1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* Lock to allow exclusive modification to the device and opp lists */ 33 DEFINE_MUTEX(opp_table_lock); 34 /* Flag indicating that opp_tables list is being updated at the moment */ 35 static bool opp_tables_busy; 36 37 /* OPP ID allocator */ 38 static DEFINE_XARRAY_ALLOC1(opp_configs); 39 40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 41 { 42 struct opp_device *opp_dev; 43 44 guard(mutex)(&opp_table->lock); 45 46 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 47 if (opp_dev->dev == dev) 48 return true; 49 50 return false; 51 } 52 53 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 54 { 55 struct opp_table *opp_table; 56 57 list_for_each_entry(opp_table, &opp_tables, node) { 58 if (_find_opp_dev(dev, opp_table)) 59 return dev_pm_opp_get_opp_table_ref(opp_table); 60 } 61 62 return ERR_PTR(-ENODEV); 63 } 64 65 /** 66 * _find_opp_table() - find opp_table struct using device pointer 67 * @dev: device pointer used to lookup OPP table 68 * 69 * Search OPP table for one containing matching device. 70 * 71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 72 * -EINVAL based on type of error. 73 * 74 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 75 */ 76 struct opp_table *_find_opp_table(struct device *dev) 77 { 78 if (IS_ERR_OR_NULL(dev)) { 79 pr_err("%s: Invalid parameters\n", __func__); 80 return ERR_PTR(-EINVAL); 81 } 82 83 guard(mutex)(&opp_table_lock); 84 return _find_opp_table_unlocked(dev); 85 } 86 87 /* 88 * Returns true if multiple clocks aren't there, else returns false with WARN. 89 * 90 * We don't force clk_count == 1 here as there are users who don't have a clock 91 * representation in the OPP table and manage the clock configuration themselves 92 * in an platform specific way. 93 */ 94 static bool assert_single_clk(struct opp_table *opp_table, 95 unsigned int __always_unused index) 96 { 97 return !WARN_ON(opp_table->clk_count > 1); 98 } 99 100 /* 101 * Returns true if clock table is large enough to contain the clock index. 102 */ 103 static bool assert_clk_index(struct opp_table *opp_table, 104 unsigned int index) 105 { 106 return opp_table->clk_count > index; 107 } 108 109 /* 110 * Returns true if bandwidth table is large enough to contain the bandwidth index. 111 */ 112 static bool assert_bandwidth_index(struct opp_table *opp_table, 113 unsigned int index) 114 { 115 return opp_table->path_count > index; 116 } 117 118 /** 119 * dev_pm_opp_get_bw() - Gets the bandwidth corresponding to an opp 120 * @opp: opp for which bandwidth has to be returned for 121 * @peak: select peak or average bandwidth 122 * @index: bandwidth index 123 * 124 * Return: bandwidth in kBps, else return 0 125 */ 126 unsigned long dev_pm_opp_get_bw(struct dev_pm_opp *opp, bool peak, int index) 127 { 128 if (IS_ERR_OR_NULL(opp)) { 129 pr_err("%s: Invalid parameters\n", __func__); 130 return 0; 131 } 132 133 if (index >= opp->opp_table->path_count) 134 return 0; 135 136 if (!opp->bandwidth) 137 return 0; 138 139 return peak ? opp->bandwidth[index].peak : opp->bandwidth[index].avg; 140 } 141 EXPORT_SYMBOL_GPL(dev_pm_opp_get_bw); 142 143 /** 144 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 145 * @opp: opp for which voltage has to be returned for 146 * 147 * Return: voltage in micro volt corresponding to the opp, else 148 * return 0 149 * 150 * This is useful only for devices with single power supply. 151 */ 152 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 153 { 154 if (IS_ERR_OR_NULL(opp)) { 155 pr_err("%s: Invalid parameters\n", __func__); 156 return 0; 157 } 158 159 return opp->supplies[0].u_volt; 160 } 161 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 162 163 /** 164 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 165 * @opp: opp for which voltage has to be returned for 166 * @supplies: Placeholder for copying the supply information. 167 * 168 * Return: negative error number on failure, 0 otherwise on success after 169 * setting @supplies. 170 * 171 * This can be used for devices with any number of power supplies. The caller 172 * must ensure the @supplies array must contain space for each regulator. 173 */ 174 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 175 struct dev_pm_opp_supply *supplies) 176 { 177 if (IS_ERR_OR_NULL(opp) || !supplies) { 178 pr_err("%s: Invalid parameters\n", __func__); 179 return -EINVAL; 180 } 181 182 memcpy(supplies, opp->supplies, 183 sizeof(*supplies) * opp->opp_table->regulator_count); 184 return 0; 185 } 186 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 187 188 /** 189 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 190 * @opp: opp for which power has to be returned for 191 * 192 * Return: power in micro watt corresponding to the opp, else 193 * return 0 194 * 195 * This is useful only for devices with single power supply. 196 */ 197 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 198 { 199 unsigned long opp_power = 0; 200 int i; 201 202 if (IS_ERR_OR_NULL(opp)) { 203 pr_err("%s: Invalid parameters\n", __func__); 204 return 0; 205 } 206 for (i = 0; i < opp->opp_table->regulator_count; i++) 207 opp_power += opp->supplies[i].u_watt; 208 209 return opp_power; 210 } 211 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 212 213 /** 214 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an 215 * available opp with specified index 216 * @opp: opp for which frequency has to be returned for 217 * @index: index of the frequency within the required opp 218 * 219 * Return: frequency in hertz corresponding to the opp with specified index, 220 * else return 0 221 */ 222 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index) 223 { 224 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) { 225 pr_err("%s: Invalid parameters\n", __func__); 226 return 0; 227 } 228 229 return opp->rates[index]; 230 } 231 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed); 232 233 /** 234 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 235 * @opp: opp for which level value has to be returned for 236 * 237 * Return: level read from device tree corresponding to the opp, else 238 * return U32_MAX. 239 */ 240 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 241 { 242 if (IS_ERR_OR_NULL(opp) || !opp->available) { 243 pr_err("%s: Invalid parameters\n", __func__); 244 return 0; 245 } 246 247 return opp->level; 248 } 249 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 250 251 /** 252 * dev_pm_opp_get_required_pstate() - Gets the required performance state 253 * corresponding to an available opp 254 * @opp: opp for which performance state has to be returned for 255 * @index: index of the required opp 256 * 257 * Return: performance state read from device tree corresponding to the 258 * required opp, else return U32_MAX. 259 */ 260 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 261 unsigned int index) 262 { 263 if (IS_ERR_OR_NULL(opp) || !opp->available || 264 index >= opp->opp_table->required_opp_count) { 265 pr_err("%s: Invalid parameters\n", __func__); 266 return 0; 267 } 268 269 /* required-opps not fully initialized yet */ 270 if (lazy_linking_pending(opp->opp_table)) 271 return 0; 272 273 /* The required OPP table must belong to a genpd */ 274 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) { 275 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 276 return 0; 277 } 278 279 return opp->required_opps[index]->level; 280 } 281 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 282 283 /** 284 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 285 * @opp: opp for which turbo mode is being verified 286 * 287 * Turbo OPPs are not for normal use, and can be enabled (under certain 288 * conditions) for short duration of times to finish high throughput work 289 * quickly. Running on them for longer times may overheat the chip. 290 * 291 * Return: true if opp is turbo opp, else false. 292 */ 293 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 294 { 295 if (IS_ERR_OR_NULL(opp) || !opp->available) { 296 pr_err("%s: Invalid parameters\n", __func__); 297 return false; 298 } 299 300 return opp->turbo; 301 } 302 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 303 304 /** 305 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 306 * @dev: device for which we do this operation 307 * 308 * Return: This function returns the max clock latency in nanoseconds. 309 */ 310 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 311 { 312 struct opp_table *opp_table __free(put_opp_table) = 313 _find_opp_table(dev); 314 315 if (IS_ERR(opp_table)) 316 return 0; 317 318 return opp_table->clock_latency_ns_max; 319 } 320 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 321 322 /** 323 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 324 * @dev: device for which we do this operation 325 * 326 * Return: This function returns the max voltage latency in nanoseconds. 327 */ 328 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 329 { 330 struct dev_pm_opp *opp; 331 struct regulator *reg; 332 unsigned long latency_ns = 0; 333 int ret, i, count; 334 struct { 335 unsigned long min; 336 unsigned long max; 337 } *uV; 338 339 struct opp_table *opp_table __free(put_opp_table) = 340 _find_opp_table(dev); 341 342 if (IS_ERR(opp_table)) 343 return 0; 344 345 /* Regulator may not be required for the device */ 346 if (!opp_table->regulators) 347 return 0; 348 349 count = opp_table->regulator_count; 350 351 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 352 if (!uV) 353 return 0; 354 355 scoped_guard(mutex, &opp_table->lock) { 356 for (i = 0; i < count; i++) { 357 uV[i].min = ~0; 358 uV[i].max = 0; 359 360 list_for_each_entry(opp, &opp_table->opp_list, node) { 361 if (!opp->available) 362 continue; 363 364 if (opp->supplies[i].u_volt_min < uV[i].min) 365 uV[i].min = opp->supplies[i].u_volt_min; 366 if (opp->supplies[i].u_volt_max > uV[i].max) 367 uV[i].max = opp->supplies[i].u_volt_max; 368 } 369 } 370 } 371 372 /* 373 * The caller needs to ensure that opp_table (and hence the regulator) 374 * isn't freed, while we are executing this routine. 375 */ 376 for (i = 0; i < count; i++) { 377 reg = opp_table->regulators[i]; 378 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 379 if (ret > 0) 380 latency_ns += ret * 1000; 381 } 382 383 kfree(uV); 384 385 return latency_ns; 386 } 387 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 388 389 /** 390 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 391 * nanoseconds 392 * @dev: device for which we do this operation 393 * 394 * Return: This function returns the max transition latency, in nanoseconds, to 395 * switch from one OPP to other. 396 */ 397 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 398 { 399 return dev_pm_opp_get_max_volt_latency(dev) + 400 dev_pm_opp_get_max_clock_latency(dev); 401 } 402 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 403 404 /** 405 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 406 * @dev: device for which we do this operation 407 * 408 * Return: This function returns the frequency of the OPP marked as suspend_opp 409 * if one is available, else returns 0; 410 */ 411 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 412 { 413 unsigned long freq = 0; 414 415 struct opp_table *opp_table __free(put_opp_table) = 416 _find_opp_table(dev); 417 418 if (IS_ERR(opp_table)) 419 return 0; 420 421 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 422 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 423 424 return freq; 425 } 426 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 427 428 int _get_opp_count(struct opp_table *opp_table) 429 { 430 struct dev_pm_opp *opp; 431 int count = 0; 432 433 guard(mutex)(&opp_table->lock); 434 435 list_for_each_entry(opp, &opp_table->opp_list, node) { 436 if (opp->available) 437 count++; 438 } 439 440 return count; 441 } 442 443 /** 444 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 445 * @dev: device for which we do this operation 446 * 447 * Return: This function returns the number of available opps if there are any, 448 * else returns 0 if none or the corresponding error value. 449 */ 450 int dev_pm_opp_get_opp_count(struct device *dev) 451 { 452 struct opp_table *opp_table __free(put_opp_table) = 453 _find_opp_table(dev); 454 455 if (IS_ERR(opp_table)) { 456 dev_dbg(dev, "%s: OPP table not found (%ld)\n", 457 __func__, PTR_ERR(opp_table)); 458 return PTR_ERR(opp_table); 459 } 460 461 return _get_opp_count(opp_table); 462 } 463 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 464 465 /* Helpers to read keys */ 466 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 467 { 468 return opp->rates[index]; 469 } 470 471 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 472 { 473 return opp->level; 474 } 475 476 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 477 { 478 return opp->bandwidth[index].peak; 479 } 480 481 static unsigned long _read_opp_key(struct dev_pm_opp *opp, int index, 482 struct dev_pm_opp_key *key) 483 { 484 key->bw = opp->bandwidth ? opp->bandwidth[index].peak : 0; 485 key->freq = opp->rates[index]; 486 key->level = opp->level; 487 488 return true; 489 } 490 491 /* Generic comparison helpers */ 492 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 493 unsigned long opp_key, unsigned long key) 494 { 495 if (opp_key == key) { 496 *opp = temp_opp; 497 return true; 498 } 499 500 return false; 501 } 502 503 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 504 unsigned long opp_key, unsigned long key) 505 { 506 if (opp_key >= key) { 507 *opp = temp_opp; 508 return true; 509 } 510 511 return false; 512 } 513 514 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 515 unsigned long opp_key, unsigned long key) 516 { 517 if (opp_key > key) 518 return true; 519 520 *opp = temp_opp; 521 return false; 522 } 523 524 static bool _compare_opp_key_exact(struct dev_pm_opp **opp, 525 struct dev_pm_opp *temp_opp, struct dev_pm_opp_key *opp_key, 526 struct dev_pm_opp_key *key) 527 { 528 bool level_match = (key->level == OPP_LEVEL_UNSET || opp_key->level == key->level); 529 bool freq_match = (key->freq == 0 || opp_key->freq == key->freq); 530 bool bw_match = (key->bw == 0 || opp_key->bw == key->bw); 531 532 if (freq_match && level_match && bw_match) { 533 *opp = temp_opp; 534 return true; 535 } 536 537 return false; 538 } 539 540 /* Generic key finding helpers */ 541 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 542 unsigned long *key, int index, bool available, 543 unsigned long (*read)(struct dev_pm_opp *opp, int index), 544 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 545 unsigned long opp_key, unsigned long key), 546 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 547 { 548 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 549 550 /* Assert that the requirement is met */ 551 if (assert && !assert(opp_table, index)) 552 return ERR_PTR(-EINVAL); 553 554 guard(mutex)(&opp_table->lock); 555 556 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 557 if (temp_opp->available == available) { 558 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 559 break; 560 } 561 } 562 563 /* Increment the reference count of OPP */ 564 if (!IS_ERR(opp)) { 565 *key = read(opp, index); 566 dev_pm_opp_get(opp); 567 } 568 569 return opp; 570 } 571 572 static struct dev_pm_opp *_opp_table_find_opp_key(struct opp_table *opp_table, 573 struct dev_pm_opp_key *key, bool available, 574 unsigned long (*read)(struct dev_pm_opp *opp, int index, 575 struct dev_pm_opp_key *key), 576 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 577 struct dev_pm_opp_key *opp_key, struct dev_pm_opp_key *key), 578 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 579 { 580 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 581 struct dev_pm_opp_key temp_key; 582 583 /* Assert that the requirement is met */ 584 if (!assert(opp_table, 0)) 585 return ERR_PTR(-EINVAL); 586 587 guard(mutex)(&opp_table->lock); 588 589 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 590 if (temp_opp->available == available) { 591 read(temp_opp, 0, &temp_key); 592 if (compare(&opp, temp_opp, &temp_key, key)) { 593 /* Increment the reference count of OPP */ 594 dev_pm_opp_get(opp); 595 break; 596 } 597 } 598 } 599 600 return opp; 601 } 602 603 static struct dev_pm_opp * 604 _find_key(struct device *dev, unsigned long *key, int index, bool available, 605 unsigned long (*read)(struct dev_pm_opp *opp, int index), 606 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 607 unsigned long opp_key, unsigned long key), 608 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 609 { 610 struct opp_table *opp_table __free(put_opp_table) = 611 _find_opp_table(dev); 612 613 if (IS_ERR(opp_table)) { 614 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 615 PTR_ERR(opp_table)); 616 return ERR_CAST(opp_table); 617 } 618 619 return _opp_table_find_key(opp_table, key, index, available, read, 620 compare, assert); 621 } 622 623 static struct dev_pm_opp *_find_key_exact(struct device *dev, 624 unsigned long key, int index, bool available, 625 unsigned long (*read)(struct dev_pm_opp *opp, int index), 626 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 627 { 628 /* 629 * The value of key will be updated here, but will be ignored as the 630 * caller doesn't need it. 631 */ 632 return _find_key(dev, &key, index, available, read, _compare_exact, 633 assert); 634 } 635 636 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 637 unsigned long *key, int index, bool available, 638 unsigned long (*read)(struct dev_pm_opp *opp, int index), 639 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 640 { 641 return _opp_table_find_key(opp_table, key, index, available, read, 642 _compare_ceil, assert); 643 } 644 645 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 646 int index, bool available, 647 unsigned long (*read)(struct dev_pm_opp *opp, int index), 648 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 649 { 650 return _find_key(dev, key, index, available, read, _compare_ceil, 651 assert); 652 } 653 654 static struct dev_pm_opp *_find_key_floor(struct device *dev, 655 unsigned long *key, int index, bool available, 656 unsigned long (*read)(struct dev_pm_opp *opp, int index), 657 bool (*assert)(struct opp_table *opp_table, unsigned int index)) 658 { 659 return _find_key(dev, key, index, available, read, _compare_floor, 660 assert); 661 } 662 663 /** 664 * dev_pm_opp_find_freq_exact() - search for an exact frequency 665 * @dev: device for which we do this operation 666 * @freq: frequency to search for 667 * @available: true/false - match for available opp 668 * 669 * Return: Searches for exact match in the opp table and returns pointer to the 670 * matching opp if found, else returns ERR_PTR in case of error and should 671 * be handled using IS_ERR. Error return values can be: 672 * EINVAL: for bad pointer 673 * ERANGE: no match found for search 674 * ENODEV: if device not found in list of registered devices 675 * 676 * Note: available is a modifier for the search. if available=true, then the 677 * match is for exact matching frequency and is available in the stored OPP 678 * table. if false, the match is for exact frequency which is not available. 679 * 680 * This provides a mechanism to enable an opp which is not available currently 681 * or the opposite as well. 682 * 683 * The callers are required to call dev_pm_opp_put() for the returned OPP after 684 * use. 685 */ 686 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 687 unsigned long freq, bool available) 688 { 689 return _find_key_exact(dev, freq, 0, available, _read_freq, 690 assert_single_clk); 691 } 692 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 693 694 /** 695 * dev_pm_opp_find_key_exact() - Search for an OPP with exact key set 696 * @dev: Device for which the OPP is being searched 697 * @key: OPP key set to match 698 * @available: true/false - match for available OPP 699 * 700 * Search for an exact match of the key set in the OPP table. 701 * 702 * Return: A matching opp on success, else ERR_PTR in case of error. 703 * Possible error values: 704 * EINVAL: for bad pointers 705 * ERANGE: no match found for search 706 * ENODEV: if device not found in list of registered devices 707 * 708 * Note: 'available' is a modifier for the search. If 'available' == true, 709 * then the match is for exact matching key and is available in the stored 710 * OPP table. If false, the match is for exact key which is not available. 711 * 712 * This provides a mechanism to enable an OPP which is not available currently 713 * or the opposite as well. 714 * 715 * The callers are required to call dev_pm_opp_put() for the returned OPP after 716 * use. 717 */ 718 struct dev_pm_opp *dev_pm_opp_find_key_exact(struct device *dev, 719 struct dev_pm_opp_key *key, 720 bool available) 721 { 722 struct opp_table *opp_table __free(put_opp_table) = _find_opp_table(dev); 723 724 if (IS_ERR(opp_table)) { 725 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 726 PTR_ERR(opp_table)); 727 return ERR_CAST(opp_table); 728 } 729 730 return _opp_table_find_opp_key(opp_table, key, available, 731 _read_opp_key, _compare_opp_key_exact, 732 assert_single_clk); 733 } 734 EXPORT_SYMBOL_GPL(dev_pm_opp_find_key_exact); 735 736 /** 737 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the 738 * clock corresponding to the index 739 * @dev: Device for which we do this operation 740 * @freq: frequency to search for 741 * @index: Clock index 742 * @available: true/false - match for available opp 743 * 744 * Search for the matching exact OPP for the clock corresponding to the 745 * specified index from a starting freq for a device. 746 * 747 * Return: matching *opp , else returns ERR_PTR in case of error and should be 748 * handled using IS_ERR. Error return values can be: 749 * EINVAL: for bad pointer 750 * ERANGE: no match found for search 751 * ENODEV: if device not found in list of registered devices 752 * 753 * The callers are required to call dev_pm_opp_put() for the returned OPP after 754 * use. 755 */ 756 struct dev_pm_opp * 757 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq, 758 u32 index, bool available) 759 { 760 return _find_key_exact(dev, freq, index, available, _read_freq, 761 assert_clk_index); 762 } 763 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed); 764 765 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 766 unsigned long *freq) 767 { 768 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 769 assert_single_clk); 770 } 771 772 /** 773 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 774 * @dev: device for which we do this operation 775 * @freq: Start frequency 776 * 777 * Search for the matching ceil *available* OPP from a starting freq 778 * for a device. 779 * 780 * Return: matching *opp and refreshes *freq accordingly, else returns 781 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 782 * values can be: 783 * EINVAL: for bad pointer 784 * ERANGE: no match found for search 785 * ENODEV: if device not found in list of registered devices 786 * 787 * The callers are required to call dev_pm_opp_put() for the returned OPP after 788 * use. 789 */ 790 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 791 unsigned long *freq) 792 { 793 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 794 } 795 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 796 797 /** 798 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the 799 * clock corresponding to the index 800 * @dev: Device for which we do this operation 801 * @freq: Start frequency 802 * @index: Clock index 803 * 804 * Search for the matching ceil *available* OPP for the clock corresponding to 805 * the specified index from a starting freq for a device. 806 * 807 * Return: matching *opp and refreshes *freq accordingly, else returns 808 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 809 * values can be: 810 * EINVAL: for bad pointer 811 * ERANGE: no match found for search 812 * ENODEV: if device not found in list of registered devices 813 * 814 * The callers are required to call dev_pm_opp_put() for the returned OPP after 815 * use. 816 */ 817 struct dev_pm_opp * 818 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq, 819 u32 index) 820 { 821 return _find_key_ceil(dev, freq, index, true, _read_freq, 822 assert_clk_index); 823 } 824 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed); 825 826 /** 827 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 828 * @dev: device for which we do this operation 829 * @freq: Start frequency 830 * 831 * Search for the matching floor *available* OPP from a starting freq 832 * for a device. 833 * 834 * Return: matching *opp and refreshes *freq accordingly, else returns 835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 836 * values can be: 837 * EINVAL: for bad pointer 838 * ERANGE: no match found for search 839 * ENODEV: if device not found in list of registered devices 840 * 841 * The callers are required to call dev_pm_opp_put() for the returned OPP after 842 * use. 843 */ 844 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 845 unsigned long *freq) 846 { 847 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 848 } 849 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 850 851 /** 852 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the 853 * clock corresponding to the index 854 * @dev: Device for which we do this operation 855 * @freq: Start frequency 856 * @index: Clock index 857 * 858 * Search for the matching floor *available* OPP for the clock corresponding to 859 * the specified index from a starting freq for a device. 860 * 861 * Return: matching *opp and refreshes *freq accordingly, else returns 862 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 863 * values can be: 864 * EINVAL: for bad pointer 865 * ERANGE: no match found for search 866 * ENODEV: if device not found in list of registered devices 867 * 868 * The callers are required to call dev_pm_opp_put() for the returned OPP after 869 * use. 870 */ 871 struct dev_pm_opp * 872 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq, 873 u32 index) 874 { 875 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index); 876 } 877 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed); 878 879 /** 880 * dev_pm_opp_find_level_exact() - search for an exact level 881 * @dev: device for which we do this operation 882 * @level: level to search for 883 * 884 * Return: Searches for exact match in the opp table and returns pointer to the 885 * matching opp if found, else returns ERR_PTR in case of error and should 886 * be handled using IS_ERR. Error return values can be: 887 * EINVAL: for bad pointer 888 * ERANGE: no match found for search 889 * ENODEV: if device not found in list of registered devices 890 * 891 * The callers are required to call dev_pm_opp_put() for the returned OPP after 892 * use. 893 */ 894 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 895 unsigned int level) 896 { 897 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 898 } 899 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 900 901 /** 902 * dev_pm_opp_find_level_ceil() - search for an rounded up level 903 * @dev: device for which we do this operation 904 * @level: level to search for 905 * 906 * Return: Searches for rounded up match in the opp table and returns pointer 907 * to the matching opp if found, else returns ERR_PTR in case of error and 908 * should be handled using IS_ERR. Error return values can be: 909 * EINVAL: for bad pointer 910 * ERANGE: no match found for search 911 * ENODEV: if device not found in list of registered devices 912 * 913 * The callers are required to call dev_pm_opp_put() for the returned OPP after 914 * use. 915 */ 916 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 917 unsigned int *level) 918 { 919 unsigned long temp = *level; 920 struct dev_pm_opp *opp; 921 922 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 923 if (IS_ERR(opp)) 924 return opp; 925 926 /* False match */ 927 if (temp == OPP_LEVEL_UNSET) { 928 dev_err(dev, "%s: OPP levels aren't available\n", __func__); 929 dev_pm_opp_put(opp); 930 return ERR_PTR(-ENODEV); 931 } 932 933 *level = temp; 934 return opp; 935 } 936 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 937 938 /** 939 * dev_pm_opp_find_level_floor() - Search for a rounded floor level 940 * @dev: device for which we do this operation 941 * @level: Start level 942 * 943 * Search for the matching floor *available* OPP from a starting level 944 * for a device. 945 * 946 * Return: matching *opp and refreshes *level accordingly, else returns 947 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 948 * values can be: 949 * EINVAL: for bad pointer 950 * ERANGE: no match found for search 951 * ENODEV: if device not found in list of registered devices 952 * 953 * The callers are required to call dev_pm_opp_put() for the returned OPP after 954 * use. 955 */ 956 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev, 957 unsigned int *level) 958 { 959 unsigned long temp = *level; 960 struct dev_pm_opp *opp; 961 962 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL); 963 *level = temp; 964 return opp; 965 } 966 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor); 967 968 /** 969 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 970 * @dev: device for which we do this operation 971 * @bw: start bandwidth 972 * @index: which bandwidth to compare, in case of OPPs with several values 973 * 974 * Search for the matching floor *available* OPP from a starting bandwidth 975 * for a device. 976 * 977 * Return: matching *opp and refreshes *bw accordingly, else returns 978 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 979 * values can be: 980 * EINVAL: for bad pointer 981 * ERANGE: no match found for search 982 * ENODEV: if device not found in list of registered devices 983 * 984 * The callers are required to call dev_pm_opp_put() for the returned OPP after 985 * use. 986 */ 987 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 988 int index) 989 { 990 unsigned long temp = *bw; 991 struct dev_pm_opp *opp; 992 993 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, 994 assert_bandwidth_index); 995 *bw = temp; 996 return opp; 997 } 998 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 999 1000 /** 1001 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 1002 * @dev: device for which we do this operation 1003 * @bw: start bandwidth 1004 * @index: which bandwidth to compare, in case of OPPs with several values 1005 * 1006 * Search for the matching floor *available* OPP from a starting bandwidth 1007 * for a device. 1008 * 1009 * Return: matching *opp and refreshes *bw accordingly, else returns 1010 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 1011 * values can be: 1012 * EINVAL: for bad pointer 1013 * ERANGE: no match found for search 1014 * ENODEV: if device not found in list of registered devices 1015 * 1016 * The callers are required to call dev_pm_opp_put() for the returned OPP after 1017 * use. 1018 */ 1019 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 1020 unsigned int *bw, int index) 1021 { 1022 unsigned long temp = *bw; 1023 struct dev_pm_opp *opp; 1024 1025 opp = _find_key_floor(dev, &temp, index, true, _read_bw, 1026 assert_bandwidth_index); 1027 *bw = temp; 1028 return opp; 1029 } 1030 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 1031 1032 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 1033 struct dev_pm_opp_supply *supply) 1034 { 1035 int ret; 1036 1037 /* Regulator not available for device */ 1038 if (IS_ERR(reg)) { 1039 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 1040 PTR_ERR(reg)); 1041 return 0; 1042 } 1043 1044 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 1045 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 1046 1047 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 1048 supply->u_volt, supply->u_volt_max); 1049 if (ret) 1050 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 1051 __func__, supply->u_volt_min, supply->u_volt, 1052 supply->u_volt_max, ret); 1053 1054 return ret; 1055 } 1056 1057 static int 1058 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 1059 struct dev_pm_opp *opp, void *data, bool scaling_down) 1060 { 1061 unsigned long *target = data; 1062 unsigned long freq; 1063 int ret; 1064 1065 /* One of target and opp must be available */ 1066 if (target) { 1067 freq = *target; 1068 } else if (opp) { 1069 freq = opp->rates[0]; 1070 } else { 1071 WARN_ON(1); 1072 return -EINVAL; 1073 } 1074 1075 ret = clk_set_rate(opp_table->clk, freq); 1076 if (ret) { 1077 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 1078 ret); 1079 } else { 1080 opp_table->current_rate_single_clk = freq; 1081 } 1082 1083 return ret; 1084 } 1085 1086 /* 1087 * Simple implementation for configuring multiple clocks. Configure clocks in 1088 * the order in which they are present in the array while scaling up. 1089 */ 1090 int dev_pm_opp_config_clks_simple(struct device *dev, 1091 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 1092 bool scaling_down) 1093 { 1094 int ret, i; 1095 1096 if (scaling_down) { 1097 for (i = opp_table->clk_count - 1; i >= 0; i--) { 1098 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 1099 if (ret) { 1100 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 1101 ret); 1102 return ret; 1103 } 1104 } 1105 } else { 1106 for (i = 0; i < opp_table->clk_count; i++) { 1107 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 1108 if (ret) { 1109 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 1110 ret); 1111 return ret; 1112 } 1113 } 1114 } 1115 1116 return 0; 1117 } 1118 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 1119 1120 static int _opp_config_regulator_single(struct device *dev, 1121 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 1122 struct regulator **regulators, unsigned int count) 1123 { 1124 struct regulator *reg = regulators[0]; 1125 int ret; 1126 1127 /* This function only supports single regulator per device */ 1128 if (WARN_ON(count > 1)) { 1129 dev_err(dev, "multiple regulators are not supported\n"); 1130 return -EINVAL; 1131 } 1132 1133 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 1134 if (ret) 1135 return ret; 1136 1137 /* 1138 * Enable the regulator after setting its voltages, otherwise it breaks 1139 * some boot-enabled regulators. 1140 */ 1141 if (unlikely(!new_opp->opp_table->enabled)) { 1142 ret = regulator_enable(reg); 1143 if (ret < 0) 1144 dev_warn(dev, "Failed to enable regulator: %d", ret); 1145 } 1146 1147 return 0; 1148 } 1149 1150 static int _set_opp_bw(const struct opp_table *opp_table, 1151 struct dev_pm_opp *opp, struct device *dev) 1152 { 1153 u32 avg, peak; 1154 int i, ret; 1155 1156 if (!opp_table->paths) 1157 return 0; 1158 1159 for (i = 0; i < opp_table->path_count; i++) { 1160 if (!opp) { 1161 avg = 0; 1162 peak = 0; 1163 } else { 1164 avg = opp->bandwidth[i].avg; 1165 peak = opp->bandwidth[i].peak; 1166 } 1167 ret = icc_set_bw(opp_table->paths[i], avg, peak); 1168 if (ret) { 1169 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 1170 opp ? "set" : "remove", i, ret); 1171 return ret; 1172 } 1173 } 1174 1175 return 0; 1176 } 1177 1178 static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp) 1179 { 1180 unsigned int level = 0; 1181 int ret = 0; 1182 1183 if (opp) { 1184 if (opp->level == OPP_LEVEL_UNSET) 1185 return 0; 1186 1187 level = opp->level; 1188 } 1189 1190 /* Request a new performance state through the device's PM domain. */ 1191 ret = dev_pm_domain_set_performance_state(dev, level); 1192 if (ret) 1193 dev_err(dev, "Failed to set performance state %u (%d)\n", level, 1194 ret); 1195 1196 return ret; 1197 } 1198 1199 /* This is only called for PM domain for now */ 1200 static int _set_required_opps(struct device *dev, struct opp_table *opp_table, 1201 struct dev_pm_opp *opp, bool up) 1202 { 1203 struct device **devs = opp_table->required_devs; 1204 struct dev_pm_opp *required_opp; 1205 int index, target, delta, ret; 1206 1207 if (!devs) 1208 return 0; 1209 1210 /* required-opps not fully initialized yet */ 1211 if (lazy_linking_pending(opp_table)) 1212 return -EBUSY; 1213 1214 /* Scaling up? Set required OPPs in normal order, else reverse */ 1215 if (up) { 1216 index = 0; 1217 target = opp_table->required_opp_count; 1218 delta = 1; 1219 } else { 1220 index = opp_table->required_opp_count - 1; 1221 target = -1; 1222 delta = -1; 1223 } 1224 1225 while (index != target) { 1226 if (devs[index]) { 1227 required_opp = opp ? opp->required_opps[index] : NULL; 1228 1229 ret = _set_opp_level(devs[index], required_opp); 1230 if (ret) 1231 return ret; 1232 } 1233 1234 index += delta; 1235 } 1236 1237 return 0; 1238 } 1239 1240 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1241 { 1242 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1243 unsigned long freq; 1244 1245 if (!IS_ERR(opp_table->clk)) { 1246 freq = clk_get_rate(opp_table->clk); 1247 opp = _find_freq_ceil(opp_table, &freq); 1248 } 1249 1250 /* 1251 * Unable to find the current OPP ? Pick the first from the list since 1252 * it is in ascending order, otherwise rest of the code will need to 1253 * make special checks to validate current_opp. 1254 */ 1255 if (IS_ERR(opp)) { 1256 guard(mutex)(&opp_table->lock); 1257 opp = dev_pm_opp_get(list_first_entry(&opp_table->opp_list, 1258 struct dev_pm_opp, node)); 1259 } 1260 1261 opp_table->current_opp = opp; 1262 } 1263 1264 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1265 { 1266 int ret; 1267 1268 if (!opp_table->enabled) 1269 return 0; 1270 1271 /* 1272 * Some drivers need to support cases where some platforms may 1273 * have OPP table for the device, while others don't and 1274 * opp_set_rate() just needs to behave like clk_set_rate(). 1275 */ 1276 if (!_get_opp_count(opp_table)) 1277 return 0; 1278 1279 ret = _set_opp_bw(opp_table, NULL, dev); 1280 if (ret) 1281 return ret; 1282 1283 if (opp_table->regulators) 1284 regulator_disable(opp_table->regulators[0]); 1285 1286 ret = _set_opp_level(dev, NULL); 1287 if (ret) 1288 goto out; 1289 1290 ret = _set_required_opps(dev, opp_table, NULL, false); 1291 1292 out: 1293 opp_table->enabled = false; 1294 return ret; 1295 } 1296 1297 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1298 struct dev_pm_opp *opp, void *clk_data, bool forced) 1299 { 1300 struct dev_pm_opp *old_opp; 1301 int scaling_down, ret; 1302 1303 if (unlikely(!opp)) 1304 return _disable_opp_table(dev, opp_table); 1305 1306 /* Find the currently set OPP if we don't know already */ 1307 if (unlikely(!opp_table->current_opp)) 1308 _find_current_opp(dev, opp_table); 1309 1310 old_opp = opp_table->current_opp; 1311 1312 /* Return early if nothing to do */ 1313 if (!forced && old_opp == opp && opp_table->enabled) { 1314 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__); 1315 return 0; 1316 } 1317 1318 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1319 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1320 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1321 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1322 1323 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1324 if (scaling_down == -1) 1325 scaling_down = 0; 1326 1327 /* Scaling up? Configure required OPPs before frequency */ 1328 if (!scaling_down) { 1329 ret = _set_required_opps(dev, opp_table, opp, true); 1330 if (ret) { 1331 dev_err(dev, "Failed to set required opps: %d\n", ret); 1332 return ret; 1333 } 1334 1335 ret = _set_opp_level(dev, opp); 1336 if (ret) 1337 return ret; 1338 1339 ret = _set_opp_bw(opp_table, opp, dev); 1340 if (ret) { 1341 dev_err(dev, "Failed to set bw: %d\n", ret); 1342 return ret; 1343 } 1344 1345 if (opp_table->config_regulators) { 1346 ret = opp_table->config_regulators(dev, old_opp, opp, 1347 opp_table->regulators, 1348 opp_table->regulator_count); 1349 if (ret) { 1350 dev_err(dev, "Failed to set regulator voltages: %d\n", 1351 ret); 1352 return ret; 1353 } 1354 } 1355 } 1356 1357 if (opp_table->config_clks) { 1358 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1359 if (ret) 1360 return ret; 1361 } 1362 1363 /* Scaling down? Configure required OPPs after frequency */ 1364 if (scaling_down) { 1365 if (opp_table->config_regulators) { 1366 ret = opp_table->config_regulators(dev, old_opp, opp, 1367 opp_table->regulators, 1368 opp_table->regulator_count); 1369 if (ret) { 1370 dev_err(dev, "Failed to set regulator voltages: %d\n", 1371 ret); 1372 return ret; 1373 } 1374 } 1375 1376 ret = _set_opp_bw(opp_table, opp, dev); 1377 if (ret) { 1378 dev_err(dev, "Failed to set bw: %d\n", ret); 1379 return ret; 1380 } 1381 1382 ret = _set_opp_level(dev, opp); 1383 if (ret) 1384 return ret; 1385 1386 ret = _set_required_opps(dev, opp_table, opp, false); 1387 if (ret) { 1388 dev_err(dev, "Failed to set required opps: %d\n", ret); 1389 return ret; 1390 } 1391 } 1392 1393 opp_table->enabled = true; 1394 dev_pm_opp_put(old_opp); 1395 1396 /* Make sure current_opp doesn't get freed */ 1397 opp_table->current_opp = dev_pm_opp_get(opp); 1398 1399 return ret; 1400 } 1401 1402 /** 1403 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1404 * @dev: device for which we do this operation 1405 * @target_freq: frequency to achieve 1406 * 1407 * This configures the power-supplies to the levels specified by the OPP 1408 * corresponding to the target_freq, and programs the clock to a value <= 1409 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1410 * provided by the opp, should have already rounded to the target OPP's 1411 * frequency. 1412 */ 1413 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1414 { 1415 struct dev_pm_opp *opp __free(put_opp) = NULL; 1416 unsigned long freq = 0, temp_freq; 1417 bool forced = false; 1418 1419 struct opp_table *opp_table __free(put_opp_table) = 1420 _find_opp_table(dev); 1421 1422 if (IS_ERR(opp_table)) { 1423 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1424 return PTR_ERR(opp_table); 1425 } 1426 1427 if (target_freq) { 1428 /* 1429 * For IO devices which require an OPP on some platforms/SoCs 1430 * while just needing to scale the clock on some others 1431 * we look for empty OPP tables with just a clock handle and 1432 * scale only the clk. This makes dev_pm_opp_set_rate() 1433 * equivalent to a clk_set_rate() 1434 */ 1435 if (!_get_opp_count(opp_table)) { 1436 return opp_table->config_clks(dev, opp_table, NULL, 1437 &target_freq, false); 1438 } 1439 1440 freq = clk_round_rate(opp_table->clk, target_freq); 1441 if ((long)freq <= 0) 1442 freq = target_freq; 1443 1444 /* 1445 * The clock driver may support finer resolution of the 1446 * frequencies than the OPP table, don't update the frequency we 1447 * pass to clk_set_rate() here. 1448 */ 1449 temp_freq = freq; 1450 opp = _find_freq_ceil(opp_table, &temp_freq); 1451 if (IS_ERR(opp)) { 1452 dev_err(dev, "%s: failed to find OPP for freq %lu (%ld)\n", 1453 __func__, freq, PTR_ERR(opp)); 1454 return PTR_ERR(opp); 1455 } 1456 1457 /* 1458 * An OPP entry specifies the highest frequency at which other 1459 * properties of the OPP entry apply. Even if the new OPP is 1460 * same as the old one, we may still reach here for a different 1461 * value of the frequency. In such a case, do not abort but 1462 * configure the hardware to the desired frequency forcefully. 1463 */ 1464 forced = opp_table->current_rate_single_clk != freq; 1465 } 1466 1467 return _set_opp(dev, opp_table, opp, &freq, forced); 1468 } 1469 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1470 1471 /** 1472 * dev_pm_opp_set_opp() - Configure device for OPP 1473 * @dev: device for which we do this operation 1474 * @opp: OPP to set to 1475 * 1476 * This configures the device based on the properties of the OPP passed to this 1477 * routine. 1478 * 1479 * Return: 0 on success, a negative error number otherwise. 1480 */ 1481 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1482 { 1483 struct opp_table *opp_table __free(put_opp_table) = 1484 _find_opp_table(dev); 1485 1486 if (IS_ERR(opp_table)) { 1487 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1488 return PTR_ERR(opp_table); 1489 } 1490 1491 return _set_opp(dev, opp_table, opp, NULL, false); 1492 } 1493 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1494 1495 /* OPP-dev Helpers */ 1496 static void _remove_opp_dev(struct opp_device *opp_dev, 1497 struct opp_table *opp_table) 1498 { 1499 opp_debug_unregister(opp_dev, opp_table); 1500 list_del(&opp_dev->node); 1501 kfree(opp_dev); 1502 } 1503 1504 struct opp_device *_add_opp_dev(const struct device *dev, 1505 struct opp_table *opp_table) 1506 { 1507 struct opp_device *opp_dev; 1508 1509 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1510 if (!opp_dev) 1511 return NULL; 1512 1513 /* Initialize opp-dev */ 1514 opp_dev->dev = dev; 1515 1516 scoped_guard(mutex, &opp_table->lock) 1517 list_add(&opp_dev->node, &opp_table->dev_list); 1518 1519 /* Create debugfs entries for the opp_table */ 1520 opp_debug_register(opp_dev, opp_table); 1521 1522 return opp_dev; 1523 } 1524 1525 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1526 { 1527 struct opp_table *opp_table; 1528 struct opp_device *opp_dev; 1529 int ret; 1530 1531 /* 1532 * Allocate a new OPP table. In the infrequent case where a new 1533 * device is needed to be added, we pay this penalty. 1534 */ 1535 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1536 if (!opp_table) 1537 return ERR_PTR(-ENOMEM); 1538 1539 mutex_init(&opp_table->lock); 1540 INIT_LIST_HEAD(&opp_table->dev_list); 1541 INIT_LIST_HEAD(&opp_table->lazy); 1542 1543 opp_table->clk = ERR_PTR(-ENODEV); 1544 1545 /* Mark regulator count uninitialized */ 1546 opp_table->regulator_count = -1; 1547 1548 opp_dev = _add_opp_dev(dev, opp_table); 1549 if (!opp_dev) { 1550 ret = -ENOMEM; 1551 goto err; 1552 } 1553 1554 _of_init_opp_table(opp_table, dev, index); 1555 1556 /* Find interconnect path(s) for the device */ 1557 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1558 if (ret) { 1559 if (ret == -EPROBE_DEFER) 1560 goto remove_opp_dev; 1561 1562 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1563 __func__, ret); 1564 } 1565 1566 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1567 INIT_LIST_HEAD(&opp_table->opp_list); 1568 kref_init(&opp_table->kref); 1569 1570 return opp_table; 1571 1572 remove_opp_dev: 1573 _of_clear_opp_table(opp_table); 1574 _remove_opp_dev(opp_dev, opp_table); 1575 mutex_destroy(&opp_table->lock); 1576 err: 1577 kfree(opp_table); 1578 return ERR_PTR(ret); 1579 } 1580 1581 static struct opp_table *_update_opp_table_clk(struct device *dev, 1582 struct opp_table *opp_table, 1583 bool getclk) 1584 { 1585 int ret; 1586 1587 /* 1588 * Return early if we don't need to get clk or we have already done it 1589 * earlier. 1590 */ 1591 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1592 opp_table->clks) 1593 return opp_table; 1594 1595 /* Find clk for the device */ 1596 opp_table->clk = clk_get(dev, NULL); 1597 1598 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1599 if (!ret) { 1600 opp_table->config_clks = _opp_config_clk_single; 1601 opp_table->clk_count = 1; 1602 return opp_table; 1603 } 1604 1605 if (ret == -ENOENT) { 1606 /* 1607 * There are few platforms which don't want the OPP core to 1608 * manage device's clock settings. In such cases neither the 1609 * platform provides the clks explicitly to us, nor the DT 1610 * contains a valid clk entry. The OPP nodes in DT may still 1611 * contain "opp-hz" property though, which we need to parse and 1612 * allow the platform to find an OPP based on freq later on. 1613 * 1614 * This is a simple solution to take care of such corner cases, 1615 * i.e. make the clk_count 1, which lets us allocate space for 1616 * frequency in opp->rates and also parse the entries in DT. 1617 */ 1618 opp_table->clk_count = 1; 1619 1620 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1621 return opp_table; 1622 } 1623 1624 dev_pm_opp_put_opp_table(opp_table); 1625 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1626 1627 return ERR_PTR(ret); 1628 } 1629 1630 /* 1631 * We need to make sure that the OPP table for a device doesn't get added twice, 1632 * if this routine gets called in parallel with the same device pointer. 1633 * 1634 * The simplest way to enforce that is to perform everything (find existing 1635 * table and if not found, create a new one) under the opp_table_lock, so only 1636 * one creator gets access to the same. But that expands the critical section 1637 * under the lock and may end up causing circular dependencies with frameworks 1638 * like debugfs, interconnect or clock framework as they may be direct or 1639 * indirect users of OPP core. 1640 * 1641 * And for that reason we have to go for a bit tricky implementation here, which 1642 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1643 * of adding an OPP table and others should wait for it to finish. 1644 */ 1645 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1646 bool getclk) 1647 { 1648 struct opp_table *opp_table; 1649 1650 again: 1651 mutex_lock(&opp_table_lock); 1652 1653 opp_table = _find_opp_table_unlocked(dev); 1654 if (!IS_ERR(opp_table)) 1655 goto unlock; 1656 1657 /* 1658 * The opp_tables list or an OPP table's dev_list is getting updated by 1659 * another user, wait for it to finish. 1660 */ 1661 if (unlikely(opp_tables_busy)) { 1662 mutex_unlock(&opp_table_lock); 1663 cpu_relax(); 1664 goto again; 1665 } 1666 1667 opp_tables_busy = true; 1668 opp_table = _managed_opp(dev, index); 1669 1670 /* Drop the lock to reduce the size of critical section */ 1671 mutex_unlock(&opp_table_lock); 1672 1673 if (opp_table) { 1674 if (!_add_opp_dev(dev, opp_table)) { 1675 dev_pm_opp_put_opp_table(opp_table); 1676 opp_table = ERR_PTR(-ENOMEM); 1677 } 1678 1679 mutex_lock(&opp_table_lock); 1680 } else { 1681 opp_table = _allocate_opp_table(dev, index); 1682 1683 mutex_lock(&opp_table_lock); 1684 if (!IS_ERR(opp_table)) 1685 list_add(&opp_table->node, &opp_tables); 1686 } 1687 1688 opp_tables_busy = false; 1689 1690 unlock: 1691 mutex_unlock(&opp_table_lock); 1692 1693 return _update_opp_table_clk(dev, opp_table, getclk); 1694 } 1695 1696 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1697 { 1698 return _add_opp_table_indexed(dev, 0, getclk); 1699 } 1700 1701 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1702 { 1703 return _find_opp_table(dev); 1704 } 1705 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1706 1707 static void _opp_table_kref_release(struct kref *kref) 1708 { 1709 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1710 struct opp_device *opp_dev, *temp; 1711 int i; 1712 1713 /* Drop the lock as soon as we can */ 1714 list_del(&opp_table->node); 1715 mutex_unlock(&opp_table_lock); 1716 1717 if (opp_table->current_opp) 1718 dev_pm_opp_put(opp_table->current_opp); 1719 1720 _of_clear_opp_table(opp_table); 1721 1722 /* Release automatically acquired single clk */ 1723 if (!IS_ERR(opp_table->clk)) 1724 clk_put(opp_table->clk); 1725 1726 if (opp_table->paths) { 1727 for (i = 0; i < opp_table->path_count; i++) 1728 icc_put(opp_table->paths[i]); 1729 kfree(opp_table->paths); 1730 } 1731 1732 WARN_ON(!list_empty(&opp_table->opp_list)); 1733 1734 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) 1735 _remove_opp_dev(opp_dev, opp_table); 1736 1737 mutex_destroy(&opp_table->lock); 1738 kfree(opp_table); 1739 } 1740 1741 struct opp_table *dev_pm_opp_get_opp_table_ref(struct opp_table *opp_table) 1742 { 1743 kref_get(&opp_table->kref); 1744 return opp_table; 1745 } 1746 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table_ref); 1747 1748 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1749 { 1750 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1751 &opp_table_lock); 1752 } 1753 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1754 1755 void _opp_free(struct dev_pm_opp *opp) 1756 { 1757 kfree(opp); 1758 } 1759 1760 static void _opp_kref_release(struct kref *kref) 1761 { 1762 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1763 struct opp_table *opp_table = opp->opp_table; 1764 1765 list_del(&opp->node); 1766 mutex_unlock(&opp_table->lock); 1767 1768 /* 1769 * Notify the changes in the availability of the operable 1770 * frequency/voltage list. 1771 */ 1772 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1773 _of_clear_opp(opp_table, opp); 1774 opp_debug_remove_one(opp); 1775 kfree(opp); 1776 } 1777 1778 struct dev_pm_opp *dev_pm_opp_get(struct dev_pm_opp *opp) 1779 { 1780 kref_get(&opp->kref); 1781 return opp; 1782 } 1783 EXPORT_SYMBOL_GPL(dev_pm_opp_get); 1784 1785 void dev_pm_opp_put(struct dev_pm_opp *opp) 1786 { 1787 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1788 } 1789 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1790 1791 /** 1792 * dev_pm_opp_remove() - Remove an OPP from OPP table 1793 * @dev: device for which we do this operation 1794 * @freq: OPP to remove with matching 'freq' 1795 * 1796 * This function removes an opp from the opp table. 1797 */ 1798 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1799 { 1800 struct dev_pm_opp *opp = NULL, *iter; 1801 1802 struct opp_table *opp_table __free(put_opp_table) = 1803 _find_opp_table(dev); 1804 1805 if (IS_ERR(opp_table)) 1806 return; 1807 1808 if (!assert_single_clk(opp_table, 0)) 1809 return; 1810 1811 scoped_guard(mutex, &opp_table->lock) { 1812 list_for_each_entry(iter, &opp_table->opp_list, node) { 1813 if (iter->rates[0] == freq) { 1814 opp = iter; 1815 break; 1816 } 1817 } 1818 } 1819 1820 if (opp) { 1821 dev_pm_opp_put(opp); 1822 1823 /* Drop the reference taken by dev_pm_opp_add() */ 1824 dev_pm_opp_put_opp_table(opp_table); 1825 } else { 1826 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1827 __func__, freq); 1828 } 1829 } 1830 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1831 1832 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1833 bool dynamic) 1834 { 1835 struct dev_pm_opp *opp; 1836 1837 guard(mutex)(&opp_table->lock); 1838 1839 list_for_each_entry(opp, &opp_table->opp_list, node) { 1840 /* 1841 * Refcount must be dropped only once for each OPP by OPP core, 1842 * do that with help of "removed" flag. 1843 */ 1844 if (!opp->removed && dynamic == opp->dynamic) 1845 return opp; 1846 } 1847 1848 return NULL; 1849 } 1850 1851 /* 1852 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1853 * happen lock less to avoid circular dependency issues. This routine must be 1854 * called without the opp_table->lock held. 1855 */ 1856 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1857 { 1858 struct dev_pm_opp *opp; 1859 1860 while ((opp = _opp_get_next(opp_table, dynamic))) { 1861 opp->removed = true; 1862 dev_pm_opp_put(opp); 1863 1864 /* Drop the references taken by dev_pm_opp_add() */ 1865 if (dynamic) 1866 dev_pm_opp_put_opp_table(opp_table); 1867 } 1868 } 1869 1870 bool _opp_remove_all_static(struct opp_table *opp_table) 1871 { 1872 scoped_guard(mutex, &opp_table->lock) { 1873 if (!opp_table->parsed_static_opps) 1874 return false; 1875 1876 if (--opp_table->parsed_static_opps) 1877 return true; 1878 } 1879 1880 _opp_remove_all(opp_table, false); 1881 return true; 1882 } 1883 1884 /** 1885 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1886 * @dev: device for which we do this operation 1887 * 1888 * This function removes all dynamically created OPPs from the opp table. 1889 */ 1890 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1891 { 1892 struct opp_table *opp_table __free(put_opp_table) = 1893 _find_opp_table(dev); 1894 1895 if (IS_ERR(opp_table)) 1896 return; 1897 1898 _opp_remove_all(opp_table, true); 1899 } 1900 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1901 1902 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1903 { 1904 struct dev_pm_opp *opp; 1905 int supply_count, supply_size, icc_size, clk_size; 1906 1907 /* Allocate space for at least one supply */ 1908 supply_count = opp_table->regulator_count > 0 ? 1909 opp_table->regulator_count : 1; 1910 supply_size = sizeof(*opp->supplies) * supply_count; 1911 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1912 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1913 1914 /* allocate new OPP node and supplies structures */ 1915 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1916 if (!opp) 1917 return NULL; 1918 1919 /* Put the supplies, bw and clock at the end of the OPP structure */ 1920 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1921 1922 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1923 1924 if (icc_size) 1925 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1926 1927 INIT_LIST_HEAD(&opp->node); 1928 1929 opp->level = OPP_LEVEL_UNSET; 1930 1931 return opp; 1932 } 1933 1934 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1935 struct opp_table *opp_table) 1936 { 1937 struct regulator *reg; 1938 int i; 1939 1940 if (!opp_table->regulators) 1941 return true; 1942 1943 for (i = 0; i < opp_table->regulator_count; i++) { 1944 reg = opp_table->regulators[i]; 1945 1946 if (!regulator_is_supported_voltage(reg, 1947 opp->supplies[i].u_volt_min, 1948 opp->supplies[i].u_volt_max)) { 1949 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1950 __func__, opp->supplies[i].u_volt_min, 1951 opp->supplies[i].u_volt_max); 1952 return false; 1953 } 1954 } 1955 1956 return true; 1957 } 1958 1959 static int _opp_compare_rate(struct opp_table *opp_table, 1960 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1961 { 1962 int i; 1963 1964 for (i = 0; i < opp_table->clk_count; i++) { 1965 if (opp1->rates[i] != opp2->rates[i]) 1966 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1967 } 1968 1969 /* Same rates for both OPPs */ 1970 return 0; 1971 } 1972 1973 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1974 struct dev_pm_opp *opp2) 1975 { 1976 int i; 1977 1978 for (i = 0; i < opp_table->path_count; i++) { 1979 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1980 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1981 } 1982 1983 /* Same bw for both OPPs */ 1984 return 0; 1985 } 1986 1987 /* 1988 * Returns 1989 * 0: opp1 == opp2 1990 * 1: opp1 > opp2 1991 * -1: opp1 < opp2 1992 */ 1993 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1994 struct dev_pm_opp *opp2) 1995 { 1996 int ret; 1997 1998 ret = _opp_compare_rate(opp_table, opp1, opp2); 1999 if (ret) 2000 return ret; 2001 2002 ret = _opp_compare_bw(opp_table, opp1, opp2); 2003 if (ret) 2004 return ret; 2005 2006 if (opp1->level != opp2->level) 2007 return opp1->level < opp2->level ? -1 : 1; 2008 2009 /* Duplicate OPPs */ 2010 return 0; 2011 } 2012 2013 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 2014 struct opp_table *opp_table, 2015 struct list_head **head) 2016 { 2017 struct dev_pm_opp *opp; 2018 int opp_cmp; 2019 2020 /* 2021 * Insert new OPP in order of increasing frequency and discard if 2022 * already present. 2023 * 2024 * Need to use &opp_table->opp_list in the condition part of the 'for' 2025 * loop, don't replace it with head otherwise it will become an infinite 2026 * loop. 2027 */ 2028 list_for_each_entry(opp, &opp_table->opp_list, node) { 2029 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 2030 if (opp_cmp > 0) { 2031 *head = &opp->node; 2032 continue; 2033 } 2034 2035 if (opp_cmp < 0) 2036 return 0; 2037 2038 /* Duplicate OPPs */ 2039 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 2040 __func__, opp->rates[0], opp->supplies[0].u_volt, 2041 opp->available, new_opp->rates[0], 2042 new_opp->supplies[0].u_volt, new_opp->available); 2043 2044 /* Should we compare voltages for all regulators here ? */ 2045 return opp->available && 2046 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 2047 } 2048 2049 return 0; 2050 } 2051 2052 void _required_opps_available(struct dev_pm_opp *opp, int count) 2053 { 2054 int i; 2055 2056 for (i = 0; i < count; i++) { 2057 if (opp->required_opps[i]->available) 2058 continue; 2059 2060 opp->available = false; 2061 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 2062 __func__, opp->required_opps[i]->np, opp->rates[0]); 2063 return; 2064 } 2065 } 2066 2067 /* 2068 * Returns: 2069 * 0: On success. And appropriate error message for duplicate OPPs. 2070 * -EBUSY: For OPP with same freq/volt and is available. The callers of 2071 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 2072 * sure we don't print error messages unnecessarily if different parts of 2073 * kernel try to initialize the OPP table. 2074 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 2075 * should be considered an error by the callers of _opp_add(). 2076 */ 2077 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 2078 struct opp_table *opp_table) 2079 { 2080 struct list_head *head; 2081 int ret; 2082 2083 scoped_guard(mutex, &opp_table->lock) { 2084 head = &opp_table->opp_list; 2085 2086 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 2087 if (ret) 2088 return ret; 2089 2090 list_add(&new_opp->node, head); 2091 } 2092 2093 new_opp->opp_table = opp_table; 2094 kref_init(&new_opp->kref); 2095 2096 opp_debug_create_one(new_opp, opp_table); 2097 2098 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 2099 new_opp->available = false; 2100 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 2101 __func__, new_opp->rates[0]); 2102 } 2103 2104 /* required-opps not fully initialized yet */ 2105 if (lazy_linking_pending(opp_table)) 2106 return 0; 2107 2108 _required_opps_available(new_opp, opp_table->required_opp_count); 2109 2110 return 0; 2111 } 2112 2113 /** 2114 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 2115 * @opp_table: OPP table 2116 * @dev: device for which we do this operation 2117 * @data: The OPP data for the OPP to add 2118 * @dynamic: Dynamically added OPPs. 2119 * 2120 * This function adds an opp definition to the opp table and returns status. 2121 * The opp is made available by default and it can be controlled using 2122 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 2123 * 2124 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 2125 * and freed by dev_pm_opp_of_remove_table. 2126 * 2127 * Return: 2128 * 0 On success OR 2129 * Duplicate OPPs (both freq and volt are same) and opp->available 2130 * -EEXIST Freq are same and volt are different OR 2131 * Duplicate OPPs (both freq and volt are same) and !opp->available 2132 * -ENOMEM Memory allocation failure 2133 */ 2134 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 2135 struct dev_pm_opp_data *data, bool dynamic) 2136 { 2137 struct dev_pm_opp *new_opp; 2138 unsigned long tol, u_volt = data->u_volt; 2139 int ret; 2140 2141 if (!assert_single_clk(opp_table, 0)) 2142 return -EINVAL; 2143 2144 new_opp = _opp_allocate(opp_table); 2145 if (!new_opp) 2146 return -ENOMEM; 2147 2148 /* populate the opp table */ 2149 new_opp->rates[0] = data->freq; 2150 new_opp->level = data->level; 2151 new_opp->turbo = data->turbo; 2152 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 2153 new_opp->supplies[0].u_volt = u_volt; 2154 new_opp->supplies[0].u_volt_min = u_volt - tol; 2155 new_opp->supplies[0].u_volt_max = u_volt + tol; 2156 new_opp->available = true; 2157 new_opp->dynamic = dynamic; 2158 2159 ret = _opp_add(dev, new_opp, opp_table); 2160 if (ret) { 2161 /* Don't return error for duplicate OPPs */ 2162 if (ret == -EBUSY) 2163 ret = 0; 2164 goto free_opp; 2165 } 2166 2167 /* 2168 * Notify the changes in the availability of the operable 2169 * frequency/voltage list. 2170 */ 2171 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 2172 return 0; 2173 2174 free_opp: 2175 _opp_free(new_opp); 2176 2177 return ret; 2178 } 2179 2180 /* 2181 * This is required only for the V2 bindings, and it enables a platform to 2182 * specify the hierarchy of versions it supports. OPP layer will then enable 2183 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 2184 * property. 2185 */ 2186 static int _opp_set_supported_hw(struct opp_table *opp_table, 2187 const u32 *versions, unsigned int count) 2188 { 2189 /* Another CPU that shares the OPP table has set the property ? */ 2190 if (opp_table->supported_hw) 2191 return 0; 2192 2193 opp_table->supported_hw = kmemdup_array(versions, count, 2194 sizeof(*versions), GFP_KERNEL); 2195 if (!opp_table->supported_hw) 2196 return -ENOMEM; 2197 2198 opp_table->supported_hw_count = count; 2199 2200 return 0; 2201 } 2202 2203 static void _opp_put_supported_hw(struct opp_table *opp_table) 2204 { 2205 if (opp_table->supported_hw) { 2206 kfree(opp_table->supported_hw); 2207 opp_table->supported_hw = NULL; 2208 opp_table->supported_hw_count = 0; 2209 } 2210 } 2211 2212 /* 2213 * This is required only for the V2 bindings, and it enables a platform to 2214 * specify the extn to be used for certain property names. The properties to 2215 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2216 * should postfix the property name with -<name> while looking for them. 2217 */ 2218 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2219 { 2220 /* Another CPU that shares the OPP table has set the property ? */ 2221 if (!opp_table->prop_name) { 2222 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2223 if (!opp_table->prop_name) 2224 return -ENOMEM; 2225 } 2226 2227 return 0; 2228 } 2229 2230 static void _opp_put_prop_name(struct opp_table *opp_table) 2231 { 2232 if (opp_table->prop_name) { 2233 kfree(opp_table->prop_name); 2234 opp_table->prop_name = NULL; 2235 } 2236 } 2237 2238 /* 2239 * In order to support OPP switching, OPP layer needs to know the name of the 2240 * device's regulators, as the core would be required to switch voltages as 2241 * well. 2242 * 2243 * This must be called before any OPPs are initialized for the device. 2244 */ 2245 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2246 const char * const names[]) 2247 { 2248 const char * const *temp = names; 2249 struct regulator *reg; 2250 int count = 0, ret, i; 2251 2252 /* Count number of regulators */ 2253 while (*temp++) 2254 count++; 2255 2256 if (!count) 2257 return -EINVAL; 2258 2259 /* Another CPU that shares the OPP table has set the regulators ? */ 2260 if (opp_table->regulators) 2261 return 0; 2262 2263 opp_table->regulators = kmalloc_array(count, 2264 sizeof(*opp_table->regulators), 2265 GFP_KERNEL); 2266 if (!opp_table->regulators) 2267 return -ENOMEM; 2268 2269 for (i = 0; i < count; i++) { 2270 reg = regulator_get_optional(dev, names[i]); 2271 if (IS_ERR(reg)) { 2272 ret = dev_err_probe(dev, PTR_ERR(reg), 2273 "%s: no regulator (%s) found\n", 2274 __func__, names[i]); 2275 goto free_regulators; 2276 } 2277 2278 opp_table->regulators[i] = reg; 2279 } 2280 2281 opp_table->regulator_count = count; 2282 2283 /* Set generic config_regulators() for single regulators here */ 2284 if (count == 1) 2285 opp_table->config_regulators = _opp_config_regulator_single; 2286 2287 return 0; 2288 2289 free_regulators: 2290 while (i != 0) 2291 regulator_put(opp_table->regulators[--i]); 2292 2293 kfree(opp_table->regulators); 2294 opp_table->regulators = NULL; 2295 opp_table->regulator_count = -1; 2296 2297 return ret; 2298 } 2299 2300 static void _opp_put_regulators(struct opp_table *opp_table) 2301 { 2302 int i; 2303 2304 if (!opp_table->regulators) 2305 return; 2306 2307 if (opp_table->enabled) { 2308 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2309 regulator_disable(opp_table->regulators[i]); 2310 } 2311 2312 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2313 regulator_put(opp_table->regulators[i]); 2314 2315 kfree(opp_table->regulators); 2316 opp_table->regulators = NULL; 2317 opp_table->regulator_count = -1; 2318 } 2319 2320 static void _put_clks(struct opp_table *opp_table, int count) 2321 { 2322 int i; 2323 2324 for (i = count - 1; i >= 0; i--) 2325 clk_put(opp_table->clks[i]); 2326 2327 kfree(opp_table->clks); 2328 opp_table->clks = NULL; 2329 } 2330 2331 /* 2332 * In order to support OPP switching, OPP layer needs to get pointers to the 2333 * clocks for the device. Simple cases work fine without using this routine 2334 * (i.e. by passing connection-id as NULL), but for a device with multiple 2335 * clocks available, the OPP core needs to know the exact names of the clks to 2336 * use. 2337 * 2338 * This must be called before any OPPs are initialized for the device. 2339 */ 2340 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2341 const char * const names[], 2342 config_clks_t config_clks) 2343 { 2344 const char * const *temp = names; 2345 int count = 0, ret, i; 2346 struct clk *clk; 2347 2348 /* Count number of clks */ 2349 while (*temp++) 2350 count++; 2351 2352 /* 2353 * This is a special case where we have a single clock, whose connection 2354 * id name is NULL, i.e. first two entries are NULL in the array. 2355 */ 2356 if (!count && !names[1]) 2357 count = 1; 2358 2359 /* Fail early for invalid configurations */ 2360 if (!count || (!config_clks && count > 1)) 2361 return -EINVAL; 2362 2363 /* Another CPU that shares the OPP table has set the clkname ? */ 2364 if (opp_table->clks) 2365 return 0; 2366 2367 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2368 GFP_KERNEL); 2369 if (!opp_table->clks) 2370 return -ENOMEM; 2371 2372 /* Find clks for the device */ 2373 for (i = 0; i < count; i++) { 2374 clk = clk_get(dev, names[i]); 2375 if (IS_ERR(clk)) { 2376 ret = dev_err_probe(dev, PTR_ERR(clk), 2377 "%s: Couldn't find clock with name: %s\n", 2378 __func__, names[i]); 2379 goto free_clks; 2380 } 2381 2382 opp_table->clks[i] = clk; 2383 } 2384 2385 opp_table->clk_count = count; 2386 opp_table->config_clks = config_clks; 2387 2388 /* Set generic single clk set here */ 2389 if (count == 1) { 2390 if (!opp_table->config_clks) 2391 opp_table->config_clks = _opp_config_clk_single; 2392 2393 /* 2394 * We could have just dropped the "clk" field and used "clks" 2395 * everywhere. Instead we kept the "clk" field around for 2396 * following reasons: 2397 * 2398 * - avoiding clks[0] everywhere else. 2399 * - not running single clk helpers for multiple clk usecase by 2400 * mistake. 2401 * 2402 * Since this is single-clk case, just update the clk pointer 2403 * too. 2404 */ 2405 opp_table->clk = opp_table->clks[0]; 2406 } 2407 2408 return 0; 2409 2410 free_clks: 2411 _put_clks(opp_table, i); 2412 return ret; 2413 } 2414 2415 static void _opp_put_clknames(struct opp_table *opp_table) 2416 { 2417 if (!opp_table->clks) 2418 return; 2419 2420 opp_table->config_clks = NULL; 2421 opp_table->clk = ERR_PTR(-ENODEV); 2422 2423 _put_clks(opp_table, opp_table->clk_count); 2424 } 2425 2426 /* 2427 * This is useful to support platforms with multiple regulators per device. 2428 * 2429 * This must be called before any OPPs are initialized for the device. 2430 */ 2431 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2432 struct device *dev, config_regulators_t config_regulators) 2433 { 2434 /* Another CPU that shares the OPP table has set the helper ? */ 2435 if (!opp_table->config_regulators) 2436 opp_table->config_regulators = config_regulators; 2437 2438 return 0; 2439 } 2440 2441 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2442 { 2443 if (opp_table->config_regulators) 2444 opp_table->config_regulators = NULL; 2445 } 2446 2447 static int _opp_set_required_dev(struct opp_table *opp_table, 2448 struct device *dev, 2449 struct device *required_dev, 2450 unsigned int index) 2451 { 2452 struct opp_table *required_table, *pd_table; 2453 struct device *gdev; 2454 2455 /* Genpd core takes care of propagation to parent genpd */ 2456 if (opp_table->is_genpd) { 2457 dev_err(dev, "%s: Operation not supported for genpds\n", __func__); 2458 return -EOPNOTSUPP; 2459 } 2460 2461 if (index >= opp_table->required_opp_count) { 2462 dev_err(dev, "Required OPPs not available, can't set required devs\n"); 2463 return -EINVAL; 2464 } 2465 2466 required_table = opp_table->required_opp_tables[index]; 2467 if (IS_ERR(required_table)) { 2468 dev_err(dev, "Missing OPP table, unable to set the required devs\n"); 2469 return -ENODEV; 2470 } 2471 2472 /* 2473 * The required_opp_tables parsing is not perfect, as the OPP core does 2474 * the parsing solely based on the DT node pointers. The core sets the 2475 * required_opp_tables entry to the first OPP table in the "opp_tables" 2476 * list, that matches with the node pointer. 2477 * 2478 * If the target DT OPP table is used by multiple devices and they all 2479 * create separate instances of 'struct opp_table' from it, then it is 2480 * possible that the required_opp_tables entry may be set to the 2481 * incorrect sibling device. 2482 * 2483 * Cross check it again and fix if required. 2484 */ 2485 gdev = dev_to_genpd_dev(required_dev); 2486 if (IS_ERR(gdev)) 2487 return PTR_ERR(gdev); 2488 2489 pd_table = _find_opp_table(gdev); 2490 if (!IS_ERR(pd_table)) { 2491 if (pd_table != required_table) { 2492 dev_pm_opp_put_opp_table(required_table); 2493 opp_table->required_opp_tables[index] = pd_table; 2494 } else { 2495 dev_pm_opp_put_opp_table(pd_table); 2496 } 2497 } 2498 2499 opp_table->required_devs[index] = required_dev; 2500 return 0; 2501 } 2502 2503 static void _opp_put_required_dev(struct opp_table *opp_table, 2504 unsigned int index) 2505 { 2506 opp_table->required_devs[index] = NULL; 2507 } 2508 2509 static void _opp_clear_config(struct opp_config_data *data) 2510 { 2511 if (data->flags & OPP_CONFIG_REQUIRED_DEV) 2512 _opp_put_required_dev(data->opp_table, 2513 data->required_dev_index); 2514 if (data->flags & OPP_CONFIG_REGULATOR) 2515 _opp_put_regulators(data->opp_table); 2516 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2517 _opp_put_supported_hw(data->opp_table); 2518 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2519 _opp_put_config_regulators_helper(data->opp_table); 2520 if (data->flags & OPP_CONFIG_PROP_NAME) 2521 _opp_put_prop_name(data->opp_table); 2522 if (data->flags & OPP_CONFIG_CLK) 2523 _opp_put_clknames(data->opp_table); 2524 2525 dev_pm_opp_put_opp_table(data->opp_table); 2526 kfree(data); 2527 } 2528 2529 /** 2530 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2531 * @dev: Device for which configuration is being set. 2532 * @config: OPP configuration. 2533 * 2534 * This allows all device OPP configurations to be performed at once. 2535 * 2536 * This must be called before any OPPs are initialized for the device. This may 2537 * be called multiple times for the same OPP table, for example once for each 2538 * CPU that share the same table. This must be balanced by the same number of 2539 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2540 * 2541 * This returns a token to the caller, which must be passed to 2542 * dev_pm_opp_clear_config() to free the resources later. The value of the 2543 * returned token will be >= 1 for success and negative for errors. The minimum 2544 * value of 1 is chosen here to make it easy for callers to manage the resource. 2545 */ 2546 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2547 { 2548 struct opp_table *opp_table; 2549 struct opp_config_data *data; 2550 unsigned int id; 2551 int ret; 2552 2553 data = kmalloc(sizeof(*data), GFP_KERNEL); 2554 if (!data) 2555 return -ENOMEM; 2556 2557 opp_table = _add_opp_table(dev, false); 2558 if (IS_ERR(opp_table)) { 2559 kfree(data); 2560 return PTR_ERR(opp_table); 2561 } 2562 2563 data->opp_table = opp_table; 2564 data->flags = 0; 2565 2566 /* This should be called before OPPs are initialized */ 2567 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2568 ret = -EBUSY; 2569 goto err; 2570 } 2571 2572 /* Configure clocks */ 2573 if (config->clk_names) { 2574 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2575 config->config_clks); 2576 if (ret) 2577 goto err; 2578 2579 data->flags |= OPP_CONFIG_CLK; 2580 } else if (config->config_clks) { 2581 /* Don't allow config callback without clocks */ 2582 ret = -EINVAL; 2583 goto err; 2584 } 2585 2586 /* Configure property names */ 2587 if (config->prop_name) { 2588 ret = _opp_set_prop_name(opp_table, config->prop_name); 2589 if (ret) 2590 goto err; 2591 2592 data->flags |= OPP_CONFIG_PROP_NAME; 2593 } 2594 2595 /* Configure config_regulators helper */ 2596 if (config->config_regulators) { 2597 ret = _opp_set_config_regulators_helper(opp_table, dev, 2598 config->config_regulators); 2599 if (ret) 2600 goto err; 2601 2602 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2603 } 2604 2605 /* Configure supported hardware */ 2606 if (config->supported_hw) { 2607 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2608 config->supported_hw_count); 2609 if (ret) 2610 goto err; 2611 2612 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2613 } 2614 2615 /* Configure supplies */ 2616 if (config->regulator_names) { 2617 ret = _opp_set_regulators(opp_table, dev, 2618 config->regulator_names); 2619 if (ret) 2620 goto err; 2621 2622 data->flags |= OPP_CONFIG_REGULATOR; 2623 } 2624 2625 if (config->required_dev) { 2626 ret = _opp_set_required_dev(opp_table, dev, 2627 config->required_dev, 2628 config->required_dev_index); 2629 if (ret) 2630 goto err; 2631 2632 data->required_dev_index = config->required_dev_index; 2633 data->flags |= OPP_CONFIG_REQUIRED_DEV; 2634 } 2635 2636 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2637 GFP_KERNEL); 2638 if (ret) 2639 goto err; 2640 2641 return id; 2642 2643 err: 2644 _opp_clear_config(data); 2645 return ret; 2646 } 2647 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2648 2649 /** 2650 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2651 * @token: The token returned by dev_pm_opp_set_config() previously. 2652 * 2653 * This allows all device OPP configurations to be cleared at once. This must be 2654 * called once for each call made to dev_pm_opp_set_config(), in order to free 2655 * the OPPs properly. 2656 * 2657 * Currently the first call itself ends up freeing all the OPP configurations, 2658 * while the later ones only drop the OPP table reference. This works well for 2659 * now as we would never want to use an half initialized OPP table and want to 2660 * remove the configurations together. 2661 */ 2662 void dev_pm_opp_clear_config(int token) 2663 { 2664 struct opp_config_data *data; 2665 2666 /* 2667 * This lets the callers call this unconditionally and keep their code 2668 * simple. 2669 */ 2670 if (unlikely(token <= 0)) 2671 return; 2672 2673 data = xa_erase(&opp_configs, token); 2674 if (WARN_ON(!data)) 2675 return; 2676 2677 _opp_clear_config(data); 2678 } 2679 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2680 2681 static void devm_pm_opp_config_release(void *token) 2682 { 2683 dev_pm_opp_clear_config((unsigned long)token); 2684 } 2685 2686 /** 2687 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2688 * @dev: Device for which configuration is being set. 2689 * @config: OPP configuration. 2690 * 2691 * This allows all device OPP configurations to be performed at once. 2692 * This is a resource-managed variant of dev_pm_opp_set_config(). 2693 * 2694 * Return: 0 on success and errorno otherwise. 2695 */ 2696 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2697 { 2698 int token = dev_pm_opp_set_config(dev, config); 2699 2700 if (token < 0) 2701 return token; 2702 2703 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2704 (void *) ((unsigned long) token)); 2705 } 2706 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2707 2708 /** 2709 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2710 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2711 * @dst_table: Required OPP table of the @src_table. 2712 * @src_opp: OPP from the @src_table. 2713 * 2714 * This function returns the OPP (present in @dst_table) pointed out by the 2715 * "required-opps" property of the @src_opp (present in @src_table). 2716 * 2717 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2718 * use. 2719 * 2720 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2721 */ 2722 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2723 struct opp_table *dst_table, 2724 struct dev_pm_opp *src_opp) 2725 { 2726 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2727 int i; 2728 2729 if (!src_table || !dst_table || !src_opp || 2730 !src_table->required_opp_tables) 2731 return ERR_PTR(-EINVAL); 2732 2733 /* required-opps not fully initialized yet */ 2734 if (lazy_linking_pending(src_table)) 2735 return ERR_PTR(-EBUSY); 2736 2737 for (i = 0; i < src_table->required_opp_count; i++) { 2738 if (src_table->required_opp_tables[i] != dst_table) 2739 continue; 2740 2741 scoped_guard(mutex, &src_table->lock) { 2742 list_for_each_entry(opp, &src_table->opp_list, node) { 2743 if (opp == src_opp) { 2744 dest_opp = dev_pm_opp_get(opp->required_opps[i]); 2745 break; 2746 } 2747 } 2748 break; 2749 } 2750 } 2751 2752 if (IS_ERR(dest_opp)) { 2753 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2754 src_table, dst_table); 2755 } 2756 2757 return dest_opp; 2758 } 2759 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2760 2761 /** 2762 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2763 * @src_table: OPP table which has dst_table as one of its required OPP table. 2764 * @dst_table: Required OPP table of the src_table. 2765 * @pstate: Current performance state of the src_table. 2766 * 2767 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2768 * "required-opps" property of the OPP (present in @src_table) which has 2769 * performance state set to @pstate. 2770 * 2771 * Return: Zero or positive performance state on success, otherwise negative 2772 * value on errors. 2773 */ 2774 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2775 struct opp_table *dst_table, 2776 unsigned int pstate) 2777 { 2778 struct dev_pm_opp *opp; 2779 int i; 2780 2781 /* 2782 * Normally the src_table will have the "required_opps" property set to 2783 * point to one of the OPPs in the dst_table, but in some cases the 2784 * genpd and its master have one to one mapping of performance states 2785 * and so none of them have the "required-opps" property set. Return the 2786 * pstate of the src_table as it is in such cases. 2787 */ 2788 if (!src_table || !src_table->required_opp_count) 2789 return pstate; 2790 2791 /* Both OPP tables must belong to genpds */ 2792 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) { 2793 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 2794 return -EINVAL; 2795 } 2796 2797 /* required-opps not fully initialized yet */ 2798 if (lazy_linking_pending(src_table)) 2799 return -EBUSY; 2800 2801 for (i = 0; i < src_table->required_opp_count; i++) { 2802 if (src_table->required_opp_tables[i]->np == dst_table->np) 2803 break; 2804 } 2805 2806 if (unlikely(i == src_table->required_opp_count)) { 2807 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2808 __func__, src_table, dst_table); 2809 return -EINVAL; 2810 } 2811 2812 guard(mutex)(&src_table->lock); 2813 2814 list_for_each_entry(opp, &src_table->opp_list, node) { 2815 if (opp->level == pstate) 2816 return opp->required_opps[i]->level; 2817 } 2818 2819 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2820 dst_table); 2821 2822 return -EINVAL; 2823 } 2824 2825 /** 2826 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions 2827 * @dev: The device for which we do this operation 2828 * @data: The OPP data for the OPP to add 2829 * 2830 * This function adds an opp definition to the opp table and returns status. 2831 * The opp is made available by default and it can be controlled using 2832 * dev_pm_opp_enable/disable functions. 2833 * 2834 * Return: 2835 * 0 On success OR 2836 * Duplicate OPPs (both freq and volt are same) and opp->available 2837 * -EEXIST Freq are same and volt are different OR 2838 * Duplicate OPPs (both freq and volt are same) and !opp->available 2839 * -ENOMEM Memory allocation failure 2840 */ 2841 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data) 2842 { 2843 struct opp_table *opp_table; 2844 int ret; 2845 2846 opp_table = _add_opp_table(dev, true); 2847 if (IS_ERR(opp_table)) 2848 return PTR_ERR(opp_table); 2849 2850 /* Fix regulator count for dynamic OPPs */ 2851 opp_table->regulator_count = 1; 2852 2853 ret = _opp_add_v1(opp_table, dev, data, true); 2854 if (ret) 2855 dev_pm_opp_put_opp_table(opp_table); 2856 2857 return ret; 2858 } 2859 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic); 2860 2861 /** 2862 * _opp_set_availability() - helper to set the availability of an opp 2863 * @dev: device for which we do this operation 2864 * @freq: OPP frequency to modify availability 2865 * @availability_req: availability status requested for this opp 2866 * 2867 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2868 * which is isolated here. 2869 * 2870 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2871 * copy operation, returns 0 if no modification was done OR modification was 2872 * successful. 2873 */ 2874 static int _opp_set_availability(struct device *dev, unsigned long freq, 2875 bool availability_req) 2876 { 2877 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp; 2878 2879 /* Find the opp_table */ 2880 struct opp_table *opp_table __free(put_opp_table) = 2881 _find_opp_table(dev); 2882 2883 if (IS_ERR(opp_table)) { 2884 dev_warn(dev, "%s: Device OPP not found (%ld)\n", __func__, 2885 PTR_ERR(opp_table)); 2886 return PTR_ERR(opp_table); 2887 } 2888 2889 if (!assert_single_clk(opp_table, 0)) 2890 return -EINVAL; 2891 2892 scoped_guard(mutex, &opp_table->lock) { 2893 /* Do we have the frequency? */ 2894 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2895 if (tmp_opp->rates[0] == freq) { 2896 opp = dev_pm_opp_get(tmp_opp); 2897 2898 /* Is update really needed? */ 2899 if (opp->available == availability_req) 2900 return 0; 2901 2902 opp->available = availability_req; 2903 break; 2904 } 2905 } 2906 } 2907 2908 if (IS_ERR(opp)) 2909 return PTR_ERR(opp); 2910 2911 /* Notify the change of the OPP availability */ 2912 if (availability_req) 2913 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2914 opp); 2915 else 2916 blocking_notifier_call_chain(&opp_table->head, 2917 OPP_EVENT_DISABLE, opp); 2918 2919 return 0; 2920 } 2921 2922 /** 2923 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2924 * @dev: device for which we do this operation 2925 * @freq: OPP frequency to adjust voltage of 2926 * @u_volt: new OPP target voltage 2927 * @u_volt_min: new OPP min voltage 2928 * @u_volt_max: new OPP max voltage 2929 * 2930 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2931 * copy operation, returns 0 if no modifcation was done OR modification was 2932 * successful. 2933 */ 2934 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2935 unsigned long u_volt, unsigned long u_volt_min, 2936 unsigned long u_volt_max) 2937 2938 { 2939 struct dev_pm_opp *opp __free(put_opp) = ERR_PTR(-ENODEV), *tmp_opp; 2940 int r; 2941 2942 /* Find the opp_table */ 2943 struct opp_table *opp_table __free(put_opp_table) = 2944 _find_opp_table(dev); 2945 2946 if (IS_ERR(opp_table)) { 2947 r = PTR_ERR(opp_table); 2948 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2949 return r; 2950 } 2951 2952 if (!assert_single_clk(opp_table, 0)) 2953 return -EINVAL; 2954 2955 scoped_guard(mutex, &opp_table->lock) { 2956 /* Do we have the frequency? */ 2957 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2958 if (tmp_opp->rates[0] == freq) { 2959 opp = dev_pm_opp_get(tmp_opp); 2960 2961 /* Is update really needed? */ 2962 if (opp->supplies->u_volt == u_volt) 2963 return 0; 2964 2965 opp->supplies->u_volt = u_volt; 2966 opp->supplies->u_volt_min = u_volt_min; 2967 opp->supplies->u_volt_max = u_volt_max; 2968 2969 break; 2970 } 2971 } 2972 } 2973 2974 if (IS_ERR(opp)) 2975 return PTR_ERR(opp); 2976 2977 /* Notify the voltage change of the OPP */ 2978 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 2979 opp); 2980 2981 return 0; 2982 } 2983 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 2984 2985 /** 2986 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 2987 * @dev: device for which we do this operation 2988 * 2989 * Sync voltage state of the OPP table regulators. 2990 * 2991 * Return: 0 on success or a negative error value. 2992 */ 2993 int dev_pm_opp_sync_regulators(struct device *dev) 2994 { 2995 struct regulator *reg; 2996 int ret, i; 2997 2998 /* Device may not have OPP table */ 2999 struct opp_table *opp_table __free(put_opp_table) = 3000 _find_opp_table(dev); 3001 3002 if (IS_ERR(opp_table)) 3003 return 0; 3004 3005 /* Regulator may not be required for the device */ 3006 if (unlikely(!opp_table->regulators)) 3007 return 0; 3008 3009 /* Nothing to sync if voltage wasn't changed */ 3010 if (!opp_table->enabled) 3011 return 0; 3012 3013 for (i = 0; i < opp_table->regulator_count; i++) { 3014 reg = opp_table->regulators[i]; 3015 ret = regulator_sync_voltage(reg); 3016 if (ret) 3017 return ret; 3018 } 3019 3020 return 0; 3021 } 3022 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3023 3024 /** 3025 * dev_pm_opp_enable() - Enable a specific OPP 3026 * @dev: device for which we do this operation 3027 * @freq: OPP frequency to enable 3028 * 3029 * Enables a provided opp. If the operation is valid, this returns 0, else the 3030 * corresponding error value. It is meant to be used for users an OPP available 3031 * after being temporarily made unavailable with dev_pm_opp_disable. 3032 * 3033 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3034 * copy operation, returns 0 if no modification was done OR modification was 3035 * successful. 3036 */ 3037 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 3038 { 3039 return _opp_set_availability(dev, freq, true); 3040 } 3041 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 3042 3043 /** 3044 * dev_pm_opp_disable() - Disable a specific OPP 3045 * @dev: device for which we do this operation 3046 * @freq: OPP frequency to disable 3047 * 3048 * Disables a provided opp. If the operation is valid, this returns 3049 * 0, else the corresponding error value. It is meant to be a temporary 3050 * control by users to make this OPP not available until the circumstances are 3051 * right to make it available again (with a call to dev_pm_opp_enable). 3052 * 3053 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3054 * copy operation, returns 0 if no modification was done OR modification was 3055 * successful. 3056 */ 3057 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 3058 { 3059 return _opp_set_availability(dev, freq, false); 3060 } 3061 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 3062 3063 /** 3064 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 3065 * @dev: Device for which notifier needs to be registered 3066 * @nb: Notifier block to be registered 3067 * 3068 * Return: 0 on success or a negative error value. 3069 */ 3070 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 3071 { 3072 struct opp_table *opp_table __free(put_opp_table) = 3073 _find_opp_table(dev); 3074 3075 if (IS_ERR(opp_table)) 3076 return PTR_ERR(opp_table); 3077 3078 return blocking_notifier_chain_register(&opp_table->head, nb); 3079 } 3080 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 3081 3082 /** 3083 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 3084 * @dev: Device for which notifier needs to be unregistered 3085 * @nb: Notifier block to be unregistered 3086 * 3087 * Return: 0 on success or a negative error value. 3088 */ 3089 int dev_pm_opp_unregister_notifier(struct device *dev, 3090 struct notifier_block *nb) 3091 { 3092 struct opp_table *opp_table __free(put_opp_table) = 3093 _find_opp_table(dev); 3094 3095 if (IS_ERR(opp_table)) 3096 return PTR_ERR(opp_table); 3097 3098 return blocking_notifier_chain_unregister(&opp_table->head, nb); 3099 } 3100 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3101 3102 /** 3103 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3104 * @dev: device pointer used to lookup OPP table. 3105 * 3106 * Free both OPPs created using static entries present in DT and the 3107 * dynamically added entries. 3108 */ 3109 void dev_pm_opp_remove_table(struct device *dev) 3110 { 3111 /* Check for existing table for 'dev' */ 3112 struct opp_table *opp_table __free(put_opp_table) = 3113 _find_opp_table(dev); 3114 3115 if (IS_ERR(opp_table)) { 3116 int error = PTR_ERR(opp_table); 3117 3118 if (error != -ENODEV) 3119 WARN(1, "%s: opp_table: %d\n", 3120 IS_ERR_OR_NULL(dev) ? 3121 "Invalid device" : dev_name(dev), 3122 error); 3123 return; 3124 } 3125 3126 /* 3127 * Drop the extra reference only if the OPP table was successfully added 3128 * with dev_pm_opp_of_add_table() earlier. 3129 **/ 3130 if (_opp_remove_all_static(opp_table)) 3131 dev_pm_opp_put_opp_table(opp_table); 3132 } 3133 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3134