies->u_volt_min = u_volt_min;
3026 	opp->supplies->u_volt_max = u_volt_max;
3027 
3028 	dev_pm_opp_get(opp);
3029 	mutex_unlock(&opp_table->lock);
3030 
3031 	/* Notify the voltage change of the OPP */
3032 	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3033 				     opp);
3034 
3035 	dev_pm_opp_put(opp);
3036 	goto put_table;
3037 
3038 adjust_unlock:
3039 	mutex_unlock(&opp_table->lock);
3040 put_table:
3041 	dev_pm_opp_put_opp_table(opp_table);
3042 	return r;
3043 }
3044 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3045 
3046 /**
3047  * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3048  * @dev:	device for which we do this operation
3049  *
3050  * Sync voltage state of the OPP table regulators.
3051  *
3052  * Return: 0 on success or a negative error value.
3053  */
3054 int dev_pm_opp_sync_regulators(struct device *dev)
3055 {
3056 	struct opp_table *opp_table;
3057 	struct regulator *reg;
3058 	int i, ret = 0;
3059 
3060 	/* Device may not have OPP table */
3061 	opp_table = _find_opp_table(dev);
3062 	if (IS_ERR(opp_table))
3063 		return 0;
3064 
3065 	/* Regulator may not be required for the device */
3066 	if (unlikely(!opp_table->regulators))
3067 		goto put_table;
3068 
3069 	/* Nothing to sync if voltage wasn't changed */
3070 	if (!opp_table->enabled)
3071 		goto put_table;
3072 
3073 	for (i = 0; i < opp_table->regulator_count; i++) {
3074 		reg = opp_table->regulators[i];
3075 		ret = regulator_sync_voltage(reg);
3076 		if (ret)
3077 			break;
3078 	}
3079 put_table:
3080 	/* Drop reference taken by _find_opp_table() */
3081 	dev_pm_opp_put_opp_table(opp_table);
3082 
3083 	return ret;
3084 }
3085 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3086 
3087 /**
3088  * dev_pm_opp_enable() - Enable a specific OPP
3089  * @dev:	device for which we do this operation
3090  * @freq:	OPP frequency to enable
3091  *
3092  * Enables a provided opp. If the operation is valid, this returns 0, else the
3093  * corresponding error value. It is meant to be used for users an OPP available
3094  * after being temporarily made unavailable with dev_pm_opp_disable.
3095  *
3096  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3097  * copy operation, returns 0 if no modification was done OR modification was
3098  * successful.
3099  */
3100 int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3101 {
3102 	return _opp_set_availability(dev, freq, true);
3103 }
3104 EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3105 
3106 /**
3107  * dev_pm_opp_disable() - Disable a specific OPP
3108  * @dev:	device for which we do this operation
3109  * @freq:	OPP frequency to disable
3110  *
3111  * Disables a provided opp. If the operation is valid, this returns
3112  * 0, else the corresponding error value. It is meant to be a temporary
3113  * control by users to make this OPP not available until the circumstances are
3114  * right to make it available again (with a call to dev_pm_opp_enable).
3115  *
3116  * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3117  * copy operation, returns 0 if no modification was done OR modification was
3118  * successful.
3119  */
3120 int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3121 {
3122 	return _opp_set_availability(dev, freq, false);
3123 }
3124 EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3125 
3126 /**
3127  * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3128  * @dev:	Device for which notifier needs to be registered
3129  * @nb:		Notifier block to be registered
3130  *
3131  * Return: 0 on success or a negative error value.
3132  */
3133 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3134 {
3135 	struct opp_table *opp_table;
3136 	int ret;
3137 
3138 	opp_table = _find_opp_table(dev);
3139 	if (IS_ERR(opp_table))
3140 		return PTR_ERR(opp_table);
3141 
3142 	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3143 
3144 	dev_pm_opp_put_opp_table(opp_table);
3145 
3146 	return ret;
3147 }
3148 EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3149 
3150 /**
3151  * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3152  * @dev:	Device for which notifier needs to be unregistered
3153  * @nb:		Notifier block to be unregistered
3154  *
3155  * Return: 0 on success or a negative error value.
3156  */
3157 int dev_pm_opp_unregister_notifier(struct device *dev,
3158 				   struct notifier_block *nb)
3159 {
3160 	struct opp_table *opp_table;
3161 	int ret;
3162 
3163 	opp_table = _find_opp_table(dev);
3164 	if (IS_ERR(opp_table))
3165 		return PTR_ERR(opp_table);
3166 
3167 	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3168 
3169 	dev_pm_opp_put_opp_table(opp_table);
3170 
3171 	return ret;
3172 }
3173 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3174 
3175 /**
3176  * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3177  * @dev:	device pointer used to lookup OPP table.
3178  *
3179  * Free both OPPs created using static entries present in DT and the
3180  * dynamically added entries.
3181  */
3182 void dev_pm_opp_remove_table(struct device *dev)
3183 {
3184 	struct opp_table *opp_table;
3185 
3186 	/* Check for existing table for 'dev' */
3187 	opp_table = _find_opp_table(dev);
3188 	if (IS_ERR(opp_table)) {
3189 		int error = PTR_ERR(opp_table);
3190 
3191 		if (error != -ENODEV)
3192 			WARN(1, "%s: opp_table: %d\n",
3193 			     IS_ERR_OR_NULL(dev) ?
3194 					"Invalid device" : dev_name(dev),
3195 			     error);
3196 		return;
3197 	}
3198 
3199 	/*
3200 	 * Drop the extra reference only if the OPP table was successfully added
3201 	 * with dev_pm_opp_of_add_table() earlier.
3202 	 **/
3203 	if (_opp_remove_all_static(opp_table))
3204 		dev_pm_opp_put_opp_table(opp_table);
3205 
3206 	/* Drop reference taken by _find_opp_table() */
3207 	dev_pm_opp_put_opp_table(opp_table);
3208 }
3209 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3210