1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic OPP Interface 4 * 5 * Copyright (C) 2009-2010 Texas Instruments Incorporated. 6 * Nishanth Menon 7 * Romit Dasgupta 8 * Kevin Hilman 9 */ 10 11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 12 13 #include <linux/clk.h> 14 #include <linux/errno.h> 15 #include <linux/err.h> 16 #include <linux/device.h> 17 #include <linux/export.h> 18 #include <linux/pm_domain.h> 19 #include <linux/regulator/consumer.h> 20 #include <linux/slab.h> 21 #include <linux/xarray.h> 22 23 #include "opp.h" 24 25 /* 26 * The root of the list of all opp-tables. All opp_table structures branch off 27 * from here, with each opp_table containing the list of opps it supports in 28 * various states of availability. 29 */ 30 LIST_HEAD(opp_tables); 31 32 /* Lock to allow exclusive modification to the device and opp lists */ 33 DEFINE_MUTEX(opp_table_lock); 34 /* Flag indicating that opp_tables list is being updated at the moment */ 35 static bool opp_tables_busy; 36 37 /* OPP ID allocator */ 38 static DEFINE_XARRAY_ALLOC1(opp_configs); 39 40 static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table) 41 { 42 struct opp_device *opp_dev; 43 bool found = false; 44 45 mutex_lock(&opp_table->lock); 46 list_for_each_entry(opp_dev, &opp_table->dev_list, node) 47 if (opp_dev->dev == dev) { 48 found = true; 49 break; 50 } 51 52 mutex_unlock(&opp_table->lock); 53 return found; 54 } 55 56 static struct opp_table *_find_opp_table_unlocked(struct device *dev) 57 { 58 struct opp_table *opp_table; 59 60 list_for_each_entry(opp_table, &opp_tables, node) { 61 if (_find_opp_dev(dev, opp_table)) { 62 _get_opp_table_kref(opp_table); 63 return opp_table; 64 } 65 } 66 67 return ERR_PTR(-ENODEV); 68 } 69 70 /** 71 * _find_opp_table() - find opp_table struct using device pointer 72 * @dev: device pointer used to lookup OPP table 73 * 74 * Search OPP table for one containing matching device. 75 * 76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or 77 * -EINVAL based on type of error. 78 * 79 * The callers must call dev_pm_opp_put_opp_table() after the table is used. 80 */ 81 struct opp_table *_find_opp_table(struct device *dev) 82 { 83 struct opp_table *opp_table; 84 85 if (IS_ERR_OR_NULL(dev)) { 86 pr_err("%s: Invalid parameters\n", __func__); 87 return ERR_PTR(-EINVAL); 88 } 89 90 mutex_lock(&opp_table_lock); 91 opp_table = _find_opp_table_unlocked(dev); 92 mutex_unlock(&opp_table_lock); 93 94 return opp_table; 95 } 96 97 /* 98 * Returns true if multiple clocks aren't there, else returns false with WARN. 99 * 100 * We don't force clk_count == 1 here as there are users who don't have a clock 101 * representation in the OPP table and manage the clock configuration themselves 102 * in an platform specific way. 103 */ 104 static bool assert_single_clk(struct opp_table *opp_table) 105 { 106 return !WARN_ON(opp_table->clk_count > 1); 107 } 108 109 /** 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp 111 * @opp: opp for which voltage has to be returned for 112 * 113 * Return: voltage in micro volt corresponding to the opp, else 114 * return 0 115 * 116 * This is useful only for devices with single power supply. 117 */ 118 unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp) 119 { 120 if (IS_ERR_OR_NULL(opp)) { 121 pr_err("%s: Invalid parameters\n", __func__); 122 return 0; 123 } 124 125 return opp->supplies[0].u_volt; 126 } 127 EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage); 128 129 /** 130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp 131 * @opp: opp for which voltage has to be returned for 132 * @supplies: Placeholder for copying the supply information. 133 * 134 * Return: negative error number on failure, 0 otherwise on success after 135 * setting @supplies. 136 * 137 * This can be used for devices with any number of power supplies. The caller 138 * must ensure the @supplies array must contain space for each regulator. 139 */ 140 int dev_pm_opp_get_supplies(struct dev_pm_opp *opp, 141 struct dev_pm_opp_supply *supplies) 142 { 143 if (IS_ERR_OR_NULL(opp) || !supplies) { 144 pr_err("%s: Invalid parameters\n", __func__); 145 return -EINVAL; 146 } 147 148 memcpy(supplies, opp->supplies, 149 sizeof(*supplies) * opp->opp_table->regulator_count); 150 return 0; 151 } 152 EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies); 153 154 /** 155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp 156 * @opp: opp for which power has to be returned for 157 * 158 * Return: power in micro watt corresponding to the opp, else 159 * return 0 160 * 161 * This is useful only for devices with single power supply. 162 */ 163 unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp) 164 { 165 unsigned long opp_power = 0; 166 int i; 167 168 if (IS_ERR_OR_NULL(opp)) { 169 pr_err("%s: Invalid parameters\n", __func__); 170 return 0; 171 } 172 for (i = 0; i < opp->opp_table->regulator_count; i++) 173 opp_power += opp->supplies[i].u_watt; 174 175 return opp_power; 176 } 177 EXPORT_SYMBOL_GPL(dev_pm_opp_get_power); 178 179 /** 180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an 181 * available opp with specified index 182 * @opp: opp for which frequency has to be returned for 183 * @index: index of the frequency within the required opp 184 * 185 * Return: frequency in hertz corresponding to the opp with specified index, 186 * else return 0 187 */ 188 unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index) 189 { 190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) { 191 pr_err("%s: Invalid parameters\n", __func__); 192 return 0; 193 } 194 195 return opp->rates[index]; 196 } 197 EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed); 198 199 /** 200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp 201 * @opp: opp for which level value has to be returned for 202 * 203 * Return: level read from device tree corresponding to the opp, else 204 * return U32_MAX. 205 */ 206 unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp) 207 { 208 if (IS_ERR_OR_NULL(opp) || !opp->available) { 209 pr_err("%s: Invalid parameters\n", __func__); 210 return 0; 211 } 212 213 return opp->level; 214 } 215 EXPORT_SYMBOL_GPL(dev_pm_opp_get_level); 216 217 /** 218 * dev_pm_opp_get_required_pstate() - Gets the required performance state 219 * corresponding to an available opp 220 * @opp: opp for which performance state has to be returned for 221 * @index: index of the required opp 222 * 223 * Return: performance state read from device tree corresponding to the 224 * required opp, else return U32_MAX. 225 */ 226 unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp, 227 unsigned int index) 228 { 229 if (IS_ERR_OR_NULL(opp) || !opp->available || 230 index >= opp->opp_table->required_opp_count) { 231 pr_err("%s: Invalid parameters\n", __func__); 232 return 0; 233 } 234 235 /* required-opps not fully initialized yet */ 236 if (lazy_linking_pending(opp->opp_table)) 237 return 0; 238 239 /* The required OPP table must belong to a genpd */ 240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) { 241 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 242 return 0; 243 } 244 245 return opp->required_opps[index]->level; 246 } 247 EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate); 248 249 /** 250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not 251 * @opp: opp for which turbo mode is being verified 252 * 253 * Turbo OPPs are not for normal use, and can be enabled (under certain 254 * conditions) for short duration of times to finish high throughput work 255 * quickly. Running on them for longer times may overheat the chip. 256 * 257 * Return: true if opp is turbo opp, else false. 258 */ 259 bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp) 260 { 261 if (IS_ERR_OR_NULL(opp) || !opp->available) { 262 pr_err("%s: Invalid parameters\n", __func__); 263 return false; 264 } 265 266 return opp->turbo; 267 } 268 EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo); 269 270 /** 271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds 272 * @dev: device for which we do this operation 273 * 274 * Return: This function returns the max clock latency in nanoseconds. 275 */ 276 unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev) 277 { 278 struct opp_table *opp_table; 279 unsigned long clock_latency_ns; 280 281 opp_table = _find_opp_table(dev); 282 if (IS_ERR(opp_table)) 283 return 0; 284 285 clock_latency_ns = opp_table->clock_latency_ns_max; 286 287 dev_pm_opp_put_opp_table(opp_table); 288 289 return clock_latency_ns; 290 } 291 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency); 292 293 /** 294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds 295 * @dev: device for which we do this operation 296 * 297 * Return: This function returns the max voltage latency in nanoseconds. 298 */ 299 unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev) 300 { 301 struct opp_table *opp_table; 302 struct dev_pm_opp *opp; 303 struct regulator *reg; 304 unsigned long latency_ns = 0; 305 int ret, i, count; 306 struct { 307 unsigned long min; 308 unsigned long max; 309 } *uV; 310 311 opp_table = _find_opp_table(dev); 312 if (IS_ERR(opp_table)) 313 return 0; 314 315 /* Regulator may not be required for the device */ 316 if (!opp_table->regulators) 317 goto put_opp_table; 318 319 count = opp_table->regulator_count; 320 321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL); 322 if (!uV) 323 goto put_opp_table; 324 325 mutex_lock(&opp_table->lock); 326 327 for (i = 0; i < count; i++) { 328 uV[i].min = ~0; 329 uV[i].max = 0; 330 331 list_for_each_entry(opp, &opp_table->opp_list, node) { 332 if (!opp->available) 333 continue; 334 335 if (opp->supplies[i].u_volt_min < uV[i].min) 336 uV[i].min = opp->supplies[i].u_volt_min; 337 if (opp->supplies[i].u_volt_max > uV[i].max) 338 uV[i].max = opp->supplies[i].u_volt_max; 339 } 340 } 341 342 mutex_unlock(&opp_table->lock); 343 344 /* 345 * The caller needs to ensure that opp_table (and hence the regulator) 346 * isn't freed, while we are executing this routine. 347 */ 348 for (i = 0; i < count; i++) { 349 reg = opp_table->regulators[i]; 350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max); 351 if (ret > 0) 352 latency_ns += ret * 1000; 353 } 354 355 kfree(uV); 356 put_opp_table: 357 dev_pm_opp_put_opp_table(opp_table); 358 359 return latency_ns; 360 } 361 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency); 362 363 /** 364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in 365 * nanoseconds 366 * @dev: device for which we do this operation 367 * 368 * Return: This function returns the max transition latency, in nanoseconds, to 369 * switch from one OPP to other. 370 */ 371 unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev) 372 { 373 return dev_pm_opp_get_max_volt_latency(dev) + 374 dev_pm_opp_get_max_clock_latency(dev); 375 } 376 EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency); 377 378 /** 379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz 380 * @dev: device for which we do this operation 381 * 382 * Return: This function returns the frequency of the OPP marked as suspend_opp 383 * if one is available, else returns 0; 384 */ 385 unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev) 386 { 387 struct opp_table *opp_table; 388 unsigned long freq = 0; 389 390 opp_table = _find_opp_table(dev); 391 if (IS_ERR(opp_table)) 392 return 0; 393 394 if (opp_table->suspend_opp && opp_table->suspend_opp->available) 395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp); 396 397 dev_pm_opp_put_opp_table(opp_table); 398 399 return freq; 400 } 401 EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq); 402 403 int _get_opp_count(struct opp_table *opp_table) 404 { 405 struct dev_pm_opp *opp; 406 int count = 0; 407 408 mutex_lock(&opp_table->lock); 409 410 list_for_each_entry(opp, &opp_table->opp_list, node) { 411 if (opp->available) 412 count++; 413 } 414 415 mutex_unlock(&opp_table->lock); 416 417 return count; 418 } 419 420 /** 421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table 422 * @dev: device for which we do this operation 423 * 424 * Return: This function returns the number of available opps if there are any, 425 * else returns 0 if none or the corresponding error value. 426 */ 427 int dev_pm_opp_get_opp_count(struct device *dev) 428 { 429 struct opp_table *opp_table; 430 int count; 431 432 opp_table = _find_opp_table(dev); 433 if (IS_ERR(opp_table)) { 434 count = PTR_ERR(opp_table); 435 dev_dbg(dev, "%s: OPP table not found (%d)\n", 436 __func__, count); 437 return count; 438 } 439 440 count = _get_opp_count(opp_table); 441 dev_pm_opp_put_opp_table(opp_table); 442 443 return count; 444 } 445 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count); 446 447 /* Helpers to read keys */ 448 static unsigned long _read_freq(struct dev_pm_opp *opp, int index) 449 { 450 return opp->rates[index]; 451 } 452 453 static unsigned long _read_level(struct dev_pm_opp *opp, int index) 454 { 455 return opp->level; 456 } 457 458 static unsigned long _read_bw(struct dev_pm_opp *opp, int index) 459 { 460 return opp->bandwidth[index].peak; 461 } 462 463 /* Generic comparison helpers */ 464 static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 465 unsigned long opp_key, unsigned long key) 466 { 467 if (opp_key == key) { 468 *opp = temp_opp; 469 return true; 470 } 471 472 return false; 473 } 474 475 static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 476 unsigned long opp_key, unsigned long key) 477 { 478 if (opp_key >= key) { 479 *opp = temp_opp; 480 return true; 481 } 482 483 return false; 484 } 485 486 static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 487 unsigned long opp_key, unsigned long key) 488 { 489 if (opp_key > key) 490 return true; 491 492 *opp = temp_opp; 493 return false; 494 } 495 496 /* Generic key finding helpers */ 497 static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table, 498 unsigned long *key, int index, bool available, 499 unsigned long (*read)(struct dev_pm_opp *opp, int index), 500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 501 unsigned long opp_key, unsigned long key), 502 bool (*assert)(struct opp_table *opp_table)) 503 { 504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE); 505 506 /* Assert that the requirement is met */ 507 if (assert && !assert(opp_table)) 508 return ERR_PTR(-EINVAL); 509 510 mutex_lock(&opp_table->lock); 511 512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) { 513 if (temp_opp->available == available) { 514 if (compare(&opp, temp_opp, read(temp_opp, index), *key)) 515 break; 516 } 517 } 518 519 /* Increment the reference count of OPP */ 520 if (!IS_ERR(opp)) { 521 *key = read(opp, index); 522 dev_pm_opp_get(opp); 523 } 524 525 mutex_unlock(&opp_table->lock); 526 527 return opp; 528 } 529 530 static struct dev_pm_opp * 531 _find_key(struct device *dev, unsigned long *key, int index, bool available, 532 unsigned long (*read)(struct dev_pm_opp *opp, int index), 533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp, 534 unsigned long opp_key, unsigned long key), 535 bool (*assert)(struct opp_table *opp_table)) 536 { 537 struct opp_table *opp_table; 538 struct dev_pm_opp *opp; 539 540 opp_table = _find_opp_table(dev); 541 if (IS_ERR(opp_table)) { 542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__, 543 PTR_ERR(opp_table)); 544 return ERR_CAST(opp_table); 545 } 546 547 opp = _opp_table_find_key(opp_table, key, index, available, read, 548 compare, assert); 549 550 dev_pm_opp_put_opp_table(opp_table); 551 552 return opp; 553 } 554 555 static struct dev_pm_opp *_find_key_exact(struct device *dev, 556 unsigned long key, int index, bool available, 557 unsigned long (*read)(struct dev_pm_opp *opp, int index), 558 bool (*assert)(struct opp_table *opp_table)) 559 { 560 /* 561 * The value of key will be updated here, but will be ignored as the 562 * caller doesn't need it. 563 */ 564 return _find_key(dev, &key, index, available, read, _compare_exact, 565 assert); 566 } 567 568 static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table, 569 unsigned long *key, int index, bool available, 570 unsigned long (*read)(struct dev_pm_opp *opp, int index), 571 bool (*assert)(struct opp_table *opp_table)) 572 { 573 return _opp_table_find_key(opp_table, key, index, available, read, 574 _compare_ceil, assert); 575 } 576 577 static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key, 578 int index, bool available, 579 unsigned long (*read)(struct dev_pm_opp *opp, int index), 580 bool (*assert)(struct opp_table *opp_table)) 581 { 582 return _find_key(dev, key, index, available, read, _compare_ceil, 583 assert); 584 } 585 586 static struct dev_pm_opp *_find_key_floor(struct device *dev, 587 unsigned long *key, int index, bool available, 588 unsigned long (*read)(struct dev_pm_opp *opp, int index), 589 bool (*assert)(struct opp_table *opp_table)) 590 { 591 return _find_key(dev, key, index, available, read, _compare_floor, 592 assert); 593 } 594 595 /** 596 * dev_pm_opp_find_freq_exact() - search for an exact frequency 597 * @dev: device for which we do this operation 598 * @freq: frequency to search for 599 * @available: true/false - match for available opp 600 * 601 * Return: Searches for exact match in the opp table and returns pointer to the 602 * matching opp if found, else returns ERR_PTR in case of error and should 603 * be handled using IS_ERR. Error return values can be: 604 * EINVAL: for bad pointer 605 * ERANGE: no match found for search 606 * ENODEV: if device not found in list of registered devices 607 * 608 * Note: available is a modifier for the search. if available=true, then the 609 * match is for exact matching frequency and is available in the stored OPP 610 * table. if false, the match is for exact frequency which is not available. 611 * 612 * This provides a mechanism to enable an opp which is not available currently 613 * or the opposite as well. 614 * 615 * The callers are required to call dev_pm_opp_put() for the returned OPP after 616 * use. 617 */ 618 struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev, 619 unsigned long freq, bool available) 620 { 621 return _find_key_exact(dev, freq, 0, available, _read_freq, 622 assert_single_clk); 623 } 624 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact); 625 626 /** 627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the 628 * clock corresponding to the index 629 * @dev: Device for which we do this operation 630 * @freq: frequency to search for 631 * @index: Clock index 632 * @available: true/false - match for available opp 633 * 634 * Search for the matching exact OPP for the clock corresponding to the 635 * specified index from a starting freq for a device. 636 * 637 * Return: matching *opp , else returns ERR_PTR in case of error and should be 638 * handled using IS_ERR. Error return values can be: 639 * EINVAL: for bad pointer 640 * ERANGE: no match found for search 641 * ENODEV: if device not found in list of registered devices 642 * 643 * The callers are required to call dev_pm_opp_put() for the returned OPP after 644 * use. 645 */ 646 struct dev_pm_opp * 647 dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq, 648 u32 index, bool available) 649 { 650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL); 651 } 652 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed); 653 654 static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table, 655 unsigned long *freq) 656 { 657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq, 658 assert_single_clk); 659 } 660 661 /** 662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq 663 * @dev: device for which we do this operation 664 * @freq: Start frequency 665 * 666 * Search for the matching ceil *available* OPP from a starting freq 667 * for a device. 668 * 669 * Return: matching *opp and refreshes *freq accordingly, else returns 670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 671 * values can be: 672 * EINVAL: for bad pointer 673 * ERANGE: no match found for search 674 * ENODEV: if device not found in list of registered devices 675 * 676 * The callers are required to call dev_pm_opp_put() for the returned OPP after 677 * use. 678 */ 679 struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev, 680 unsigned long *freq) 681 { 682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk); 683 } 684 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil); 685 686 /** 687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the 688 * clock corresponding to the index 689 * @dev: Device for which we do this operation 690 * @freq: Start frequency 691 * @index: Clock index 692 * 693 * Search for the matching ceil *available* OPP for the clock corresponding to 694 * the specified index from a starting freq for a device. 695 * 696 * Return: matching *opp and refreshes *freq accordingly, else returns 697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 698 * values can be: 699 * EINVAL: for bad pointer 700 * ERANGE: no match found for search 701 * ENODEV: if device not found in list of registered devices 702 * 703 * The callers are required to call dev_pm_opp_put() for the returned OPP after 704 * use. 705 */ 706 struct dev_pm_opp * 707 dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq, 708 u32 index) 709 { 710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL); 711 } 712 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed); 713 714 /** 715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq 716 * @dev: device for which we do this operation 717 * @freq: Start frequency 718 * 719 * Search for the matching floor *available* OPP from a starting freq 720 * for a device. 721 * 722 * Return: matching *opp and refreshes *freq accordingly, else returns 723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 724 * values can be: 725 * EINVAL: for bad pointer 726 * ERANGE: no match found for search 727 * ENODEV: if device not found in list of registered devices 728 * 729 * The callers are required to call dev_pm_opp_put() for the returned OPP after 730 * use. 731 */ 732 struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev, 733 unsigned long *freq) 734 { 735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk); 736 } 737 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor); 738 739 /** 740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the 741 * clock corresponding to the index 742 * @dev: Device for which we do this operation 743 * @freq: Start frequency 744 * @index: Clock index 745 * 746 * Search for the matching floor *available* OPP for the clock corresponding to 747 * the specified index from a starting freq for a device. 748 * 749 * Return: matching *opp and refreshes *freq accordingly, else returns 750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 751 * values can be: 752 * EINVAL: for bad pointer 753 * ERANGE: no match found for search 754 * ENODEV: if device not found in list of registered devices 755 * 756 * The callers are required to call dev_pm_opp_put() for the returned OPP after 757 * use. 758 */ 759 struct dev_pm_opp * 760 dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq, 761 u32 index) 762 { 763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL); 764 } 765 EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed); 766 767 /** 768 * dev_pm_opp_find_level_exact() - search for an exact level 769 * @dev: device for which we do this operation 770 * @level: level to search for 771 * 772 * Return: Searches for exact match in the opp table and returns pointer to the 773 * matching opp if found, else returns ERR_PTR in case of error and should 774 * be handled using IS_ERR. Error return values can be: 775 * EINVAL: for bad pointer 776 * ERANGE: no match found for search 777 * ENODEV: if device not found in list of registered devices 778 * 779 * The callers are required to call dev_pm_opp_put() for the returned OPP after 780 * use. 781 */ 782 struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev, 783 unsigned int level) 784 { 785 return _find_key_exact(dev, level, 0, true, _read_level, NULL); 786 } 787 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact); 788 789 /** 790 * dev_pm_opp_find_level_ceil() - search for an rounded up level 791 * @dev: device for which we do this operation 792 * @level: level to search for 793 * 794 * Return: Searches for rounded up match in the opp table and returns pointer 795 * to the matching opp if found, else returns ERR_PTR in case of error and 796 * should be handled using IS_ERR. Error return values can be: 797 * EINVAL: for bad pointer 798 * ERANGE: no match found for search 799 * ENODEV: if device not found in list of registered devices 800 * 801 * The callers are required to call dev_pm_opp_put() for the returned OPP after 802 * use. 803 */ 804 struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev, 805 unsigned int *level) 806 { 807 unsigned long temp = *level; 808 struct dev_pm_opp *opp; 809 810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL); 811 if (IS_ERR(opp)) 812 return opp; 813 814 /* False match */ 815 if (temp == OPP_LEVEL_UNSET) { 816 dev_err(dev, "%s: OPP levels aren't available\n", __func__); 817 dev_pm_opp_put(opp); 818 return ERR_PTR(-ENODEV); 819 } 820 821 *level = temp; 822 return opp; 823 } 824 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil); 825 826 /** 827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level 828 * @dev: device for which we do this operation 829 * @level: Start level 830 * 831 * Search for the matching floor *available* OPP from a starting level 832 * for a device. 833 * 834 * Return: matching *opp and refreshes *level accordingly, else returns 835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 836 * values can be: 837 * EINVAL: for bad pointer 838 * ERANGE: no match found for search 839 * ENODEV: if device not found in list of registered devices 840 * 841 * The callers are required to call dev_pm_opp_put() for the returned OPP after 842 * use. 843 */ 844 struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev, 845 unsigned int *level) 846 { 847 unsigned long temp = *level; 848 struct dev_pm_opp *opp; 849 850 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL); 851 *level = temp; 852 return opp; 853 } 854 EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor); 855 856 /** 857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth 858 * @dev: device for which we do this operation 859 * @bw: start bandwidth 860 * @index: which bandwidth to compare, in case of OPPs with several values 861 * 862 * Search for the matching floor *available* OPP from a starting bandwidth 863 * for a device. 864 * 865 * Return: matching *opp and refreshes *bw accordingly, else returns 866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 867 * values can be: 868 * EINVAL: for bad pointer 869 * ERANGE: no match found for search 870 * ENODEV: if device not found in list of registered devices 871 * 872 * The callers are required to call dev_pm_opp_put() for the returned OPP after 873 * use. 874 */ 875 struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw, 876 int index) 877 { 878 unsigned long temp = *bw; 879 struct dev_pm_opp *opp; 880 881 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL); 882 *bw = temp; 883 return opp; 884 } 885 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil); 886 887 /** 888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth 889 * @dev: device for which we do this operation 890 * @bw: start bandwidth 891 * @index: which bandwidth to compare, in case of OPPs with several values 892 * 893 * Search for the matching floor *available* OPP from a starting bandwidth 894 * for a device. 895 * 896 * Return: matching *opp and refreshes *bw accordingly, else returns 897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return 898 * values can be: 899 * EINVAL: for bad pointer 900 * ERANGE: no match found for search 901 * ENODEV: if device not found in list of registered devices 902 * 903 * The callers are required to call dev_pm_opp_put() for the returned OPP after 904 * use. 905 */ 906 struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev, 907 unsigned int *bw, int index) 908 { 909 unsigned long temp = *bw; 910 struct dev_pm_opp *opp; 911 912 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL); 913 *bw = temp; 914 return opp; 915 } 916 EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor); 917 918 static int _set_opp_voltage(struct device *dev, struct regulator *reg, 919 struct dev_pm_opp_supply *supply) 920 { 921 int ret; 922 923 /* Regulator not available for device */ 924 if (IS_ERR(reg)) { 925 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__, 926 PTR_ERR(reg)); 927 return 0; 928 } 929 930 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__, 931 supply->u_volt_min, supply->u_volt, supply->u_volt_max); 932 933 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min, 934 supply->u_volt, supply->u_volt_max); 935 if (ret) 936 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n", 937 __func__, supply->u_volt_min, supply->u_volt, 938 supply->u_volt_max, ret); 939 940 return ret; 941 } 942 943 static int 944 _opp_config_clk_single(struct device *dev, struct opp_table *opp_table, 945 struct dev_pm_opp *opp, void *data, bool scaling_down) 946 { 947 unsigned long *target = data; 948 unsigned long freq; 949 int ret; 950 951 /* One of target and opp must be available */ 952 if (target) { 953 freq = *target; 954 } else if (opp) { 955 freq = opp->rates[0]; 956 } else { 957 WARN_ON(1); 958 return -EINVAL; 959 } 960 961 ret = clk_set_rate(opp_table->clk, freq); 962 if (ret) { 963 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 964 ret); 965 } else { 966 opp_table->current_rate_single_clk = freq; 967 } 968 969 return ret; 970 } 971 972 /* 973 * Simple implementation for configuring multiple clocks. Configure clocks in 974 * the order in which they are present in the array while scaling up. 975 */ 976 int dev_pm_opp_config_clks_simple(struct device *dev, 977 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data, 978 bool scaling_down) 979 { 980 int ret, i; 981 982 if (scaling_down) { 983 for (i = opp_table->clk_count - 1; i >= 0; i--) { 984 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 985 if (ret) { 986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 987 ret); 988 return ret; 989 } 990 } 991 } else { 992 for (i = 0; i < opp_table->clk_count; i++) { 993 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]); 994 if (ret) { 995 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__, 996 ret); 997 return ret; 998 } 999 } 1000 } 1001 1002 return 0; 1003 } 1004 EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple); 1005 1006 static int _opp_config_regulator_single(struct device *dev, 1007 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp, 1008 struct regulator **regulators, unsigned int count) 1009 { 1010 struct regulator *reg = regulators[0]; 1011 int ret; 1012 1013 /* This function only supports single regulator per device */ 1014 if (WARN_ON(count > 1)) { 1015 dev_err(dev, "multiple regulators are not supported\n"); 1016 return -EINVAL; 1017 } 1018 1019 ret = _set_opp_voltage(dev, reg, new_opp->supplies); 1020 if (ret) 1021 return ret; 1022 1023 /* 1024 * Enable the regulator after setting its voltages, otherwise it breaks 1025 * some boot-enabled regulators. 1026 */ 1027 if (unlikely(!new_opp->opp_table->enabled)) { 1028 ret = regulator_enable(reg); 1029 if (ret < 0) 1030 dev_warn(dev, "Failed to enable regulator: %d", ret); 1031 } 1032 1033 return 0; 1034 } 1035 1036 static int _set_opp_bw(const struct opp_table *opp_table, 1037 struct dev_pm_opp *opp, struct device *dev) 1038 { 1039 u32 avg, peak; 1040 int i, ret; 1041 1042 if (!opp_table->paths) 1043 return 0; 1044 1045 for (i = 0; i < opp_table->path_count; i++) { 1046 if (!opp) { 1047 avg = 0; 1048 peak = 0; 1049 } else { 1050 avg = opp->bandwidth[i].avg; 1051 peak = opp->bandwidth[i].peak; 1052 } 1053 ret = icc_set_bw(opp_table->paths[i], avg, peak); 1054 if (ret) { 1055 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n", 1056 opp ? "set" : "remove", i, ret); 1057 return ret; 1058 } 1059 } 1060 1061 return 0; 1062 } 1063 1064 /* This is only called for PM domain for now */ 1065 static int _set_required_opps(struct device *dev, struct opp_table *opp_table, 1066 struct dev_pm_opp *opp, bool up) 1067 { 1068 struct device **devs = opp_table->required_devs; 1069 struct dev_pm_opp *required_opp; 1070 int index, target, delta, ret; 1071 1072 if (!devs) 1073 return 0; 1074 1075 /* required-opps not fully initialized yet */ 1076 if (lazy_linking_pending(opp_table)) 1077 return -EBUSY; 1078 1079 /* Scaling up? Set required OPPs in normal order, else reverse */ 1080 if (up) { 1081 index = 0; 1082 target = opp_table->required_opp_count; 1083 delta = 1; 1084 } else { 1085 index = opp_table->required_opp_count - 1; 1086 target = -1; 1087 delta = -1; 1088 } 1089 1090 while (index != target) { 1091 if (devs[index]) { 1092 required_opp = opp ? opp->required_opps[index] : NULL; 1093 1094 ret = dev_pm_opp_set_opp(devs[index], required_opp); 1095 if (ret) 1096 return ret; 1097 } 1098 1099 index += delta; 1100 } 1101 1102 return 0; 1103 } 1104 1105 static int _set_opp_level(struct device *dev, struct opp_table *opp_table, 1106 struct dev_pm_opp *opp) 1107 { 1108 unsigned int level = 0; 1109 int ret = 0; 1110 1111 if (opp) { 1112 if (opp->level == OPP_LEVEL_UNSET) 1113 return 0; 1114 1115 level = opp->level; 1116 } 1117 1118 /* Request a new performance state through the device's PM domain. */ 1119 ret = dev_pm_domain_set_performance_state(dev, level); 1120 if (ret) 1121 dev_err(dev, "Failed to set performance state %u (%d)\n", level, 1122 ret); 1123 1124 return ret; 1125 } 1126 1127 static void _find_current_opp(struct device *dev, struct opp_table *opp_table) 1128 { 1129 struct dev_pm_opp *opp = ERR_PTR(-ENODEV); 1130 unsigned long freq; 1131 1132 if (!IS_ERR(opp_table->clk)) { 1133 freq = clk_get_rate(opp_table->clk); 1134 opp = _find_freq_ceil(opp_table, &freq); 1135 } 1136 1137 /* 1138 * Unable to find the current OPP ? Pick the first from the list since 1139 * it is in ascending order, otherwise rest of the code will need to 1140 * make special checks to validate current_opp. 1141 */ 1142 if (IS_ERR(opp)) { 1143 mutex_lock(&opp_table->lock); 1144 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node); 1145 dev_pm_opp_get(opp); 1146 mutex_unlock(&opp_table->lock); 1147 } 1148 1149 opp_table->current_opp = opp; 1150 } 1151 1152 static int _disable_opp_table(struct device *dev, struct opp_table *opp_table) 1153 { 1154 int ret; 1155 1156 if (!opp_table->enabled) 1157 return 0; 1158 1159 /* 1160 * Some drivers need to support cases where some platforms may 1161 * have OPP table for the device, while others don't and 1162 * opp_set_rate() just needs to behave like clk_set_rate(). 1163 */ 1164 if (!_get_opp_count(opp_table)) 1165 return 0; 1166 1167 ret = _set_opp_bw(opp_table, NULL, dev); 1168 if (ret) 1169 return ret; 1170 1171 if (opp_table->regulators) 1172 regulator_disable(opp_table->regulators[0]); 1173 1174 ret = _set_opp_level(dev, opp_table, NULL); 1175 if (ret) 1176 goto out; 1177 1178 ret = _set_required_opps(dev, opp_table, NULL, false); 1179 1180 out: 1181 opp_table->enabled = false; 1182 return ret; 1183 } 1184 1185 static int _set_opp(struct device *dev, struct opp_table *opp_table, 1186 struct dev_pm_opp *opp, void *clk_data, bool forced) 1187 { 1188 struct dev_pm_opp *old_opp; 1189 int scaling_down, ret; 1190 1191 if (unlikely(!opp)) 1192 return _disable_opp_table(dev, opp_table); 1193 1194 /* Find the currently set OPP if we don't know already */ 1195 if (unlikely(!opp_table->current_opp)) 1196 _find_current_opp(dev, opp_table); 1197 1198 old_opp = opp_table->current_opp; 1199 1200 /* Return early if nothing to do */ 1201 if (!forced && old_opp == opp && opp_table->enabled) { 1202 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__); 1203 return 0; 1204 } 1205 1206 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n", 1207 __func__, old_opp->rates[0], opp->rates[0], old_opp->level, 1208 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0, 1209 opp->bandwidth ? opp->bandwidth[0].peak : 0); 1210 1211 scaling_down = _opp_compare_key(opp_table, old_opp, opp); 1212 if (scaling_down == -1) 1213 scaling_down = 0; 1214 1215 /* Scaling up? Configure required OPPs before frequency */ 1216 if (!scaling_down) { 1217 ret = _set_required_opps(dev, opp_table, opp, true); 1218 if (ret) { 1219 dev_err(dev, "Failed to set required opps: %d\n", ret); 1220 return ret; 1221 } 1222 1223 ret = _set_opp_level(dev, opp_table, opp); 1224 if (ret) 1225 return ret; 1226 1227 ret = _set_opp_bw(opp_table, opp, dev); 1228 if (ret) { 1229 dev_err(dev, "Failed to set bw: %d\n", ret); 1230 return ret; 1231 } 1232 1233 if (opp_table->config_regulators) { 1234 ret = opp_table->config_regulators(dev, old_opp, opp, 1235 opp_table->regulators, 1236 opp_table->regulator_count); 1237 if (ret) { 1238 dev_err(dev, "Failed to set regulator voltages: %d\n", 1239 ret); 1240 return ret; 1241 } 1242 } 1243 } 1244 1245 if (opp_table->config_clks) { 1246 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down); 1247 if (ret) 1248 return ret; 1249 } 1250 1251 /* Scaling down? Configure required OPPs after frequency */ 1252 if (scaling_down) { 1253 if (opp_table->config_regulators) { 1254 ret = opp_table->config_regulators(dev, old_opp, opp, 1255 opp_table->regulators, 1256 opp_table->regulator_count); 1257 if (ret) { 1258 dev_err(dev, "Failed to set regulator voltages: %d\n", 1259 ret); 1260 return ret; 1261 } 1262 } 1263 1264 ret = _set_opp_bw(opp_table, opp, dev); 1265 if (ret) { 1266 dev_err(dev, "Failed to set bw: %d\n", ret); 1267 return ret; 1268 } 1269 1270 ret = _set_opp_level(dev, opp_table, opp); 1271 if (ret) 1272 return ret; 1273 1274 ret = _set_required_opps(dev, opp_table, opp, false); 1275 if (ret) { 1276 dev_err(dev, "Failed to set required opps: %d\n", ret); 1277 return ret; 1278 } 1279 } 1280 1281 opp_table->enabled = true; 1282 dev_pm_opp_put(old_opp); 1283 1284 /* Make sure current_opp doesn't get freed */ 1285 dev_pm_opp_get(opp); 1286 opp_table->current_opp = opp; 1287 1288 return ret; 1289 } 1290 1291 /** 1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency 1293 * @dev: device for which we do this operation 1294 * @target_freq: frequency to achieve 1295 * 1296 * This configures the power-supplies to the levels specified by the OPP 1297 * corresponding to the target_freq, and programs the clock to a value <= 1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax 1299 * provided by the opp, should have already rounded to the target OPP's 1300 * frequency. 1301 */ 1302 int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq) 1303 { 1304 struct opp_table *opp_table; 1305 unsigned long freq = 0, temp_freq; 1306 struct dev_pm_opp *opp = NULL; 1307 bool forced = false; 1308 int ret; 1309 1310 opp_table = _find_opp_table(dev); 1311 if (IS_ERR(opp_table)) { 1312 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__); 1313 return PTR_ERR(opp_table); 1314 } 1315 1316 if (target_freq) { 1317 /* 1318 * For IO devices which require an OPP on some platforms/SoCs 1319 * while just needing to scale the clock on some others 1320 * we look for empty OPP tables with just a clock handle and 1321 * scale only the clk. This makes dev_pm_opp_set_rate() 1322 * equivalent to a clk_set_rate() 1323 */ 1324 if (!_get_opp_count(opp_table)) { 1325 ret = opp_table->config_clks(dev, opp_table, NULL, 1326 &target_freq, false); 1327 goto put_opp_table; 1328 } 1329 1330 freq = clk_round_rate(opp_table->clk, target_freq); 1331 if ((long)freq <= 0) 1332 freq = target_freq; 1333 1334 /* 1335 * The clock driver may support finer resolution of the 1336 * frequencies than the OPP table, don't update the frequency we 1337 * pass to clk_set_rate() here. 1338 */ 1339 temp_freq = freq; 1340 opp = _find_freq_ceil(opp_table, &temp_freq); 1341 if (IS_ERR(opp)) { 1342 ret = PTR_ERR(opp); 1343 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n", 1344 __func__, freq, ret); 1345 goto put_opp_table; 1346 } 1347 1348 /* 1349 * An OPP entry specifies the highest frequency at which other 1350 * properties of the OPP entry apply. Even if the new OPP is 1351 * same as the old one, we may still reach here for a different 1352 * value of the frequency. In such a case, do not abort but 1353 * configure the hardware to the desired frequency forcefully. 1354 */ 1355 forced = opp_table->current_rate_single_clk != freq; 1356 } 1357 1358 ret = _set_opp(dev, opp_table, opp, &freq, forced); 1359 1360 if (freq) 1361 dev_pm_opp_put(opp); 1362 1363 put_opp_table: 1364 dev_pm_opp_put_opp_table(opp_table); 1365 return ret; 1366 } 1367 EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate); 1368 1369 /** 1370 * dev_pm_opp_set_opp() - Configure device for OPP 1371 * @dev: device for which we do this operation 1372 * @opp: OPP to set to 1373 * 1374 * This configures the device based on the properties of the OPP passed to this 1375 * routine. 1376 * 1377 * Return: 0 on success, a negative error number otherwise. 1378 */ 1379 int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp) 1380 { 1381 struct opp_table *opp_table; 1382 int ret; 1383 1384 opp_table = _find_opp_table(dev); 1385 if (IS_ERR(opp_table)) { 1386 dev_err(dev, "%s: device opp doesn't exist\n", __func__); 1387 return PTR_ERR(opp_table); 1388 } 1389 1390 ret = _set_opp(dev, opp_table, opp, NULL, false); 1391 dev_pm_opp_put_opp_table(opp_table); 1392 1393 return ret; 1394 } 1395 EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp); 1396 1397 /* OPP-dev Helpers */ 1398 static void _remove_opp_dev(struct opp_device *opp_dev, 1399 struct opp_table *opp_table) 1400 { 1401 opp_debug_unregister(opp_dev, opp_table); 1402 list_del(&opp_dev->node); 1403 kfree(opp_dev); 1404 } 1405 1406 struct opp_device *_add_opp_dev(const struct device *dev, 1407 struct opp_table *opp_table) 1408 { 1409 struct opp_device *opp_dev; 1410 1411 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL); 1412 if (!opp_dev) 1413 return NULL; 1414 1415 /* Initialize opp-dev */ 1416 opp_dev->dev = dev; 1417 1418 mutex_lock(&opp_table->lock); 1419 list_add(&opp_dev->node, &opp_table->dev_list); 1420 mutex_unlock(&opp_table->lock); 1421 1422 /* Create debugfs entries for the opp_table */ 1423 opp_debug_register(opp_dev, opp_table); 1424 1425 return opp_dev; 1426 } 1427 1428 static struct opp_table *_allocate_opp_table(struct device *dev, int index) 1429 { 1430 struct opp_table *opp_table; 1431 struct opp_device *opp_dev; 1432 int ret; 1433 1434 /* 1435 * Allocate a new OPP table. In the infrequent case where a new 1436 * device is needed to be added, we pay this penalty. 1437 */ 1438 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL); 1439 if (!opp_table) 1440 return ERR_PTR(-ENOMEM); 1441 1442 mutex_init(&opp_table->lock); 1443 INIT_LIST_HEAD(&opp_table->dev_list); 1444 INIT_LIST_HEAD(&opp_table->lazy); 1445 1446 opp_table->clk = ERR_PTR(-ENODEV); 1447 1448 /* Mark regulator count uninitialized */ 1449 opp_table->regulator_count = -1; 1450 1451 opp_dev = _add_opp_dev(dev, opp_table); 1452 if (!opp_dev) { 1453 ret = -ENOMEM; 1454 goto err; 1455 } 1456 1457 _of_init_opp_table(opp_table, dev, index); 1458 1459 /* Find interconnect path(s) for the device */ 1460 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table); 1461 if (ret) { 1462 if (ret == -EPROBE_DEFER) 1463 goto remove_opp_dev; 1464 1465 dev_warn(dev, "%s: Error finding interconnect paths: %d\n", 1466 __func__, ret); 1467 } 1468 1469 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head); 1470 INIT_LIST_HEAD(&opp_table->opp_list); 1471 kref_init(&opp_table->kref); 1472 1473 return opp_table; 1474 1475 remove_opp_dev: 1476 _of_clear_opp_table(opp_table); 1477 _remove_opp_dev(opp_dev, opp_table); 1478 mutex_destroy(&opp_table->lock); 1479 err: 1480 kfree(opp_table); 1481 return ERR_PTR(ret); 1482 } 1483 1484 void _get_opp_table_kref(struct opp_table *opp_table) 1485 { 1486 kref_get(&opp_table->kref); 1487 } 1488 1489 static struct opp_table *_update_opp_table_clk(struct device *dev, 1490 struct opp_table *opp_table, 1491 bool getclk) 1492 { 1493 int ret; 1494 1495 /* 1496 * Return early if we don't need to get clk or we have already done it 1497 * earlier. 1498 */ 1499 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) || 1500 opp_table->clks) 1501 return opp_table; 1502 1503 /* Find clk for the device */ 1504 opp_table->clk = clk_get(dev, NULL); 1505 1506 ret = PTR_ERR_OR_ZERO(opp_table->clk); 1507 if (!ret) { 1508 opp_table->config_clks = _opp_config_clk_single; 1509 opp_table->clk_count = 1; 1510 return opp_table; 1511 } 1512 1513 if (ret == -ENOENT) { 1514 /* 1515 * There are few platforms which don't want the OPP core to 1516 * manage device's clock settings. In such cases neither the 1517 * platform provides the clks explicitly to us, nor the DT 1518 * contains a valid clk entry. The OPP nodes in DT may still 1519 * contain "opp-hz" property though, which we need to parse and 1520 * allow the platform to find an OPP based on freq later on. 1521 * 1522 * This is a simple solution to take care of such corner cases, 1523 * i.e. make the clk_count 1, which lets us allocate space for 1524 * frequency in opp->rates and also parse the entries in DT. 1525 */ 1526 opp_table->clk_count = 1; 1527 1528 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret); 1529 return opp_table; 1530 } 1531 1532 dev_pm_opp_put_opp_table(opp_table); 1533 dev_err_probe(dev, ret, "Couldn't find clock\n"); 1534 1535 return ERR_PTR(ret); 1536 } 1537 1538 /* 1539 * We need to make sure that the OPP table for a device doesn't get added twice, 1540 * if this routine gets called in parallel with the same device pointer. 1541 * 1542 * The simplest way to enforce that is to perform everything (find existing 1543 * table and if not found, create a new one) under the opp_table_lock, so only 1544 * one creator gets access to the same. But that expands the critical section 1545 * under the lock and may end up causing circular dependencies with frameworks 1546 * like debugfs, interconnect or clock framework as they may be direct or 1547 * indirect users of OPP core. 1548 * 1549 * And for that reason we have to go for a bit tricky implementation here, which 1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle 1551 * of adding an OPP table and others should wait for it to finish. 1552 */ 1553 struct opp_table *_add_opp_table_indexed(struct device *dev, int index, 1554 bool getclk) 1555 { 1556 struct opp_table *opp_table; 1557 1558 again: 1559 mutex_lock(&opp_table_lock); 1560 1561 opp_table = _find_opp_table_unlocked(dev); 1562 if (!IS_ERR(opp_table)) 1563 goto unlock; 1564 1565 /* 1566 * The opp_tables list or an OPP table's dev_list is getting updated by 1567 * another user, wait for it to finish. 1568 */ 1569 if (unlikely(opp_tables_busy)) { 1570 mutex_unlock(&opp_table_lock); 1571 cpu_relax(); 1572 goto again; 1573 } 1574 1575 opp_tables_busy = true; 1576 opp_table = _managed_opp(dev, index); 1577 1578 /* Drop the lock to reduce the size of critical section */ 1579 mutex_unlock(&opp_table_lock); 1580 1581 if (opp_table) { 1582 if (!_add_opp_dev(dev, opp_table)) { 1583 dev_pm_opp_put_opp_table(opp_table); 1584 opp_table = ERR_PTR(-ENOMEM); 1585 } 1586 1587 mutex_lock(&opp_table_lock); 1588 } else { 1589 opp_table = _allocate_opp_table(dev, index); 1590 1591 mutex_lock(&opp_table_lock); 1592 if (!IS_ERR(opp_table)) 1593 list_add(&opp_table->node, &opp_tables); 1594 } 1595 1596 opp_tables_busy = false; 1597 1598 unlock: 1599 mutex_unlock(&opp_table_lock); 1600 1601 return _update_opp_table_clk(dev, opp_table, getclk); 1602 } 1603 1604 static struct opp_table *_add_opp_table(struct device *dev, bool getclk) 1605 { 1606 return _add_opp_table_indexed(dev, 0, getclk); 1607 } 1608 1609 struct opp_table *dev_pm_opp_get_opp_table(struct device *dev) 1610 { 1611 return _find_opp_table(dev); 1612 } 1613 EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table); 1614 1615 static void _opp_table_kref_release(struct kref *kref) 1616 { 1617 struct opp_table *opp_table = container_of(kref, struct opp_table, kref); 1618 struct opp_device *opp_dev, *temp; 1619 int i; 1620 1621 /* Drop the lock as soon as we can */ 1622 list_del(&opp_table->node); 1623 mutex_unlock(&opp_table_lock); 1624 1625 if (opp_table->current_opp) 1626 dev_pm_opp_put(opp_table->current_opp); 1627 1628 _of_clear_opp_table(opp_table); 1629 1630 /* Release automatically acquired single clk */ 1631 if (!IS_ERR(opp_table->clk)) 1632 clk_put(opp_table->clk); 1633 1634 if (opp_table->paths) { 1635 for (i = 0; i < opp_table->path_count; i++) 1636 icc_put(opp_table->paths[i]); 1637 kfree(opp_table->paths); 1638 } 1639 1640 WARN_ON(!list_empty(&opp_table->opp_list)); 1641 1642 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) 1643 _remove_opp_dev(opp_dev, opp_table); 1644 1645 mutex_destroy(&opp_table->lock); 1646 kfree(opp_table); 1647 } 1648 1649 void dev_pm_opp_put_opp_table(struct opp_table *opp_table) 1650 { 1651 kref_put_mutex(&opp_table->kref, _opp_table_kref_release, 1652 &opp_table_lock); 1653 } 1654 EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table); 1655 1656 void _opp_free(struct dev_pm_opp *opp) 1657 { 1658 kfree(opp); 1659 } 1660 1661 static void _opp_kref_release(struct kref *kref) 1662 { 1663 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref); 1664 struct opp_table *opp_table = opp->opp_table; 1665 1666 list_del(&opp->node); 1667 mutex_unlock(&opp_table->lock); 1668 1669 /* 1670 * Notify the changes in the availability of the operable 1671 * frequency/voltage list. 1672 */ 1673 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp); 1674 _of_clear_opp(opp_table, opp); 1675 opp_debug_remove_one(opp); 1676 kfree(opp); 1677 } 1678 1679 void dev_pm_opp_get(struct dev_pm_opp *opp) 1680 { 1681 kref_get(&opp->kref); 1682 } 1683 1684 void dev_pm_opp_put(struct dev_pm_opp *opp) 1685 { 1686 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock); 1687 } 1688 EXPORT_SYMBOL_GPL(dev_pm_opp_put); 1689 1690 /** 1691 * dev_pm_opp_remove() - Remove an OPP from OPP table 1692 * @dev: device for which we do this operation 1693 * @freq: OPP to remove with matching 'freq' 1694 * 1695 * This function removes an opp from the opp table. 1696 */ 1697 void dev_pm_opp_remove(struct device *dev, unsigned long freq) 1698 { 1699 struct dev_pm_opp *opp = NULL, *iter; 1700 struct opp_table *opp_table; 1701 1702 opp_table = _find_opp_table(dev); 1703 if (IS_ERR(opp_table)) 1704 return; 1705 1706 if (!assert_single_clk(opp_table)) 1707 goto put_table; 1708 1709 mutex_lock(&opp_table->lock); 1710 1711 list_for_each_entry(iter, &opp_table->opp_list, node) { 1712 if (iter->rates[0] == freq) { 1713 opp = iter; 1714 break; 1715 } 1716 } 1717 1718 mutex_unlock(&opp_table->lock); 1719 1720 if (opp) { 1721 dev_pm_opp_put(opp); 1722 1723 /* Drop the reference taken by dev_pm_opp_add() */ 1724 dev_pm_opp_put_opp_table(opp_table); 1725 } else { 1726 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n", 1727 __func__, freq); 1728 } 1729 1730 put_table: 1731 /* Drop the reference taken by _find_opp_table() */ 1732 dev_pm_opp_put_opp_table(opp_table); 1733 } 1734 EXPORT_SYMBOL_GPL(dev_pm_opp_remove); 1735 1736 static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table, 1737 bool dynamic) 1738 { 1739 struct dev_pm_opp *opp = NULL, *temp; 1740 1741 mutex_lock(&opp_table->lock); 1742 list_for_each_entry(temp, &opp_table->opp_list, node) { 1743 /* 1744 * Refcount must be dropped only once for each OPP by OPP core, 1745 * do that with help of "removed" flag. 1746 */ 1747 if (!temp->removed && dynamic == temp->dynamic) { 1748 opp = temp; 1749 break; 1750 } 1751 } 1752 1753 mutex_unlock(&opp_table->lock); 1754 return opp; 1755 } 1756 1757 /* 1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to 1759 * happen lock less to avoid circular dependency issues. This routine must be 1760 * called without the opp_table->lock held. 1761 */ 1762 static void _opp_remove_all(struct opp_table *opp_table, bool dynamic) 1763 { 1764 struct dev_pm_opp *opp; 1765 1766 while ((opp = _opp_get_next(opp_table, dynamic))) { 1767 opp->removed = true; 1768 dev_pm_opp_put(opp); 1769 1770 /* Drop the references taken by dev_pm_opp_add() */ 1771 if (dynamic) 1772 dev_pm_opp_put_opp_table(opp_table); 1773 } 1774 } 1775 1776 bool _opp_remove_all_static(struct opp_table *opp_table) 1777 { 1778 mutex_lock(&opp_table->lock); 1779 1780 if (!opp_table->parsed_static_opps) { 1781 mutex_unlock(&opp_table->lock); 1782 return false; 1783 } 1784 1785 if (--opp_table->parsed_static_opps) { 1786 mutex_unlock(&opp_table->lock); 1787 return true; 1788 } 1789 1790 mutex_unlock(&opp_table->lock); 1791 1792 _opp_remove_all(opp_table, false); 1793 return true; 1794 } 1795 1796 /** 1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs 1798 * @dev: device for which we do this operation 1799 * 1800 * This function removes all dynamically created OPPs from the opp table. 1801 */ 1802 void dev_pm_opp_remove_all_dynamic(struct device *dev) 1803 { 1804 struct opp_table *opp_table; 1805 1806 opp_table = _find_opp_table(dev); 1807 if (IS_ERR(opp_table)) 1808 return; 1809 1810 _opp_remove_all(opp_table, true); 1811 1812 /* Drop the reference taken by _find_opp_table() */ 1813 dev_pm_opp_put_opp_table(opp_table); 1814 } 1815 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic); 1816 1817 struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table) 1818 { 1819 struct dev_pm_opp *opp; 1820 int supply_count, supply_size, icc_size, clk_size; 1821 1822 /* Allocate space for at least one supply */ 1823 supply_count = opp_table->regulator_count > 0 ? 1824 opp_table->regulator_count : 1; 1825 supply_size = sizeof(*opp->supplies) * supply_count; 1826 clk_size = sizeof(*opp->rates) * opp_table->clk_count; 1827 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count; 1828 1829 /* allocate new OPP node and supplies structures */ 1830 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL); 1831 if (!opp) 1832 return NULL; 1833 1834 /* Put the supplies, bw and clock at the end of the OPP structure */ 1835 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1); 1836 1837 opp->rates = (unsigned long *)(opp->supplies + supply_count); 1838 1839 if (icc_size) 1840 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count); 1841 1842 INIT_LIST_HEAD(&opp->node); 1843 1844 opp->level = OPP_LEVEL_UNSET; 1845 1846 return opp; 1847 } 1848 1849 static bool _opp_supported_by_regulators(struct dev_pm_opp *opp, 1850 struct opp_table *opp_table) 1851 { 1852 struct regulator *reg; 1853 int i; 1854 1855 if (!opp_table->regulators) 1856 return true; 1857 1858 for (i = 0; i < opp_table->regulator_count; i++) { 1859 reg = opp_table->regulators[i]; 1860 1861 if (!regulator_is_supported_voltage(reg, 1862 opp->supplies[i].u_volt_min, 1863 opp->supplies[i].u_volt_max)) { 1864 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n", 1865 __func__, opp->supplies[i].u_volt_min, 1866 opp->supplies[i].u_volt_max); 1867 return false; 1868 } 1869 } 1870 1871 return true; 1872 } 1873 1874 static int _opp_compare_rate(struct opp_table *opp_table, 1875 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2) 1876 { 1877 int i; 1878 1879 for (i = 0; i < opp_table->clk_count; i++) { 1880 if (opp1->rates[i] != opp2->rates[i]) 1881 return opp1->rates[i] < opp2->rates[i] ? -1 : 1; 1882 } 1883 1884 /* Same rates for both OPPs */ 1885 return 0; 1886 } 1887 1888 static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1889 struct dev_pm_opp *opp2) 1890 { 1891 int i; 1892 1893 for (i = 0; i < opp_table->path_count; i++) { 1894 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak) 1895 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1; 1896 } 1897 1898 /* Same bw for both OPPs */ 1899 return 0; 1900 } 1901 1902 /* 1903 * Returns 1904 * 0: opp1 == opp2 1905 * 1: opp1 > opp2 1906 * -1: opp1 < opp2 1907 */ 1908 int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1, 1909 struct dev_pm_opp *opp2) 1910 { 1911 int ret; 1912 1913 ret = _opp_compare_rate(opp_table, opp1, opp2); 1914 if (ret) 1915 return ret; 1916 1917 ret = _opp_compare_bw(opp_table, opp1, opp2); 1918 if (ret) 1919 return ret; 1920 1921 if (opp1->level != opp2->level) 1922 return opp1->level < opp2->level ? -1 : 1; 1923 1924 /* Duplicate OPPs */ 1925 return 0; 1926 } 1927 1928 static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp, 1929 struct opp_table *opp_table, 1930 struct list_head **head) 1931 { 1932 struct dev_pm_opp *opp; 1933 int opp_cmp; 1934 1935 /* 1936 * Insert new OPP in order of increasing frequency and discard if 1937 * already present. 1938 * 1939 * Need to use &opp_table->opp_list in the condition part of the 'for' 1940 * loop, don't replace it with head otherwise it will become an infinite 1941 * loop. 1942 */ 1943 list_for_each_entry(opp, &opp_table->opp_list, node) { 1944 opp_cmp = _opp_compare_key(opp_table, new_opp, opp); 1945 if (opp_cmp > 0) { 1946 *head = &opp->node; 1947 continue; 1948 } 1949 1950 if (opp_cmp < 0) 1951 return 0; 1952 1953 /* Duplicate OPPs */ 1954 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n", 1955 __func__, opp->rates[0], opp->supplies[0].u_volt, 1956 opp->available, new_opp->rates[0], 1957 new_opp->supplies[0].u_volt, new_opp->available); 1958 1959 /* Should we compare voltages for all regulators here ? */ 1960 return opp->available && 1961 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST; 1962 } 1963 1964 return 0; 1965 } 1966 1967 void _required_opps_available(struct dev_pm_opp *opp, int count) 1968 { 1969 int i; 1970 1971 for (i = 0; i < count; i++) { 1972 if (opp->required_opps[i]->available) 1973 continue; 1974 1975 opp->available = false; 1976 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n", 1977 __func__, opp->required_opps[i]->np, opp->rates[0]); 1978 return; 1979 } 1980 } 1981 1982 /* 1983 * Returns: 1984 * 0: On success. And appropriate error message for duplicate OPPs. 1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of 1986 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make 1987 * sure we don't print error messages unnecessarily if different parts of 1988 * kernel try to initialize the OPP table. 1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This 1990 * should be considered an error by the callers of _opp_add(). 1991 */ 1992 int _opp_add(struct device *dev, struct dev_pm_opp *new_opp, 1993 struct opp_table *opp_table) 1994 { 1995 struct list_head *head; 1996 int ret; 1997 1998 mutex_lock(&opp_table->lock); 1999 head = &opp_table->opp_list; 2000 2001 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head); 2002 if (ret) { 2003 mutex_unlock(&opp_table->lock); 2004 return ret; 2005 } 2006 2007 list_add(&new_opp->node, head); 2008 mutex_unlock(&opp_table->lock); 2009 2010 new_opp->opp_table = opp_table; 2011 kref_init(&new_opp->kref); 2012 2013 opp_debug_create_one(new_opp, opp_table); 2014 2015 if (!_opp_supported_by_regulators(new_opp, opp_table)) { 2016 new_opp->available = false; 2017 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n", 2018 __func__, new_opp->rates[0]); 2019 } 2020 2021 /* required-opps not fully initialized yet */ 2022 if (lazy_linking_pending(opp_table)) 2023 return 0; 2024 2025 _required_opps_available(new_opp, opp_table->required_opp_count); 2026 2027 return 0; 2028 } 2029 2030 /** 2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings. 2032 * @opp_table: OPP table 2033 * @dev: device for which we do this operation 2034 * @data: The OPP data for the OPP to add 2035 * @dynamic: Dynamically added OPPs. 2036 * 2037 * This function adds an opp definition to the opp table and returns status. 2038 * The opp is made available by default and it can be controlled using 2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove. 2040 * 2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table 2042 * and freed by dev_pm_opp_of_remove_table. 2043 * 2044 * Return: 2045 * 0 On success OR 2046 * Duplicate OPPs (both freq and volt are same) and opp->available 2047 * -EEXIST Freq are same and volt are different OR 2048 * Duplicate OPPs (both freq and volt are same) and !opp->available 2049 * -ENOMEM Memory allocation failure 2050 */ 2051 int _opp_add_v1(struct opp_table *opp_table, struct device *dev, 2052 struct dev_pm_opp_data *data, bool dynamic) 2053 { 2054 struct dev_pm_opp *new_opp; 2055 unsigned long tol, u_volt = data->u_volt; 2056 int ret; 2057 2058 if (!assert_single_clk(opp_table)) 2059 return -EINVAL; 2060 2061 new_opp = _opp_allocate(opp_table); 2062 if (!new_opp) 2063 return -ENOMEM; 2064 2065 /* populate the opp table */ 2066 new_opp->rates[0] = data->freq; 2067 new_opp->level = data->level; 2068 new_opp->turbo = data->turbo; 2069 tol = u_volt * opp_table->voltage_tolerance_v1 / 100; 2070 new_opp->supplies[0].u_volt = u_volt; 2071 new_opp->supplies[0].u_volt_min = u_volt - tol; 2072 new_opp->supplies[0].u_volt_max = u_volt + tol; 2073 new_opp->available = true; 2074 new_opp->dynamic = dynamic; 2075 2076 ret = _opp_add(dev, new_opp, opp_table); 2077 if (ret) { 2078 /* Don't return error for duplicate OPPs */ 2079 if (ret == -EBUSY) 2080 ret = 0; 2081 goto free_opp; 2082 } 2083 2084 /* 2085 * Notify the changes in the availability of the operable 2086 * frequency/voltage list. 2087 */ 2088 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp); 2089 return 0; 2090 2091 free_opp: 2092 _opp_free(new_opp); 2093 2094 return ret; 2095 } 2096 2097 /* 2098 * This is required only for the V2 bindings, and it enables a platform to 2099 * specify the hierarchy of versions it supports. OPP layer will then enable 2100 * OPPs, which are available for those versions, based on its 'opp-supported-hw' 2101 * property. 2102 */ 2103 static int _opp_set_supported_hw(struct opp_table *opp_table, 2104 const u32 *versions, unsigned int count) 2105 { 2106 /* Another CPU that shares the OPP table has set the property ? */ 2107 if (opp_table->supported_hw) 2108 return 0; 2109 2110 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions), 2111 GFP_KERNEL); 2112 if (!opp_table->supported_hw) 2113 return -ENOMEM; 2114 2115 opp_table->supported_hw_count = count; 2116 2117 return 0; 2118 } 2119 2120 static void _opp_put_supported_hw(struct opp_table *opp_table) 2121 { 2122 if (opp_table->supported_hw) { 2123 kfree(opp_table->supported_hw); 2124 opp_table->supported_hw = NULL; 2125 opp_table->supported_hw_count = 0; 2126 } 2127 } 2128 2129 /* 2130 * This is required only for the V2 bindings, and it enables a platform to 2131 * specify the extn to be used for certain property names. The properties to 2132 * which the extension will apply are opp-microvolt and opp-microamp. OPP core 2133 * should postfix the property name with -<name> while looking for them. 2134 */ 2135 static int _opp_set_prop_name(struct opp_table *opp_table, const char *name) 2136 { 2137 /* Another CPU that shares the OPP table has set the property ? */ 2138 if (!opp_table->prop_name) { 2139 opp_table->prop_name = kstrdup(name, GFP_KERNEL); 2140 if (!opp_table->prop_name) 2141 return -ENOMEM; 2142 } 2143 2144 return 0; 2145 } 2146 2147 static void _opp_put_prop_name(struct opp_table *opp_table) 2148 { 2149 if (opp_table->prop_name) { 2150 kfree(opp_table->prop_name); 2151 opp_table->prop_name = NULL; 2152 } 2153 } 2154 2155 /* 2156 * In order to support OPP switching, OPP layer needs to know the name of the 2157 * device's regulators, as the core would be required to switch voltages as 2158 * well. 2159 * 2160 * This must be called before any OPPs are initialized for the device. 2161 */ 2162 static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev, 2163 const char * const names[]) 2164 { 2165 const char * const *temp = names; 2166 struct regulator *reg; 2167 int count = 0, ret, i; 2168 2169 /* Count number of regulators */ 2170 while (*temp++) 2171 count++; 2172 2173 if (!count) 2174 return -EINVAL; 2175 2176 /* Another CPU that shares the OPP table has set the regulators ? */ 2177 if (opp_table->regulators) 2178 return 0; 2179 2180 opp_table->regulators = kmalloc_array(count, 2181 sizeof(*opp_table->regulators), 2182 GFP_KERNEL); 2183 if (!opp_table->regulators) 2184 return -ENOMEM; 2185 2186 for (i = 0; i < count; i++) { 2187 reg = regulator_get_optional(dev, names[i]); 2188 if (IS_ERR(reg)) { 2189 ret = dev_err_probe(dev, PTR_ERR(reg), 2190 "%s: no regulator (%s) found\n", 2191 __func__, names[i]); 2192 goto free_regulators; 2193 } 2194 2195 opp_table->regulators[i] = reg; 2196 } 2197 2198 opp_table->regulator_count = count; 2199 2200 /* Set generic config_regulators() for single regulators here */ 2201 if (count == 1) 2202 opp_table->config_regulators = _opp_config_regulator_single; 2203 2204 return 0; 2205 2206 free_regulators: 2207 while (i != 0) 2208 regulator_put(opp_table->regulators[--i]); 2209 2210 kfree(opp_table->regulators); 2211 opp_table->regulators = NULL; 2212 opp_table->regulator_count = -1; 2213 2214 return ret; 2215 } 2216 2217 static void _opp_put_regulators(struct opp_table *opp_table) 2218 { 2219 int i; 2220 2221 if (!opp_table->regulators) 2222 return; 2223 2224 if (opp_table->enabled) { 2225 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2226 regulator_disable(opp_table->regulators[i]); 2227 } 2228 2229 for (i = opp_table->regulator_count - 1; i >= 0; i--) 2230 regulator_put(opp_table->regulators[i]); 2231 2232 kfree(opp_table->regulators); 2233 opp_table->regulators = NULL; 2234 opp_table->regulator_count = -1; 2235 } 2236 2237 static void _put_clks(struct opp_table *opp_table, int count) 2238 { 2239 int i; 2240 2241 for (i = count - 1; i >= 0; i--) 2242 clk_put(opp_table->clks[i]); 2243 2244 kfree(opp_table->clks); 2245 opp_table->clks = NULL; 2246 } 2247 2248 /* 2249 * In order to support OPP switching, OPP layer needs to get pointers to the 2250 * clocks for the device. Simple cases work fine without using this routine 2251 * (i.e. by passing connection-id as NULL), but for a device with multiple 2252 * clocks available, the OPP core needs to know the exact names of the clks to 2253 * use. 2254 * 2255 * This must be called before any OPPs are initialized for the device. 2256 */ 2257 static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev, 2258 const char * const names[], 2259 config_clks_t config_clks) 2260 { 2261 const char * const *temp = names; 2262 int count = 0, ret, i; 2263 struct clk *clk; 2264 2265 /* Count number of clks */ 2266 while (*temp++) 2267 count++; 2268 2269 /* 2270 * This is a special case where we have a single clock, whose connection 2271 * id name is NULL, i.e. first two entries are NULL in the array. 2272 */ 2273 if (!count && !names[1]) 2274 count = 1; 2275 2276 /* Fail early for invalid configurations */ 2277 if (!count || (!config_clks && count > 1)) 2278 return -EINVAL; 2279 2280 /* Another CPU that shares the OPP table has set the clkname ? */ 2281 if (opp_table->clks) 2282 return 0; 2283 2284 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks), 2285 GFP_KERNEL); 2286 if (!opp_table->clks) 2287 return -ENOMEM; 2288 2289 /* Find clks for the device */ 2290 for (i = 0; i < count; i++) { 2291 clk = clk_get(dev, names[i]); 2292 if (IS_ERR(clk)) { 2293 ret = dev_err_probe(dev, PTR_ERR(clk), 2294 "%s: Couldn't find clock with name: %s\n", 2295 __func__, names[i]); 2296 goto free_clks; 2297 } 2298 2299 opp_table->clks[i] = clk; 2300 } 2301 2302 opp_table->clk_count = count; 2303 opp_table->config_clks = config_clks; 2304 2305 /* Set generic single clk set here */ 2306 if (count == 1) { 2307 if (!opp_table->config_clks) 2308 opp_table->config_clks = _opp_config_clk_single; 2309 2310 /* 2311 * We could have just dropped the "clk" field and used "clks" 2312 * everywhere. Instead we kept the "clk" field around for 2313 * following reasons: 2314 * 2315 * - avoiding clks[0] everywhere else. 2316 * - not running single clk helpers for multiple clk usecase by 2317 * mistake. 2318 * 2319 * Since this is single-clk case, just update the clk pointer 2320 * too. 2321 */ 2322 opp_table->clk = opp_table->clks[0]; 2323 } 2324 2325 return 0; 2326 2327 free_clks: 2328 _put_clks(opp_table, i); 2329 return ret; 2330 } 2331 2332 static void _opp_put_clknames(struct opp_table *opp_table) 2333 { 2334 if (!opp_table->clks) 2335 return; 2336 2337 opp_table->config_clks = NULL; 2338 opp_table->clk = ERR_PTR(-ENODEV); 2339 2340 _put_clks(opp_table, opp_table->clk_count); 2341 } 2342 2343 /* 2344 * This is useful to support platforms with multiple regulators per device. 2345 * 2346 * This must be called before any OPPs are initialized for the device. 2347 */ 2348 static int _opp_set_config_regulators_helper(struct opp_table *opp_table, 2349 struct device *dev, config_regulators_t config_regulators) 2350 { 2351 /* Another CPU that shares the OPP table has set the helper ? */ 2352 if (!opp_table->config_regulators) 2353 opp_table->config_regulators = config_regulators; 2354 2355 return 0; 2356 } 2357 2358 static void _opp_put_config_regulators_helper(struct opp_table *opp_table) 2359 { 2360 if (opp_table->config_regulators) 2361 opp_table->config_regulators = NULL; 2362 } 2363 2364 static void _opp_detach_genpd(struct opp_table *opp_table) 2365 { 2366 int index; 2367 2368 for (index = 0; index < opp_table->required_opp_count; index++) { 2369 if (!opp_table->required_devs[index]) 2370 continue; 2371 2372 dev_pm_domain_detach(opp_table->required_devs[index], false); 2373 opp_table->required_devs[index] = NULL; 2374 } 2375 } 2376 2377 /* 2378 * Multiple generic power domains for a device are supported with the help of 2379 * virtual genpd devices, which are created for each consumer device - genpd 2380 * pair. These are the device structures which are attached to the power domain 2381 * and are required by the OPP core to set the performance state of the genpd. 2382 * The same API also works for the case where single genpd is available and so 2383 * we don't need to support that separately. 2384 * 2385 * This helper will normally be called by the consumer driver of the device 2386 * "dev", as only that has details of the genpd names. 2387 * 2388 * This helper needs to be called once with a list of all genpd to attach. 2389 * Otherwise the original device structure will be used instead by the OPP core. 2390 * 2391 * The order of entries in the names array must match the order in which 2392 * "required-opps" are added in DT. 2393 */ 2394 static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev, 2395 const char * const *names, struct device ***virt_devs) 2396 { 2397 struct device *virt_dev, *gdev; 2398 struct opp_table *genpd_table; 2399 int index = 0, ret = -EINVAL; 2400 const char * const *name = names; 2401 2402 if (!opp_table->required_devs) { 2403 dev_err(dev, "Required OPPs not available, can't attach genpd\n"); 2404 return -EINVAL; 2405 } 2406 2407 /* Genpd core takes care of propagation to parent genpd */ 2408 if (opp_table->is_genpd) { 2409 dev_err(dev, "%s: Operation not supported for genpds\n", __func__); 2410 return -EOPNOTSUPP; 2411 } 2412 2413 /* Checking only the first one is enough ? */ 2414 if (opp_table->required_devs[0]) 2415 return 0; 2416 2417 while (*name) { 2418 if (index >= opp_table->required_opp_count) { 2419 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n", 2420 *name, opp_table->required_opp_count, index); 2421 goto err; 2422 } 2423 2424 virt_dev = dev_pm_domain_attach_by_name(dev, *name); 2425 if (IS_ERR_OR_NULL(virt_dev)) { 2426 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV; 2427 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret); 2428 goto err; 2429 } 2430 2431 /* 2432 * The required_opp_tables parsing is not perfect, as the OPP 2433 * core does the parsing solely based on the DT node pointers. 2434 * The core sets the required_opp_tables entry to the first OPP 2435 * table in the "opp_tables" list, that matches with the node 2436 * pointer. 2437 * 2438 * If the target DT OPP table is used by multiple devices and 2439 * they all create separate instances of 'struct opp_table' from 2440 * it, then it is possible that the required_opp_tables entry 2441 * may be set to the incorrect sibling device. 2442 * 2443 * Cross check it again and fix if required. 2444 */ 2445 gdev = dev_to_genpd_dev(virt_dev); 2446 if (IS_ERR(gdev)) 2447 return PTR_ERR(gdev); 2448 2449 genpd_table = _find_opp_table(gdev); 2450 if (!IS_ERR(genpd_table)) { 2451 if (genpd_table != opp_table->required_opp_tables[index]) { 2452 dev_pm_opp_put_opp_table(opp_table->required_opp_tables[index]); 2453 opp_table->required_opp_tables[index] = genpd_table; 2454 } else { 2455 dev_pm_opp_put_opp_table(genpd_table); 2456 } 2457 } 2458 2459 /* 2460 * Add the virtual genpd device as a user of the OPP table, so 2461 * we can call dev_pm_opp_set_opp() on it directly. 2462 * 2463 * This will be automatically removed when the OPP table is 2464 * removed, don't need to handle that here. 2465 */ 2466 if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) { 2467 ret = -ENOMEM; 2468 goto err; 2469 } 2470 2471 opp_table->required_devs[index] = virt_dev; 2472 index++; 2473 name++; 2474 } 2475 2476 if (virt_devs) 2477 *virt_devs = opp_table->required_devs; 2478 2479 return 0; 2480 2481 err: 2482 _opp_detach_genpd(opp_table); 2483 return ret; 2484 2485 } 2486 2487 static int _opp_set_required_devs(struct opp_table *opp_table, 2488 struct device *dev, 2489 struct device **required_devs) 2490 { 2491 int i; 2492 2493 if (!opp_table->required_devs) { 2494 dev_err(dev, "Required OPPs not available, can't set required devs\n"); 2495 return -EINVAL; 2496 } 2497 2498 /* Another device that shares the OPP table has set the required devs ? */ 2499 if (opp_table->required_devs[0]) 2500 return 0; 2501 2502 for (i = 0; i < opp_table->required_opp_count; i++) { 2503 /* Genpd core takes care of propagation to parent genpd */ 2504 if (required_devs[i] && opp_table->is_genpd && 2505 opp_table->required_opp_tables[i]->is_genpd) { 2506 dev_err(dev, "%s: Operation not supported for genpds\n", __func__); 2507 return -EOPNOTSUPP; 2508 } 2509 2510 opp_table->required_devs[i] = required_devs[i]; 2511 } 2512 2513 return 0; 2514 } 2515 2516 static void _opp_put_required_devs(struct opp_table *opp_table) 2517 { 2518 int i; 2519 2520 for (i = 0; i < opp_table->required_opp_count; i++) 2521 opp_table->required_devs[i] = NULL; 2522 } 2523 2524 static void _opp_clear_config(struct opp_config_data *data) 2525 { 2526 if (data->flags & OPP_CONFIG_REQUIRED_DEVS) 2527 _opp_put_required_devs(data->opp_table); 2528 else if (data->flags & OPP_CONFIG_GENPD) 2529 _opp_detach_genpd(data->opp_table); 2530 2531 if (data->flags & OPP_CONFIG_REGULATOR) 2532 _opp_put_regulators(data->opp_table); 2533 if (data->flags & OPP_CONFIG_SUPPORTED_HW) 2534 _opp_put_supported_hw(data->opp_table); 2535 if (data->flags & OPP_CONFIG_REGULATOR_HELPER) 2536 _opp_put_config_regulators_helper(data->opp_table); 2537 if (data->flags & OPP_CONFIG_PROP_NAME) 2538 _opp_put_prop_name(data->opp_table); 2539 if (data->flags & OPP_CONFIG_CLK) 2540 _opp_put_clknames(data->opp_table); 2541 2542 dev_pm_opp_put_opp_table(data->opp_table); 2543 kfree(data); 2544 } 2545 2546 /** 2547 * dev_pm_opp_set_config() - Set OPP configuration for the device. 2548 * @dev: Device for which configuration is being set. 2549 * @config: OPP configuration. 2550 * 2551 * This allows all device OPP configurations to be performed at once. 2552 * 2553 * This must be called before any OPPs are initialized for the device. This may 2554 * be called multiple times for the same OPP table, for example once for each 2555 * CPU that share the same table. This must be balanced by the same number of 2556 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly. 2557 * 2558 * This returns a token to the caller, which must be passed to 2559 * dev_pm_opp_clear_config() to free the resources later. The value of the 2560 * returned token will be >= 1 for success and negative for errors. The minimum 2561 * value of 1 is chosen here to make it easy for callers to manage the resource. 2562 */ 2563 int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2564 { 2565 struct opp_table *opp_table; 2566 struct opp_config_data *data; 2567 unsigned int id; 2568 int ret; 2569 2570 data = kmalloc(sizeof(*data), GFP_KERNEL); 2571 if (!data) 2572 return -ENOMEM; 2573 2574 opp_table = _add_opp_table(dev, false); 2575 if (IS_ERR(opp_table)) { 2576 kfree(data); 2577 return PTR_ERR(opp_table); 2578 } 2579 2580 data->opp_table = opp_table; 2581 data->flags = 0; 2582 2583 /* This should be called before OPPs are initialized */ 2584 if (WARN_ON(!list_empty(&opp_table->opp_list))) { 2585 ret = -EBUSY; 2586 goto err; 2587 } 2588 2589 /* Configure clocks */ 2590 if (config->clk_names) { 2591 ret = _opp_set_clknames(opp_table, dev, config->clk_names, 2592 config->config_clks); 2593 if (ret) 2594 goto err; 2595 2596 data->flags |= OPP_CONFIG_CLK; 2597 } else if (config->config_clks) { 2598 /* Don't allow config callback without clocks */ 2599 ret = -EINVAL; 2600 goto err; 2601 } 2602 2603 /* Configure property names */ 2604 if (config->prop_name) { 2605 ret = _opp_set_prop_name(opp_table, config->prop_name); 2606 if (ret) 2607 goto err; 2608 2609 data->flags |= OPP_CONFIG_PROP_NAME; 2610 } 2611 2612 /* Configure config_regulators helper */ 2613 if (config->config_regulators) { 2614 ret = _opp_set_config_regulators_helper(opp_table, dev, 2615 config->config_regulators); 2616 if (ret) 2617 goto err; 2618 2619 data->flags |= OPP_CONFIG_REGULATOR_HELPER; 2620 } 2621 2622 /* Configure supported hardware */ 2623 if (config->supported_hw) { 2624 ret = _opp_set_supported_hw(opp_table, config->supported_hw, 2625 config->supported_hw_count); 2626 if (ret) 2627 goto err; 2628 2629 data->flags |= OPP_CONFIG_SUPPORTED_HW; 2630 } 2631 2632 /* Configure supplies */ 2633 if (config->regulator_names) { 2634 ret = _opp_set_regulators(opp_table, dev, 2635 config->regulator_names); 2636 if (ret) 2637 goto err; 2638 2639 data->flags |= OPP_CONFIG_REGULATOR; 2640 } 2641 2642 /* Attach genpds */ 2643 if (config->genpd_names) { 2644 if (config->required_devs) 2645 goto err; 2646 2647 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names, 2648 config->virt_devs); 2649 if (ret) 2650 goto err; 2651 2652 data->flags |= OPP_CONFIG_GENPD; 2653 } else if (config->required_devs) { 2654 ret = _opp_set_required_devs(opp_table, dev, 2655 config->required_devs); 2656 if (ret) 2657 goto err; 2658 2659 data->flags |= OPP_CONFIG_REQUIRED_DEVS; 2660 } 2661 2662 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX), 2663 GFP_KERNEL); 2664 if (ret) 2665 goto err; 2666 2667 return id; 2668 2669 err: 2670 _opp_clear_config(data); 2671 return ret; 2672 } 2673 EXPORT_SYMBOL_GPL(dev_pm_opp_set_config); 2674 2675 /** 2676 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration. 2677 * @token: The token returned by dev_pm_opp_set_config() previously. 2678 * 2679 * This allows all device OPP configurations to be cleared at once. This must be 2680 * called once for each call made to dev_pm_opp_set_config(), in order to free 2681 * the OPPs properly. 2682 * 2683 * Currently the first call itself ends up freeing all the OPP configurations, 2684 * while the later ones only drop the OPP table reference. This works well for 2685 * now as we would never want to use an half initialized OPP table and want to 2686 * remove the configurations together. 2687 */ 2688 void dev_pm_opp_clear_config(int token) 2689 { 2690 struct opp_config_data *data; 2691 2692 /* 2693 * This lets the callers call this unconditionally and keep their code 2694 * simple. 2695 */ 2696 if (unlikely(token <= 0)) 2697 return; 2698 2699 data = xa_erase(&opp_configs, token); 2700 if (WARN_ON(!data)) 2701 return; 2702 2703 _opp_clear_config(data); 2704 } 2705 EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config); 2706 2707 static void devm_pm_opp_config_release(void *token) 2708 { 2709 dev_pm_opp_clear_config((unsigned long)token); 2710 } 2711 2712 /** 2713 * devm_pm_opp_set_config() - Set OPP configuration for the device. 2714 * @dev: Device for which configuration is being set. 2715 * @config: OPP configuration. 2716 * 2717 * This allows all device OPP configurations to be performed at once. 2718 * This is a resource-managed variant of dev_pm_opp_set_config(). 2719 * 2720 * Return: 0 on success and errorno otherwise. 2721 */ 2722 int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config) 2723 { 2724 int token = dev_pm_opp_set_config(dev, config); 2725 2726 if (token < 0) 2727 return token; 2728 2729 return devm_add_action_or_reset(dev, devm_pm_opp_config_release, 2730 (void *) ((unsigned long) token)); 2731 } 2732 EXPORT_SYMBOL_GPL(devm_pm_opp_set_config); 2733 2734 /** 2735 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP. 2736 * @src_table: OPP table which has @dst_table as one of its required OPP table. 2737 * @dst_table: Required OPP table of the @src_table. 2738 * @src_opp: OPP from the @src_table. 2739 * 2740 * This function returns the OPP (present in @dst_table) pointed out by the 2741 * "required-opps" property of the @src_opp (present in @src_table). 2742 * 2743 * The callers are required to call dev_pm_opp_put() for the returned OPP after 2744 * use. 2745 * 2746 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise. 2747 */ 2748 struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table, 2749 struct opp_table *dst_table, 2750 struct dev_pm_opp *src_opp) 2751 { 2752 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV); 2753 int i; 2754 2755 if (!src_table || !dst_table || !src_opp || 2756 !src_table->required_opp_tables) 2757 return ERR_PTR(-EINVAL); 2758 2759 /* required-opps not fully initialized yet */ 2760 if (lazy_linking_pending(src_table)) 2761 return ERR_PTR(-EBUSY); 2762 2763 for (i = 0; i < src_table->required_opp_count; i++) { 2764 if (src_table->required_opp_tables[i] == dst_table) { 2765 mutex_lock(&src_table->lock); 2766 2767 list_for_each_entry(opp, &src_table->opp_list, node) { 2768 if (opp == src_opp) { 2769 dest_opp = opp->required_opps[i]; 2770 dev_pm_opp_get(dest_opp); 2771 break; 2772 } 2773 } 2774 2775 mutex_unlock(&src_table->lock); 2776 break; 2777 } 2778 } 2779 2780 if (IS_ERR(dest_opp)) { 2781 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, 2782 src_table, dst_table); 2783 } 2784 2785 return dest_opp; 2786 } 2787 EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp); 2788 2789 /** 2790 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table. 2791 * @src_table: OPP table which has dst_table as one of its required OPP table. 2792 * @dst_table: Required OPP table of the src_table. 2793 * @pstate: Current performance state of the src_table. 2794 * 2795 * This Returns pstate of the OPP (present in @dst_table) pointed out by the 2796 * "required-opps" property of the OPP (present in @src_table) which has 2797 * performance state set to @pstate. 2798 * 2799 * Return: Zero or positive performance state on success, otherwise negative 2800 * value on errors. 2801 */ 2802 int dev_pm_opp_xlate_performance_state(struct opp_table *src_table, 2803 struct opp_table *dst_table, 2804 unsigned int pstate) 2805 { 2806 struct dev_pm_opp *opp; 2807 int dest_pstate = -EINVAL; 2808 int i; 2809 2810 /* 2811 * Normally the src_table will have the "required_opps" property set to 2812 * point to one of the OPPs in the dst_table, but in some cases the 2813 * genpd and its master have one to one mapping of performance states 2814 * and so none of them have the "required-opps" property set. Return the 2815 * pstate of the src_table as it is in such cases. 2816 */ 2817 if (!src_table || !src_table->required_opp_count) 2818 return pstate; 2819 2820 /* Both OPP tables must belong to genpds */ 2821 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) { 2822 pr_err("%s: Performance state is only valid for genpds.\n", __func__); 2823 return -EINVAL; 2824 } 2825 2826 /* required-opps not fully initialized yet */ 2827 if (lazy_linking_pending(src_table)) 2828 return -EBUSY; 2829 2830 for (i = 0; i < src_table->required_opp_count; i++) { 2831 if (src_table->required_opp_tables[i]->np == dst_table->np) 2832 break; 2833 } 2834 2835 if (unlikely(i == src_table->required_opp_count)) { 2836 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n", 2837 __func__, src_table, dst_table); 2838 return -EINVAL; 2839 } 2840 2841 mutex_lock(&src_table->lock); 2842 2843 list_for_each_entry(opp, &src_table->opp_list, node) { 2844 if (opp->level == pstate) { 2845 dest_pstate = opp->required_opps[i]->level; 2846 goto unlock; 2847 } 2848 } 2849 2850 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table, 2851 dst_table); 2852 2853 unlock: 2854 mutex_unlock(&src_table->lock); 2855 2856 return dest_pstate; 2857 } 2858 2859 /** 2860 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions 2861 * @dev: The device for which we do this operation 2862 * @data: The OPP data for the OPP to add 2863 * 2864 * This function adds an opp definition to the opp table and returns status. 2865 * The opp is made available by default and it can be controlled using 2866 * dev_pm_opp_enable/disable functions. 2867 * 2868 * Return: 2869 * 0 On success OR 2870 * Duplicate OPPs (both freq and volt are same) and opp->available 2871 * -EEXIST Freq are same and volt are different OR 2872 * Duplicate OPPs (both freq and volt are same) and !opp->available 2873 * -ENOMEM Memory allocation failure 2874 */ 2875 int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data) 2876 { 2877 struct opp_table *opp_table; 2878 int ret; 2879 2880 opp_table = _add_opp_table(dev, true); 2881 if (IS_ERR(opp_table)) 2882 return PTR_ERR(opp_table); 2883 2884 /* Fix regulator count for dynamic OPPs */ 2885 opp_table->regulator_count = 1; 2886 2887 ret = _opp_add_v1(opp_table, dev, data, true); 2888 if (ret) 2889 dev_pm_opp_put_opp_table(opp_table); 2890 2891 return ret; 2892 } 2893 EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic); 2894 2895 /** 2896 * _opp_set_availability() - helper to set the availability of an opp 2897 * @dev: device for which we do this operation 2898 * @freq: OPP frequency to modify availability 2899 * @availability_req: availability status requested for this opp 2900 * 2901 * Set the availability of an OPP, opp_{enable,disable} share a common logic 2902 * which is isolated here. 2903 * 2904 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2905 * copy operation, returns 0 if no modification was done OR modification was 2906 * successful. 2907 */ 2908 static int _opp_set_availability(struct device *dev, unsigned long freq, 2909 bool availability_req) 2910 { 2911 struct opp_table *opp_table; 2912 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2913 int r = 0; 2914 2915 /* Find the opp_table */ 2916 opp_table = _find_opp_table(dev); 2917 if (IS_ERR(opp_table)) { 2918 r = PTR_ERR(opp_table); 2919 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2920 return r; 2921 } 2922 2923 if (!assert_single_clk(opp_table)) { 2924 r = -EINVAL; 2925 goto put_table; 2926 } 2927 2928 mutex_lock(&opp_table->lock); 2929 2930 /* Do we have the frequency? */ 2931 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 2932 if (tmp_opp->rates[0] == freq) { 2933 opp = tmp_opp; 2934 break; 2935 } 2936 } 2937 2938 if (IS_ERR(opp)) { 2939 r = PTR_ERR(opp); 2940 goto unlock; 2941 } 2942 2943 /* Is update really needed? */ 2944 if (opp->available == availability_req) 2945 goto unlock; 2946 2947 opp->available = availability_req; 2948 2949 dev_pm_opp_get(opp); 2950 mutex_unlock(&opp_table->lock); 2951 2952 /* Notify the change of the OPP availability */ 2953 if (availability_req) 2954 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE, 2955 opp); 2956 else 2957 blocking_notifier_call_chain(&opp_table->head, 2958 OPP_EVENT_DISABLE, opp); 2959 2960 dev_pm_opp_put(opp); 2961 goto put_table; 2962 2963 unlock: 2964 mutex_unlock(&opp_table->lock); 2965 put_table: 2966 dev_pm_opp_put_opp_table(opp_table); 2967 return r; 2968 } 2969 2970 /** 2971 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP 2972 * @dev: device for which we do this operation 2973 * @freq: OPP frequency to adjust voltage of 2974 * @u_volt: new OPP target voltage 2975 * @u_volt_min: new OPP min voltage 2976 * @u_volt_max: new OPP max voltage 2977 * 2978 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 2979 * copy operation, returns 0 if no modifcation was done OR modification was 2980 * successful. 2981 */ 2982 int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq, 2983 unsigned long u_volt, unsigned long u_volt_min, 2984 unsigned long u_volt_max) 2985 2986 { 2987 struct opp_table *opp_table; 2988 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV); 2989 int r = 0; 2990 2991 /* Find the opp_table */ 2992 opp_table = _find_opp_table(dev); 2993 if (IS_ERR(opp_table)) { 2994 r = PTR_ERR(opp_table); 2995 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r); 2996 return r; 2997 } 2998 2999 if (!assert_single_clk(opp_table)) { 3000 r = -EINVAL; 3001 goto put_table; 3002 } 3003 3004 mutex_lock(&opp_table->lock); 3005 3006 /* Do we have the frequency? */ 3007 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) { 3008 if (tmp_opp->rates[0] == freq) { 3009 opp = tmp_opp; 3010 break; 3011 } 3012 } 3013 3014 if (IS_ERR(opp)) { 3015 r = PTR_ERR(opp); 3016 goto adjust_unlock; 3017 } 3018 3019 /* Is update really needed? */ 3020 if (opp->supplies->u_volt == u_volt) 3021 goto adjust_unlock; 3022 3023 opp->supplies->u_volt = u_volt; 3024 opp->supplies->u_volt_min = u_volt_min; 3025 opp->supplies->u_volt_max = u_volt_max; 3026 3027 dev_pm_opp_get(opp); 3028 mutex_unlock(&opp_table->lock); 3029 3030 /* Notify the voltage change of the OPP */ 3031 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE, 3032 opp); 3033 3034 dev_pm_opp_put(opp); 3035 goto put_table; 3036 3037 adjust_unlock: 3038 mutex_unlock(&opp_table->lock); 3039 put_table: 3040 dev_pm_opp_put_opp_table(opp_table); 3041 return r; 3042 } 3043 EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage); 3044 3045 /** 3046 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators 3047 * @dev: device for which we do this operation 3048 * 3049 * Sync voltage state of the OPP table regulators. 3050 * 3051 * Return: 0 on success or a negative error value. 3052 */ 3053 int dev_pm_opp_sync_regulators(struct device *dev) 3054 { 3055 struct opp_table *opp_table; 3056 struct regulator *reg; 3057 int i, ret = 0; 3058 3059 /* Device may not have OPP table */ 3060 opp_table = _find_opp_table(dev); 3061 if (IS_ERR(opp_table)) 3062 return 0; 3063 3064 /* Regulator may not be required for the device */ 3065 if (unlikely(!opp_table->regulators)) 3066 goto put_table; 3067 3068 /* Nothing to sync if voltage wasn't changed */ 3069 if (!opp_table->enabled) 3070 goto put_table; 3071 3072 for (i = 0; i < opp_table->regulator_count; i++) { 3073 reg = opp_table->regulators[i]; 3074 ret = regulator_sync_voltage(reg); 3075 if (ret) 3076 break; 3077 } 3078 put_table: 3079 /* Drop reference taken by _find_opp_table() */ 3080 dev_pm_opp_put_opp_table(opp_table); 3081 3082 return ret; 3083 } 3084 EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators); 3085 3086 /** 3087 * dev_pm_opp_enable() - Enable a specific OPP 3088 * @dev: device for which we do this operation 3089 * @freq: OPP frequency to enable 3090 * 3091 * Enables a provided opp. If the operation is valid, this returns 0, else the 3092 * corresponding error value. It is meant to be used for users an OPP available 3093 * after being temporarily made unavailable with dev_pm_opp_disable. 3094 * 3095 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3096 * copy operation, returns 0 if no modification was done OR modification was 3097 * successful. 3098 */ 3099 int dev_pm_opp_enable(struct device *dev, unsigned long freq) 3100 { 3101 return _opp_set_availability(dev, freq, true); 3102 } 3103 EXPORT_SYMBOL_GPL(dev_pm_opp_enable); 3104 3105 /** 3106 * dev_pm_opp_disable() - Disable a specific OPP 3107 * @dev: device for which we do this operation 3108 * @freq: OPP frequency to disable 3109 * 3110 * Disables a provided opp. If the operation is valid, this returns 3111 * 0, else the corresponding error value. It is meant to be a temporary 3112 * control by users to make this OPP not available until the circumstances are 3113 * right to make it available again (with a call to dev_pm_opp_enable). 3114 * 3115 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the 3116 * copy operation, returns 0 if no modification was done OR modification was 3117 * successful. 3118 */ 3119 int dev_pm_opp_disable(struct device *dev, unsigned long freq) 3120 { 3121 return _opp_set_availability(dev, freq, false); 3122 } 3123 EXPORT_SYMBOL_GPL(dev_pm_opp_disable); 3124 3125 /** 3126 * dev_pm_opp_register_notifier() - Register OPP notifier for the device 3127 * @dev: Device for which notifier needs to be registered 3128 * @nb: Notifier block to be registered 3129 * 3130 * Return: 0 on success or a negative error value. 3131 */ 3132 int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb) 3133 { 3134 struct opp_table *opp_table; 3135 int ret; 3136 3137 opp_table = _find_opp_table(dev); 3138 if (IS_ERR(opp_table)) 3139 return PTR_ERR(opp_table); 3140 3141 ret = blocking_notifier_chain_register(&opp_table->head, nb); 3142 3143 dev_pm_opp_put_opp_table(opp_table); 3144 3145 return ret; 3146 } 3147 EXPORT_SYMBOL(dev_pm_opp_register_notifier); 3148 3149 /** 3150 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device 3151 * @dev: Device for which notifier needs to be unregistered 3152 * @nb: Notifier block to be unregistered 3153 * 3154 * Return: 0 on success or a negative error value. 3155 */ 3156 int dev_pm_opp_unregister_notifier(struct device *dev, 3157 struct notifier_block *nb) 3158 { 3159 struct opp_table *opp_table; 3160 int ret; 3161 3162 opp_table = _find_opp_table(dev); 3163 if (IS_ERR(opp_table)) 3164 return PTR_ERR(opp_table); 3165 3166 ret = blocking_notifier_chain_unregister(&opp_table->head, nb); 3167 3168 dev_pm_opp_put_opp_table(opp_table); 3169 3170 return ret; 3171 } 3172 EXPORT_SYMBOL(dev_pm_opp_unregister_notifier); 3173 3174 /** 3175 * dev_pm_opp_remove_table() - Free all OPPs associated with the device 3176 * @dev: device pointer used to lookup OPP table. 3177 * 3178 * Free both OPPs created using static entries present in DT and the 3179 * dynamically added entries. 3180 */ 3181 void dev_pm_opp_remove_table(struct device *dev) 3182 { 3183 struct opp_table *opp_table; 3184 3185 /* Check for existing table for 'dev' */ 3186 opp_table = _find_opp_table(dev); 3187 if (IS_ERR(opp_table)) { 3188 int error = PTR_ERR(opp_table); 3189 3190 if (error != -ENODEV) 3191 WARN(1, "%s: opp_table: %d\n", 3192 IS_ERR_OR_NULL(dev) ? 3193 "Invalid device" : dev_name(dev), 3194 error); 3195 return; 3196 } 3197 3198 /* 3199 * Drop the extra reference only if the OPP table was successfully added 3200 * with dev_pm_opp_of_add_table() earlier. 3201 **/ 3202 if (_opp_remove_all_static(opp_table)) 3203 dev_pm_opp_put_opp_table(opp_table); 3204 3205 /* Drop reference taken by _find_opp_table() */ 3206 dev_pm_opp_put_opp_table(opp_table); 3207 } 3208 EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table); 3209